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Abstract 12 

Microbial specialised metabolism is full of valuable natural products that are applied clinically, 13 

agriculturally, and industrially. The genes that encode their biosynthesis are often physically clustered on 14 

the genome in biosynthetic gene clusters (BGCs). Many BGCs consist of multiple groups of co-evolving 15 

genes called sub-clusters that are responsible for the biosynthesis of a specific chemical moiety in a 16 

natural product. Sub-clusters therefore provide an important link between the structures of a natural 17 

product and its BGC, which can be leveraged for predicting natural product structures from sequence, as 18 

well as for linking chemical structures and metabolomics-derived mass features to BGCs. 19 

While some initial computational methodologies have been devised for sub-cluster detection, current 20 

approaches are not scalable, have only been run on small and outdated datasets, or produce an 21 

impractically large number of possible sub-clusters to mine through. 22 

Here, we constructed a scalable method for unsupervised sub-cluster detection, called iPRESTO, based 23 

on topic modelling and statistical analysis of co-occurrence patterns of enzyme-coding protein families. 24 

iPRESTO was used to mine sub-clusters across 150,000 prokaryotic BGCs from antiSMASH-DB. After 25 

annotating a fraction of the resulting sub-cluster families, we could predict a substructure for 16% of the 26 

antiSMASH-DB BGCs. Additionally, our method was able to confirm 83% of the experimentally 27 

characterised sub-clusters in MIBiG reference BGCs. Based on iPRESTO-detected sub-clusters, we could 28 

correctly identify the BGCs for xenorhabdin and salbostatin biosynthesis (which had not yet been 29 

annotated in BGC databases), as well as propose a candidate BGC for akashin biosynthesis. Additionally, 30 

we show for a collection of 145 actinobacteria how substructures can aid in linking BGCs to molecules by 31 

correlating iPRESTO-detected sub-clusters to MS/MS-derived Mass2Motifs substructure patterns. 32 

This work paves the way for deeper functional and structural annotation of microbial BGCs by improved 33 

linking of orphan molecules to their cognate gene clusters, thus facilitating accelerated natural product 34 

discovery. 35 

Author summary 36 

In this work, we introduce iPRESTO, a tool for scalable unsupervised sub-cluster detection in biosynthetic 37 

gene clusters. This detection is important because these biosynthetic hotspots encode many products 38 

useful for humanity, such as antibiotics, antitumor agents, or herbicides. Recent technological 39 

developments have made identification of biosynthetic loci in genomes straightforward. Yet, methods to 40 

connect these inferred biosynthetic genes to the final chemical structures of their cognate metabolites 41 

are largely lacking. Being able to reliably predict parts of the final product would constitute a real step 42 

forward in natural product genome mining. Therefore, we focussed on constructing a tool to 43 

systematically detect and annotate small regions called sub-clusters, which code for the biosynthesis of 44 

substructures in the final product, across all genomically inferred biosynthetic diversity. iPRESTO makes 45 

it possible to query unknown biosynthetic regions and infer which substructures are present in their 46 

metabolic products. This will facilitate more effective prioritization of chemical novelty, as well as linking 47 

activities from bioassays and microbiome-associated phenotypes to the metabolites responsible for them. 48 

Introduction 49 

A considerable part of bacterial metabolism is dedicated to the biosynthesis of specialised metabolites. 50 

These natural products (NPs) have many uses as pharmaceuticals, crop protection agents, and 51 

ingredients for foods and cosmetics [1, 2]. NPs consist of a spectrum of different chemical classes, which 52 

are often highly complex in structure [3]. Intriguingly, the genes necessary for the biosynthesis of NPs 53 

cluster together physically in biosynthetic gene clusters (BGCs) [4]. The search and discovery of new 54 

BGCs accelerates identification of new NPs, which is especially important in the field of antibiotics, as 55 

antibiotic-resistant bacteria are becoming increasingly prevalent [5]. 56 
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Due to the growing availability of genomic data, genome mining approaches have become more and 57 

more useful for NP discovery. Currently, multiple algorithms exist that mine bacterial genomes for 58 

putative BGCs, such as antiSMASH, ClusterFinder and PRISM [6-8]. These methods have provided a 59 

better understanding of BGC diversity and the evolutionary mechanisms that govern BGC diversity. 60 

Many classes of BGCs display a modular architecture [4]. As such, a BGC can be divided into multiple 61 

modules or sub-clusters, where each sub-cluster is a group of co-evolving genes responsible for the 62 

biosynthesis of a specific chemical moiety in the NP [4, 9, 10]. Sub-clusters therefore provide a direct 63 

link between the substructures of an NP and its BGC. This makes information about sub-clusters and the 64 

substructures they synthesise highly valuable for genome-based structure prediction, which would be a 65 

great asset for tools like antiSMASH. Apart from enhancing structural predictions for existing BGC 66 

classes, sub-cluster knowledge would facilitate predicting novel (partial) structures of currently 67 

unclassified BGCs, such as the thousands of unclassified BGCs with yet unknown products in the 68 

antiSMASH-DB [11]. 69 

Additionally, BGC modularity poses a great opportunity to connect metabolomics experiments to sub-70 

cluster data. Chemical moieties identified from fragments in mass spectrometry (MS) data could be 71 

linked to sub-clusters responsible for their synthesis, as part of MS-guided genome mining strategies 72 

[10, 12, 13]. Recent advances in substructure modelling [14] may aid such co-occurrence-based 73 

metabologenomic approaches [15] by automating the identification of substructures from MS/MS data. 74 

Recently, Del Carratore et al. [10] introduced an initial method for the detection of sub-clusters in BGCs. 75 

By constructing Clusters of Orthologous Groups (COGs) and by using a statistical approach to group co-76 

occurring COGs in sub-clusters, they were able to detect several experimentally characterised sub-77 

clusters, as well as to discover novel ones. However, COG construction is not very scalable due to the all-78 

vs-all BLAST calculation required. As a result, their analysis was performed on a relatively small dataset 79 

that is by now almost a decade old, and the chosen approach is hard to scale up to the massive amounts 80 

of genomic data that have become available in recent years. Additionally, the proposed statistical 81 

approach greatly overestimates the numbers of sub-clusters. This is due to the presence of redundant 82 

BGCs, which leads to artificial sub-clusters spanning entire BGCs, and caused by the inherently nested 83 

structure of the sub-clusters, where smaller, less specific sub-clusters are contained in larger, more 84 

specific sub-clusters. 85 

Here, we propose an improved scalable method for unsupervised sub-cluster detection which we called 86 

the integrated Prediction and Rigorous Exploration of biosynthetic Sub-clusters Tool (iPRESTO). iPRESTO 87 

is scalable to large datasets and takes phylogenetic bias into account by filtering the input in a more 88 

advanced way. To detect sub-clusters, iPRESTO uses a statistical approach (PRESTO-STAT) as well as a 89 

topic modelling algorithm (PRESTO-TOP). As a data source, we used the antiSMASH-DB, which is one of 90 

the largest collections of BGCs that currently exists, and which has been scrutinized for underlying 91 

genome assembly quality [11]; it contains over 150,000 BGCs from almost 25,000 bacterial species 92 

selected to reduce taxonomical bias. These numbers represent a considerable improvement in 93 

comparison with the previous method as it contains over ten times as many BGCs, while being less 94 

redundant. After applying iPRESTO on this large collection of BGCs, we were able to annotate 45 sub-95 

cluster motifs based on occurrences in known BGCs from the MIBiG reference BGC database [16]. Using 96 

these annotated sub-cluster motifs, we zoomed in on relevant sub-clusters, and showed direct usefulness 97 

of our method by correctly predicting the BGCs for xenorhabdin and salbostatin biosynthesis (which have 98 

been published but were missing from BGC databases) and identifying a candidate BGC for akashin 99 

biosynthesis. Finally, as a starting point for the automated connection of BGCs to their NPs, we were able 100 

to systematically link sub-clusters to substructures by using a metabologenomic correlation method in a 101 

paired-genome-metabolome dataset of 145 actinobacteria. 102 
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Results & Discussion 103 

Overview of iPRESTO 104 

iPRESTO prepares each BGC for sub-cluster detection by tokenising each gene in a BGC as a combination 105 

of Pfam domains (Fig 1 and S1 Fig). If a pair of proteins share the same Pfam domains, this provides an 106 

effective indication of (at least distant) sequence similarity, while Pfam detection is highly scalable. As 107 

Pfams are quite broad sequence models (which would be a major disadvantage compared to using 108 

COGs), we increased the resolution by splitting the 112 most abundant biosynthetic Pfams into a number 109 

of subPfams, akin to the implementation in BiG-SLICE [17]. Each subPfams constitutes a narrower 110 

domain model that covers a subset of a Pfam’s sequence space. We only considered biosynthetic 111 

domains (see Methods) to limit the search space and focus solely on finding biosynthetic sub-clusters. 112 

With a graph-based filtering step, redundant BGCs are removed, after which iPRESTO detects sub-113 

clusters using PRESTO-STAT and PRESTO-TOP. PRESTO-STAT is based on the previously published 114 

statistical method, which we expanded by partly removing nested sub-clusters, collapsing similar sub-115 

clusters into families, and joining similar families into clans. 116 

Fig 1. Outline of the iPRESTO workflow for the detection of sub-clusters. All genes in BGCs are 117 
converted into strings of Pfam domains, after which redundant BGCs are filtered out based on an Adjacency 118 
Index of domains. Sub-clusters are detected using two methods: PRESTO-TOP (TOP) and PRESTO-STAT 119 
(STAT). BGCs from the MIBiG database are used to annotate putative sub-clusters with sub-structures. These 120 
annotations are used to predict sub-structures in unknown BGCs. 121 

To enrich the discovery of sub-clusters with a method that does not produce nested sub-clusters, we 122 

introduce PRESTO-TOP as a novel approach for sub-cluster detection. PRESTO-TOP is built on Latent 123 

Dirichlet Allocation (LDA), which is used to model topics in text documents. LDA has already been used 124 

successfully in genome and metabolome data analysis before [14, 18]. In the case of PRESTO-TOP, a 125 

text document is a BGC, a word is a gene represented as a domain combination, and a topic can be 126 

thought of as a sub-cluster motif. This highlights the use of PRESTO-TOP for sub-cluster detection, as we 127 

assume that a BGC is a combination of multiple different sub-clusters, which consist of co-evolving genes 128 

that co-occur in multiple BGCs. Another benefit of PRESTO-TOP is that a topic or sub-cluster motif will 129 

usually consist of a set of core genes that encode the enzymes to synthesise the base of a substructure, 130 

while various combinations of additional modifying genes can be found in PRESTO-STAT-detected 131 

(nested) sub-clusters. In this way, the two iPRESTO methods can jointly capture substructure diversity, 132 

by identifying the sub-cluster cores as well as their variants. 133 

The resulting sub-clusters of both methods can be annotated with substructures and subsequently be 134 

used to predict sub-structures in BGCs. iPRESTO is readily usable for anyone who wants to detect sub-135 

clusters in their own datasets, both by creating new sub-cluster models and by querying BGCs to the 136 

collection of sub-clusters we detected in this study. iPRESTO can handle large amounts of BGCs: 137 

tokenising and reducing redundancy in the 150,000 BGCs in the antiSMASH-DB dataset took around 48 138 

hours each using 32 CPU cores on an Intel Xeon CPU E5-2670 v3. Detecting sub-clusters with PRESTO-139 

STAT and PRESTO-TOP completed in 24 and 8 hours, respectively. iPRESTO can query around 20 BGCs 140 

per minute to the sub-clusters detected in this study including the tokenisation steps. iPRESTO also 141 

contains a visualisation module to visualise the results of querying a BGC to PRESTO-STAT or PRESTO-142 

TOP output (see S2 Fig for an example of querying the rifamycin BGC). 143 

PRESTO-STAT improves comprehensibility of existing statistical method 144 

We applied iPRESTO to the antiSMASH-DB v2 dataset, which contained, after pre-processing, 60,028 145 

BGCs with 10,539 domain combinations (Table A in S1 Text). Using the PRESTO-STAT method, we found 146 

108,085 sub-clusters in the dataset. Over 80% of the statistical sub-clusters contain fewer than ten 147 

genes, and 17% of the sub-clusters occur in more than 10 BGCs (S3 Fig). When comparing PRESTO-148 

STAT with the previous version of the method by Del Carratore et al. [10], we observed that PRESTO-149 

STAT produces on average roughly two sub-clusters per BGC, while the previous method resulted in 150 

roughly fourteen sub-clusters per BGC. This indicates that we end up with fewer nested sub-cluster 151 

structures, which is most likely due to our extended redundancy filtering that removed almost half of the 152 
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dataset (Table A in S1 Text). Even so, nested structures are still very apparent in our results (S2 Fig). 153 

For example, thousands of BGCs have more than 30 sub-clusters, many of which overlap with one 154 

another (S4A Fig). Not only do the nested structures inflate the results, but they also have the additional 155 

disadvantage that their presence makes it harder to connect BGCs with similar yet distinct sub-clusters. 156 

To facilitate the sub-cluster analysis, we connected related sub-clusters by clustering the statistical sub-157 

clusters into 10,000 sub-cluster families (SCFs) and the SCFs into 2,000 sub-cluster clans (SCCs). We 158 

used K-means clustering and represented the statistical sub-clusters as a presence/absence matrix of the 159 

tokenised genes. Although some SCCs grouped seemingly unrelated sub-clusters together that share 160 

only one gene (based on having the same Pfam domain content), most SCCs (81%) provided groups of 161 

related sub-clusters, sharing at least three genes. 162 

Apart from the nested structures, the statistical method produces many sub-clusters of which only a 163 

fraction probably provides meaningful information. This is illustrated by the fact that the PRESTO-STAT 164 

results can be very noisy: in a group of BGCs sharing multiple sub-clusters, all combinations of these 165 

shared sub-clusters could form new sub-clusters, which happens frequently (S2 Fig). Additionally, it is 166 

rather difficult to query a BGC using the statistical sub-clusters while allowing inexact matching, as this 167 

would quickly become very time consuming. 168 

PRESTO-TOP identifies characterised and novel sub-clusters 169 

The drawbacks of PRESTO-STAT present a clear reason as to why we chose to also develop PRESTO-TOP, 170 

which can find multiple sub-clusters in a BGC and is able to capture sub-cluster diversity within sub-171 

cluster motifs. Furthermore, LDA, upon which PRESTO-TOP is built, allows for a scalable way to build and 172 

query sub-cluster motifs. 173 

We used PRESTO-TOP to train and query a model on the antiSMASH-DB dataset with 1,000 sub-cluster 174 

motifs. In the Methods section, we provide information on (hyper)parameters used and reasoning for the 175 

chosen settings. Over 80% of the BGCs in the dataset contained at least one sub-cluster motif (S4B Fig). 176 

To assess the quality of the sub-cluster motifs, we visualised all sub-clusters individually, where each 177 

sub-cluster is a group of genes matching against a sub-cluster motif (Fig 2A). For a sub-cluster to be 178 

interesting, we would expect its size to be between 2-12 genes, as experimentally characterised sub-179 

clusters fall in this range [19]. Upon checking our results, most sub-clusters that were present across a 180 

considerable number of BGCs were within this expected size range (Fig 2A), while some sub-clusters 181 

were uninformative as they encompass (nearly) entire BGCs (Fig 2B). To validate the sub-cluster motifs, 182 

we assessed whether we could detect a set of 109 experimentally verified sub-clusters, which are stored 183 

in the SubClusterBlast module within the antiSMASH framework. The sub-cluster motifs from PRESTO-184 

TOP matched to 91 (83%) validated sub-clusters, where the methoxymalonate and AHBA sub-clusters of 185 

macbecin are shown as examples (Fig C). Additionally, PRESTO-STAT was able to detect 78 of the 186 

validated sub-clusters, of which 75 overlap with the sub-cluster motifs (S5 Fig). In general, we see that 187 

PRESTO-TOP generates a more restricted amount of sub-cluster data, which might contain less 188 

meaningful sub-clusters compared to PRESTO-STAT in absolute numbers but has a considerably higher 189 

ratio of valid sub-cluster information. 190 

Fig 2. BGC length versus sub-cluster length. (a) Scatterplot of the length of each BGC (number of non-191 
empty genes) from the antiSMASH-DB dataset versus the length of a match to a topic or sub-cluster motif, 192 
representing a sub-cluster. The colour of each dot indicates how many times a BGC with a certain length 193 
contains a sub-cluster with a certain length. (b) BGC for sipanmycin where the identified sub-cluster 194 
encompasses the entire BGC, demonstrating an uninformative result. (c) BGC for macbecin where the two 195 
characterised sub-clusters for AHBA (red) and methoxymalonyl (blue) are highlighted in the structure of 196 
macbecin [20]. Sub-clusters from (b) and (c) are linked to their corresponding location in (a). 197 

Our results provide clear examples of sub-cluster motifs that capture sub-cluster variety, by containing a 198 

set of core genes responsible for synthesising the base of a substructure, and a set of modifying genes 199 

that may not be present in all sub-clusters. For example, a motif like the sugar-related sub-cluster motif 200 

680 is present in 134 MIBiG BGCs that represent different biosynthetic classes, such as different types of 201 

polyketide synthases and nonribosomal peptide synthetases. This motif codes for the biosynthesis of 202 

different (di)deoxy-sugars that are sometimes modified with amino or methyl-amino groups. However, 203 
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for some sub-cluster motifs, the biosynthetic context had an impact on shaping the motif. The sugar-204 

related sub-cluster motif 207, for example, contains several indolocarbazole biosynthesis genes as some 205 

MIBiG BGCs matching to this motif encode the production of indolocarbazoles, and some of the 206 

indolocarbazole-related genes ended up in this motif as weak features. 207 

Exploring the sub-cluster motifs 208 

Among the 90 identified characterised sub-clusters from the antiSMASH SubClusterBlast module, we 209 

could readily annotate 23 sub-cluster motifs covering around 4,000 of the PRESTO-TOP-detected sub-210 

clusters. To extend on the sub-cluster knowledge stored in the SubClusterBlast module, we annotated 211 

another 22 PRESTO-TOP-detected sub-cluster motifs for which sub-cluster instances were found inside 212 

MIBiG BGCs. Together, these 45 annotations constitute 24 different types of substructures at different 213 

levels of detail and allow us to explore the discovered sub-clusters more deeply (Fig 3 and S1 File). In 214 

the non-redundant antiSMASH-DB dataset, around 9,500 (16%) putative BGCs contain at least one of 215 

these annotated sub-cluster motifs. Through iPRESTO, we now gained relevant knowledge about these 216 

putative BGCs that we can use to predict part of the structures of the products they encode. 217 

Fig 3. Sub-cluster motif annotations. The pie chart visualises the annotations for the 45 sub-cluster motifs 218 
divided into general substructure groups, where an example substructure is shown for several groups. 219 
Additionally, examples of eight of the substructures are shown in the structures of apoptolidin, platencin, 220 
fluvirucin b2 and pyralomicin 1a, where the colours of the substructures correspond to the sub-cluster motif 221 
annotations in the pie chart. For these four metabolites, their respective BGCs are shown where the sub-cluster 222 
motifs are highlighted in the same colour as the substructures they encode. 223 

On average, an annotated sub-cluster motif occurs in 239 non-redundant BGCs, ranging from 19 BGCs 224 

for sub-cluster motif 190, to 873 BGCs for sub-cluster motif 220, which encode the biosynthesis of 225 

caprazol and dihydroxybenzoic acid moieties, respectively (S6 Fig). Some of the annotated sub-cluster 226 

motifs are mainly present in one BGC class, while others occur in diverse BGC classes (S6 and S7 Figs). 227 

An example of the latter is sub-cluster motif 773, which occurs in 153 BGCs mostly encoding 228 

nonribosomal peptide synthetases and type I polyketide synthases. This sub-cluster motif encodes the 229 

production of a 3-amino-2-methylpropionyl starter unit that appears in the known gene cluster 230 

BGC0001597 (fluvirucin b2) (Fig 3). Interestingly, the motif also occurs in some BGCs of the class 231 

“Other”, meaning they cannot be classified by antiSMASH, like two BGCs from Amycolatopsis alba DSM 232 

44262 (NZ_KB913032.1.cluster021; AMYAL_RS0129245 - AMYAL_RS0129610) and Bradyrhizobium sp. 233 

Ec3.3 (NZ_AXAS01000001.cluster006; YUU_RS0100020 - YUU_RS49645). This does not only provide 234 

interesting leads for these BGCs with previously unknown structural predictions, but it also adds to their 235 

validity. In total, 6.5% of the 10,000 “Other” class BGCs in the antiSMASH-DB contain one of the 236 

annotated sub-cluster motifs. 237 

iPRESTO can identify BGCs of orphan metabolites through sub-cluster 238 

presence 239 

Information about the sub-clusters present in a BGC is not only useful to predict the product of a BGC, 240 

but it could also be used as a tool to identify BGCs for ‘orphan’ known metabolites. To demonstrate this, 241 

we searched NPAtlas [21] with substructures that are encoded by our annotated sub-cluster motifs and 242 

looked for metabolites without a MIBiG BGC that are found in one of the strains in the antiSMASH-DB 243 

dataset. We first searched for metabolites that contain the dithiolopyrrolone substructure for which the 244 

biosynthesis is encoded by sub-cluster motif 517, annotated as such based on the MIBiG BGCs encoding 245 

thiomarinol, holomycin and thiolutin [22-24]. In doing so, we found xenorhabdins 1-6, produced by 246 

many Xenorhabdus strains that are also present in the antiSMASH-DB [25]. By searching for BGCs in 247 

those strains that contain a match to the dithiolopyrrolone sub-cluster motif, we found 12 Xenorhabdus 248 

strains that contain such a BGC (Fig 4). In one of those strains, X. doucetiae, the BGC for xenorhabdin 249 

biosynthesis has recently been described, corroborating that we accurately identified BGCs for 250 

xenorhabdin biosynthesis based on iPRESTO-detected sub-clusters [26]. Next, we searched NPAtlas for 251 

metabolites with the valienol moiety present in validamycin and pyralomicins, which is encoded by sub-252 

cluster motif 940 [27, 28]. As a result, we found salbostatin, which is produced by Streptomyces 253 

albus ATCC 21838 in our dataset [29]. By investigating BGCs in that strain, we identified a BGC that 254 

contains sub-cluster motif 940 and should therefore be responsible for salbostatin biosynthesis (Fig 4). 255 

Indeed, it turned out that this BGC has already been described in 2008 to encode the production of 256 
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salbostatin [30], but it has been lacking from the MIBiG database [16]. This valienol sub-cluster motif 257 

encoding C7-cyclitol-like substructures is an interesting example of a sub-cluster motif that can be found 258 

in different biosynthetic contexts, i.e., PKS-NRPS-like pyralomicins and different kinds of saccharides like 259 

validomycin and salbostatin. This analysis highlights that iPRESTO allows identifying correct links 260 

between BGCs and molecules that are published but were yet missing in public BGC databases (and 261 

which can thus be added to these resources). 262 

Fig 4. Connecting non-MIBiG BGCs to their metabolic products through iPRESTO-detected sub-263 
clusters. (a) Phylogenetic tree made with CORASON of 12 Xenorhabdus BGCs and 3 MIBiG BGCs, that contain 264 
an iPRESTO-predicted sub-cluster for dithiolopyrrolone biosynthesis [31]. The A-domain containing gene of 265 
NZ_FO704550.1.cluster001 was used as query for CORASON. Structures of thiomarinol (1), thiolutin (2) and 266 
holomycin (3) are linked to their MIBiG BGCs. Xenorhabdins (4-9) are encoded by X. doucetiae str. FRM16 as 267 
indicated by the asterisk, while we infer based on sub-cluster presence that the other Xenorhabdus BGCs are 268 
also responsible for xenorhabdin biosynthesis. (b) Phylogenetic tree made with CORASON 269 
NZ_CP010519.1.cluster004 from S. albus ATCC 21838 and 4 MIBiG BGCs, that contain an iPRESTO-predicted 270 
sub-cluster for C7 cyclitol biosynthesis. The predicted 2-epi-5-epi-valiolone synthase from 271 
NZ_CP10519.1.cluster004 was used as query for CORASON. Structures of validomycin A (10) and pyralomycin 272 
1A (11) are linked to their MIBiG BGCs. Salbostatin (12) is encoded by S. albus ATCC 21838 as indicated by the 273 
hash symbol. 274 

By searching in NPAtlas for chlorinated indoles, we found the orphan metabolites akashin A-C produced 275 

by the diazaquinomycins producer Streptomyces sp. F001 [32]. The BGC of akashins has not been 276 

described before in literature. As this strain was not present in the antiSMASH-DB, we ran antiSMASH 6 277 

on the genome of this strain and used iPRESTO to infer sub-clusters in the predicted BGCs. As akashins 278 

have chlorinated-indole moieties and are glycosylated, we sought for such sub-cluster motifs in the BGCs 279 

of S. sp. F001. Interestingly, we identified the genomic region in QZWF01000007.1.region003 280 

(StrepF001_25985 - StrepF001_26130) directly upstream of the diazaquinomycin BGC, based on the 281 

presence of sub-cluster motifs 194, 607 and 680 that were annotated as methylaminosugar, halogenated 282 

aromatic ring, and (amino)deoxysugar, respectively (Fig 5). The formation of the indigo-derived 283 

backbone of akashins could potentially be formed by the two p450 enzymes, akin to CYP102G4, a 284 

recently described p450 enzyme from S. cattleya [33]. This p450 enzyme can catalyse the reaction from 285 

indole to 3-hydroxyindole after which spontaneous oxidation forms indigo. CYP102G4 was even shown to 286 

accept chloro-indole as substrate, in the case that chlorination occurs before indole formation in akashin 287 

biosynthesis. This shows that iPRESTO can aid in generating meaningful hypotheses about the 288 

biosynthesis of orphan metabolites. 289 

Fig 5. Putative BGC for akashin A biosynthesis. The antiSMASH-predicted BGC 290 

QZWF01000007.1.region003 is shown (StrepF001_26130-StrepF001_26145), which is hypothetically 291 

responsible for akashin A biosynthesis in S. sp. F001. Genes are coloured by their iPRESTO-predicted sub-292 

clusters or predicted function based on Pfam domains. 293 

Correlation analysis in substructure-based integrative omics mining 294 

To automatically link unknown molecules to BGCs at a larger scale, correlating substructures predicted 295 

from metabolomics data to sub-clusters from genome data would potentially be of great added value 296 

[12, 13]. To test such an approach, we used a previously defined correlation score which assumes that a 297 

BGC is needed to synthesise a product, but that a BGC may be cryptic and not synthesise anything [15]. 298 

Ernst et al. [34] used the MS2LDA tool to discover substructure mass patterns, called Mass2Motifs, from 299 

metabolomics data of 145 Salinispora and Streptomyces species for all of which (except one) genomic 300 

data and BGC predictions are also available (the ‘Streptomyces/Salinispora dataset’) [14]. To identify 301 

sub-clusters in these, we used iPRESTO to query all Streptomyces/Salinispora BGCs on the sub-cluster 302 

motifs and sub-cluster clans (SCCs) of the antiSMASH-DB dataset. For each of the 107,590 pairs of 303 

Mass2Motifs and sub-cluster motifs, we used the correlation score from Doroghazi et al. [15] to calculate 304 

how frequently they co-occur across the Streptomyces/Salinispora strains, while we did the same for the 305 

122,404 pairs of Mass2Motifs and SCCs (S8 Fig). To prioritise interesting substructure-sub-cluster pairs, 306 

we performed permutation tests for all pairs to assess the likelihood of a high scoring pair arising by 307 

chance. This was especially needed as the Streptomyces/Salinispora dataset includes highly related 308 

strains, in which many BGCs and compounds are shared. Abundant sub-clusters and substructures 309 
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therefore get high correlation scores by default. Permutation testing resulted in 3,230 and 1,939 310 

‘significant’ pairs of Mass2Motifs and sub-cluster motifs or SCCs, respectively (S8 Fig). As an example of 311 

how such an approach connects substructure information inferred from genome and metabolome mining, 312 

we identified 5 high correlation scores with low p-values between two staurosporine-related mass2motifs 313 

and both sub-cluster motifs and SCCs constituting the amino-sugar moiety of staurosporine (Fig 6). 314 

Since currently only a fraction of the Mass2Motifs, sub-cluster motifs and SCCs are annotated, our 315 

analysis serves as an illustration of how such an approach could help to link metabolome and genome 316 

data in the future. 317 

This correlation method generally results in a lot of noise, as sub-clusters and substructures that occur in 318 

a shared subset of strains will all correlate to each other. Such co-correlating structures make the 319 

identification of the actual correlating pair therefore difficult, especially with limited annotations. 320 

Identifying clusters of co-correlating pairs could therefore provide a way to make the interpretation of 321 

this analysis easier. Additionally, the correlation analysis is not perfect in our case, as multiple different 322 

sub-clusters are often responsible for synthesising the same kind of substructure. For example, we 323 

identified multiple sub-cluster motifs that can encode methylated aminosugars, while only one 324 

mass2motif is annotated as a methylated aminosugar. In future approaches, such mismatches between 325 

genome and metabolome could be overcome by finding ways to group sub-cluster motifs together that 326 

encode similar structures before running such metabologenomic correlation analyses. Combining such 327 

solutions with the integration of more diverse species, new annotations, and improved correlation scoring 328 

methods like the one developed in Hjörleifsson Eldjárn et al. [35] would improve such analyses 329 

drastically. Furthermore, we expect that combining co-occurrence based scores (such as standardized 330 

Metcalf) with feature-based scores, such as NPClassScore [36], and the here developed iPRESTO, will 331 

further help to prioritize plausible BGC-MS/MS spectral links [12, 13]. Indeed, we expect that tools like 332 

iPRESTO could in the future be built into frameworks like NPLinker [35]. As our current contribution 333 

represents a first step in linking substructure-and sub-cluster models with rather limited (annotated) 334 

information, we expect that analyses like these will have great impact in the future to facilitate 335 

metabologenomics experiments that use integrative omics mining. 336 

Fig 6. Metabologenomic correlation scores between sub-clusters and mass2motifs. Stacked histogram 337 
of the correlation scores across the Streptomyces/Salinispora strains between the mass2motifs paired with 338 
either the SCCs or sub-cluster motifs with a p-value below 0.1. Highlighted with their scores are the pairs 339 
mass2motif_108 with SSC_452, SSC_1010, sub-cluster_motif_207 and sub-cluster_motif_680, and the pair 340 
mass2motif_8 with SSC_452. The aforementioned sub-cluster motifs (blue) and SCCs (brown) are responsible 341 
for sugar synthesis in staurosporine, while both mass2motifs (red) are staurosporine related. 342 

Conclusion and future perspectives 343 

This study introduces the iPRESTO concept and makes it available as a command line tool. We plan to 344 

include iPRESTO in one of the future releases of antiSMASH, so the collection of sub-clusters we 345 

generated in this study can be used to detect and visualize them in antiSMASH-predicted BGCs. We 346 

anticipate that this will enhance the current scope of sub-cluster detection, as antiSMASH’s current sub-347 

cluster predictor SubClusterBlast offers a limited amount of sub-cluster data, whereas our sub-cluster set 348 

will allow making more connections between predicted BGCs and MIBiG reference BGCs. This will 349 

accelerate NP discovery by linking structural information from genome and metabolome data. 350 

Due to the above discussed limitations of PRESTO-STAT, we plan to use PRESTO-TOP as the main 351 

method for sub-cluster detection in the antiSMASH implementation, as it also captures sub-cluster 352 

variety in the sub-cluster motifs and yet can be used easily to query BGCs for sub-cluster motifs. 353 

PRESTO-STAT could still be used to identify the sub-cluster boundaries better, by for example linking 354 

groups of related PRESTO-STAT sub-clusters to 'parent' PRESTO-TOP sub-cluster motifs, and by using 355 

the PRESTO-STAT modules to more specifically identify the sub-cluster variant found in a given BGC. The 356 

drawback of the statistical method that it produces highly nested and variable sub-clusters could as such 357 

be used as a strength. A way to further improve PRESTO-TOP would be to apply PRESTO-TOP in a semi-358 

supervised manner, which constitutes a major potential benefit of this approach. Before training an LDA 359 

model, certain motifs could be seeded beforehand, which allows accurate sub-cluster motifs to be reused 360 

in new analyses, analogous to the metabolomics database MotifDB, in which annotated Mass2Motifs are 361 
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stored in MotifSets [37]. Such semi-supervised approaches would allow for noise to be eliminated from 362 

sub-cluster motifs and sub-cluster motifs to be finetuned. Another way to reduce noise and to identify 363 

the more robust sub-cluster motifs would be to train multiple PRESTO-TOP models on the same dataset. Sub-cluster motifs364 

arise through chance would be filtered out, as they would only occur in one or a few of the many LDA 365 

models. Noisy genes in accurate sub-cluster motifs could be filtered out by taking intersects of multiple 366 

similar sub-cluster motifs. As another option, each BGC could be represented multiple times in training to 367 

increase the observations of less frequently occurring sub-clusters. This could lead to better estimation of 368 

the sub-cluster motif distributions over the data and cause less erroneous mixed sub-cluster motifs. We 369 

have attempted this for a small subset and noticed that the overlap with SubClusterBlast increased 370 

slightly, making this an interesting avenue to continue PRESTO-TOP sub-cluster algorithmic 371 

developments.  372 

Using iPRESTO, in our current study we were able to characterise 45 different sub-cluster motifs present 373 

in diverse BGC classes. The remaining 955 sub-cluster motifs remain largely unexplored, of which many 374 

are likely to encode useful substructures. We expect that, in the future, more annotations will increase 375 

the value of our results even more, which will be aided by the inclusion of updated (expanded) versions 376 

of the MIBiG database. Using one of the characterised sub-cluster motifs, we showed a direct practical 377 

application of our method by hypothesising a putative BGC for akashin A production. Additionally, we 378 

provided the initial step for linking sub-clusters to substructures in a systematic way, which in the future 379 

could facilitate the automated connection of BGCs to their NPs. 380 

Methods  381 

Data and Code availability 382 

iPRESTO is available as a command-line tool at https://git.wageningenur.nl/bioinformatics/iPRESTO/. The 383 

annotated sub-cluster motifs and other relevant data can be found at 384 

https://doi.org/10.5281/zenodo.6953657. The following sections describe the most important steps of 385 

this project, while the Supplementary methods in S1 Text provide more detailed explanations. 386 

Data selection 387 

The antiSMASH-DB dataset consisted of three data sources: the MIBiG database, the 388 

Streptomyces/Salinispora dataset and the antiSMASH-DB. Version 1.4 of the MIBiG database was used 389 

which contains 1,819 BGCs (https://dl.secondarymetabolites.org/mibig/mibig_gbk_1.4.tar.gz). The 390 

Streptomyces/Salinispora dataset consists of 5,927 BGCs that originate from the 146 Streptomyces and 391 

Salinispora strains investigated by Crüsemann et al. [38]. antiSMASH 3.0 was used for the detection of 392 

BGCs in the Streptomyces/Salinispora dataset. The antiSMASH-DB version 2 is comprised of 152,122 393 

BGCs detected with antiSMASH 4.0, where we included BGCs from draft genomes (Table A in S1 Text; 394 

https://dl.secondarymetabolites.org/database/2.0/asdb_20180828_all_results.tar.xz). BGCs were 395 

discarded if they were flagged by antiSMASH as lying on a contig-edge, as these BGCs are probably 396 

incomplete (fragmented) and less accurate. Additionally, BGC class information was included in the 397 

analysis, by using the assigned antiSMASH biosynthetic classes. 398 

Data pre-processing 399 

BGCs were tokenised by converting each gene into a string of (sub)Pfam domains. To detect (sub)Pfams, 400 

the HMMER3 tool hmmscan was used with a custom profile hidden Markov model (pHMM) database 401 

consisting of Pfam database version 32.0, where 112 Pfams were replaced by corresponding subPfams 402 

[39, 40]. These 112 Pfams were selected as they are the most abundant biosynthetic Pfams in the 403 

antiSMASH-DB (S2 File). To create subPfams, the multiple sequence alignment of a Pfam is split into 404 

clades, after which a new pHMM is built for each clade, each of which constitutes a subPfam (S1A Fig and 405 

https://github.com/satriaphd/build_subpfam). 406 

Redundant BGCs were removed from the analysis using a similarity network of BGCs, where BGCs were 407 

connected based on an Adjacency Index of domains higher than 0.95 or if BGCs were fully contained 408 

within one another. From each maximal clique in the network, only the BGC with the most domains was 409 
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chosen to remain in the analysis (Table A in S1 Text and S9 Fig) [41]. After redundancy filtering, all non-410 

biosynthetic domains were removed from all BGCs. To select biosynthetic domains, EC-associated Pfams 411 

were collected with ECDomainMiner, from which Pfams were selected if they occurred in pre-calculated 412 

BGCs [42]. After manual curation, this resulted in a list of 1,839 biosynthetic Pfams (S3 File). 413 

Additionally, Pfams that occurred less than three times in the dataset were removed as well as BGCs that 414 

contained less than two non-empty genes (S4 File). 415 

PRESTO-STAT 416 

The statistical method for sub-cluster detection was re-implemented in Python based on Del Carratore et 417 

al. [10] with some alterations, resulting in PRESTO-STAT. Instead of representing genes as COGs as in 418 

the previous method, we represent each gene as a combination of its domains. First, all possible 419 

adjacency and co-localisation interactions between each pair of genes are counted. To assess whether an 420 

observed interaction between two genes occurs more than by random chance, one needs to distribute 421 

such a pair of genes randomly through the dataset and calculate the probability of the observed 422 

interaction. To reduce the computational burden of a permutation-based approach, for each pair of genes 423 

one gene is kept fixed while the other is being randomly distributed throughout the data. For an 424 

adjacency interaction this gives a hypergeometric equation describing all available positions of one gene 425 

while the other is fixed (Table B1 in S1 Text). This follows from the fact that there are three options for 426 

the position of gene B while keeping gene A fixed: not adjacent to gene A (B1), adjacent to gene A (B2), 427 

or adjacent to gene A on both sides (B3). N1, N2 and N3 represent all available positions in these three 428 

categories, while Ntot represents all positions and Btot all occurrences of gene B. For a co-localisation 429 

interaction the same applies, except for the fact that gene B can be co-localised with nmax genes A, where 430 

nmax is the number of genes A co-localised with gene B (Table B2 in S1 Text). When nmax is large this 431 

becomes computationally hard, which is why we replaced duplicate genes with an empty gene (a dash) 432 

and placed one copy of the duplicate gene at the end of the cluster separated by an empty gene. This 433 

simplifies the equation as only two types of co-localisations need to be counted: co-localisation and no 434 

co-localisation (Table B3 in S1 Text). A p-value can be calculated by summing all probabilities in the 435 

hypergeometric distribution that correspond to several interactions higher or equal to the observed 436 

number of interactions. Or, to make it easier, by subtracting the sum of all possible interactions smaller 437 

than the observed interaction from one (Table B4 in S1 Text).  438 

Calculating an interaction between each pair of genes results in two p-values, one coming from gene A 439 

and one coming from gene B. Only the largest p-value for both the co-localisation, and the adjacency 440 

interactions is considered, to be conservative. To control false discovery rate under dependency we used 441 

the Benjamini–Yekutieli method on both the co-localisation and adjacency p-values [43]. 442 

To group interacting pairs of genes into sub-clusters, undirected graphs are constructed, where each 443 

gene is a node. An edge is made between two genes if they have an adjacency or co-localisation p-value 444 

below a threshold of 0.1. All maximal cliques are selected as sub-clusters, while changing the threshold 445 

iteratively to all the p-values in the dataset smaller than the original threshold of 0.1. To reduce false 446 

positives, we removed putative sub-clusters if they contained fewer than three genes and if they only 447 

occurred in one BGC. Next, we grouped similar sub-clusters together using K-means clustering into sub-448 

cluster families and sub-cluster clans and removed redundant sub-clusters (Supplementary methods in 449 

S1 Text) [44, 45]. 450 

PRESTO-TOP 451 

PRESTO-TOP uses Latent Dirichlet Allocation (LDA) latent sub-cluster composition in BGCs [46]. LDA 452 

assumes a bag-of-words representation, where each BGC is depicted as a frequency vector of its domain 453 

combinations, not taking gene order into account. We used the multicore LDA implementation from 454 

Gensim, that makes use of online variational Bayes [47, 48]. In this implementation, an LDA model is 455 

trained by updating it with mini-batches from the data, which has low time and memory complexity. We 456 

chose the chunk size of each mini-batch to be 5% of the data with a minimum chunk size of 2,000, 457 

which is loosely based on testing different chunk sizes by Hoffman et al. [48]. We considered that using 458 

500 iterations to train a model was enough after assessing that the log-likelihood converged sufficiently 459 
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(S10 Fig). For the sake of computational resources, we did limited hyperparameter optimisation for the 460 

number of sub-cluster motifs (topics) N, α, and β. To test the performance of the different models, we 461 

considered the coherence score as measured with the u_mass method [49] and the overlap with 462 

validated sub-clusters from SubClusterBlast (Supplementary methods in S1 Text). Based on the 463 

coherence score of the different models, choosing 250 sub-cluster motifs seemed optimal (S11A Fig). 464 

However, upon manual inspection of some of the motifs, it turned out that many motifs are hard to 465 

annotate with a single substructure due to the presence of many noisy features. This is corroborated by 466 

the fact that choosing 250 sub-cluster motifs does not produce the highest overlap with SubClusterBlast 467 

(S11B Fig). Instead, the model with 1000 sub-cluster motifs produced the highest overlap with 468 

SubClusterBlast while having a similar coherence score to the model with 250 motifs, which is why we 469 

chose 1000 sub-cluster motifs. We chose the default setting of a symmetric 1/N for hyperparameters α 470 

and β, as we could not find better SubClusterBlast overlap when setting α and β to symmetric, 471 

asymmetric, auto, or 1. 472 

Each sub-cluster motif in an LDA model consists of a probability vector of domain combinations, 473 

representing the contribution of each domain combination to a sub-cluster motif. To filter out noise, we 474 

sorted this vector from high to low probability, summed the probabilities and included all domain 475 

combinations until 0.95 was reached. When a group of genes from a BGC match to a sub-cluster motif, 476 

each gene is assigned a feature probability describing how well it fits in the sub-cluster motif, for which 477 

we set a cut-off of 0.3. For a sub-cluster to be considered it needs to consist of more than one gene, for 478 

which we set a cut-off of 1.1 on the summed feature probabilities. Additionally, we calculated an overlap 479 

score for each match, which we computed by summing the domain combination probabilities from the 480 

sub-cluster motif present in the match [50]. We set a threshold of 0.15 on the overlap score, as this was 481 

the highest threshold that did not remove manually validated SubClusterBlast sub-clusters from the 482 

analysis. 483 
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Supporting information 486 

S1 Text. Supplementary information for iPRESTO: automated discovery of biosynthetic sub-clusters 487 

linked to specific natural product substructures. 488 

S1 Fig. Schematic depiction of BGC tokenisation. (A) subPfams are constructed for the 112 most 489 

frequent Pfam domains in the antiSMASH-DB by dividing the multiple sequence alignment of a Pfam into clades 490 

and converting each clade into a new pHMM. (B) The BGCs predicted by antiSMASH are tokenised by detecting 491 

(sub)Pfams in each gene, where non-biosynthetic Pfams are removed. After tokenising the BGCs, sub-cluster 492 

can be detected with the statistical method (Stat), where the tokenised genes are represented in their original 493 

order, or by LDA, which assumes a bag of words model where original gene order is not considered. 494 

S2 Fig. Result of querying rifamycin (BGC0000373) to the PRESTO-TOP and PRESTO-STAT sub-495 

clusters generated in this project. Only around 25% of the PRESTO-STAT sub-clusters are shown. Each 496 

gene is depicted as a token, where all (sub)Pfam domains are coloured. The visualisation of the BGC, the 497 

PRESTO-TOP and PRESTO-STAT output are separated by a dashed line, respectively. All PRESTO-STAT sub-498 

clusters clearly exhibit a nested structure, where all combinations of genes in an actual sub-cluster are detected 499 

as individual sub-clusters. The PRESTO-STAT sub-clusters shown here are also examples of noisy sub-clusters 500 

comprised of combinations of genes from different actual sub-clusters, like detected PRESTO-STAT sub-clusters 501 

that are combinations of genes responsible for the biosynthesis of AHBA (green), sugars (blue) and the 502 

polyketide scaffold (purple). 503 

S3 Fig. Information about the PRESTO-STAT sub-clusters. (A) The distribution of the number of genes 504 

per PRESTO-STAT sub-cluster in the antiSMASH-DB dataset. (B) The distribution of the log10 transformed 505 

PRESTO-STAT sub-cluster occurrences in the antiSMASH-DB dataset. 506 
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S4 Fig. Number of PRESTO-STAT and PRESTO-TOP sub-clusters per BGC. (A) Distribution of the log10 507 

transformed number of PRESTO-STAT sub-clusters per BGC in the non-redundant antiSMASH-DB dataset, 508 

where the bin with the seemingly negative value represents BGCs without any PRESTO-STAT sub-cluster. (B) 509 

The number of topics or sub-cluster motifs per BGC in the non-redundant antiSMASH-DB dataset, not counting 510 

sub-clusters of length one as these are almost definitely noise (see Methods).  (C) All BGCs with at least one 511 

annotated sub-cluster motif grouped by how many annotated sub-cluster motifs they have. In total there are 512 

9,425 putative BGCs with at least one annotated sub-cluster motif, and 350 MIBiG BGCs. 513 

S5 Fig. PRESTO-STAT and PRESTO-TOP overlap with validated sub-clusters from SubClusterBlast. 514 

Overlap between detected SubClusterBlast sub-clusters and output of both sub-cluster detection methods 515 

applied on the antiSMASH-DB dataset according to different overlap cut-offs. The overlap expresses the fraction 516 

of genes from the original SubClusterBlast sub-cluster that is found in the iPRESTO-detected sub-cluster. We 517 

considered an overlap of 0.6 sufficient for having detected a sub-cluster (see Supplementary methods in S1 518 

Text). 519 

S6 Fig. Degrees (occurrences) of the annotated sub-cluster motifs within the antiSMASH-DB dataset 520 

(non-redundant). 521 

S7 Fig. BGC class distribution across sub-cluster motifs. Relative abundance of antiSMASH classes when 522 

querying the non-redundant antiSMASH-DB dataset on the 45 annotated sub-cluster motifs. Matches of length 523 

1 are ignored and hybrid class BGCs are counted for all classes they contain. RIPPs classes are grouped 524 

together. 525 

S8 Fig. Correlation scores between Mass2Motifs and sub-clusters. (A) Correlation scores between 526 

Mass2Motifs and SCCs. (B) Correlation scores between Mass2Motifs and sub-cluster motifs. In both panels the 527 

significant pairs are highlighted. 528 

S9 Fig. Graphical representation of graph-based filtering for the small dataset: MIBiG-and 529 

Streptomyces/Salinispora BGCs. Each node represents a BGC and an edge represents an adjacency index 530 

(AI) of 0.95 or higher. In blue are the BGCs chosen as representatives, while BGCs that are filtered out are 531 

shown in black. We show the small dataset here as it was difficult to visualize this process for the antiSMASH-532 

DB dataset. 533 

S10 Fig. LDA model convergence. Convergence of the log-likelihood of an LDA model with 1,000 topics/sub-534 

cluster motifs trained on the non-redundant 60,028 BGCs from the antiSMASH-DB dataset, which also contains 535 

the Streptomyces/Salinispora dataset and the MIBiG database, using 2,000 iterations of chunk size 3,000. Log-536 

likelihood based on 28 held out BGCs. 537 

S11 Fig. Coherence scores and overlap with SubClusterBlast sub-clusters for different LDA models. 538 

(A) Coherence scores of different LDA models trained using PRESTO-TOP on the non-redundant antiSMASH-DB 539 

dataset with different number of topics. (B) Number of validated SubClusterBlast sub-clusters found with 540 

different LDA models trained using PRESTO-TOP on the non-redundant antiSMASH-DB dataset with different 541 

number of topics. 542 

S1 File. Excel sheet containing the current information about the 45 annotated sub-cluster motifs. 543 

S2 File. The 112 domains for which we created subPfams. 544 

S3 File. The biosynthetic domains we considered in this study. 545 

S4 File. All used domain-combinations present in the antiSMASH-DB dataset after filtering. 546 
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