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Pre-trained models have been transformative in natural language, computer vision, and now
protein sequences by enabling accuracy with few training examples. We show how to use pre-
trained sequence models in Bayesian optimization to design new protein sequences with minimal
labels (i.e., few experiments). Pre-trained models give good predictive accuracy at low data and
Bayesian optimization guides the choice of which sequences to test. Pre-trained sequence models
also obviate the common requirement of finite pools. Any sequence can be considered. We show
significantly fewer labeled sequences are required for many sequence design tasks, including creating
novel peptide inhibitors with AlphaFold. This work should enable calibrated predictions with few
examples and iterative design with low data (1-50).

I. INTRODUCTION

Sequence design is the construction of novel pro-
tein or peptide sequences which, when synthesized, will
have chosen functional properties. Pre-trained sequence
models like ESM,1,2 UniRep,3 and ProtTrans4 have re-
cently shown excellent performance on structure predic-
tion tasks with minimal experimental data. Reducing
experimental data needed for sequence design is espe-
cially useful when finding peptides that bind to specific
proteins, where predicting binding requires solid-phase
peptide synthesis followed by assay.5 However, these pre-
trained models are not able to guide experiments – only
make predictions with few data. Bayesian optimization
(BO) is becoming the standard approach for choosing
which experiments to do, but is incompatible with pre-
trained sequence models because BO requires accurate
uncertainty predictions.6 We show how to modify pre-
trained sequence models to enable BO by modifying the
encoder and readouts of the models. This marries the
accuracy of pre-trained models with the ability to guide
experiments of Bayesian optimization.

BO is a “black-box” optimization technique suited to
expensive functions.7 BO can optimize a function with-
out access to its derivative or any other information (the
“black-box”) and optimizes with minimal evaluations of
the function. BO has been successful in sequence, for-
mulation, and molecular design problems where the “ex-
pensive function” is doing an experiment.8–11 BO is a
Bayesian method, so it requires construction of a prob-
ability distribution surrogate model that approximates
the black-box function (i.e., the experiment). BO works
by choosing experimental data points in a way that bal-
ances exploring sequence space to improve accuracy
of the surrogate model and exploiting the surrogate
model to maximize the black-box function. The surro-
gate model is nearly always a Gaussian process regression
model,6 which is not as empirically expressive as neural
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networks12 and has limited ability to be pre-trained. We
show here how to use pre-trained sequence models in-
stead of Gaussian process regression. The advantage is
that pre-trained sequence models are accurate with very
few experiments and work well in the high-dimensional
space of sequence design.

Current pre-trained models cannot be used as surro-
gate models in BO for two reasons. First, BO requires
a gradient of the surrogate model with respect to its in-
put, but sequence models have discrete integers as in-
put. We use probabilistic reparameterization proposed
in Linder and Seelig [13], which is similar to the Gum-
bel softmax-trick14,15 to enable gradient ascent of a pre-
trained sequence model. The second reason is that pre-
trained models do not have uncertainties to compute
probabilities in the BO algorithm. The classical solu-
tion to this problem is Bayesian neural networks,16 but
Izmailov et al. [17] recently showed that deep ensembles18

are both competitive with integrating Bayesian neural
network posteriors and more robust to noise in training
data. We hypothesize that these two properties make
deep ensembles a good approach in the low data regime
targeted here.

Thus, our sequence design method is to modify pre-
trained sequence models by replacing the discrete input
with a categorical distribution and deep ensembling to al-
low BO sequence design. In contrast to previous work,19

our method does not require a pool of known sequences
and we can use any existing pre-trained sequence model
without additional training. To test this method, we re-
quire the ability to label arbitrary new sequences (e.g.,
like you would in an experiment). We use here three
tasks that mimic experiments to test our method: (1)
designing a peptide that is hemolytic as evaluated by
an RNN that is treated as a black-box;20 (2) matching
an unknown sequence by only receiving BLOSUM-scored
distance;21 and (3) designing a peptide that binds to a
target protein as evaluated via an AlphaFold multimer
calculation.22,23
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FIG. 1. An overview of the model and Bayesian optimization
process. Sequences are defined by logits during BO acquisi-
tion function maximization and then labeled. The complete
set of sequences and labels is then re-used to train the deep
ensembled MLP. Finally, the MLP is used for the next round
of BO.

A. Related Work

Sequence design (also known as protein engineering)
is a broad category of tasks like enzyme design, pep-
tide drug design, design of self-assembled structures,
and de novo protein design. There are multiple ap-
proaches to designing new sequences that range from
purely experimental to purely computational. A com-
monly used experimental method is directed evolution,24

a process of optimizing fitness by stochastically mu-
tating a wild-type sequence. Directed evolution typi-
cally requires a high-throughput assay that can select se-
quences. Directed evolution can be combined with com-
putational approach.25–27 Cheng et al. [28] proposed an
efficient, experimental design-oriented closed-loop opti-
mization framework for protein directed evolution, which
employs a combination of novel low-dimensional pro-
tein encoding strategy and Bayesian optimization en-
hanced with search space prescreening via outlier detec-
tion. Harteveld et al. [29] proposed a framework based to
automatically assemble structural templates with native-
like features. Our approach is differentiated from di-
rected evolution because (1) our approach requires only
testing a few dozen sequences and (2) the assay does not
need to involve screening.

Machine learning for sequence design is beneficial espe-
cially where assays are expensive or slow enough to out-
weigh the cost and time of sequencing and synthesis.30,31

A recent review of adaptive machine learning approaches
for sequence design can be found in Hie and Yang [32].
Biswas et al. [33] used machine learning to guide the se-
quence searching by learning a latent representation from
a small number of mutants. Bayesian optimization has
been used for sequence design previously (without pre-

training) in Hughes et al. [11] and Greenhalgh et al. [34].
Khan et al. [35] recently showed how to approach sequence
design as a combinatarial Bayesian optimization prob-
lem with feasible trust regions for antibody design. Das
et al. [36] reported an efficient computational method for
the generation of antimicrobials with desired attributes
by leveraging guidance from classifiers trained on an in-
formative latent space of molecules modeled using a deep
generative autoencoder. Castro et al. [37] proposed a pro-
tein sequence design workflow by first training a deep
Transformer-based autoencoder (ReLSO) to jointly gen-
erate protein sequences as well as predict fitness, follow-
ing by fitness optimization over latent space and high
fitness latent space sampling. Our work is similar to the
previous Bayesian optimization approaches because it is
iterative and calibrated, but different than approaches
that are non-adaptive (train once on data).

Deep generative sequence models can be categorized
into variational autoencoders (VAEs), generative adver-
sarial networks (GANs) and language models, including
RNNs and attention models. These are widely used to
perform peptide generative with desired properies.38–42

Linder et al. [43] developed a generative method which
can explicitly control sequence diversity during training
by penalizing any two generated sequences on the ba-
sis of similarity. Ferruz et al. [44] developed ProtGPT2, a
Transformer-based generative model trained on UniRef50
which can generate de novo protein sequences following
the principles of natural ones. Anand and Achim [45] in-
troduced a fully data-driven denoising diffusion proba-
bilistic model for protein structure, sequence, and ro-
tamers that is able to generate highly realistic proteins
across the full range of domains in the Protein Data
Bank by using equivariant transformers. These gener-
ative models can propose new sequences, but not inside
an iterative BO algorithm like proposed here.

Pre-trained models for sequence design are increas-
ingly common. Alley et al. [3] used an mLSTM model
to learn statistical representations of proteins from 24
million UniRef5046 sequences. Rives et al. [1] obtained
sequence representations containing information about
biological properties by using unsupervised learning to
train a transformer language model on 86 billion amino
acids across 250 million protein sequences spanning evo-
lutionary diversity. Detlefsen et al. [47] performed anal-
ysis on protein representations and demonstrated that
pre-training representations can yield improved perfor-
mance as well as significantly improve interpretability
and let the models reveal biological information. Wang
et al. [48] reconstructed single-sequence 3D protein struc-
ture by feeding the pre-trained sequence embedding into
a multi-scale network which is able to predict the inter-
residue 2D geometry. Transformer models equipped with
self-attention mechanisms have shown to be particularly
well-suited to capture dependency among sequence ele-
ments while being capable to scale vast amounts of model
parameters.49 Kaplan et al. [50], Hoffmann et al. [51] in-
dicate pre-trained sequence models could be compute-
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optimally trained by balancing compute, observations,
and model parameters. Ruffolo et al. [52] used antibody
affinity maturation with language models and weakly su-
pervised learning. Russ et al. [53] developed another se-
quence model for designing chorismate mutase enzymes.
These promising results led to our choice of using pre-
trained model.

Bayesian neural networks have been proposed as an
improvement to neural networks that account for uncer-
tainty in predictions.16 The posteriors can be computed
directly, with significant computational effort, via Hamil-
tonian Markov chain Monte Carlo (HMC).54 There are
frequent efforts to reduce the cost with approximations,
such as Maddox et al. [55] and specifically for chemical
systems in Soleimany et al. [56]. Deep ensembles18 are a
common baseline that seems to be in practice as good
as HMC while being more robust.17 Recent work has
also proposed other ways of approximating uncertainty
in transformers, the most common architecture for pre-
trained sequence models.57

II. THEORY

The labeling of a sequence x with its property y is
done with an expensive black-box function f(x). f(x)
could require synthesis prior to an experiment, a molec-
ular dynamics calculation, or an expensive calculation.
Our goal is to find x∗ that maximizes f(x∗) through BO
starting with zero labeled data points. We indicate iter-
ations through the BO algorithm with index n (xn)

We construct a pre-trained sequence model that em-

beds a sequence x ∈ {0, 1}L×A into a continuous vector
space u(x) = ~u ∈ RD, where L is the sequence length,
A is the number of possible tokens in the sequence (al-
phabet), and D is the dimension of the sequence repre-
sentation. We use UniRep for u(x).3 Unirep is a long
short-term memory (LSTM) model trained to perform
next amino acid prediction, as implemented in JAX.58,59

Properties are predicted from ~u with a multi-layer per-
ceptron (MLP) g(~u) = ŷ. To enable uncertainty pre-
dictions, we use deep ensembles.18 Deep ensembles pre-
dict a normal distribution parameterized from M mod-
els gm(~u). Finally, to enable optimization of the input
sequence x, during BO we sample the sequence from a
categorical distribution characterized by trainable logits,
similar to the Gumbel-Softmax Trick.14,15 These individ-
ual components are described in more details below and
visually in Figure 1.

A. Model

UniRep3 is an LSTM model60 trained on Uniref5061 to
perform next amino acid prediction by minimizing cross-
entropy loss. By conducting this semi-supervised classifi-
cation, the model learns how to internally represent pro-
tein sequences. Given a sequence of any length, UniRep

returns a single fixed-length vector representation. We
denote UniRep as u(x) = ~u, where u(·) is the UniRep
model, which takes sequence x as input and outputs the
representation vector ~u. The dimension of ~u is N = 1900
for UniRep. See Alley et al. [3] for complete details. We
use a JAX implementation of UniRep.58,59

Uncertainty in predicted labels can be split into an
epistemic uncertainty (EU) and aleatoric uncertainty
(AU).

σ2 = σ2
e + σ2

a (1)

where σ2
a is AU and σ2

e is EU. g AU is also known as
data uncertainty or statistical uncertainty. It is unavoid-
able noise from f(x). For example, data collected from a
laboratory will have uncertainty.

EU is also known as model uncertainty or system un-
certainty. It arises from the lack of knowledge of the
system in respect to quantities and processes within the
system. It can be reduced through larger or better mod-
els. High EU arises in regions where there are few or no
observations for training.

The output from each single MLP gm(x) is two num-
bers that characterize a normal distribution N (µ̂m, σ̂m).
We can use these to provide estimates of the AU and
EU:18

µ̂ =
1

M

∑
µ̂m (2)

σ̂2
e =

1

M

∑
(µ̂− µ̂m)2, σ̂2

a =
1

M

∑
m

σ̂2
m(x) (3)

Where M is the ensemble size, m is the index of the
MLP.

Likelihood describes the joint probability of the ob-
served data as a function of the parameters of the MLPs.
Negative log-likelihood minimization is a proxy problem
to the problem of maximum likelihood estimation. We
assume that the labels y follow a normal distribution of
P [f(x) = y] characterized by µ(x), σ(x). The negative
log-likelihood of model parameters is the probability of
observing the label y given sequence x:18

l(θm, x, y) = − log p(y|x) =
log σ̂2

m(x)

2
+

(y − µ̂m(x))2

2σ̂2
m(x)

+C.

(4)
As proposed in Lakshminarayanan et al. [18], we also

do adversarial training. After one step with the loss
in Equation 4, we perform another step to smooth the
model predictions:

x′ = x+ ε sign(∇xl(θ, x, y)) (5)

where ε is a hyperparameter that controls the strength.
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B. Bayesian Optimization

Bayesian optimization is a gradient-free global function
optimization method which is constructed for expensive-
to-evaluate functions.6 The goal of Bayesian optimiza-
tion is to both explore and exploit existing knowledge as
expressed in an acquisition function. Namely, our next
sequence to test is computed from

xn+1 = arg max
x

A(g, x) (6)

where A(g, x) is our acquisition function that uses the
model (g) and sequence (x). We use the simplest acqui-
sition function for balancing exploration and exploitation
called upper-confidence bound (UCB):

A(g, x) = µ̂+ βσ̂ (7)

where β is a hyperparameter that balances exploration
and exploitation that can be scheduled to increasingly
exploit over the BO algorithm. UCB is not robust to
label noise, and recent work has proposed different ac-
quisition functions robust to label noise.62–64 To alleviate
label noise, we only use EU (σ̂e) in Equation 7. We chose
UCB due to its simplicity and robust performance across
hyperparameter choices.

BO requires computing a gradient of the surrogate
model – UniRep – with respect to input x to maximize
the acquisition function.65 This is problematic, since x
is not continuous. We can redefine x as being a ran-
dom categorical distribution parameterized by continu-
ous logits l ∈ RL×A. Then when a sequence is needed,
xi is computed from a random drawn categorical at the
ith position (where i indexes positions in sequence and j
indexes amino acid/word):

x(l)ij = 1(Zi=j), Zi ∼ σ(l)i (8)

where σ(li) is the categorical distribution parameter-
ized by li This reparameterization makes the gradient ac-
cessible, but we must propagate a gradient through sam-
pling from the distribution. We use a straight-through
approximation

∂δ(l)ij
∂lik

=
∂σ(l)ij
∂lik

= σ(l)ik · (1(i=k) − σ(l)ij) (9)

However, the logits can drift close to zero so that the
drawn sequences are highly variable or the logits can grow
in magnitude and gradient updates no longer actually
change the sequence. The standard solution to this is
the Gumbel-Softmax Trick.15 We used a slightly differ-
ent approach introduced by Linder and Seelig [13], which
is to simply add a trainable layer normalization that can

trainably affect the mean and variance of logits.66 Re-
cently, Daulton et al. [67] showed that BO with probabilis-
tic reparameterization ,like Equation 8, will converge to
the true maximum of the acquisition function. Although,
convergence of the L × A logit matrix is still a difficult
high-dimensional optimization.

We considered using the continuous latent space as
well. In Figure S1 we use the UniRep decoder to avoid
optimizing the sequence directly. We optimized g(~u)
by working with ∇g(~u). We found that the decoder
x′ = u−1(~u) gave a sequences back that were inconsistent
enough with the forward label g(u(x′)) and prevented
optimization past a certain point. Figure S1 shows op-
timization of latent space has continuous improvement,
but after decoding to an actual sequence and evaluating
g(~u) there is a plateau.

Variable sequence lengths were incorporated by maxi-
mizing the acquisition function over lengths L−1, L, and
L+1 at each BO iteration and the length L was replaced
by the best for the next iteration.

III. METHODS

The deep ensembled MLPs are sensitive to mode col-
lapse, where all gm(x) models converge to the same pa-
rameters by overfitting the training data.68 This is com-
mon in our setting of only a few data points. We use three
strategies to mitigate this. First, we use relatively few pa-
rameters in the MLPs to frustrate the loss landscape and
make it sensitive to initial parameters. Second, we re-
sample data so that the training data seen by each MLP
is different. Lastly, we employ standard techniques to re-
duce overfitting like dropout and weight decay. There are
more systematic approaches that could be used,69 but we
found these simple strategies give good calibrated uncer-
tainties across the three tasks. Adversarial training was
found to have minimal improvement, even when adding
significant artificial label noise (Figure S3). All hyperpa-
rameters, including architecture and training parameters
are given in Table I.

While training, we found resampling data to account
for non-uniformity in label distribution is important –
especially because BO targets high values that are rare.
So while training the model, we resampled training data
according to their labels by binning training data into
10 classes and sampling with replacement to get equal
frequency. As discussed above, we repeated this process
for each MLP (gm(x)), so that they saw different training
data frequencies.

Maximizing Equation 7 for BO is a non-convex
problem72 and so we started from 16 initial logit dis-
tributions and performed 200 gradient ascent steps with
Adam73 (Figure S3). This was repeated for each con-
sidered length - one higher and one lower than current
length. Daulton et al. [67] recommended L-BFGS, al-
though we found Adam works for our tasks as shown
in Figure S3.
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Hyperparameters Choice
MLP shape 128, 32, 2
Activation Swish70,71

Ensemble number 5
training epochs 100
training batch size 8
training learning rate 1e-4
training resampled classes 10
training weight decay (Adam) 0.1
training ε 0.001
dropout rate 0.2
BO batch size 16
BO iterations 200
BO β 2.0

TABLE I. Hyperparameters for work presented here. All were
tuned on finding unknown target peptide sequence task.
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FIG. 2. Current best sequence on unknown target matching
task along with ablations. BO is similar to direct gradient
ascent (greedy) of surrogate model because this task is convex
and has no noise. Pre-training helps at low iterations, but is
surpassed by one-hot at later iterations. This is expected
on this highly-specific task. Error bars are 95% confidence
intervals from bootstraping 50 repeated BO runs.

IV. RESULTS

We tested our algorithm on three different tasks: de-
signing a hemolytic peptide, finding an unknown tar-
get sequence, and designing a peptide that binds to Ras
GTPase.74 In the first two tasks, we also compared with
ablations by removing the pre-trained model with one-
hot encoding and/or using greedy optimization instead
of BO.

FIG. 3. Current best sequence during iterative optimization
averaged across 50 runs. The different lines are the algorithm
presented here (UniRep/BO) and ablations. Sequence length
is fixed to thirteen to compare with one-hot encoding. Itera-
tions is same as number of sequences observed.

A. Hemolytic peptide

The first task is to design a hemolytic peptide. In
place of an experiment, we use a previously trained model
as an stand-in for f(x). This model is a bidirerctional
LSTM20,60 trained on data from Pirtskhalava et al. [75].
This task has variable sequence length and is initialized
to a random peptide with random lengths from 10–20
uniformly sampled. Figure 5 shows the results of our
algorithm averaged (mean) over 50 independent runs.
Figure 4 shows corresponding distribution of sequence
lengths over the course of the algorithm. It can find a
likely hemolytic peptide within 5 iterations and nearly
match the most hemolytic predicted peptide from the
9,316 peptides analyzed in Ansari and White [20] after 20
iterations.

Figure 3 compares against two ablations, showing the
gain from adding pre-training and BO where the se-
quence length is not allowed to change due to the use
of one-hot encoding. We find that indeed both compo-
nents of our algorithm help in this task, and pre-training
is better at all iterations.

B. Unknown Target Matching

In the second task, the sequence length is fixed at
thirteen residues. f(x) is the similarity score between x
and an unknown target. Similarity is measured by BLO-
SUM62 matrix,21 which gives disagreement weighted by
evolutionary data. This makes it so chemically similar
side-chains disagreeing is less important. This task is ex-
tremely specific, so we would expect pre-training to be
minimally effective or even prevent learning. This task
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FIG. 4. Kernel density estimates of sequence length from
Figure 5 algorithm as a function of iteration number. Initial
sequence length is randomly sampled from a uniform distri-
bution of [10, 30]

FIG. 5. Current best sequence during iterative optimization
averaged across 50 runs. Different traces show individual
runs. The solid line show the result averaged(mean) over 50
individual runs. Sequence length is allowed to change here.
Iterations is same as number of sequences observed.

represents a worst-case for pre-training.
Model hyperparameters in this work have been tuned

for scores that approximately range from 0-10 and so we
transformed the score according to:

f(x) =
b(x, t)

A2
− bmin (10)

where b the BLOSUM62 score between x and the target
t and bmin is the minimum possible score. The calibra-
tion (correctness of uncertainty) of the MLP is shown in
Figure S2.
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FIG. 6. Average of 10 runs of algorithm on AF2 task. The
dashed line shows two scores of known binder to Ras GTPase.
The optimization finds a peptide with a better score after
about 50 iterations.

Figure 2 shows the results of the proposed algorithm
and ablations. This task is convex (no local maximums)
and has no noise, so BO is similar to direct gradient
ascent of the surrogate model predictions. One-hot is
direct use of the sequence in the MLP without pre-
trained model. We expect this to be a better represen-
tation, since our task is highly specific, and indeed with
enough data it eventually surpasses pre-training. Nev-
ertheless, pre-training shows significant gains with fewer
data points.

C. AlphaFold2 protein-peptide binding

This task is to identify a candidate peptide that binds
to a target protein as evaluated with AlphaFold2.22 The
target protein is encoded by oncogene KRas G12C asso-
ciated with development of cancer.76 Margarit et al. [74]

showed that activation of Ras GTPase is catalyzed by
nucleotide exchange factor Son of Sevenless (SoS). As
a result, an effective SoS inhibitor that would bind to
the receptor-binding domain of the oncogenic system and
preventing Ras overexpression is a therapeutic target.

We specifically used AlphaFold2-Multimer,23 since this
task is to predict simultaneously the Ras GTPase and
bound peptide. Isak Johansson-Akhe [78] showed that
AlphaFold2-Multimer has accuracy similar or better than
other docking programs in predicting peptide-protein
complexes from scores on known complexes. Using this
result, Chang and Perez [79] showed a novel application of
AF2-Multimer for competitive binding of different pep-
tides to the same receptor. Following their work, we cor-
relate good binding with the “confidence” score called
predicted local distance difference test (pLDDT) output
by AlphaFold2 and measuring distance to the binding
site of SoS:
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FIG. 7. Comparison of BO optimal peptide binder and the
AlphaFold2-Multimer prediction of the Anupam Patgiri [77]

(WT) binder. The BO sequence is KCEQCEGCDGDCD-
CEAEDCEHHE.

f(x) = (10− RMSD) · pLDDT

100
(11)

where RMSD is the root mean squared distance of the
peptide to the binding site evaluated at the closest back-
bone atom per residue pair between peptide and Ras
GTPase. The transformation enables simultaneous min-
imization of RMSD and maximization of pLDDT, and
keeps the score range between 0-10. There are more prin-
cipled methods for multi-objective BO.80 There are also
other approaches to finding peptide binders that do not
involve BO.81,82

Figure 6 shows the BO of Equation 11 averaged across
10 runs with variable sequence length. The algorithm
found better binders than the known binder from Anu-
pam Patgiri [77] (FEGIYRLELLKAEEAN) based on wild
type (WT) SoS protein. Of course, these are evaluated

using our score function and not experimentally vali-
dated. Nevertheless, it shows that the method can op-
timize complex black-box functions like finding peptide
inhibitors with 10-50 evaluations. Figure 7 shows a com-
parison of the output from a BO run vs the WT binder.
It is clear that the peptide binder is closer – agreeing
with the score. The sequence also features a number of
cysteines, which AlphaFold2-Multimer predict strongly
interact (via disulfide bridges), and likely improve the
plDDT because of the reduction in flexibility. However,
this may not translate to a better affinity in an experi-
ment.

V. CONCLUSIONS

We have shown how to use pre-trained sequence models
in a BO algorithm. Across three tasks, this process en-
ables good optimization with only a few data points. Our
strategy was deep ensembled MLPs to provide calibrated
uncertainties and probability distributions over sequence
space to enable end-to-end differentiation. We found the
commonly proposed optimization in latent space followed
by decoding does not work well with few examples.
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