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Hyperparameters Choice
MLP shape 128, 32, 2
Activation Swish70,71

Ensemble number 5
training epochs 100
training batch size 8
training learning rate 1e-4
training resampled classes 10
training weight decay (Adam) 0.1
training � 0.001
dropout rate 0.2
BO batch size 16
BO iterations 200
BO � 2.0

TABLE I. Hyperparameters for work presented here. All were
tuned on finding unknown target peptide sequence task.
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FIG. 2. Current best sequence on unknown target matching
task along with ablations. BO is similar to direct gradient
ascent (greedy) of surrogate model because this task is convex
and has no noise. Pre-training helps at low iterations, but is
surpassed by one-hot at later iterations. This is expected
on this highly-specific task. Error bars are 95% confidence
intervals from bootstraping 50 repeated BO runs.

IV. RESULTS

We tested our algorithm on three different tasks: de-
signing a hemolytic peptide, finding an unknown tar-
get sequence, and designing a peptide that binds to Ras
GTPase.74 In the first two tasks, we also compared with
ablations by removing the pre-trained model with one-
hot encoding and/or using greedy optimization instead
of BO.

FIG. 3. Current best sequence during iterative optimization
averaged across 50 runs. The different lines are the algorithm
presented here (UniRep/BO) and ablations. Sequence length
is fixed to thirteen to compare with one-hot encoding. Itera-
tions is same as number of sequences observed.

A. Hemolytic peptide

The first task is to design a hemolytic peptide. In
place of an experiment, we use a previously trained model
as an stand-in for f(x). This model is a bidirerctional
LSTM20,60 trained on data from Pirtskhalava et al. [75].
This task has variable sequence length and is initialized
to a random peptide with random lengths from 10–20
uniformly sampled. Figure 5 shows the results of our
algorithm averaged (mean) over 50 independent runs.
Figure 4 shows corresponding distribution of sequence
lengths over the course of the algorithm. It can find a
likely hemolytic peptide within 5 iterations and nearly
match the most hemolytic predicted peptide from the
9,316 peptides analyzed in Ansari and White [20] after 20
iterations.

Figure 3 compares against two ablations, showing the
gain from adding pre-training and BO where the se-
quence length is not allowed to change due to the use
of one-hot encoding. We find that indeed both compo-
nents of our algorithm help in this task, and pre-training
is better at all iterations.

B. Unknown Target Matching

In the second task, the sequence length is fixed at
thirteen residues. f(x) is the similarity score between x
and an unknown target. Similarity is measured by BLO-
SUM62 matrix,21 which gives disagreement weighted by
evolutionary data. This makes it so chemically similar
side-chains disagreeing is less important. This task is ex-
tremely specific, so we would expect pre-training to be
minimally effective or even prevent learning. This task

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 6, 2022. ; https://doi.org/10.1101/2022.08.05.502972doi: bioRxiv preprint 



6

0 10 20 30 40

0
4
8
12
16
20
24
28
32
36
40
44
48

Sequence length

I
t
e
r
a
t
i
o
n
s

FIG. 4. Kernel density estimates of sequence length from
Figure 5 algorithm as a function of iteration number. Initial
sequence length is randomly sampled from a uniform distri-
bution of [10, 30]

FIG. 5. Current best sequence during iterative optimization
averaged across 50 runs. Different traces show individual
runs. The solid line show the result averaged(mean) over 50
individual runs. Sequence length is allowed to change here.
Iterations is same as number of sequences observed.

represents a worst-case for pre-training.
Model hyperparameters in this work have been tuned

for scores that approximately range from 0-10 and so we
transformed the score according to:

f(x) =
b(x, t)

A2
− bmin (10)

where b the BLOSUM62 score between x and the target
t and bmin is the minimum possible score. The calibra-
tion (correctness of uncertainty) of the MLP is shown in
Figure S2.
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FIG. 6. Average of 10 runs of algorithm on AF2 task. The
dashed line shows two scores of known binder to Ras GTPase.
The optimization finds a peptide with a better score after
about 50 iterations.

Figure 2 shows the results of the proposed algorithm
and ablations. This task is convex (no local maximums)
and has no noise, so BO is similar to direct gradient
ascent of the surrogate model predictions. One-hot is
direct use of the sequence in the MLP without pre-
trained model. We expect this to be a better represen-
tation, since our task is highly specific, and indeed with
enough data it eventually surpasses pre-training. Nev-
ertheless, pre-training shows significant gains with fewer
data points.

C. AlphaFold2 protein-peptide binding

This task is to identify a candidate peptide that binds
to a target protein as evaluated with AlphaFold2.22 The
target protein is encoded by oncogene KRas G12C asso-
ciated with development of cancer.76 Margarit et al. [74]

showed that activation of Ras GTPase is catalyzed by
nucleotide exchange factor Son of Sevenless (SoS). As
a result, an effective SoS inhibitor that would bind to
the receptor-binding domain of the oncogenic system and
preventing Ras overexpression is a therapeutic target.

We specifically used AlphaFold2-Multimer,23 since this
task is to predict simultaneously the Ras GTPase and
bound peptide. Isak Johansson-Akhe [78] showed that
AlphaFold2-Multimer has accuracy similar or better than
other docking programs in predicting peptide-protein
complexes from scores on known complexes. Using this
result, Chang and Perez [79] showed a novel application of
AF2-Multimer for competitive binding of different pep-
tides to the same receptor. Following their work, we cor-
relate good binding with the “confidence” score called
predicted local distance difference test (pLDDT) output
by AlphaFold2 and measuring distance to the binding
site of SoS:
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FIG. 7. Comparison of BO optimal peptide binder and the
AlphaFold2-Multimer prediction of the Anupam Patgiri [77]

(WT) binder. The BO sequence is KCEQCEGCDGDCD-
CEAEDCEHHE.

f(x) = (10− RMSD) · pLDDT

100
(11)

where RMSD is the root mean squared distance of the
peptide to the binding site evaluated at the closest back-
bone atom per residue pair between peptide and Ras
GTPase. The transformation enables simultaneous min-
imization of RMSD and maximization of pLDDT, and
keeps the score range between 0-10. There are more prin-
cipled methods for multi-objective BO.80 There are also
other approaches to finding peptide binders that do not
involve BO.81,82

Figure 6 shows the BO of Equation 11 averaged across
10 runs with variable sequence length. The algorithm
found better binders than the known binder from Anu-
pam Patgiri [77] (FEGIYRLELLKAEEAN) based on wild
type (WT) SoS protein. Of course, these are evaluated

using our score function and not experimentally vali-
dated. Nevertheless, it shows that the method can op-
timize complex black-box functions like finding peptide
inhibitors with 10-50 evaluations. Figure 7 shows a com-
parison of the output from a BO run vs the WT binder.
It is clear that the peptide binder is closer – agreeing
with the score. The sequence also features a number of
cysteines, which AlphaFold2-Multimer predict strongly
interact (via disulfide bridges), and likely improve the
plDDT because of the reduction in flexibility. However,
this may not translate to a better affinity in an experi-
ment.

V. CONCLUSIONS

We have shown how to use pre-trained sequence models
in a BO algorithm. Across three tasks, this process en-
ables good optimization with only a few data points. Our
strategy was deep ensembled MLPs to provide calibrated
uncertainties and probability distributions over sequence
space to enable end-to-end differentiation. We found the
commonly proposed optimization in latent space followed
by decoding does not work well with few examples.
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