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Abstract
Spatial properties of tumor growth have profound implications for cancer progression, therapeutic resistance and
metastasis. Yet, how spatial position governs tumor cell division remains difficult to evaluate in clinical tumors.
Here, we demonstrate that elevated cellular growth rates on the tumor periphery leave characteristic patterns in
the genomes of cells sampled from different parts of a tumor, which become evident when they are used to
construct a tumor phylogenetic tree. Namely, rapidly-dividing peripheral lineages branch more extensively and
acquire more mutations than slower-dividing lineages in the tumor center. We develop a Bayesian
state-dependent evolutionary phylodynamic model (SDevo) that quantifies these patterns to infer the differential
cell division rates between peripheral and central cells jointly from the branching and mutational patterns of
single-time point, multi-region sequencing data. We validate this approach on simulated tumors by
demonstrating its ability to accurately infer spatially-varying birth rates under a range of growth conditions and
sampling strategies. We then show that SDevo outperforms state-of-the-art, non-cancer multi-state
phylodynamic methods which ignore differential mutational acquisition. Finally, we apply SDevo to
multi-region sequencing data from clinical hepatocellular carcinomas and find evidence that cells on the tumor
edge divide 2-4x faster than those in the center. As multi-region and single-cell sequencing increase in
resolution and availability, we anticipate that SDevo will be useful in interrogating spatial restrictions on tumor
growth and could be extended to model non-spatial factors that influence tumor progression, including hypoxia
and immune infiltration.

Introduction
Tumors develop and progress via an evolutionary and ecological process wherein cellular subpopulations expand
and diversify. Over the course of tumor development, tumor cells acquire genetic mutations and new phenotypes
that potentially help them compete for resources and adapt for success in their microenvironment. Understanding
this process is critical to predicting clinically significant events such as if, how, and when cells metastasize or
develop resistance to therapy.

Although tumor cell growth and success is often attributed to genetic and epigenetic aberrations, an additional
important determinant of cell growth is physical location within the tumor. Position governs which cells have
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sufficient access to oxygen or pro-growth signaling from the stroma, and which cells suffer from hypoxia or
glucose deprivation. It has been suggested that these effects combine to create an environment in which cells
on the boundary of a tumor have higher growth rates compared to those in the center (i.e., “boundary-driven
growth"). Boundary-driven growth changes the evolutionary processes underlying tumor progression and
the genetic signatures we might expect in these populations, as has been explored via evolutionary theory
(Edmonds et al., 2004; Klopfstein et al., 2006), microbial experiments (Hallatschek et al., 2007; Korolev et al.,
2012; Gralka et al., 2016), and cancer computational models (Waclaw et al., 2015; Sottoriva et al., 2015; Sun
et al., 2017; Ahmed and Gravel, 2018; Chkhaidze et al., 2019; Noble et al., 2022). Such investigations have
revealed that boundary-driven growth blunts the efficacy of natural selection in selecting for beneficial (i.e,
driver) mutations, and purging slower growing (but potentially drug resistant) lineages (Kayser et al., 2019).
Boundary-driven growth should also enhance the effectiveness of adaptive therapy (Bacevic et al., 2017; Strobl
et al., 2022) and cell-cell competition in the tumor interior. Further, such growth patterns should distort our
expectations for the neutral variant allele frequency spectrum (Fusco et al., 2016), which has been used as a
null model for identifying signatures of natural selection (Williams et al., 2016), and it has been qualitatively
suggested in tumor simulation studies that boundary-driven growth could be misinterpreted as selection on tumor
trees (Chkhaidze et al., 2019). Therefore, establishing and incorporating these null expectations and models
for boundary-driven tumor growth is essential in the context of the increasing interest in applying evolutionary
theory to clinical disease, for example, in designing adaptive therapy (You et al., 2017), identifying driver events
(Turajlic et al., 2018b; Gerstung et al., 2020), or estimating timings of metastases (Yachida et al., 2010; Ahmed
and Gravel, 2018).

Mounting evidence from xenograft and organoid experiments supports the existence of boundary-driven
growth in spatially-organized tumors. Such studies have found that labeled cells randomly seeded near the
boundary of xenografts tend to grow larger (Lamprecht et al., 2017; Lenos et al., 2018; van der Heijden et al.,
2019) and that clone size distributions show offspring jackpotting events that mimic classical descriptions of
range expansions (Lenos et al., 2018). Reeves et al. (2018) and Lamprecht et al. (2017) further found that
fluorescently-tracked tumor cellular populations exhibit clonal “sectoring” characteristic of boundary-growing
populations in microbial settings. Stains for cell division markers (i.e., Ki67) have been found exclusively on the
boundaries of certain organoid models (Florian et al., 2019), and are twice as likely to be present in cells on the
edge versus the center of primary and xenograft samples (Lamprecht et al., 2017).

However, these experiments often rely on cells with genetically-manipulated tracking, or ex vivo envi-
ronments, and recent studies have found conflicting evidence for boundary-driven growth in clinical tumors.
Heide et al. (2021) found that some, but not all, colorectal tumors showed genetic patterns consistent with
boundary-driven growth, and multi-region sequencing studies have found instances of greater accumulation of
mutations on the tumor periphery (Ling et al., 2015; Li et al., 2021). These genetic findings are corroborated by
spatial transcriptomic studies which have identified differential cell states and programs on the tumor periphery
(Berglund et al., 2018; Wu et al., 2021a,b), lending credibility to the hypothesis that cell phenotype and growth
rate may be dependent on spatial context. On the other hand, a recent genetic analysis of renal cell carcinomas
found the most recent common ancestors of metastatic lineages in the resected tumor interiors as opposed to the
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tumor boundaries (Zhao et al., 2021).
A primary challenge in reconciling these conflicting observations is that clinical sequencing often only

captures a limited snapshot of tumor diversity and growth. However, this sampled tumor diversity still offers
a window into past population dynamics via phylogenetic and phylodynamic tools. Phylogenetic approaches,
which reconstruct how cells within a tumor are related, have already proven useful in interrogating cancer
evolution – for example, in determining the relative ordering of driver mutations (Gerlinger et al., 2012; Kim
and Simon, 2014), detecting parallel evolution of gene hits within a tumor (Turajlic et al., 2018a; Turati
et al., 2021), and resolving whether metastases emerge early or late in tumor development (Leung et al., 2017;
Hu et al., 2019). In contrast, phylodynamic methods, which link shapes of phylogenetic trees to underlying
population dynamics, have only rarely been used in cancer genomics (Alves et al., 2019), despite widespread
application in other fields (Stadler et al., 2021; Attwood et al., 2022).

Although phylodynamic approaches have high potential impact in cancer clinical settings, they are generally
not adapted to study tumor biology or incorporate the complexities of cancer’s spatial growth. To bridge this gap,
we set out to develop a phylodynamic model suited for detecting boundary-driven growth in tumors. First, we
quantify characteristic branching and genetic patterns in tumor trees simulated under boundary-driven growth
and demonstrate that these patterns correspond to cellular lineages spending different amounts of time on the
faster growing tumor edge versus in the tumor center. To fully exploit these patterns for inference, we develop
a novel phylodynamic tool based on the multi-type birth-death process (Maddison et al., 2007; Stadler and
Bonhoeffer, 2013; Kühnert et al., 2016), in which cells have different birth and death rates on the tumor edge
and center, and lineages can transition between states as the tumor grows. Crucially, we introduce an extension
that links cell birth and mutation, and therefore incorporates rates of sequence evolution that depend on each
cell lineage’s inferred history of spatial locations (i.e. spatial states). We provide this state-dependent evolution
model (SDevo) as a package in the popular open source Bayesian software BEAST2 (Bouckaert et al., 2019).
We show that SDevo substantially improves our ability to infer boundary-driven growth dynamics in simulated
tumors compared to non-cancer multi-type birth-death models, and validate this approach across a broad array of
biological and sampling conditions, including those encompassing selection for driver mutations, 3-dimensional
growth, and clinical sampling strategies. Finally, we apply SDevo to spatially-resolved multi-region sequencing
data from hepatocellular carcinomas (Li et al., 2021) and estimate that cells in the tumor boundary may have
birth rates up to 2-4 times faster than those in the interior. More broadly, SDevo is a general tool for quantifying
growth processes linked to any discrete state, and future investigations will expand beyond boundary-driven
growth.

Results
Boundary-driven growth creates distinct phylogenetic tree structures
In order to characterize signatures of boundary-driven growth in tumor trees, we simulate spatially-constrained
growth via a cellular agent-based model in a 2D lattice, as in Chkhaidze et al. (2019), which shares key features
with other spatial cancer growth models. Simulated tumors grow from single cells over discrete time steps and
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gain mutations at cell division. Under spatially-constrained boundary-driven growth, a cell can only divide if
there is an empty lattice spot in its Moore (8-cell) neighborhood, effectively tying its fitness to neighborhood
density (Figure S1). Therefore, extant lineages closer to the tumor periphery have progressively higher mean
birth rates than those in the center (Figure 1A). For comparison, we simulated a non-spatially constrained
unrestricted growth model (Figure 1D), in which all cells can divide regardless of density and push their
neighbors to create space.

We first investigated how such growth processes affect the shape and structure of cancer phylogenetic trees
to identify detectable tree signals of boundary-driven growth. We consider two types of tree representations –
1) time trees (Figure 1B and E), where the branch lengths are in units of simulation time, and 2) genetic trees
(Figure 1C and F), where the branch lengths are in units of number of mutations. We first compare the time tree
of a tumor simulated under boundary-driven growth (Figure 1B) with one simulated with no spatial restrictions
(Figure 1D). In the boundary-driven growth tree, we observe certain leaves (cells) with long terminal branches
(i.e., cell 1) and other leaves with much shorter terminal branches (i.e., cell 2). These differential terminal branch
lengths directly correspond to both mean lineage birth rate and spatial position within the tumor. Intuitively,
lineages trapped in dense center neighborhoods (i.e., cell 1, Figure 1A and B) divide slowly and therefore exhibit
longer times since diverging from another sampled cell. Conversely, lineages at the tumor boundary (i.e., cell
2) divide rapidly, and are therefore more likely to be recently related to another sampled cell. We quantify
terminal branch lengths in the simulated tumor time trees and find that the asymmetries in birth rates due to
spatial constraints result in an overall higher variance in terminal branch lengths under boundary-driven growth
(Figure 1H) than under unrestricted growth (Figure 1I).

In Figures 1C and 1F, we reconstruct the genetic trees from the same boundary-driven and unrestricted
tumor simulations. From this representation of the tumor trees, we observe that if mutation is linked to cellular
division, then asymmetries in birth rates across tumor space logically correspond to varying rates of sequence
evolution (Figure 1G). This leads to repeated ladder-like patterns of genetic divergence that arise across multiple
subclades of the boundary-driven growth tree in which fast-dividing cells on the tumor boundary accumulate
more mutations than those in the interior (Figure 1C). These patterns are not observed in the unrestricted growth
tree (Figure 1F). We quantify these patterns by measuring variance in mean clock rate (defined by total lineage
mutations / simulation time) from extant cells in each simulation and demonstrate that clock rate is more variable
across trees derived from boundary-driven growth than in trees simulated under the unrestricted growth model
(Figure 1I).

Boundary-driven growth can be modeled using a two-state birth-death process
As tree structures differ between tumors simulated under boundary-driven and unrestricted spatial constraints,
we sought a phylodynamic approach that could differentiate between these two growth modes. One such model
is the multi-type birth-death model (Maddison et al., 2007; Stadler and Bonhoeffer, 2013; Kühnert et al.,
2016), which ties differential rates of birth, death, and sampling of lineages to multiple, discrete states. In our
simulation studies, we observe that boundary-driven growth can be effectively simplified into two states. We find
that the instantaneous cell birth rate under boundary-driven growth is elevated only in cells immediately adjacent
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Figure 1. Boundary-driven growth causes characteristic tree patterns associated with asymmetrical division.
Representative simulated tumors (𝑑𝑒𝑎𝑡ℎ = 0.1) showing variation in mean birth rate in 2D tumor space under A.
boundary-driven growth via neighborhood-based spatial constraints, and D. unrestricted growth. Brighter colors represent
higher birth rate (total number of divisions in cell lineage / simulation time) throughout all panels of the figure. B. Time
tree of the representative boundary-driven growth tumor (subsampled to 100 cells for visualization) shows high variation in
branching rates, leading to long terminal branches of center-trapped lineages. C. Genetic tree of the representative
boundary-driven tumor (subsampled to the same 100 cells) shows ladder-like patterns due to mutation being tied to cell
division. E. Time and F. genetic trees for the representative tumor under unrestricted growth (100 tips visualized) reveal
less variation in branching rates and genetic distance. G. Cartoon schematic of the two signals of boundary-driven growth
in trees left by asymmetric birth rates: variation in branching rates and variation in the number of mutations. Variance in H.
terminal branch length (TBL) and I. clock rate (CR) in tumors under boundary-driven growth and unrestricted growth trees
built from all extant tumor cells. Insets show distributions of TBL and CR signals for tumors plotted in A. and B.. Violin
plots summarize statistics across 100 simulated tumors.
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to the tumor edge, but is uniformly low in all cells in the interior (Figure 2A). We can further decompose the
tree patterns observed in Figure 1 into edge and center-linked dynamics. As shown in the representative tumor
from Figure 1A, all edge-associated cells have short terminal branch lengths. Whereas most of the variation
in terminal branch length can be attributed to cells in the center and the mean terminal branch length of cells
in the center is more than five times that of cells on the tumor edge (Figure 2B). If we trace the lineages of
extant cells back to the root, the fraction of time cell lineages spend on the edge is highly correlated with the
variation in mean clock rate observed in Figure 1 (Figure 2C, 𝑅2 = 0.63). In other words, the most mutated
cells have spent the majority of their lineage history on the tumor edge. Under unrestricted growth (Figure 2D),
we observed no difference between edge and center terminal branch lengths (Figure 2E, ratio of center to edge
mean terminal branch lengths = 0.98) and lineage time spent in the edge state is not correlated to clock rate
(Figure 2F, 𝑅2 = 0.0016).

To investigate the robustness of these patterns, we next simulated tumors under a wide range of cell turnover
rates. Under boundary-driven growth, increasing cell turnover decreases spatial constraints and therefore lessens
the growth advantage between edge and center states (Figure S1, Figure 2G). We measured the ratio of mean
center to edge terminal branch lengths as in Figure 2B and E across these different effect sizes and found that
this ratio is a consistent indicator of boundary-driven growth that decreases as spatial constraints are relaxed
(Figure 2H). The correlation between fraction of lineage time spent on the edge and mean clock rate is also
specific to the boundary-driven growth model and sensitive to effect size (Figure 2I). Therefore, we conclude
that the patterns left by boundary-driven growth can be effectively approximated by a two-state birth-death
model.

Phylodynamic models can recover signals of boundary-driven growth in tumor phyloge-
nies
Two-state birth-death models incorporate how lineages divide, die, change states, and are sampled. In this class
of models, birth events correspond to observed branching events on the tree and the rate of these branching events
depends on an underlying type or state. Although existing phylodynamic models, such as BDMM’(Kühnert
et al., 2016; Vaughan, 2022) and BiSSE (Maddison et al., 2007), permit asymmetrical division rates based
on state, they do not link birth and mutation. Therefore, although they are well-positioned to infer faster birth
rates from branching structure, they cannot learn from differential rates of genetic divergence, a key hallmark
of boundary-driven growth we observed in simulations. Additionally, branching patterns are prone to artificial
inflation if more cells from a particular state are sampled in a clustered manner (Höhna et al., 2011). Thus,
existing models both do not incorporate all potential signals (i.e., clock rate differences) and, importantly, may
be biased by sampling procedures in clinical tumor biopsies. To address these shortcomings, we introduce a
State-Dependent sequence evolution (SDevo) model to directly tie state-dependent birth rate to clock rate. This
enables the model to learn from both clock rate and branching rate signals that arise from boundary-driven
growth (Figure 3A). SDevo accepts genetic sequences sampled from distinct spatial locations, along with a
cell-state label (i.e., center versus edge). It generates posterior distributions of phylogenetic trees alongside
joint estimates of phylodynamic model parameters. Inferred trees are time trees, which encompass the order
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Figure 2. Asymmetries in cell birth rate and signals of boundary-driven growth in trees can be modeled by
two-state dynamics. A. Histogram of instantaneous cell birth rate as a function of distance from the tumor edge
(normalized by maximum distance). Rates are averages over 10 simulations under boundary-driven growth (𝑑𝑒𝑎𝑡ℎ = 0.1)
with standard error bars. B. Distributions of normalized terminal branch lengths (TBL) in a representative tumor under
boundary-driven growth (Figure 1A) categorized by leaf edge or center state (inset). C. Mean clock rate (total number of
mutations / time) of cells in the example boundary-driven tumor versus the fraction of time a cell lineage spends on the
tumor edge. Color gradient spans mostly center-associated lineages in blue to mostly edge-associated lineages in maroon.
Dashed line is 𝑦 = 𝑥. D. Histogram of instantaneous cell birth rate versus binned distance from tumor edge unrestricted
growth simulations (average over 10 simulations with standard error bars, 𝑑𝑒𝑎𝑡ℎ = 0.1). E. Distributions of terminal
branch lengths for edge and center leaves in the representative unrestricted tumor (Figure 1D). F. Average lineage clock
rates versus fraction of time a lineage spends on the tumor edge in the example unrestricted tumor. G. Schematic
comparing simulated spatial constraints under boundary-driven growth (coral) and unrestricted growth (black). H. Ratios
of center to edge mean terminal branch lengths across simulations with decreasing spatial constraint (as modulated by cell
death rate) under either boundary-driven or unrestricted growth modes. I. Correlations (measured via 𝑅2) between fraction
of the lineage time spent on the edge and mean clock rate across the same range of spatial constraints and growth modes.
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and timing of cellular divergence events and include inferred internal node states, representing the location of
unsampled ancestral cells. Model parameters include state-dependent birth and death rates, and the rate at which
cells transition between states.

We first demonstrate the utility of SDevo on simulated tumors undergoing boundary-driven growth. From
the genetic sequences and labeled cell-states for sampled cells isolated at a simulated tumor endpoint (Figure 3B
inset), SDevo reconstructs the most likely relationship among sampled cells and the time at which those cells
diverged (Figure 3B). The birth rates for edge and center-associated cells are inferred from the branching and
mutational structure of sampled extant cells (leaves on the tree), permitting quantification of overall birth rate
differences between the two spatial compartments (Figure 3C). SDevo correctly identifies that boundary-linked
cells have a higher birth rate than center-linked cells (mean edge birth rate advantage = 0.20, 90% HPD = 0.12 -
0.29, true value = 0.27 in the representative simulation). SDevo additionally reconstructs the probability of each
spatial state (center versus edge) for the ancestors of the sampled population (plotted as pie charts on the internal
nodes of Figure 3B). These reconstructions suggest that the majority of ancestors divided on the tumor edge,
consistent with the findings of Heide et al. (2021) and our expectations of boundary-driven growth. SDevo’s
Bayesian approach further quantifies confidence in its ancestral reconstructions: ancestral cells with the highest
posterior probability of existing on the tumor edge were indeed likely to have divided there (Figure 3D). On the
other hand, cells with more uncertain ancestral reconstructions are less likely to have been on the tumor edge at
division (Figure 3D). Finally, we applied SDevo to tumors simulated under a range of spatial constraints (see
Materials and Methods). We find that at a moderate sample size (𝑛 = 50), SDevo is able to accurately quantify
birth rate differences, whereas a two-state birth-death model without a state-dependent clock (BDMM’ under
a strict clock) fails (Figure 1E). We further observed that SDevo remains accurate for as few as 10 samples,
whereas a strict clock model requires >100 samples to reach close to the same accuracy (Figure 1F).

SDevo is robust to a variety of sampling approaches and tumor growth modes
To evaluate SDevo’s strengths and limitations in clinical tumors, we sought to validate that SDevo detects
boundary-driven growth under various sampling strategies. Whereas in the initial simulation studies we
maximized the distance between sampled cells (i.e. diversified sampling), we also implemented a random
sampling scheme as might be present in single-cell studies (Figure S4A). Under random sampling, cells sampled
close together provide minimal additional genetic information, but may create spurious signatures of rapid
branching. Despite this, SDevo successfully estimates edge-driven birth advantages from randomly sampled
cells (Figure 4A). In contrast, even with a large number of cells sampled (𝑛 = 100), the strict clock multi-type
birth death model often fails to detect the same birth rate differences (Figure S4B). We also assessed SDevo’s
robustness to punch biopsy sampling, in which a population of nearby cells are captured. We biopsy-sampled
our simulated tumors, and only called mutations exceeding a 0.3 cellular fraction threshold within a punch (see
Materials and Methods). We find that while punch-style sampling adds more random error due to variation in
sampled diversity, especially in tumors with high turnover rates, SDevo largely still detects state-dependent birth
rate effects (Figure 4B).

Next, we assessed SDevo’s robustness to more complex growth by exploring an off-lattice model. We
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simulated under a continuous space model of tumor growth implemented using the agent-based cellular engine
PhysiCell (Ghaffarizadeh et al., 2018). To mimic boundary-driven conditions, we linked division probability to
mechanical pressure - cells crowded by their neighbors could not divide (see Materials and Methods, Figure
4C). As in the lattice-based simulations, higher cell turnover relaxes mechanical pressure, modulating spatial
constraint. We first verified that SDevo continued to identify birth rate differences in these more complex
simulations. We simulated 2D neutral growth, and found that SDevo sensitively detects an elevated birth
rate at the tumor edge, even when birth rate differences were minimal (Figure 4D). However, SDevo slightly
underestimates the birth rate differences at high death rates (i.e., low birth rate differences). We next simulated
tumors grown in 3 dimensions and sampled across multiple 𝑧-slices, mimicking clinical sampling approaches.
We determined that SDevo accurately reconstructs birth rate differences, albeit with wider posterior intervals
(Figure 4E). We note that trees reconstructed from the 3D simulations tend to deviate more from expected
edge-biased branching patterns than those from the 2D simulations (Figure S5) , reflecting more complicated
growth dynamics and potential obfuscation via the sampling scheme. These observations further highlight the
necessity of incorporating both branching and clock rate patterns to quantify boundary-driven growth in clinical
scenarios.

Finally, we tested the extent to which SDevo detects boundary-driven growth dynamics when both spatially-
determined and cell-intrinsic fitness differences influence growth, as the action of strong positive selection has
been previously shown to distort the shape of tumor phylogenetic trees (Chkhaidze et al., 2019; Heide et al.,
2021; Li et al., 2021). We find that SDevo continues to detect differences in birth rates between center and
periphery-associated cells even in the presence of strong selection (Figure 4F, see Materials and Methods).
Notably, even as lineages with driver mutations expand, these cells are still subject to spatial constraints. As a
result, similar patterns of branching and clock rate differences between center and periphery-associated cells
re-emerge. However, we anticipate that if cell death is sufficiently high, a driver mutation could lead to rapid
expansion of a center-bound lineage and mask signals of boundary-driven growth.

SDevo detects growth rate differences in hepatocellular carcinomas
To quantify boundary-driven growth in a clinical tumor setting, we applied SDevo to multi-region sequencing
data of two hepatacellular carcinoma (HCC) cancers published by Li et al. (2021) (Figure 5). The authors
sequenced two HCC tumors from a single patient, carried out 3-dimensional spatial micro-biopsy sampling
followed by whole-genome sequencing (Figure 5A and E) and classified punches as “edge” or “center”. We
created input pseudo-sequences for each punch using SNVs identified in the original study. We assumed
unidirectional migration from edge to center, in line with biological expectations of solid tumor growth, to
constrain death and migration rate parameter space (see Materials and Methods). Using SDevo, we reconstructed
the time trees of both HCC tumors (Figures 5B and F) and found strong support for birth rate differences between
edge and center (Figures 5C and 5G). We estimated that cells on the edge have a mean 3.95x birth rate advantage
over center cells in Tumor 1 (Figure 5D, 90% HPD = 2.90 - 4.89x) and a mean 2.52x birth rate advantage in
Tumor 2 (Figure 5H, 90% HPD = 2.04 - 3.03x). SDevo also reconstructed the most likely ancestral state of
internal nodes (Figures 5B and F), inferring that while most ancestral cells divided on the tumor periphery,
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Figure 3. State-Dependent sequence evolution model (SDevo) estimates boundary-driven growth in simulated
tumors. A. SDevo model schematic. Using input sequences and states (edge in maroon versus center in blue) of sampled
tumor cells, SDevo reconstructs a tree with ancestral states (state probabilities represented by node pie charts) and
estimates model parameters. SDevo links state-dependent clock rates to birth rates. B. Reconstructed time tree estimated
by SDevo on an example simulated tumor (𝑑𝑒𝑎𝑡ℎ = 0.29). At each internal node, the posterior probabilities for ancestral
edge or center states are shown as a pie chart. The inset shows the sampling scheme for the tumor. C. Marginal posterior
distributions of estimated edge and center birth rates, which are summarized by birth rate differences between edge and
center cells (inset, dashed line indicates the true difference). D. Posterior probabilities of ancestral state reconstructions
versus true state assignments. E. SDevo (green) estimates of birth rate differences between edge and center samples across
a variety of true birth rate differences (𝑑𝑒𝑎𝑡ℎ varies between 0 and 0.87, 𝑛 = 50) compared with estimates under a strict
clock (gold). Points and bars represent mean and 95% HPD intervals, respectively. Dashed line is 𝑦 = 𝑥. F. Mean squared
error (MSE) of estimated birth rate differences in simulated tumors (𝑑𝑒𝑎𝑡ℎ varies between 0 and 0.87) versus input sample
size for SDevo (green) and strict clock sequence evolution (gold) models. Error bars represent standard error of MSE.
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Figure 4. SDevo is robust to a variety of sampling approaches and growth modes. A. Estimated versus true edge -
center birth rate differences with random sampling (𝑛 = 100 cells/tumor). B. Mean and 95% HPD intervals of SDevo
estimates of birth rate differences between edge and center when sequences are constructed from variants above 30%
frequency in a simulated punch biopsy (inset). C. Schematic of continuous-space tumor growth simulation governed by
biomechanics using PhysiCell (Ghaffarizadeh et al., 2018). Only cells under low physical mechanical pressure from their
neighbors (visualized in yellow as opposed to blue) can divide, generating boundary-driven growth. SDevo recovers
growth rate differences generated through variable death rates under D. neutral 2D growth, E. neutral 3D growth, and F.
2D growth in the presence of strong driver mutations (𝜇𝑑𝑟𝑖𝑣𝑒𝑟 = 0.01, 𝑠𝑑𝑟𝑖𝑣𝑒𝑟 = 1.1, see Materials and Methods). Tumor
snapshots below the x-axes show representative examples of growth dynamics under variable death rates (right to left:
𝑑 = 0, 0.2, 0.4, 0.6, 0.8) and resultant pressure. In the case of the tumors under selection shown in F., darker colors
represent cells with driver mutations.
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some population expansion occurred in the tumor center. To confirm that these results are not sensitive to small
differences in state classifications, we also called alternate edge/center states based on a threshold of 10% of
the tumor diameter ( 2mm and 1.5mm for Tumor 1 and Tumor 2, respectively) from the schematic boundary
and found consistent results (Figure S6). We also found consistent results when removing a single punch from
Tumor 1 which may have captured multiple subclones (Figure S10).

Although we inferred a higher birth rate on the edge in these clinical tumors, the branching rate pattern
qualitatively did not match our expectations from simulations. These branching patterns are potentially influenced
by selection, as noted originally by Li et al. (2021), or by the non-uniform sampling scheme (Figures 5A and
5E). Likely due to these branching patterns, we find a strict clock model, which assumes independence of
sequence evolution and cell division, did not detect boundary-driven growth. Instead it estimated that center
cells have a higher birth rate (Figure S7). We note that the sample sizes of Tumor 1 and Tumor 2 were well
below the sample size requirements in simulations to detect boundary-driven growth with a strict clock model
(Figure 3F). In addition, we found that incorporating a state-dependent sequence evolution model changed the
estimated internal node timings (Figure S8). Specifically, reconstructed center-bound nodes were estimated to
have occurred more recently under a strict clock than under a state-dependent evolution model in which center
cells would be expected to divide less frequently.

Discussion
Tumor evolutionary progression is a complex process driven by genetic, epigenetic, environmental, and immune
factors. Quantitatively disentangling the contribution of spatial factors to tumor growth dynamics is an important
component of both reconstructing tumor clinical histories and predicting future growth. Our understanding of
spatial drivers of tumor growth has largely been informed by xenograft models, as we have had limited ability
to assay for these effects in clinical tumors. Here, we introduce SDevo, a new Bayesian phylodynamic model
that learns differential cell birth rates of discrete classes (here, tumor periphery or center-associated). Although
SDevo is general in scope and applicability, in this study, we demonstrate that it successfully infers birth rate
differences between the tumor edge and center from multi-region sequencing data. We show that SDevo is
relatively robust to sampling choices (i.e., punch biopsies and locations) and biological factors (i.e., cancer
driver mutations and 3D versus 2D growth modes). We further find quantitative evidence for boundary-driven
growth in clinically-derived hepatocellular carcinomas resected at a single time point.

Our assessment of boundary-driven growth in HCC quantitatively expands the observations of Li et al.
(2021). The authors originally hypothesized that Tumor 1’s tree structure matched a simulated scenario of
boundary-driven growth followed by the expansion of a selected clone in the center, and that Tumor 2’s tree
structure matched dominant boundary driven growth. The authors made these assessments by simulating tumors
and comparing the distributions of clones and variant allele frequencies to the sequenced tumors. They further
noted that genetic divergence was higher in punches collected from the tumor periphery.

Our study quantifies these patterns by estimating these birth rate differences directly with joint inference
of tree topology and sequence evolution. Notably, although small sample sizes, clustered sampling, and the
hypothesized selection for an internal clone in Tumor 1 may have distorted the branching structure of the trees,
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Figure 5. Quantification of boundary-driven growth in hepatocellular carcinomas. A. Multi-region 3D sampling map
for Tumor 1 adapted from Li et al. (2021). Sampling locations are marked and labeled in 𝑧-slices, and center and edge
classifications (taken from the original study) are shown in blue and maroon, respectively. B. Tumor 1 phylogeny
reconstructed from pseudo-sequences of sub-sampled variable sites. Tip colors indicate sampled punch state and pie charts
on internal tree nodes represent posterior probabilities of ancestral state reconstructions. C. Marginal posterior
distributions for edge (maroon) and center (blue) birth rates, and D. estimated edge to center birth ratio (mean 3.95x).
Dashed line marks ratio of 1. E. Tumor 2 multi-region 3D sampling map, F. reconstructed phylogeny, G. marginal
posterior estimates of edge and center birth rates, and H. their ratio (mean 2.52x). Labeling conventions follow Tumor 1
(A-D) and dashed lines are 𝑦 = 𝑥 for all panels. Tumor cartoons are vertically inverted for ease of visualization.
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SDevo is able to detect past boundary-driven growth from clock rate differences. By explicitly incorporating the
mutational process, SDevo leverages data more effectively than models that only learn from state-dependent
branching. This approach is particularly important when only a few areas of a tumor are sequenced. These
findings, along with previous in silico evidence that selection changes the shapes of tumor trees (Chkhaidze et al.,
2019; Yang et al., 2022), highlight the importance of employing multiple tree patterns to quantify interacting
modes of tumor growth. Although future work should more comprehensively profile how multiple spatial and
non-spatial drivers of growth can impact observed tree patterns, our analysis of non-neutral tumors (Figure 4F)
suggests that SDevo can detect boundary-driven growth in the presence of selection.

Quantifying the impact of spatial restrictions on clinical tumor growth informs how we understand, predict,
and control cancer evolution. A robust literature has established that boundary-driven growth modulates the
efficiency of positive and purifying selection (Kayser et al., 2019; Fu et al., 2022), alters overall growth rates
(van der Heijden et al., 2019; Colom et al., 2020), and increases the efficacy of adaptive therapy (Bacevic et al.,
2017; Strobl et al., 2022; Fusco et al., 2016). Spatial restrictions also change the expected distribution of genetic
variation in solid tumors (Sun et al., 2017; Ahmed and Gravel, 2018; Waclaw et al., 2015; Fu et al., 2022),
and impact how clinically informative biopsies should be collected (Kostadinov et al., 2016). Although we find
robust evidence for boundary-driven growth in HCC, its prevalence and strength likely varies by stage of tumor
growth and tumor type (Noble et al., 2022). For example, both increased vascularization and increased cell
migration could relax spatial growth restrictions. Further applications of SDevo to other tumor cases and types
will enable us to explore the generalizability of these growth phenomena.

Importantly, the utility of SDevo is not limited to understanding the impact of boundary-driven growth, but in
fact, can be applied in any instance in which sequenced tumor samples can be classified into discrete, observable
states. Immediately, SDevo could be extended to test other proposed tumor growth modes – for example, growth
against a solid surface, such as bone in osteosarcoma, along a unidirectional invasive front (Ryser et al., 2020),
or in different glandular compartments (West et al., 2021). Even more broadly, SDevo could be applied to study
the growth impacts of other environmental or cell-intrinsic factors, for instance, immune invasion, hypoxia, or
genetic features, by decomposing complex phenotypes into discrete states.

Phylodynamic approaches such as SDevo have major advantages compared to our current approaches for
estimating evolutionary information from tumors, namely approximate Bayesian computation (ABC) (Beaumont
et al., 2002) or other approaches that compare simulated and clinical tumors via summary statistics (Noble
et al., 2022). To be clear, these approaches have yielded extensive insights into tumor evolution, including
patterns under boundary-driven growth (Sottoriva et al., 2015; Sun et al., 2017; Chkhaidze et al., 2019; Heide
et al., 2021). However, these approaches are computationally costly, requiring the generation of often tens
or hundreds of thousands of simulated tumors, on which one must compute extensive summary statistics. In
addition, ABC comes with technical challenges, including the necessary choice (and potential unavailability of)
low dimensional sufficient summary statistics. Although Bayesian phylodynamics comes with its own technical
challenges (i.e. fundamental identifiability and sensitivity to model assumptions, see Louca and Pennell (2020);
Louca et al. (2021)), it does not require tumor simulation. Furthermore, the generality of discrete traits affecting
growth dynamics means it is easily adaptable to answer new questions. While both ABC and phylodynamics
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offer ways to understand clinically-derived samples, the full promise of phylodynamics has yet to be widely
exploited.

Phylodynamic approaches to understanding tumor evolution offer additional benefits: 1) used in conjunction
with well-calibrated molecular clocks, inferred trees can help estimate the timing of clinically-important events,
such as the emergence of subclones or metastatic events. While these analyses have been employed in the
context of uniform growth rates (Lote et al., 2017; Hu et al., 2020; Alves et al., 2019), the expansion of tree
models to permit differential birth rates could improve timing accuracy. 2) Incorporating differential growth
rates across a tree can lead to more accurate tree topologies, as has been demonstrated in influenza evolving
in multiple host species (Worobey et al., 2014). 3) Inferring ancestral states can elucidate population history
and tumor evolutionary processes at time points that cannot be clinically sampled. Recently, Zhao et al. (2021)
analyzed the intra-tumor spatial and genetic architecture of renal cancers and concluded cells in the tumor center
are more likely to seed metastasis. However, the study was limited to observing the extant position of these
samples, whereas SDevo reconstructs these states at the time of clinical events (i.e. divergence of a metastatic
clone). These three points suggest more broadly how tumor trees can be leveraged to gain new quantitative
insights into tumor evolution, and demonstrate the broad utility of modeling evolutionary processes on trees.

Beyond its application to cancer evolution, SDevo is a novel phylodynamic model with broad usefulness
to incorporate state-dependent clock rates into evolutionary inference. While the field of phylogenetics has
developed a broad array of clock models, SDevo represents the first model in which clock rate is linked to
population birth. SDevo could be particularly useful in microbial and viral populations where diversification
and mutational accumulation operate on similar timescales, and may be linked to underlying state variables (for
example, location). We demonstrated that incorporating clock rate differences, instead of relying solely on tree
diversification rates (as in BDMM’ and other multi-state birth-death models (Maddison et al., 2007; Kühnert
et al., 2016; Vaughan, 2022)), can improve inference in cases where sampling may be non-uniform. This may
be particularly important when sampling rates vary - for example, countries with variable rates of molecular
surveillance for SARS-CoV-2. To facilitate access to these methods, SDevo will be released as a package in the
popular Bayesian phylogenetic platform BEAST2 (Bouckaert et al., 2019) and is available on GitHub before
publication. As with all phylodynamic models, identifiability represents a pervasive concern, but incorporating
biological knowledge for determining priors can help constrain the model space. In our analysis of HCCs, we
use information about cell migration and death rates to distinguish between multiple parameters that impact
trees and estimation in interrelated ways.

Although SDevo is a powerful tool, we note several important limitations that require caution when applying
it to data. First, strong selection can destroy signals of boundary-driven growth or otherwise complicate its
signatures (Chkhaidze et al., 2019; Li et al., 2021). Although we have shown that SDevo can detect differential
birth rates despite non-spatial sources of birth rate heterogeneity, future work should further probe this robustness.
Second, SDevo assumes mutations occur at cell division. If instead, most mutations emerge due to exogenous
processes (Abascal et al., 2021), birth-driven genetic divergence could be masked. While this might decrease
SDevo’s power, exogenous mutational processes distributed evenly across a tumor are unlikely to generate
false positive signals of boundary-driven growth. Third, extensive cell mobility could weaken signatures of
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boundary-driven growth even if boundary-associated cells have birth rate advantages. Fourth, as we demonstrate
in Figure 3, sample sizes must be sufficient to detect state-dependent effects. We maximize limited sample sizes
by choosing priors that are biologically informed (for example, unidirectional migration), but larger sample sizes
will enable inference with less informative priors. Data sets that meet this requirement are becoming rapidly
available, so we anticipate phylodynamic models such as SDevo becoming increasingly powerful.

The expanded application of phylodynamics to cancer sequencing data relies both on developing methods to
exploit single-cell sequencing data (Chen et al., 2021; Moravec et al., 2022), and understanding the relationship
between sequenced multi-region punches and the many single cells that comprise them. As has been noted
previously, multi-region sequence trees are not phylogenies (Alves et al., 2017), and punch-wide genetic
composition does not necessarily capture all cellular genotypes (Caravagna et al., 2020). Although SDevo is
fairly robust to our simulated punch-style sampling and we analysed HCC data from small, largely homogeneous
punch biopsies, best practices for applying phylodynamic models to trees of deconvoluted clones is an important
area for future research.

Applying phylodynamic methods to tumor populations is in its infancy, but new methods that overcome the
barriers of working with tumor data will help extend the applicability of these approaches (Alves and Posada,
2018; Chen et al., 2021). Here, we demonstrate the utility of phylodynamic models in quantifying spatial factors
driving cancer progression. As technologies enabling the widespread and high-throughput generation of tumor
trees advance (Yang et al., 2022; Lim et al., 2020), we expect adapted phylodynamic approaches such as SDevo
to provide a rigorous analytical toolkit for extracting quantitative insights from these data.

Materials & Methods
Tumor simulations
Eden model:
An agent-based model was implemented in Python3 which places simulated cells on a 2D lattice. Simulations
are initiated with a single cell in the center of the lattice. At each time point Δ𝑡, a cell attempts division with
rate 𝜆 or dies with rate 𝛼. Under boundary-driven growth, cells only successfully divide if there is an empty
lattice spot in its Moore neighborhood. If multiple neighboring spaces are available then the cell randomly
chooses the location for its daughter cell from open neighboring spaces. Under unrestricted growth, if a cell
attempts division, its daughter cell will occupy an empty lattice spot in the Moore neighborhood if available,
but if not, the cell will still divide and push cells in a random direction to make space. Overlapping cells are
pushed in the same direction until a neighboring lattice spot is available, which the pushed cell will occupy. In
both simulations, if a cell divides, each daughter cell can gain mutations with probability 𝜇. Mutations are then
drawn from a Jukes-Cantor model of sequence evolution and follow an infinite-sites assumption. Therefore,
each time a mutation is gained, a site is added to all cells in the simulation. Simulations are stopped when the
number of living cells is more than 1000. The ground truth birth rates are assessed at discrete time points in
the simulation by recording the current state of each cell and the proportion of cells that have progeny in the
next time step. True birth rates are considered to be the mean across all time steps weighted by the number of
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cells. Effective spatial constraints in the boundary-driven model were controlled by changing cell death rate,
where increased cell turnover allows center-trapped cells to divide more readily (Figure S1). Input parameters
are proliferation and death scalars, where 𝜆 = Δ𝑡(1 − death)(proliferation)∕2 and 𝛼 = Δ𝑡(death)∕2. To evaluate
the accuracy of parameter estimation, we ran 1000-cell tumor simulations with proliferation = 1, 𝜇 = 1 and a
range of death = (0 − 0.87).

Eden tree statistics
Tree statistics in Figures 1 and 2 were calculated from simulated tumor trees that include all extant cells.
Normalized terminal branch lengths were calculated by dividing terminal branch lengths of tumor time trees by
total simulation time. Clock rates were calculated by dividing total number of mutations accumulated in each
alive cell by simulation time. Edge and center states for terminal branch lengths are defined by cell location
at the end of the simulation, where edge cells are defined by being the most extreme cell on either the X or Y
spatial axis or within one cell of this boundary. Fraction of the lineage time spent on the edge is determined by
averaging across all lineage node states weighted by time tree branch lengths.

Continuous space model:
To probe the robustness of SDevo to more complex selective events and higher dimensions, we implemented an
additional set of simulations in the physics-based cellular simulator, PhysiCell (Ghaffarizadeh et al., 2018).
Briefly, PhysiCell is an open-source, agent-based model implemented in C++ in which cell movement is
governed by biomechanical interactions among cells. To simulate boundary-driven growth, we created a
PhysiCell instance in which cells are only able to divide when under low mechanical pressure, using the cell
state variable, simple_pressure. As a result, similar to the Eden model, most cell division is restricted to the
tumor periphery, or to cells with adjacent space created by the recent death of a neighboring cell. Cells initially
divide at a rate we arbitrarily set to 1, except when above the pressure threshold, 𝜏, in which case, they divide at
rate 0. Cells die at rate 𝑑, regardless of their pressure status. To simulate selection, during each cell division, a
daughter cell can acquire a driver mutation conferring a 10% fitness advantage with probability 𝜇𝑑𝑟𝑖𝑣𝑒𝑟, with
up to two driver mutations allowed per cell, which act multiplicatively (i.e. a cell with two drivers has a 21%
faster growth rate than one with 0). Tumors are grown to a final size of 𝑁 extant cells, of which 𝑛 are sampled.
After the simulation, a Poisson-distributed number of neutral mutations is augmented to each cell division with
𝜆 = 𝜇𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟. Using the continuous space model, we investigated a 2D neutral, 2D selective and 3D neutral
scenarios, and ran 25 tumor simulations for each combination of parameters (𝜏 = 1, 𝑑 = (0, 0.1, 0.2, ...0.8),
𝜇𝑝𝑎𝑠𝑠 = 1, 𝑛 = 100). For the 2D models, 𝑁 = 10, 000 and for the 3D model, 𝑁 = 15, 000. For the selective
model, 𝜇𝑑𝑟𝑖𝑣𝑒𝑟 = 0.01 and for the neutral models, 𝜇𝑑𝑟𝑖𝑣𝑒𝑟 = 0. One outlier in the 3D boundary-driven growth
simulations was removed due to convergence on a local optimum. Ground truth edge and center birth rates were
determined by first classifying cells as within 10 microns (approximately 1 cell width) of the tumor periphery as
edge, and those more than 10 microns from the edge as center. The average birth rate was computed separately
within each of those classes over multiple discrete time points (10-40, depending on the overall rate of tumor
growth) and combined by a weighted average according to the number of cells at each time point. Cells under too
much pressure to divide at the sampled time ( simple_pressure > 𝜏) were calculated as having an instantaneous
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birth rate of 0.

Sampling procedures
2D simulations were sampled by maximizing the distance between sampled single cells in physical space
(diversified sampling). This ensures that a sufficient number of edge and center classified cells were sampled
and that sampled cells were not clustered. Bulk punch biopsy sampling was mimicked by choosing a center cell
and a target of 8 cells immediately surrounding that were grouped into a single punch. Punches were iteratively
drawn and shifted if they overlapped with a previously punched group of cells. Sampling ended when the target
number of punches was reached (50 punches) or sampling was no longer possible without significant overlap.
Punch sequences were generated using all mutations above a cellular fraction cutoff of 0.3. 3D sampling was
approximated by taking 5 simulated slices through the tumor 𝑧-plane at 2/8ths, 3/8ths, 4/8ths, 5/8ths and 6/8ths
of the range of the 𝑧 values of a given tumor. Within each slice, cells were sampled to maximize the inter-cell
distance, as described above, and the number of cells per slice was proportional to the number of cells in the
slice relative to the number of cells across all slices.

Multi-type birth-death models applied to boundary-driven growth
The birth-death process describes how lineages duplicate (birth), die (death), and are sampled (where samples
are tips on a phylogenetic tree) (Gernhard, 2008). The multi-type birth-death model extends this by considering
birth, death and sampling to occur in different states (sometimes also referred to as different sub-populations,
traits, or types) and how lineages jump between these states. The rates of birth, death and sampling vary
depending on the state of a lineage. For the case of boundary-driven growth, we model a two-state process, with
one state denoting cells in the center of the tumor and the other state denoting cells on the edge of the tumor.

Posterior Probability
To perform Bayesian inference, we define the posterior probability 𝑃 (𝑇 , 𝜎, 𝜃|𝐷) of the timed phylogenetic tree
𝑇 , the evolutionary model and parameters (𝜎), and the population model and parameters 𝜃, given the data, 𝐷.
This posterior probability is typically expressed as:

𝑃 (𝑇 , 𝜎, 𝜃|𝐷) =
𝑃 (𝐷|𝜎, 𝑇 )𝑃 (𝑇 |𝜃)𝑃 (𝜎)𝑃 (𝜃)

𝑃 (𝐷)
(1)

In the case of the state-dependent multi-type birth-death model, we cannot assume the tree likelihood (𝐷|𝜎, 𝑇 )
and the tree prior 𝑃 (𝑇 |𝜃) to be independent, as the rate of evolution directly depends on the population model.
In other words, how fast evolution happens on a lineage depends directly on the state of that lineage. We
therefore define  as a mapped migration history, that contains a random mapping of migration or state change
events given a set of parameters 𝜃 of the multi-type birth-death model. We then define the tree likelihood as
𝑃 (𝐷|𝜎, 𝜃, 𝑇 ,). Additionally, we say that instead of computing 𝑃 (𝑇 |𝜃) directly, we only compute the tree
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prior for one realization of the migration history, i.e. 𝑃 (𝑇 ,|𝜃). The posterior probability then becomes:

𝑃 (𝑇 ,, 𝜎, 𝜃|𝐷) =
𝑃 (𝐷|𝜎, 𝜃, 𝑇 ,)𝑃 (𝑇 ,|𝜃)𝑃 (𝜎)𝑃 (𝜃)

𝑃 (𝐷)
. (2)

Performing MCMC inference to characterize this posterior probability distribution would require integrating
over all migration histories  using MCMC. This is overall incredibly slow and limits the application of the
method. Instead, we formally integrate over all possible migration histories , to get the following posterior
probability:

𝑃 (𝑇 , 𝜎, 𝜃|𝐷) =
∫ 𝑃 (𝐷|𝜎, 𝑇 ,) ∫ 𝑃 (𝑇 ,|𝜃)𝑃 (𝜎)𝑃 (𝜃)

𝑃 (𝐷)
. (3)

𝑃 (𝑇 |𝜃) = ∫ 𝑃 (𝑇 ,|𝜃) is computed as described in Kühnert et al. (2016), which is achieved by treating the
states of lineages probabilistically instead of discretely.

Lastly, we set ∫  𝑃 (𝐷|𝜎, 𝑇 ,) = 𝐸[𝑃 (𝐷|𝜎, 𝜃, 𝑇 ,) = 𝑃 (𝐷|𝜎, 𝜃, 𝑇 , 𝐸[]), with 𝐸[] being the ex-
pected/average migration history, which contains, for each lineage 𝑖 in the phylogeny, its expected time spent
each state 𝑠. This leaves us with:

𝑃 (𝑇 , 𝜎, 𝜃|𝐷) =
𝑃 (𝐷|𝜎, 𝜃, 𝑇 , 𝐸[])𝑃 (𝑇 |𝜃)𝑃 (𝜎)𝑃 (𝜃)

𝑃 (𝐷,𝑆)
. (4)

Modeling birth dependent evolution
In order to model different rates of evolution for different states, we first compute the expected time each lineage
in the phylogenetic tree 𝑇 spent in each state. To do so, we use a stochastic mapping approach related to those
described in Nielsen (2002); Huelsenbeck et al. (2003). We first compute the probability 𝑔𝑖,𝑏𝑠 of each lineage 𝑖 in
the phylogenetic tree being in any possible state 𝑠 over time 𝑡 from the tips to the root as described in Kühnert
et al. (2016). These state probabilities are conditional only on events that occurred more recently than 𝑡 and
therefore not on all events in the phylogeny. During this backwards propagation, we keep track of the time
dependent transition matrix 𝑄(𝑡)𝑖 that describes the rate of probability flow between any two states at time 𝑡 due
to migration or birth events between states. As a result, once we reach the root, 𝑔𝑖,𝑏𝑠 contains all events in the
phylogeny and is therefore equal to 𝑔𝑖,𝑓𝑠 , i.e. the forward probability of lineage 𝑖 being in state 𝑠.

Following Stolz et al. (2022), we first define 𝑞𝑖𝑎𝑏 as:

𝑞𝑖𝑎𝑏 = 𝜇𝑎𝑏

𝑔𝑏(𝑡)𝑖𝑎
𝑔𝑏(𝑡)𝑖𝑏

with 𝜇𝑎𝑏 being the rate of state change due to migration or cross-birth events.
We then compute the probabilities of any lineage being in any possible state conditional on all events in the

phylogeny 𝑔𝑖,𝑓𝑠 forwards in time as:

𝑑𝑔𝑖,𝑓𝑠
𝑑𝑡

=
𝑠𝑡𝑎𝑡𝑒𝑠
∑

𝑎=1

(

𝑞𝑖𝑎𝑠𝑔
𝑖,𝑓
𝑎 − 𝑞𝑖𝑠𝑎𝑔

𝑖,𝑓
𝑠

)

.
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By keeping track of the forward probabilities 𝑔𝑖,𝑓𝑠 on each lineage, we can then compute the expected time 𝑡𝑖𝑠
that lineage 𝑖 spends in any of the possible states 𝑠. The values for 𝑡𝑖𝑠 make up the entry for 𝐸[] in the posterior
distribution (4). We then say that 𝑐𝑠 is the rate of evolution, that is the clock rate, of a lineage in state 𝑠. Next,
we compute the average rate of evolution on branch 𝑖, 𝑐𝑖 as

𝑐𝑖 =
𝑠𝑡𝑎𝑡𝑒𝑠
∑

𝑠
𝑡𝑖𝑠 ∗ 𝑐𝑠.

Modeling birth dependent evolution
At each replication, error in copying the genetic material of a cell can occur. These errors tend to be more likely
in cancer cells, where cellular control mechanisms are often faulty. Phylogenetic methods typically assume the
evolutionary processes to be independent of population processes, such as cell replication. To model mutations
happening at birth events, we assume that the birth rate 𝑏𝑠 in state 𝑠 and the clock rate in state 𝑠 are proportional
such that 𝑐1 = 𝑐𝑎𝑣𝑔𝑏1, 𝑐2 = 𝑐𝑎𝑣𝑔𝑏2, ..., 𝑐𝑛 = 𝑐𝑎𝑣𝑔𝑏𝑛.

Implementation
We implemented the multi-type birth-death model with state-dependent clock rates as an addition to the Bayesian
phylogenetics software BEAST2. SDevo depends on BDMM-prime (https://github.com/tgvaughan/BDMM-
Prime) to compute the tree prior 𝑃 (𝑇 |𝜃). To model mutations occurring at cell division, we set the relative
rate of evolution in the different compartments (edge and center) to be proportional to the birth rates in these
compartments. The implementation itself does not explicitly require this assumption and the relative rates of
evolution can also be treated as a distinct parameter in the inference.

Validation
To validate the implementation, we perform a well-calibrated simulation study. In it, we simulate phylogenetic
trees under a two-state birth-death model in which we assume the rate of evolution to be proportional to the birth
rate in either compartment. We randomly sample the birth, death, and migration rates from the prior distribution,
while fixing the sampling rate to 0.001 and then simulate a phylogenetic tree using MASTER (Vaughan and
Drummond, 2013). We then simulate genetic sequences on top of the phylogenetic trees using different rates of
evolution depending on the lineage’s compartment. Next, we infer the birth, death, and migration rates from the
genetic sequences and show that the 95% highest posterior density (HPD) interval cover the truth in 95% of the
100 runs (see Figure S2).

SDevo application to simulated tumors
We applied SDevo to outputs of the Eden and PhysiCell simulations generated as described above. For each
simulated tumor we calculated clock rate (mutations/tree length/sequence length) and edge and center sampling
rates (sampled / alive cells). We set exponential priors on birth, death, and migration rates. Full parameterization
can be reproduced from XML templates. MCMC chains were run to convergence. We used only chains
that had an minimum effective sample size (ESS) for birth rate parameters greater than 200 for analysis. We
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summarized the output posterior distributions by mean and 95% HPD intervals. We further inferred maximum
clade credibility (MCC) trees with median heights using BEAST 2.6.2 TreeAnnotator (Bouckaert et al., 2019).
TreeAnnotator also gives posterior state probabilities for each MCC internal node.

SDevo application to hepatocellular carcinoma tumors
To apply SDevo to the hepatocellular carcinoma data, we labeled punches based on edge/center state labels
as published by Li et al. (2021), Table S8 (reproduced in Figures 5A and 5E). For alternate states (Figures
S6A and S6E), we labeled punches as edge if they were located within approximately 10% ( 2mm for Tumor
1 and 1.5mm for Tumor 2) of the tumor diameter from the schematic boundaries. Slices were reported to be
from tumor hemispheres. Assuming a 0.2mm slice thickness, we estimated that slices Tumor 1Z and Tumor
2Z fell within the boundary region. Li et al. (2021) identified a large number of SNVs (254,268 for Tumor
1 and 142,032 for Tumor 2). To reduce computational requirements and improve convergence, we generated
input pseudo-sequences by randomly subsampling 10,000 variable sites and called presence or absence of a
variant at each site based on a VAF cutoff of 0.05. Variant allele frequency histograms displayed single-peaked
distributions characteristic of a single major clone per sample, with the exception of tumor sample T1Z13
(Figure S9). To ensure Tumor 1 results were not driven by over-counting mutations across multiple subclones of
T1Z13, we repeated the analysis excluding this sample and found quantitatively similar results (Figure S10).

We use a GTR + Γ4 site model, a fixed clock rate of 0.1 (units are arbitrary as we only use sites which
are variable relative to healthy cells), and estimate sampling proportion (uniform prior). We use log-normal
priors for birth (mean=20, S=0.5) and death rates (mean=15, S=0.5), and edge to center migration rate (mean=5,
S=0.5). Note that these units are also arbitrary and are not calibrated to clinical time. In applying SDevo to these
tumors, we constrain the parameter space in several ways to adapt to having relatively few samples, only a single
observed time point, and unknown sampling proportion. 1) We assume unidirectional migration so that cells
can only move from edge to center but not vice versa. As we only have a few observed state transition events,
the migration rates would otherwise be relatively poorly informed. 2) We set priors on mean birth, death, and
migration rates across the two states. Full parameterization can be found in the XML template. We combined
posterior estimates across three independent runs for each tumor. We inferred MCC trees with ancestral state
reconstructions with TreeAnnonator.

Code and data availability
Custom scripts were used for simulation studies and data analyses. All code and data to generate figures
are publicly available. Scripts to replicate analyses and figures are available at github.com/blab/spatial-tumor-
phylodynamics, including a local R package tumortree (github.com/blab/spatial-tumor-phylodynamics/tumortree),
which can be installed to build trees from the simulation outputs. The source code for SDevo is here:
https://github.com/nicfel/SDevo. The source code to run spatially-constrained PhysiCell simulations and
generate trees can be found here: github.com/federlab/PhysiCellTrees. All other packages used for analysis and
visualization are also open source (Yu et al., 2017; Wang et al., 2019).
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AA B

Figure S1. Cellular density creates fitness differences in expanding lattice-based simulations. A. Fitness, here
approximated by the probability a cell has a daughter cell in the population (P(progeny)) versus the number of adjacent
free cells at birth under boundary-driven growth. Spatial impacts on cell fitness are relaxed with increasing cell death rate 𝛼
(color tint). Means and standard error bars are summarized across 10 simulated tumors per death rate. B. Under
unrestricted growth, most cells are born into a dense neighborhood (free cells = 0), but fitness is not impacted by spatial
location.
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Figure S2. Simulation study to validate SDevo implementation. Birth, death, and migration rates, and ratios of
state-dependent birth rates estimated by SDevo versus true population parameters of phylogenetic trees simulated under a
two-state birth-death model (see Materials and Methods). Medians (points) and 95% HPD intervals (bars) of estimated
values are plotted for each parameter (columns) while either fixing or jointly inferring the tree topology (rows).
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Figure S3. Multi-state diversification models without state-dependent clocks do not sensitively detect growth rate
differences in simulated tumors. A. Schematic of BDMM-Prime, which does not link state-dependent effects on division
to sequence evolution. B. True versus estimated means (points) and 95% HPD intervals (bars) of birth rate differences
between the edge and center of simulated boundary-driven tumors over a range of sample sizes (headers). Dashed line is
𝑦 = 𝑥.
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Figure S4. SDevo improves birth rate estimation with more variable (random) sampling over a strict clock model.
A. Example 2D tumors under either diversified or random sampling schemes. Cells are colored by edge (maroon) or center
(blue). Grey-highlighted cells are sampled. Diversified sampling maximizes the physical distance between sampled cells.
B. Estimated means (points) and 95% HPD intervals (bars) of birth rate differences between the edge and center of
simulated boundary-driven tumors based on 100 sampled cells versus true state-dependent effects (𝑑𝑒𝑎𝑡ℎ varies between 0
and 0.87). We compare SDevo (green) with strict clock model (gold) for either diversified or random sampling (rows).

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2022. ; https://doi.org/10.1101/2022.08.05.502978doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502978
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mean center / edge terminal branch length

Center

Sampled state

Edge

2D Growth

A. B.

C. D. E.

3D Growth

Center Edge Center Edge

Reconstructed state
Posterior
probability
edge

Posterior
probability
center

Figure S5. Complex growth and sampling in 3D tumors leads to more variable branching patterns. A. Example
inferred phylogeny of 2D PhysiCell tumor with reconstructed ancestral edge and center states (𝑑 = 0.1). Node pie charts
represent posterior support for each state. 100 cells were sampled to maximize distance between cells (diversified
sampling). B. Example inferred phylogeny of 3D PhysiCell tumor with reconstructed ancestral edge and center states
(𝑑 = 0.1). Cells were sampled to maximize distance in 2D space across 𝑧-slices of the simulated tumor as described in
Materials & Methods. C, E. Comparisons of inferred terminal branch lengths between cells sampled on the edge and
center of 2D and 3D tumors. D. Distribution of the relative ratio of center to edge mean terminal branch lengths across
multiple simulations with equivalent spatial constraints. Asymmetric branching between edge and center states is observed
more often in 2D (gold) than 3D (navy) tumors.
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Figure S6. Detection of boundary-driven growth in hepatocellular carcinoma is robust to some variation in
edge/center state calling. We called an alternate set of states based on a distance of < 10%of each tumor diameter instead
of published edge/center labels. A. Multi-region sampling map for Tumor 1 adapted from Li et al. (2021) with alternate
state labels. B. Inferred tumor phylogeny and reconstructed ancestral spatial states. C. Marginal posterior distributions for
edge (maroon) and center (blue) birth rates estimated from the Tumor 1 WGS data. D. Posterior distribution of edge/center
birth rate ratio. Dashed line indicates ratio of 1. We estimate a 2.0x higher birth rate on the edge compared to center. E.
Multi-region sampling map with alternate states for Tumor 2 reproduced from Li et al. (2021). F. Tumor 2 tree and
ancestral edge/center states inferred from the sampled populations. G. Marginal posterior distributions for edge and center
estimated birth rates and H. edge/center ratio. We estimate a 3.6x higher birth rate on the edge versus center based on the
alternate state calls.
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Figure S7. SDevo infers boundary-driven growth in HCC tumors where a strict-clock fails. We compared estimates
of birth rate differences between edge and center under a state-dependent birth-death model (BDMM’) using both our
novel state-linked sequence evolution model or a strict clock (state-independent) sequence evolution model. For Tumor 1
(A.) and Tumor 2 (B.), posteriors of edge and center birth rate estimates for each sequence evolution model are shown in
maroon and blue, respectively. Means and 95% HPD intervals for the inferred birth rate ratios between edge and center
states for Tumor 1 (C.) and Tumor 2 (D.). Dashed lines indicate ratio of 1. Note, power analyses on simulated tumors
(Figure 3 and S3) suggest that the strict clock model should be under-powered and sensitive to sampling variation at these
sample sizes (Tumor 1: 𝑛 = 16, Tumor 2: 𝑛 = 9).
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Figure S8. State-dependent sequence evolution models infer shorter center node heights than strict clock model in
HCC tumor trees. We compared the inferred ancestral node heights under a state-dependent birth-death model (BDMM’)
using either SDevo or a strict clock (state-independent) sequence evolution model. For Tumor 1 (A.) and Tumor 2 (B.),
scatter plots show ancestral node heights inferred under strict clock versus heights inferred by SDevo colored by most
probable ancestral state. Nodes are compared based on matching a subset of tips.
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Figure S9. Variant allele frequency (VAF) histograms reveal punches are largely clonal. Variant allele frequencies for
all non-truncal (opaque) and truncal (transparent) mutations observed in tumor punches from Tumor 1 (A.) and Tumor 2
(B.) reveal that punches contain only a single high frequency clone, with the exception of T1L13. Punches are colored by
their edge (maroon) or center (blue) status, according to Li et al. (2021), Table S8. 36
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Figure S10. SDevo analysis excluding heterogenous punch T1L13 also estimates birth rate differences between
center and edge samples. To ensure our results are not driven by an edge-associated sample (T1L13), which potentially
contains multiple subclones, we repeated the analysis of Tumor 1 without this punch. A. Marginal posterior distributions
for edge (maroon) and center (blue) birth rates estimated from the Tumor 1 WGS data excluding T1L13. B. We estimate a
5.09x higher birth rate on the edge compared to center (90% HPD 3.68-6.4x).C. Inferred MCC tumor phylogeny and
reconstructed ancestral spatial states.
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