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Abstract	
	
When	faced	with	navigating	back	somewhere	we	have	been	before	we	might	either	retrace	our	
steps	 or	 seek	 a	 shorter	 path.	 Both	 choices	 have	 costs.	 Here,	we	 ask	whether	 it	 is	 possible	 to	
characterize	formally	the	choice	of	navigational	plans	as	a	bounded	rational	process	that	trades	
off	the	quality	of	the	plan	(e.g.,	its	length)	and	the	cognitive	cost	required	to	find	and	implement	
it.	We	analyze	the	navigation	strategies	of	two	groups	of	people	that	are	firstly	trained	to	follow	
a	"default	policy"	taking	a	route	in	a	virtual	maze	and	then	asked	to	navigate	to	various	known	
goal	destinations,	either	in	the	way	they	want	("Go	To	Goal")	or	by	taking	novel	shortcuts	("Take	
Shortcut").	 We	 address	 these	 wayfinding	 problems	 using	 InfoRL:	 an	 information-theoretic	
approach	that	formalizes	the	cognitive	cost	of	devising	a	navigational	plan,	as	the	informational	
cost	 to	deviate	 from	a	well-learned	route	 (the	"default	policy").	 In	 InfoRL,	optimality	refers	 to	
finding	the	best	trade-off	between	route	length	and	the	amount	of	control	information	required	
to	find	it.	We	report	five	main	findings.	First,	the	navigational	strategies	automatically	identified	
by	 InfoRL	correspond	closely	 to	different	 routes	 (optimal	or	 suboptimal)	 in	 the	virtual	 reality	
map,	which	were	 annotated	by	hand	 in	 previous	 research.	 Second,	 people	 deliberate	more	 in	
places	 where	 the	 value	 of	 investing	 cognitive	 resources	 (i.e.,	 relevant	 goal	 information)	 is	
greater.	Third,	compared	to	the	group	of	people	who	receive	the	"Go	To	Goal"	instruction,	those	
who	 receive	 the	 "Take	Shortcut"	 instruction	 find	 shorter	but	 less	optimal	 solutions,	 reflecting	
the	intrinsic	difficulty	of	finding	optimal	shortcuts.	Fourth,	those	who	receive	the	"Go	To	Goal"	
instruction	modulate	flexibly	their	cognitive	resources,	depending	on	the	benefits	of	finding	the	
shortcut.	 Finally,	 we	 found	 a	 surprising	 amount	 of	 variability	 in	 the	 choice	 of	 navigational	
strategies	and	resource	investment	across	participants.	Taken	together,	these	results	illustrate	
the	benefits	of	using	InfoRL	to	address	navigational	planning	problems	from	a	bounded	rational	
perspective.		
	
Keywords:	spatial	navigation;	wayfinding;	InfoRL;	shortcuts;	planning;	bounded	rationality	
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Introduction	
	
Navigating	a	city	or	other	everyday	environments	can	require	a	myriad	of	decisions.	These	can	
be	 as	 simple	 as	 choosing	 to	 follow	 the	 usual	 route	 we	 have	 taken	 before,	 or	 as	 complex	 as	
devising	 a	 novel	 route	 through	 a	 vast	 array	 of	 possible	 paths	 to	 reach	 a	 novel	 goal,	 i.e.,	
wayfinding.	Recent	 experiments	 are	 increasingly	 shedding	 light	on	 the	variety	of	navigational	
strategies	that	we	use	to	find	our	way	in	real-world	settings	(1–3)	and	virtual	environments	(4–
9),	 as	 well	 as	 their	 neural	 underpinnings	 (10,11).	 However,	 an	 integrative	 computational	
perspective	is	still	missing.	
	
A	 standard	 assumption	 is	 that	 navigational	 planning	 requires	 a	 form	 of	 cognitive	 tree	 search	
over	a	mental	map	(12–14).	Tree	search	implies	that	people	try	out	all	(or	many	of)	the	possible	
alternative	 routes	 and	 finally	 select	 the	 shortest	 one.	 However,	 extensive	 tree	 search	 is	 not	
feasible,	 except	 in	 very	 simple	 situations.	 Therefore,	 it	 has	 been	 proposed	 that	 people	might	
adopt	various	heuristics	to	alleviate	the	burden	of	exhaustive	search	(15).	One	such	heuristic	is	
pruning,	 or	 the	 idea	 that	 during	 the	 mental	 search,	 if	 a	 tree	 node	 is	 encountered	 that	 has	 a	
particularly	low	value,	the	whole	branch	of	the	tree	is	discarded	(16).	Another	heuristic	consists	
in	sampling	only	a	few	routes,	or	multiple	routes	but	only	up	to	a	certain	depth,	similar	to	Monte	
Carlo	sampling	methods	in	statistics	(17,18).	Finally,	it	has	been	proposed	that	people	might	use	
hierarchical	 forms	 of	 planning	 (or	 subgoaling)	 to	 split	 the	 problem	 into	 more	 manageable	
subproblems	(1,10,11,19–21).	
	
An	alternative,	less	considered	possibility	is	that	navigational	planning	does	not	use	tree	search.	
Rather	 than	 searching	 the	 tree	of	 possible	 routes,	 people	might	 start	 from	a	 "default	 plan"	 to	
follow	a	well-known	(or	habitual)	route	and	then	modify	the	plan	when	necessary.	For	example,	
if	a	person	has	to	reach	a	shop	close	to	her	office,	she	can	start	by	considering	the	usual	route	to	
the	 office	 and	 then	 adapt	 it	 (e.g.,	 take	 a	 turn	 before	 reaching	 the	 office)	 to	 actually	 reach	 the	
shop,	rather	than	the	office.	In	this	perspective,	the	"default	plan"	would	act	as	an	anchor	for	the	
planning	problem	and	any	deviation	from	it	would	require	a	(cognitive)	cost.	This	idea	has	been	
formalized	 in	 terms	 of	 Information	 Reinforcement	 Learning	 (InfoRL)	 (22)	 and	 Linear	
Reinforcement	Learning	(23,24),	but	these	theoretical	formulations	have	not	yet	been	applied	to	
human	navigational	planning	studies.		
	
Here,	we	 adopt	 the	 InfoRL	 formulation	 (22),	which	 considers	 planning	 as	 a	bounded	 rational	
process	that	entails	a	cost-benefit	trade-off.	The	trade-off	arises	because	the	planner	can	select	
how	much	 cognitive	 effort	 to	 invest	 to	 deviate	 from	 the	 "default	 plan"	 (where	 following	 the	
default	 plan	 is	 assumed	 to	 have	 zero	 cost)	 to	 improve	 the	 solution	 and	 potentially	 achieve	 a	
greater	reward.	In	this	navigation	setting,	we	consider	the	reward	to	be	proportional	to	(minus)	
the	length	(i.e.,	number	of	steps)	of	the	route;	hence,	the	shortest	route	is	also	the	route	having	
the	highest	reward.	This	formulation	highlights	that	the	benefit	of	investing	a	greater	cognitive	
cost	 is	 that,	by	deviating	 from	the	default	plan,	one	can	potentially	 find	a	shorter	route	 to	 the	
goal.	
	
The	 decision	 to	 be	 made	 is	 therefore	 how	 much	 cognitive	 effort	 to	 invest.	 In	 InfoRL,	 the	
cognitive	effort	of	planning	can	be	called	a	complexity	cost	since	in	information	terms,	it	can	be	
measured	as	the	amount	of	"control	information"	(in	bits)	to	be	processed	to	change	the	default	
plan	(a	prior	in	Bayesian	parlance)	to	the	final	selected	plan	(a	posterior	in	Bayesian	parlance);	
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see	(22,25–28).	In	general,	the	lower	the	cost,	the	closer	the	selected	plan	to	the	"default	plan";	
whereas	 the	 greater	 the	 cost,	 the	 farther	 the	 selected	 plan	 from	 the	 default	 plan	 -	 and	 the	
greater	the	possibility	to	find	a	higher-reward	(i.e.,	shorter)	route.		
	
The	bounded	rational	InfoRL	framework	emphasizes	that	the	goal	of	the	planner	is	not,	or	not	
always,	 finding	 the	 shortest	 route	 (i.e.,	 maximizing	 reward),	 but	 rather	 optimizing	 the	 cost-
benefit	 trade-off	 between	 finding	 the	 shortest	 route	 (i.e.,	 maximizing	 reward)	 and	 avoiding	
cognitive	 effort	 (i.e.,	 minimizing	 control	 information).	 This	 trade-off	 could	 be	 different	 for	
different	 people.	 People	 might	 have	 different	 cognitive	 resource	 limits,	 which	 correspond	 to	
different	 thresholds	 on	 information	 costs	 in	 InfoRL.	 Furthermore,	 some	 people	 may	 prefer	
paying	a	greater	cost	to	find	a	shorter	path,	whereas	others	might	prefer	paying	a	smaller	cost	
and	deviating	less	from	the	default	plan.	Therefore,	there	may	be	no	single	"optimal"	solution	to	
the	cost-benefit	 trade-off,	 it	depends	on	 the	ability	of	 the	person.	However,	while	 the	solution	
for	a	given	individual	may	vary,	InfoRL	permits	calculating	the	maximum	level	of	reward	that	is	
achievable	 for	 each	 level	 of	 effort	 investment.	 Specifically,	 this	method	 considers	what	 is	 the	
maximum	 reward	 that	 is	 achievable	 by	 an	 optimal	 agent	 that	 uses	 any	 given	 level	 of	 control	
information.	 The	 solution	 is	 not	 just	 one	 single	 optimal	 solution,	 but	 a	 frontier	 of	 optimal	
solutions	(i.e.,	a	trade-off	curve,	see	Figure	1).		

	

	
Figure	 1.	 Theoretical	 trade-off	 curve	 for	 a	 spatial	 navigation	 problem.	 (A)	 An	 example	
navigation	problem,	where	an	agent	starts	at	the	green	dot	and	needs	to	navigate	to	the	red	goal	
location,	and	the	challenge	is	persisting	along	the	path.	(B)	The	blue	curve	represents	a	"	frontier"	
of	 optimal	 solutions	achieved	by	 optimal	RL	agents	 (red	dots).	 Each	of	 the	 optimal	RL	agents	 is	
characterized	by	a	different	beta	parameter,	which	regulates	the	amount	of	control	cost	that	the	
RL	 agent	 invests	 (x	 axis)	 to	 obtain	 different	 levels	 of	 reward	 (y	 axis).	 Note	 that	 reward	 here	 is	
proportional	to	(minus)	the	length	(i.e.,	number	of	steps)	of	their	route;	hence,	the	shortest	route	is	
also	 the	 route	 having	 the	 highest	 reward.	 The	 bottom-left	 part	 of	 the	 blue	 curve	 shows	 the	
maximum	 level	 of	 reward	 achievable	 by	 using	 the	 default	 policy	 (and	 hence	 zero	 control	
information).	Please	note	that	in	this	example	(but	not	in	our	main	analysis,	see	below),	the	default	
policy	is	a	random	policy	-	i.e.,	there	is	no	cost	associated	with	acting	randomly.	The	top-right	part	
of	 the	blue	 curve	 shows	 the	maximum	 level	 of	 reward	achievable	with	 the	 shortest	 route,	which	
deviates	 the	most	 from	the	default	policy	and	hence	requires	 the	most	control	 information.	Note	
that	the	curve	shown	in	the	figure	is	only	illustrative	and	inspired	by	(29);	see	below	Figure	4	for	
the	InfoRL	curve	characterizing	our	navigation	problem.		
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The	example	 shown	 in	Figure	1	 illustrates	a	 simple	 case	of	 spatial	navigation	and	 its	 analysis	
using	 InfoRL.	 Please	 note	 that	 this	 is	 a	 very	 simple	 example	 of	 wayfinding,	 which	 does	 not	
involve	 any	 choice	 between	 different	 paths,	 but	 rather	 just	 determining	 a	 path	 between	 a	
starting	 location	 and	 a	 goal	 location.	 Yet,	 in	 InfoRL,	 planning	 a	 path	 (or	 policy	 in	 RL	 terms)	
requires	some	information	cost.	InfoRL	permits	analyzing	navigational	planning	strategies	that	
vary	 along	 the	 two	 axes	 of	 reward	 (e.g.,	 length	 of	 the	 solution	 path)	 and	 control	 information	
(e.g.,	bits)	and	that	achieve	different	levels	of	optimality.	In	the	Figure,	the	blue	line	represents	
the	 "frontier"	 of	 optimal	 solutions:	 a	 theoretical	 trade-off	 curve	 calculated	 by	 considering	
"simulated	 participants"	 (red	 dots)	 that	 are	 actually	 optimal	 RL	 agents	 that	 use	 different	
amounts	of	control	information	(controlled	by	a	beta	parameter).	Each	"simulated	participant"	
is	 characterized	 by	 three	 parameters.	 The	 first	 parameter	 (which	 is	 directly	 observed,	 not	
inferred	by	InfoRL)	is	the	amount	of	reward	obtained	in	the	task,	such	as	the	length	of	its	path	
during	a	navigational	problem	(see	the	y	axis).	The	second	parameter	is	the	amount	of	control	
information	used	to	solve	the	task	(see	the	x	axis).	This	second	parameter	can	be	inferred	using	
InfoRL,	by	considering	how	much	the	participant's	route	differs	from	the	default	plan.	The	third	
parameter	 is	the	optimality	of	the	participant's	solution,	given	the	level	of	control	 information	
used.	This	third	parameter	corresponds	to	the	distance	of	the	participant's	location	in	the	plot	
from	the	optimal	frontier	(i.e.,	the	distance	from	the	red	dot	and	the	blue	line).	The	"simulated	
participants"	shown	in	Figure	1	are	all	optimal	agents	and	therefore	they	lie	exactly	on	the	blue	
curve.	 However,	 real	 participants	 could	 lie	 anywhere	 below	 (not	 above)	 the	 blue	 line.	 A	
participant	who	reaches	the	frontier	and	achieves	the	maximum	possible	reward,	at	any	level	of	
control	information,	makes	an	optimal	use	of	its	resources.	Rather,	a	participant	who	achieves	a	
lower	level	of	reward	than	allowed	from	its	investment	is	planning	suboptimally.	Therefore,	not	
only	 can	 InfoRL	 help	 quantify	 the	 amount	 of	 control	 information	 that	 people	 invest	 when	
planning	 but	 also	 whether	 they	 use	 this	 investment	 optimally	 to	 obtain	 the	 maximum	
information	gain.	
	
In	 this	article,	we	ask	whether	 the	 InfoRL	 framework	(22)	can	be	used	to	characterize	human	
navigational	planning	in	a	virtual	reality	setting.	One	precondition	to	use	InfoRL	to	study	human	
navigational	planning	is	being	able	to	specify	a	default	policy,	which	corresponds	to	the	policy	
that	 people	 would	 consider	 by	 default,	 without	 investing	 any	 cognitive	 effort.	 In	 theoretical	
studies,	 the	default	policy	 is	often	assumed	to	be	a	random	policy;	but	 this	 is	unreasonable	 in	
real-life	navigational	planning,	where	people	 (1)	and	mice	 (30)	 show	systematic,	non-random	
regularities.	 In	cases	where	the	environment	is	 familiar	 it	 is	more	 likely	that	people	would,	by	
default,	 follow	 a	 well-practiced,	 habitual	 route,	 which	 can	 be	 reactivated	 without	 using	
extensive	cognitive	resources	(27,31,32).	Following	this	line	of	reasoning,	we	applied	InfoRL	to	
a	virtual	navigation	 task,	 in	which	 the	concept	of	a	default	policy	could	be	mapped	 to	a	 route	
that	was	extensively	practiced	prior	to	a	wayfinding	test	(33,34).		
	
In	the	task	conducted	by	Boone	et	al.	(33),	participants	were	firstly	trained	to	follow	a	"default	
route"	 several	 times	 through	 a	maze-like	 environment	 (Figure	 2).	 During	 this	 training	 phase,	
they	 encounter	multiple	 landmarks	 along	 the	way.	Afterwards,	 participants	were	 allocated	 to	
one	 of	 two	 groups	 and	 placed	 in	 a	 series	 of	 landmark	 locations	 and	 asked	 to	 reach	 known	
landmark	 locations.	 For	 one	 group	 they	 asked	 to	 go	 to	 a	 location	 in	 whichever	 way	 they	
preferred	(first	group,	"go	to	goal"	 instruction).	The	second	group	were	instructed	to	travel	to	
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the	 goal	 by	 taking	 a	 shortcut	 (second	 group,	 "take	 shortcut"	 instruction).	 Crucially,	 the	
participants	 could	use	a	 set	of	diverse	 strategies,	 as	 a	 function	of	 their	 individual	preferences	
and/or	task	instructions:	they	could	reach	the	landmark	by	following	the	default	route	(which	
passes	through	all	the	landmarks,	but	does	not	follow	the	shortest	path)	or	invest	various	levels	
of	cognitive	effort	to	plan	alternative	and	potentially	shorter	routes.	This	task	therefore	allows	
us	 to	 test	 the	 extent	 to	 which	 InfoRL	 can	 identify	 and	 formalize	 the	 different	 strategies	 that	
people	 use	 during	 navigational	 planning	 and	 their	 associated	 levels	 of	 cognitive	 effort	 and	
optimality.	 Furthermore,	 this	 experiment	 also	 allows	 testing	 differences	 in	 strategy	 selection	
and	 optimality	 between	 groups	 of	 participants	 that	 received	 different	 ("go	 to	 goal"	 or	 "take	
shortcut")	 instructions.	 Finally,	 with	 the	 maze	 layout	 we	 can	 test	 whether	 participants	
deliberate	more	 in	places	where	 it	 is	necessary	 to	 invest	more	 information	 to	make	 informed	
choices	(19,35).	
	
To	preview	our	results,	we	report	five	main	findings	that	illustrate	the	benefits	of	using	InfoRL	
to	 study	 navigational	 planning	 and	 wayfinding.	 First,	 InfoRL	 permits	 characterizing	 formally	
different	navigational	strategies	that	correspond	conveniently	to	different	routes	in	the	virtual	
maze.	The	strategies	are	also	linked	to	path	optimality	(the	ability	to	get	the	maximum	reward	
from	 the	 amount	 of	 control	 information	 used)	 and	 suboptimality.	 Second,	 people	 deliberate	
more	in	places	where	the	value	of	investing	cognitive	resources	(i.e.,	relevant	goal	information)	
is	greater.	Third,	while	the	group	who	receives	the	instruction	to	"Take	Shortcut"	seems	naively	
more	effective	(purely	considering	path	length),	our	analysis	shows	that	not	only	do	they	invest	
more	cognitive	resources,	but	they	also	select	optimal	routes	less	often,	compared	to	the	group	
who	 receives	 the	 instruction	 to	 “Go	 to	 Goal”.	 This	 reflects	 the	 intrinsic	 difficulty	 of	 finding	
optimal	 shortcuts.	 Splitting	 participants	 by	 gender	 reveals	 that	 overall	 male	 participants	
invested	more	 control	 information,	 but	 that	 both	 invested	 similar	 levels	 of	 increased	 control	
information	in	the	"Take	Shortcut"	than	the	"Go	To	Goal"	condition.	Fourth,	those	who	receive	
the	"Go	To	Goal"	 instruction	modulate	 flexibly	 their	cognitive	resource	 investment,	depending	
on	the	benefits	of	finding	the	shortcut.	Finally,	we	found	that	for	most	participants	the	amount	
of	Control	 Information	 and	Distance	 from	 the	optimal	 curve	was	highly	 variable	 across	 trials.	
This	implies	that	people	do	not	stick	to	one	strategy,	but	rather	vary	their	strategy	across	trials.		
	
Results	
	
Experimental	setup	
	
The	experimental	setup	is	a	first-person	navigation	game	in	a	3D	virtual	environment	displayed	
on	 a	 flat	 screen,	 for	 which	 the	 data	 are	 freely	 available	 online	 (https://osf.io/ykxts/),	 see	
(33,36)	 and	 (34).	 The	 maze	 is	 relatively	 small,	 with	 12	 landmarks	 and	 6	 intersections	 (see	
Figure	2A	for	a	map	of	the	environment	that	was	never	shown	to	participants).	The	maze	had	
gray	walls	 and	 floor	with	 landmarks	 standing	 out	 (see	 Figure	 2B	 for	 an	 example	 first-person	
screenshot	of	what	participants	viewed).		
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Figure	2:	Experimental	setup.	(A)	Top	view	of	the	map	used	in	the	experiment	(not	visible	to	the	
participants).	The	gray	arrows	show	the	stereotyped	path	used	during	the	training	phase	and	the	
black	diamonds	represent	landmarks.	(B)	An	example	screenshot	showing	the	participant’s	view	of	
the	maze	during	 the	 training	phase.	The	red	arrow	 indicates	 the	 training	path.	Figures	redrawn	
from	(33).		
	
	
The	 experiment	 of	 Boone	 et	 al.	 (33)	 is	 divided	 into	 two	 phases.	 In	 the	 first	 (training)	 phase,	
participants	are	 forced	 to	 follow	 the	stereotyped	path	 indicated	 to	 them	by	red	arrows	 in	 the	
environment	(Figure	2B),	for	five	times.	The	route	taken	is	shown	in	a	gray	dotted	line	in	Figure	
2A.	The	training	route	passes	12	distinct	nameable	landmarks	(a	bicycle,	a	red	stepladder,	a	TV,	
etc.,	see	diamonds	in	Figure	2A),	The	portion	of	the	environment	marked	with	arrows	is	visible	
but	not	accessible	during	training.			
	
In	the	second	(experimental)	phase,	participants	start	 from	one	of	the	landmark	locations	and	
are	instructed	to	navigate	to	a	goal	landmark.	This	second	phase	is	executed	in	2	conditions,	in	2	
groups	of	participants:	one	group	is	instructed	to	reach	the	goal	landmark	(“Go	To	Goal”	group)	
whereas	the	other	group	is	 instructed	to	reach	the	goal	 landmark	location	by	using	a	shortcut	
(“Take	Shortcut”	group).	The	 two	groups	of	participants	navigate	 in	 the	map	shown	 in	Figure	
2A.	Participants	execute	40	 trials,	 each	 trial	with	a	different	 starting	position	 -	 goal	 landmark	
pair	(please	note	that	the	original	task	was	divided	into	2	sessions,	but	here	we	combine	them	
together	 for	 simplicity,	 as	 no	 differences	 in	 navigation	 efficiency	were	 reported	 between	 the	
sessions).	 Each	 trial	 is	 recorded	 as	 a	 sequence	 of	 x	 and	 y	 coordinates,	 an	 angular	 coordinate	
representing	 the	 participant’s	 orientation	 in	 the	 map,	 and	 the	 respective	 timestamp.	 Trials	
which	lasted	over	40	seconds	were	not	included	in	the	dataset	of	(33).	
	
For	the	data	analyses,	we	discretized	the	map	shown	in	Figure	2	 into	a	graph	composed	of	66	
connected	 nodes	 and	which	 allows	 only	 4	 navigational	 actions	 (north,	 south,	 east,	west);	 see	
Figure	 3A.	 Figure	 3B	 shows	 the	 default	 policy	 𝜌(𝑎|𝑠),	 which	 includes	 the	 (deterministic)	
navigational	 actions	 performed	by	 the	 participants	 during	 the	 training	 phase	 in	 the	 subset	 of	
nodes	 that	 were	 actually	 traversed	 (see	 the	 arrows	 in	 Figure	 3B),	 and	 assigns	 a	 uniform	
probability	 to	 all	 the	 actions	 in	 the	 subset	 of	 nodes	 that	were	 not	 actually	 traversed	 (see	 the	
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yellow	dots	in	Figure	3B).	Please	note	that	as	in	the	experiment	setup,	a	path	under	the	default	
policy	will	visit	all	the	goal	landmarks	in	a	finite	number	of	steps.		

	

										
Figure	3:	Data	preprocessing.	 (A)	We	 transformed	 the	 original	map	 shown	 in	 Figure	 2	 into	 a	
graph	of	66	connected	nodes	(which	we	coloured	in	arbitrary	ways	for	ease	of	identification).	Note	
that	for	each	node,	up	to	four	(north,	south,	east,	and	west)	actions	are	available.	(B)	Maze	graph	
with	arrows	representing	the	default	policy	(the	policy	is	uniformly	distributed	in	the	node	without	
an	arrow).	See	the	main	text	for	explanation.	
	

The	Reward/Control	Information	trade-off	characterizes	navigational	strategies	and	path	
(sub)optimality	

	
We	used	the	methods	of	(22)	to	characterize	the	participants'	paths	formally,	by	calculating	the	
"control	 cost"	 that	 each	 participant	 invests	 (where	 a	 low	 /	 high	 control	 cost	means	 that	 the	
participant's	 path	 is	 closer	 /	 farther	 from	 the	 "default	 policy")	 and	 their	 "reward"	 (higher	 /	
lower	reward	indicates	shorter	/	longer	paths,	with	the	shortest	path	being	the	highest	reward	
path).		
	
The	curve	shown	in	Figure	4A,	left	illustrates	the	optimal	Reward	/	Control	Information	trade-
off	 for	one	example	 task,	whose	start	and	goal	 locations	are	marked	with	 red	and	green	dots,	
respectively,	 in	 the	 small	maps	 of	 Figure	 4B-G.	 The	 solid	 black	 curve	 of	 Figure	 4A	 shows	 the	
solutions	of	 the	optimal	 InfoRL	agents	that	use	different	amounts	of	control	 information	-	and	
hence	represents	the	theoretical	limit	on	the	amount	of	reward	that	participants	can	achieve,	for	
each	 amount	 of	 control	 information.	 Each	 colored	 dot	 in	 Figure	 4A	 corresponds	 to	 one	
participant	and	shows	his	or	her	placement	in	the	Reward	/	Control	Information	plot.	
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Figure	 4:	 InfoRL	 analysis	 of	 navigational	 planning	 in	 virtual	 reality,	 applied	 to	 data	 from	
(33).	 (A)	Reward-Control	 Information	 trade-off,	 for	 a	 single	 task.	 The	 solid	 black	 line	 shows	 the	
optimal	 trade-off	 function;	 the	 dashed	 gray	 line	 extends	 the	 optimal	 curve	 to	 separate	 the	
achievable	area	(lower	right)	from	the	unachievable	area	(top-left).	Each	colored	dot	corresponds	
to	one	participant	in	the	task	(we	added	random	jitters	to	better	show	point	clusters).	Dot	colors	
are	matched	to	the	paths	shown	in	B-G.	(B-G)	Each	figure	shows	a	single	participant’s	path	in	the	
map,	randomly	extracted	to	represent	the	cluster.	See	the	main	text	for	explanation.	
	
	
Two	 main	 findings	 are	 worth	 considering.	 First,	 several	 dots	 lie	 on	 the	 theoretical	 curve	
(orange,	green,	and	red)	or	very	close	to	it	(purple	and	blue).	These	correspond	to	participants	
that	 behave	 optimally	 in	 the	 sense	 that	 they	 get	 the	 maximum	 reward	 from	 the	 amount	 of	
control	 information	 that	 they	 use.	 Rather,	 other	 dots	 are	 far	 from	 the	 theoretical	 limit	 and	
correspond	to	suboptimal	participants	that	do	not	get	the	maximum	reward	from	the	resources	
they	use.		
	
Second,	 the	 dots	 having	 different	 colors	 in	 Figure	 4A	 correspond	 to	 participants	 who	 select	
qualitatively	 different	 paths,	 see	 Figure	 4B-G.	 This	 illustrates	 the	 fact	 that	 InfoRL	 permits	
identifying	"clusters"	of	paths	in	the	maze,	optimal	or	suboptimal,	with	paths	that	are	closer	in	
the	 Reward-Control	 Information	 plot	 corresponding	 to	 similar	 paths	 on	 the	maze.	 The	 paths	
shown	in	B-D	correspond	to	three	families	of	solutions	(orange,	green	and	red)	that	 lie	on	the	
optimal	curve.	Specifically,	the	path	shown	in	B	(orange)	is	the	optimal	shortest	trajectory;	the	
path	shown	in	C	(green)	is	the	optimal	trajectory	which	requires	the	least	Control	Information;	
and	the	path	shown	in	D	(red)	corresponds	to	a	participant	who	follows	the	default	policy	and	
hence	 pays	 minimal	 control	 cost.	 The	 path	 shown	 in	 E	 (purple)	 is	 an	 off-curve,	 shorter	 but	
slightly	more	 complex	 variant	 of	 the	 D	 path.	 The	 path	 shown	 in	 F	 (blue)	 follows	 the	 default	
policy,	but	in	the	reverse	direction	(this	is	why	it	has	a	high	control	cost).	The	path	shown	in	G	
(brown)	 starts	 moving	 in	 one	 direction	 and	 then	 backtracks,	 consequently	 having	 both	 low	
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Reward	 and	 high	 Control	 Information.	 This	 latter	 (G)	 path	 can	 be	 considered	 a	 longer	 (and	
hence	suboptimal)	version	of	the	path	shown	in	F.		This	can	also	be	appreciated	by	noticing	that	
in	 Figure	 4A,	 the	 brown	 dots	 (one	 of	 which	 corresponds	 to	 the	 suboptimal	 solution	 G)	 lie	
diagonally	but	are	more	distant	from	the	Reward	/	Control	Information	curve	compared	to	the	
blue	 dots	 (one	 of	which	 corresponds	 to	 path	 F).	 Similarly,	many	 gray	 dots	 that	 lie	 below	 the	
Reward	 /	 Control	 Information	 curve	 can	 be	 considered	 as	 suboptimal	 (e.g.,	 slightly	 longer)	
versions	of	the	"optimal"	paths	that	lie	on	the	curve;	please	see	the	Supplementary	Video	V1	to	
better	appreciate	the	different	families	of	solutions.	
	
In	sum,	InfoRL	permits	characterizing	formally	both	the	optimality	of	the	participants'	solutions	
(as	compared	to	optimal	InfoRL	agents)	and	the	different	families	of	paths	/	solutions	that	they	
selected	for	the	navigational	problem.	Please	note	that	Supp.	Figure	S1	shows	the	same	plots	for	
20	pairs	of	start-goal	locations,	indicating	the	generality	of	the	finding.	
	
Participants	 deliberate	 more	 at	 decision	 points	 where	 information	 demands	 for	 action	
selection	are	greater	
	
InfoRL	 permits	 calculating	 the	 amount	 of	 Control	 Information	 that	 people	 invest	 to	 find	 a	
navigational	 plan	 and	 the	 benefits	 of	 such	 effort	 investment.	 However,	 InfoRL	 considers	 the	
information	cost	of	 selecting	an	entire	path,	not	 the	 information	cost	of	 single	decision	points	
during	navigation.		
	
During	 navigation,	 we	 cross	 various	 decision	 points	 that	 require	 investing	 more	 or	 less	
cognitive	 resources	 to	 select	 appropriate	 actions	 (or	 replan).	 The	 notion	 of	 Relevant	 Goal	
Information	(RGI)	(37)	formalizes	the	information	cost	required	to	keep	in	mind	(or	ignore)	the	
goal	at	any	point	during	navigation.	The	RGI	 is	 important	to	the	extent	that	selecting	action	in	
some	places	 (e.g.,	 at	 difficult	 decision	 points)	 requires	 processing	 information	 about	 the	 final	
goal,	 whereas	 selecting	 action	 in	 other	 places	 (e.g.,	 along	 borders)	 does	 not	 -	 because	 in	 the	
latter	places,	the	action	to	be	selected	would	be	the	same,	irrespective	of	the	goal.	The	notion	of	
RGI	 can	 be	 therefore	 considered	 an	 instantaneous	 measure	 of	 information	 cost	 during	
navigation	 -	 or	 an	 analogous	 of	 the	 notion	 of	 Control	 Information	 in	 InfoRL,	 but	 for	 single	
decision	points.		
	
We	 used	 the	methods	 of	 (37,38)	 to	 calculate	 the	 RGI	 at	 each	 location	 in	 the	map	 and	 asked	
whether	 participants	 spend	 more	 time	 deliberating	 and	 invest	 more	 cognitive	 resources	 in	
places	of	 the	maze	where	RGI	 is	greater	 (see	Figure	5A).	As	an	 index	of	deliberation,	we	used	
Vicarious	Trial	and	Error	(VTE)	(39–41):	a	behavioral	measure	of	how	frequently	a	participant	
stops	to	look	around	(i.e.,	displays	both	low	speed	and	high	angular	velocity)	at	each	place	of	the	
maze.	See	the	Methods	section	for	details.		
	
Figure	5B	shows	that	RGI	and	VTE	rates	are	highly	correlated	(Pearson	⍴	=	0.61,	p	<	0.01).	This	
suggests	that	participants	spend	more	time	deliberating	in	places	where	action	selection	poses	
greater	 information	 demands.	 This	 result	 also	 indicates	 that	 planning	 and	 deliberation	 are	
continuous	 processes	 that	 occur	 during	 a	 journey	 (42,43),	 rather	 than	 processes	 that	 are	
completed	before	starting	the	navigation.	Converging	evidence	for	this	latter	point	comes	from	
the	 fact	 that	 we	 did	 not	 find	 any	 correlation	 between	 initiation	 time	 (i.e.,	 the	 time	 before	
participants	 start	 moving)	 and	 planning	 difficulty	 or	 information	 cost.	 Rather	 than	 planning	

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 23, 2022. ; https://doi.org/10.1101/2022.08.06.503020doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.06.503020
http://creativecommons.org/licenses/by-nc-nd/4.0/


11	

extensively	before	starting	 the	navigation,	participants	 started	moving	with	 little	delay	 (mean	
1.95 𝑠,	 𝑆𝐸 = 0.02)	 and	 plausibly	 planned	 (and	 replanned)	 all	 along	 the	 way,	 consistent	 with	
real-world	reports	of	navigating		(44).	
	
	

	
Figure	 5:	 Deliberation	 as	 a	 function	 of	 information	 required	 for	 action	 selection.	 (A)	 Amount	 of	
Relevant	Goal	 Information	 (blue	 represents	 low	values,	 yellow	high	values)	 in	different	places	of	
the	map.	 (B)	Correlation	between	Relevant	Goal	 Information	and	 rate	Vicarious	Trial	and	Error	
behavior;	results	are	averaged	across	all	 trials	 for	each	state.	Please	note	that	we	removed	 from	
the	 analysis	 four	 dead	 end	 states	where	 the	 frequency	 of	 low-speed	 events	was	 excessively	 high,	
regardless	of	decision	processes.	See	the	main	text	for	explanation.	

	
	
Our	 control	 analyses	 (reported	 in	 the	Supplementary	Materials)	 show	 that	VTE	rates	are	also	
correlated	with	 a	 graph-theoretical	 index	widely	 explored	 in	navigation	 studies:	 betweenness	
centrality	(Pearson	⍴	=	0.64),	which	is	a	measure	of	how	connected	is	a	node	to	the	rest	of	the	
graph,	and	 is	defined	 for	a	node	 in	 the	graph	as	 the	 fraction	of	 shortest	paths	connecting	 two	
other	 nodes	 that	 pass	 through	 it.	 The	 correlations	 between	 RGI	 and	 VTE	 and	 betweenness	
centrality	 and	 VTE	 are	 not	 significantly	 different	 (p	 >	 0.05).	 Despite	 they	 use	 different	
formalisms,	these	two	indexes	capture	largely	the	same	thing	–	namely,	the	amount	of	influence	
a	node	has	over	the	flow	of	 information	in	a	graph,	or	over	navigational	paths.	While	it	makes	
intuitive	sense	that	a	junction	which	is	a	strong	conduit	between	locations	(high	betweenness)	
might	 require	more	deliberation,	 our	 analysis	of	RGI	provides	 a	 further	potential	mechanistic	
explanation.	We	reveal	that	locations	with	a	high	information	cost	necessary	to	invest	to	reach	
the	 goal	 efficiently	 occur	 at	 such	 nodes	 and	 are	 associated	 with	 high	 levels	 of	 deliberation	
(35,45).	 VTE	 rates	 are	 correlated	 with	 another	 graph-theoretical	 index,	 closeness	 centrality	
(Pearson	⍴	=	0.44),	which	is	defined	for	each	node	as	the	sum	of	the	inverse	of	the	length	of	the	
shortest	path	to	all	 the	other	nodes.	However,	 this	correlation	 is	significantly	weaker	than	the	
correlation	between	RGI	and	VTE	(p	<	0.05).	Unsurprisingly,	VTE	was	higher	at	 junctions	than	
straight	sections	or	corners	(node	degree	centrality	2	vs.	3,	Supp.	Figure	S3).	We	also	report	the	
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novel	finding	that	female	participants	were	more	likely	than	males	to	show	VTE	in	task	(Supp.	
Figure	S4A).	Task	instruction	had	no	impact	on	VTE	(Supp.	Figure	S4B).	
	
Finally,	we	compared	the	VTE	values	for	participant	who	took	the	shortest	path	and	those	who	
took	 longer	 paths	 and	 found	 that	with	 both	 the	Go	To	Goal	 (KS=0.18,	 p<0.001)	 and	 the	Take	
Shortcut	 (KS=0.19,	 p<0.001)	 instructions,	 the	 participants	who	 chose	 the	 shortest	 path	 had	 a	
statistically	significant	lower	value	of	VTE.	This	result	suggests	that	participants	who	chose	the	
shortest	 path	 could	 have	 planned	 it	 before	 starting	 moving;	 hence,	 they	 did	 not	 need	 to	
deliberate	and	engage	in	VTE	behavior	at	decision	points.		
	
Participants	 instructed	 to	 Take	 Shortcut	 select	 shorter	 routes	 but	 use	 more	 Control	
Information	and	are	less	optimal		
	
The	 original	 study	 of	 Boone	 et	 al.	 (33)	 reported	 that	 participants	 who	 received	 the	 “Take	
Shortcut”	instruction	tended	to	select	shortcuts	more	often	than	those	who	received	the	“Go	To	
Goal”	 instruction	 and	 hence	 had	 a	 better	 performance,	 if	 this	 is	 measured	 only	 in	 terms	 of	
reward	 (solution	 length,	 see	Figure	6A).	 Furthermore,	 the	 study	of	 (33)	 investigated	whether	
gender	 differences	were	 present	 in	 the	 task	 and	whether	 or	 not	 they	 are	 instruction-specific.	
The	results	of	the	study	indicate	a	gender	difference	in	strategy	selection:	both	men	and	women	
taking	more	 shortcuts	when	 instructed	 to	 do	 so,	 but	men	were	more	 likely	 to	 take	 shortcuts	
than	 females,	 under	 both	 kinds	 of	 instructions.	 However,	 it	 was	 not	 previously	 explored	
whether	the	increase	of	reward	comes	at	the	expense	of	an	increase	of	Control	Information	and	
an	overall	decrease	of	optimality	 in	the	InfoRL	sense	(i.e.,	distance	from	the	optimal	Reward	/	
Control	Information	curve).	
	
Here,	we	asked	whether	the	instructions	received	by	the	two	participant	groups	(“Go	To	Goal”	
vs.	 “Take	 Shortcut”)	 might	 have	 determined	 a	 different	 use	 of	 Control	 Information.	 We	
additionally	looked	at	differences	in	Control	Information	between	male	and	female	participants,	
to	 assess	whether	 this	 InfoRL	measure	 captures	 the	 same	 gender	 differences	 reported	 in	 the	
original	 study	 (33).	 To	 investigate	 the	 main	 effect	 of	 Instruction	 (“Go	 To	 Goal”	 vs.	 “Take	
Shortcut”)	 on	 the	 amount	of	Control	 Information	used	by	 the	participants	 and	 the	 interaction	
between	Instruction	and	Gender	(Male	vs.	Female),	we	performed	a	Mixed-Effect	ANOVA	with	
subjects	 as	 random	 effects.	 Note	 that	 in	 order	 to	 compare	 trials	 with	 different	 start-goal	
distance,	in	which	participants	(had	to)	take	longer	or	shorter	routes	to	the	goal,	here	and	later	
in	 the	 manuscript	 we	 divide	 Control	 Information	 by	 Path	 Length,	 or	 the	 length	 of	 the	 path	
selected	by	the	participant	from	start	to	goal.	
	
We	 found	 a	 main	 effect	 of	 Instruction,	 which	 implies	 that	 participants	 who	 received	 the	
instruction	 to	 Take	 Shortcut	 used	 more	 control	 information	 per	 step	 than	 participants	 who	
received	the	instruction	to	Go	To	Goal	(TS	-	GTG	=	0.52,	t(77.48)=2.431,	p=0.017).	We	also	found	
a	main	effect	of	Gender,	which	implies	that	overall,	male	individuals	show	an	increased	Control	
Information	per	step	compared	to	female	participants	(M	-	F	=	0.44,	t(86.46)=2.097,	p=0.038).	
Furthermore,	 we	 considered	 an	 additive	model	 in	 which	 both	main	 effects	 are	 included	 and	
compared	it	with	an	interaction	model	that	considers	the	interaction	Instruction	x	Gender.	The	
interaction	model	did	not	 result	 in	 a	 significant	 reduction	of	 the	deviance	with	 respect	 to	 the	
additive	 one	 (χ!(1)=0.8317,	 p=0.361).	 Results	 in	 accordance	with	 the	 additive	model	 showed	
that	overall,	male	 individuals	use	greater	control	 information	and	 that	 the	 increase	 in	Control	
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Information	in	the	Take	Shortcut	condition	is	the	same	for	both	male	and	female	gender	groups	
(Figure	6B).		
	
This	pattern	of	our	results	provides	a	more	subtle	separation	in	the	data	not	observed	in	(33).	
The	 authors	 reported	 that	male	 participants	 tended	 to	 select	 shorter	 routes	more	 often	 than	
female	 participants,	 which	 is	 in	 keeping	 with	 our	 finding	 that	 male	 participants	 use	 overall	
greater	 control	 information.	 However,	 the	 authors	 only	 reported	 a	 significant	 difference	
between	the	path	length	of	the	solutions	selected	by	female	(but	not	male)	participants	between	
Go	 To	 Goal	 and	 Take	 Shortcut	 instructions.	 Our	more	 refined	 analysis,	 which	 is	 based	 on	 an	
information-theoretic	quantity	(Control	Information)	shows	instead	that	both	male	and	female	
participants	 are	 sensitive	 to	 task	 instructions	 and	 modulate	 their	 control	 information	
investment	accordingly.	Our	analysis	therefore	highlights	a	novel	result	not	evident	from	purely	
looking	at	path	length.			

	

	
Figure	 6:	 Group	 and	 gender	 differences	 in	 the	 amount	 of	 Control	 Information	 (divided	 by	 the	
number	 of	 steps	 of	 the	 solution)	 used	 in	 the	 task.	 (A)	Difference	 in	 path	 length	 between	 “Go	 To	
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Goal”	or	“Take	Shortcut”	instructions;	black	dots	represent	the	means	for	the	two	conditions	with	
respective	standard	errors	as	error	bars,	blue	and	orange	swarm	plot	show	the	subject	individual	
means.	 (B)	 Comparison	 of	 Control	 Information	 used	 by	 the	 two	 groups	 of	 participants	 who	
received	“Go	To	Goal”	or	“Take	Shortcut”	instructions,	split	by	gender	(male	or	female);	similarly	to	
Figure	6A,	green	(male)	and	purple	(female)	dots	represent	the	means	for	the	two	conditions	with	
respective	standard	errors	as	error	bars,	blue	and	orange	swarm	plot	show	the	subject	individual	
means.	 (C)	 Distribution	 of	 the	 strategies	 used	 by	 the	 “Go	 To	 Goal”	 and	 “Take	 Shortcut”	 groups.	
Green:	 optimal	 strategy.	 Blue	 and	 orange:	 suboptimal	 strategies	with	 backtracking	and	without	
backtracking,	 respectively.	 Please	note	 that	here	 the	optimal	 strategies	are	 those	 that	 lie	 on	 the	
optimal	 Reward	 /	 Control	 Information	 curve,	 not	 (necessarily)	 the	 shorter	 paths.	 (D)	 Amount	
Control	Information	invested	as	a	function	of	the	reward	difference	between	the	shortest	route	and	
the	default	policy.	Each	point	represents	the	average	Control	Information	invested	by	participants	
in	the	trials	having	a	given	reward	difference.	Error	bars	 indicate	standard	errors.	The	two	lines	
show	the	least-square	fits	for	the	two	instructions:	Go	To	Goal	(magenta)	and	Take	Shortcut	(light	
blue).	See	the	main	text	for	explanation.	
	
	
Finally,	we	subdivided	the	strategies	of	the	participants	in	the	“Go	To	Goal”	and	“Take	Shortcut”	
groups	 into	 Optimal	 strategies	 that	 lie	 on	 the	 optimal	 Reward	 /	 Control	 Information	 curve	
(green)	and	suboptimal	 strategies	 that	 lie	under	 the	optimal	 curve;	 see	Figure	6C.	We	 further	
subdivided	 the	 suboptimal	 strategies	 into	 those	 that	 include	 some	 backtracking	 (i.e.,	 the	
participant	passes	twice	on	at	least	one	node,	“Suboptimal	with	Backtracking”,	blue)	or	does	not	
include	backtracking	 (“Suboptimal	without	Backtracking”,	 orange).	We	 found	 that	participants	
who	 received	 the	 instruction	 to	 “Take	 Shortcut”	 selected	 less	 often	 the	 solutions	 that	 are	
optimal	in	terms	of	InfoRL	compared	to	the	participants	who	received	the	instruction	to	“Go	To	
Goal”	 (log	 odds	 ratio	 =	 -0.3638,	 z=-4.259,	 p	 <	 0.001).	 Notably	 this	 does	 not	 imply	 that	 the	
participants	who	received	 the	 instruction	 to	 “Take	Shortcut”	 selected	 longer	paths;	 indeed,	as	
reported	already	in	(33),	the	opposite	is	the	case	(Figure	6A).	Rather,	it	implies	that	those	who	
received	 the	 instruction	 to	 “Take	 Shortcut”	 were	 less	 optimal	 in	 the	 use	 of	 the	 (greater)	
resources	 that	 they	 invested.	This	 result	 therefore	highlights	 a	difference	between	 the	 InfoRL	
measure	of	optimality	used	here,	which	 jointly	considers	path	 length	and	Control	 Information	
and	the	more	limited	measure	of	optimality	used	in	(33),	which	only	considers	path	length.		
	
Participants	who	receive	the	Go	To	Goal	instruction	modulate	their	resource	investment	
depending	on	the	benefits	of	finding	the	shortcut	
	
To	 further	 investigate	 if	participants	modulated	 their	usage	of	Control	 Information	depending	
on	task	demands,	we	plotted	Control	Information	as	a	function	of	the	reward	to	be	potentially	
earned	by	 selecting	 the	 shortest	 route	 in	 each	 trial,	 i.e.,	 the	difference	 in	 reward	between	 the	
shortest	 route	 and	 the	default	policy	 (Figure	6D).	We	made	 two	 separate	 linear	 least-squares	
regression	 analyses	 for	 the	 two	 instructions,	 since	we	 hypothesized	 that	 instructions	made	 a	
difference:	 indeed,	 the	Go	To	Goal	 instruction	 leaves	much	more	 freedom	 in	 the	 choice	of	 the	
Control	 Information	 compared	 to	 the	 Take	 Shortcut	 instruction.	 We	 reasoned	 that	 the	
participants	who	 received	 the	Go	To	Goal	 instruction	were	 free	 to	 choose	 how	much	 Control	
Information	to	invest;	and	they	might	have	considered	what	was	the	reward	difference	between	
the	 shortest	 route	and	 the	default	policy.	 In	 the	 trials	where	 the	 reward	difference	was	 small	
and	there	was	not	too	much	to	earn,	they	could	have	privileged	a	lower	investment	of	Control	
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Information,	 and	 vice	 versa	 for	 trials	 where	 the	 reward	 difference	 was	 greater.	 The	 results	
reported	 in	 Figure	 6D	 confirm	 that	 participants	 who	 received	 the	 Go	 To	 Goal	 instruction	
modulate	 their	 Control	 Information	 depending	 on	 reward	 earnings;	 this	 is	 evident	 by	
considering	 that	 the	 slope	 of	 the	magenta	 regression	 line	 is	 significantly	 different	 from	 zero	
(magenta	 line,	 slope	 =	 0.06,	 p	 =	 0.01).	 However,	 this	 does	 not	 happen	 for	 participants	 who	
received	the	Take	Shortcut	instruction	(light	blue	line,	slope	=	0.01,	p	=	0.49).	
	
Participants	vary	their	levels	of	Control	Information	and	their	(sub)optimality	across	trials	
	
Finally,	we	tested	whether	the	amount	of	Control	Information	deployed	by	each	participant	and	
the	 level	 of	 suboptimality	 (distance	 from	 the	 optimal	 Control	 Information	 per	 step	 /	 Reward	
curve)	 remain	 stable	or	 change	over	 trials.	We	 reasoned	 that	people	might	 remain	 consistent	
across	 trials,	 showing	 a	 similar	 amount	 of	 Control	 Information	 and	 of	 (sub)optimality,	 i.e.,	
distance	 from	 the	 optimal	 curve.	 However,	 our	 results	 show	 that	 people	 tend	 to	 vary	 their	
Control	Information	and	(sub)optimality	levels	across	trials,	see	(46)	for	a	related	result.	Figure	
7	shows	 that	 for	most	participants,	 the	median	value	and	variance	of	Control	 Information	are	
highly	variable	across	trials,	with	one	exception	being	the	(very	few)	participants	shown	at	the	
beginning	of	 the	 top	panel,	who	always	use	very	 little	Control	 Information,	meaning	 that	 they	
invariably	select	the	default	policy	when	they	receive	a	Go	To	Goal	instruction.	The	same	pattern	
of	results	emerges	when	considering	the	variance	of	the	Distance	from	the	optimal	curve	(Supp.	
Figure	S5).	
	
Given	 our	 finding	 that	 participants	 in	 the	 “Go	 To	 Goal”	 condition	 adapted	 their	 resource	
investment	 to	 the	benefits	of	 finding	the	shortcut	(Figure	6D),	we	expected	the	variance	to	be	
instruction-specific.	 To	 assess	 this,	 we	 compared	 the	 variances	 of	 Control	 Information	 and	
Distance	 from	 the	 optimal	 curve,	 between	 the	 two	 groups	 of	 participants	 who	 received	 the	
instructions	 to	 “Go	 To	 Goal”	 and	 “Take	 Shortcut”,	 respectively.	 We	 found	 a	 main	 effect	 of	
Instruction	 in	 comparing	 the	 variance	 of	 Control	 Information	 (Levene’s	 test	 (𝑊 = 53.85, 𝑝 =
2.82 ∗ 10!!")),	 with	 the	 “Go	 To	 Goal”	 group	 having	 a	 larger	 variance	 in	 the	 two	 participant	
groups	(see	also	Supp.	Figure	S6).		
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Figure	 7:	 Boxplots	 of	 the	 Control	 Information	 divided	 by	 trial	 Path	 Length	 for	 each	 participant	
ordered	by	median	value	and	subdivided	by	group	(magenta:	“Go	To	Goal”	group,	light	blue:	“Take	
Shortcut”	group).	
	
	
Discussion	
	
Here,	 we	 examined	whether	 it	 is	 possible	 to	 formally	 characterize	 the	 choice	 of	 navigational	
plans	 in	 terms	 of	 a	 bounded	 rational	 process	 that	 trades	 off	 the	 quality	 of	 the	 plan	 (e.g.,	 its	
length)	 and	 the	 cognitive	 cost	 required	 to	 implement	 it.	We	 used	 the	 InfoRL	 scheme	 (29)	 to	
characterize	formally	the	cognitive	cost	of	devising	a	navigational	plan,	as	the	informational	cost	
to	deviate	 from	a	well-learned	 route	 ("default	policy").	This	 formalism	permits	 characterizing	
explicitly	the	trade-off	between	the	costs	and	the	benefits	of	devising	a	better	plan,	in	terms	of	a	
Reward/Control	 Information	 curve	 that	 shows	how	much	 reward	 a	 participant	 can	obtain	by	
investing	 any	 level	 of	 control	 information.	 InfoRL	 therefore	 supports	 a	 richer	 notion	 of	
(bounded)	 optimality	 compared	 to	 the	usual	 notion	 that	 the	 optimal	 behavior	 is	 the	 one	 that	
selects	 the	 shortest	 path.	 In	 InfoRL,	 "optimal"	 here	 refers	 to	 the	 possibility	 to	 obtain	 the	
maximum	reward	from	the	control	information	that	one	has	invested,	not	the	maximum	level	of	
available	 reward.	 In	 other	 words,	 InfoRL	 assumes	 that	 people	 are	 optimal	 if	 they	 get	 the	
maximum	reward	from	the	level	of	resource	they	invested	(i.e.,	if	they	lie	exactly	on	the	optimal	
Reward	/	Control	Information	curve	exemplified	in	Figure	1)	and	suboptimal	otherwise.	Using	
this	definition,	participants	 can	be	defined	as	optimal	 regardless	of	 the	 information	 resources	
that	 they	 use,	 providing	 that	 reward	 they	 obtain	 is	 commensurate	 with	 their	 resource	
investment.	For	example,	two	participants	who	decided	to	invest	few	or	many	resources	can	be	
equally	optimal	(or	suboptimal)	 if	they	lie	on	the	optimal	Reward	/	Control	Information	curve	
(or	below	it).		
	
Our	 results	 show	 that	 InfoRL	 permits	 characterizing	 formally	 the	 different	 strategies	 that	
participants	 use	 during	 a	 navigational	 task	 (e.g.,	 follow	 the	 well-learned	 route	 or	 take	 a	
shortcut).	 InfoRL	also	characterizes	their	associated	 information	costs	(e.g.,	very	 low	for	plans	
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closer	to	the	well-learned	route,	higher	for	shortcuts),	and	the	optimality	(or	suboptimality)	of	
the	 solutions,	 which	 correspond	 to	 the	 fact	 that	 participants	 achieve	 (or	 not	 achieve)	 the	
theoretically	maximum	reward	for	the	amount	of	control	information	that	they	used.	As	shown	
in	Figure	4,	the	theoretical	Reward/Control	Information	curve	of	InfoRL	retrieves	nicely	the	set	
of	 navigational	 paths	 that	 people	 use	 during	 navigation	 in	 virtual	 reality	 (33).	While	 optimal	
paths	 (at	 different	 levels	 of	 Control	 Information)	 lie	 exactly	 on	 the	 curve,	 other,	 suboptimal	
variants	of	 the	same	paths	can	be	readily	 identified,	by	considering	 that	 they	 lie	diagonally	 to	
the	 corresponding	 optimal	 solutions.	 Furthermore,	 the	 results	 of	 (33)	 were	 obtained	 by	
manually	labeling	the	routes	taken	by	the	participants,	whereas	here	we	used	InfoRL	to	identify	
paths	directly	from	data,	without	manual	labeling.	
	
Our	 analysis	 also	 shows	 that	 during	 navigation,	 participants	 exhibit	 more	 deliberative,	
"vicarious	 trial	 and	 error"	 (VTE)	 behavior	 (39,41)	 in	 the	 places	 of	 the	 maze	 where	 action	
selection	 requires	using	more	 information.	While	 the	notion	of	 Control	 Information	of	 InfoRL	
summarizes	the	information	demand	of	planning	an	entire	path,	we	used	the	(analogous)	notion	
of	 Relevant	 Goal	 Information	 (37)	 to	 formalize	 the	 information	 requirement	 at	 each	 decision	
point.	 The	 strong	 correlation	 between	 Relevant	 Goal	 Information	 and	 a	 behavioral	 index	 of	
deliberation	-	VTE	behavior	-	 indicates	two	main	things.	First,	they	do	not	complete	the	whole	
plan	in	advance	but	rather	continue	deliberating	and	planning	during	the	task;	this	is	in	keeping	
with	 a	 large	 body	 of	 evidence	 indicating	 that	 deliberation	 and	 action	 are	 intertwined	 during	
naturalistic	behavior	(42,44,47–51).	Second,	people	invest	cognitive	resources	preferentially	in	
places	in	which	information	demands	for	action	selection	are	greater,	suggesting	that	they	are	
sensitive	to	information	demands	of	the	current	task	(45,52,53).	This	latter	result	is	in	keeping	
with	studies	reporting	that	rodents	exhibit	greater	VTE	behavior	at	difficult	decision	points,	in	
which	information	demands	are	greater	-	for	example,	when	a	conflict	arises	between	different	
navigation	strategies	(54,55).	In	turn,	VTE	behavior	might	be	instrumental	to	the	evaluation	of	
future	 choice	outcomes,	 given	 that	 it	 has	been	 associated	with	neurophysiological	markers	 of	
deliberative	 information	 processing,	 such	 as	 hippocampal	 forward	 sweeps	 and	 transient	
representations	 of	 reward	 in	 the	 ventral	 striatum	 (56–58).	 It	 remains	 to	 be	 investigated	 in	
future	studies	to	what	extent	the	notion	of	Relevant	Goal	Information	used	here	could	be	used	to	
predict	where	VTE	and	hippocampal	forward	sweeps	might	occur	more	often	on	mazes.	
	
Furthermore,	our	analysis	 shows	 that	participants	adapt	 their	 information	 investment	 to	 task	
demands,	with	 greater	 investment	 for	 the	 Take	 Shortcut	 than	 the	 Go	 To	Goal	 instruction,	 for	
both	 male	 and	 female	 participants.	 In	 this	 setup,	 the	 Take	 Shortcut	 instruction	 can	 be	
considered	more	challenging	as	it	forces	participants	to	significantly	deviate	from	their	default	
policy	(which	corresponds	to	a	cost	in	InfoRL)	and	because	shortcuts	increase	the	likelihood	of	
crossing	the	middle	of	the	space,	where	the	information	required	for	action	selection	is	greater	
(see	Figure	5).	The	original	study	of	(33)	found	a	difference	in	the	choice	of	strategies	between	
conditions	but	only	for	female	participants,	whereas	our	refined	analysis	shows	that	also	male	
participants	modulated	 their	 level	of	Control	 Information	 in	an	 instruction-sensitive	way.	 It	 is	
also	worth	noting	 that	participants	who	 received	 the	Go	To	Goal	 instruction	could	potentially	
use	the	default	policy	on	every	trial.	However,	 they	often	select	a	shorter	path,	even	 if	 it	costs	
more	 in	 terms	 of	 cognitive	 resources.	 This	 might	 be	 the	 case	 because	 they	 could	 consider	
minimizing	 other	 costs,	 such	 as	 the	 time	 spent	 to	 solve	 the	 task	 or	 the	 physical	 energy	 cost	
associated	 with	 getting	 to	 the	 goal,	 in	 addition	 to	 (or	 instead	 of)	 the	 cognitive	 cost.	 One	
indication	that	this	might	be	the	case	comes	from	the	finding	that	participants	who	received	the	
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Go	To	Goal	instruction	invested	more	Control	Information	when	there	was	a	greater	difference	
between	 the	 rewards	 to	 be	 earned	 by	 following	 the	 shortest	 route	 versus	 the	 default	 policy.	
Future	 studies	 that	 manipulate	 multiple	 costs	 simultaneously	 might	 help	 shed	 light	 on	 the	
structure	of	preference	of	participants	during	navigation	and	wayfinding.	
	
A	 separate	 analysis	 of	 the	 optimality	 of	 the	 paths	 shows	 that	 the	 more	 challenging	 "Take	
Shortcut"	instruction	leads	to	more	suboptimality	in	strategy	selection,	see	Figure	7B.	In	other	
words,	while	participants	in	the	“Take	Shortcut”	group	appear	prima	facie	to	be	more	effective	
(as	 they	select	on	average	shorter	routes),	our	analysis	shows	 that	 this	comes	at	 the	cost	of	a	
greater	 investment	of	Control	 Information	and	 -	 less	obviously	 -	 this	 implies	 a	 greater	 risk	of	
selecting	 suboptimal	 routes	 (i.e.,	 routes	 that	 lie	 farther	 from	 the	 optimal	 Reward	 /	 Control	
Information	 curve).	 A	 possible	 explanation	 for	 this	 latter	 result	 is	 that	 there	 are	many	more	
ways	 to	 be	 suboptimal	 (in	 InfoRL	 terms)	 if	 one	 searches,	 remembers	 or	 follows	 the	 shortest	
path,	 than	 if	 one	 reuses	a	default	policy.	The	difficulty	of	 searching	 for	an	efficient	 solution	 is	
likely	a	key	factor	in	making	the	instruction	to	Take	Shortcut	more	challenging	compared	to	Go	
To	Goal	instructions	(25,59).		
	
Finally,	 an	 additional	 analysis	 shows	 that	 people	do	not	 always	use	 the	 same	 level	 of	 Control	
Information	and	do	not	always	achieve	 the	same	(sub)optimality	 level,	but	 tend	 to	vary	 these	
two	levels	across	trials,	as	shown	also	in	other	analyses	of	the	same	task	(46).	It	is	possible	that	
this	 variability	 arises	 from	 moment-to-moment	 fluctuations	 in	 participants'	 motivation	 to	
engage	 cognitive	 resources,	 from	 the	 fact	 that	 participants	 remember	 some	 parts	 of	 the	map	
better	than	others,	or	(at	least	in	part)	as	a	byproduct	of	the	adaptation	of	strategy	selection	to	
task	rewards	 that	we	 found	 in	participants	who	received	 the	"Go	To	Goal"	 instruction	(Figure	
6D).	 Testing	 these	 and	 other	 hypotheses	 for	 choice	 variability	 remains	 an	 open	 objective	 for	
future	studies.	
	
Taken	 together,	 the	 results	 of	 our	 InfoRL	 analysis	 nicely	 complement	 previous	 studies	 of	 the	
same	 virtual	 maze	 task	 that	 assessed	 reward	 (path	 length)	 maximization	 and	 the	 choice	 of	
navigation	 strategies	 as	 a	 function	 of	 instructions	 (33)	 and	 that	 used	 strategy-based	 path	
planning	algorithms	to	simulate	human	trajectories	and	assess	their	variability	(46).	While	each	
specific	 study	 used	 a	 different	 approach	 to	 model	 navigational	 strategies,	 there	 is	 a	 nice	
convergence	of	results;	for	example,	the	different	analyses	suggest	that	participants	who	receive	
the	"Take	Shortcut"	instruction	tend	to	choose	shorter	routes,	that	they	select	not	just	optimal	
routes	but	 also	 suboptimal	 routes	 (33)	and	 that	 they	 show	a	high	variability	 in	 their	 strategy	
selection	(46).	This	convergence	 is	reassuring	and	supports	 the	usefulness	of	 InfoRL	to	model	
spatial	 navigation	 tasks,	 as	 a	 complement	 to	 the	 methods	 exemplified	 in	 the	 above	 studies.	
Moreover,	 some	 of	 our	 results	 highlight	 the	 usefulness	 of	 a	 computational	 approach	 such	 as	
InfoRL	that	considers	both	the	costs	and	the	benefits	of	strategy	selection,	rather	than	a	more	
naive	assessment	of	navigation	efficacy,	 such	as	path	 length.	Describing	navigational	planning	
and	 wayfinding	 as	 bounded	 rational	 processes	 permits	 going	 beyond	 a	 narrow	 notion	 of	
resource-independent	 optimality	 as	 "maximizing	 reward"	 and	 consider	 to	 what	 extent	
participants	are	able	to	optimize	their	performance,	relative	to	the	amount	of	information	that	
they	process	(52,60–63).	For	example,	our	analyses	show	that	about	a	third	of	the	participants	
lie	 very	 closely	 to	 the	optimal	 curve	described	by	 InfoRL	 in	 the	 less	 challenging	 (Go	To	Goal)	
condition,	but	only	around	a	quarter	did	so	in	the	more	challenging	(Take	Shortcut)	condition.	
This	 result	 emerges	 despite	 participants	who	 receive	 the	Take	 Shortcut	 instruction	 select	 (as	
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expected)	 shorter	 routes	 and	 would	 be	 therefore	 considered	 more	 optimal	 in	 reward-
maximization	terms.	Furthermore,	our	finding	that	participants	deliberate	more	in	places	where	
information	demands	are	greater	are	in	keeping	with	previous	studies	of	human	vicarious	trial	
and	error	(40,64)	and	suggest	that	people	are	sensitive	to	information	costs	and	allocate	them	
adaptively	 -	 which	 in	 turn	 lends	 support	 to	 information-theoretic	 analyses	 of	 planning	 and	
deliberation	(26,27,53).	Our	finding	that	participants	who	receive	the	"Go	To	Goal"	instruction	
(and	 are	 therefore	 more	 free	 in	 their	 strategy	 selection)	 change	 their	 resource	 investment	
depending	 on	 the	 benefits	 of	 finding	 the	 shortcut	 provides	 converging	 evidence	 for	 the	
importance	 of	 adaptive	 allocation	 of	 limited	 resources	 and	 offers	 a	 potential	 explanation	 for	
some	 of	 the	 variability	 that	 is	 found	 in	 participants'	 behavior.	 Our	 finding	 that	 female	
participants	engage	 in	more	deliberation	 is	novel	and	may	relate	 to	greater	spatial	anxiety	on	
average	in	females	compared	to	males	(65).	Further	research	exploring	this	will	be	useful.		
	
InfoRL	and	related	approaches	based	on	mutual	 information,	 free	energy	or	 similar	measures	
have	been	widely	 investigated	in	theoretical	studies	and	to	address	simple	decision	or	control	
settings	(19,23–26,45,61,66–75),	but	not	to	study	more	complex	behaviors	such	as	wayfinding	
as	 done	 here.	 One	 of	 the	 reasons	 is	 that	 formalizing	 (default)	 policies	 for	 planning	 can	 be	
challenging.	 In	 theoretical	 studies,	 default	 policies	 are	 assumed	 to	 be	 random,	 but	 random	
behavior	is	not	plausible	during	navigation.	Here,	we	defined	the	default	policy	as	a	well-learned	
route,	 but	 this	 might	 not	 be	 possible	 in	 other	 studies	 that	 do	 not	 include	 an	 initial	 training	
phase.	Previous	studies	suggest	that	during	wayfinding,	people	might	consider	a	default	"vector-
based"	strategy	 (1)	or	 follow	the	available	affordances	 (76,77).	Specifically,	 line	of	 sight	along	
different	options	at	decision	points	may	be	a	strong	affordance	based	feature	driving	a	default	
policy	 (78).	 Vector-based,	 affordance-based	 and	 other	 strategies	 could	 be	 potentially	
incorporated	 as	 "default	 policies"	 in	 InfoRL	 but	 the	 efficacy	 of	 these	methods	 to	 characterize	
human	behavior	and	cost-benefit	computations	remains	to	be	tested.		
	
The	 results	 reported	 in	 the	 current	 study	 depend	 on	 at	 least	 two	 assumptions:	 1)	 that	 the	
participants'	default	policy	is	the	habitual	path	extensively	practiced	before	the	experiment,	2)	
path	length	is	a	suitable	measure	of	value	and	reward.	With	regard	to	the	default	policy,	while	
this	seems	reasonable	in	this	setup,	one	side	effect	is	that	following	the	default	policy	backward	
entails	a	high	amount	of	Control	 Information,	which	 is	not	necessarily	plausible	(and	could	be	
relaxed	in	future	analyses).	More	broadly,	the	choice	of	a	default	policy	is	a	critical	decision	for	
any	InfoRL	study.	Most	simulative	studies	use	the	random	policy	as	 the	default	policy	(22,24),	
this	might	be	less	compelling	in	the	case	of	human	or	animal	navigation	studies.	Intriguingly,	a	
rodent	study	suggests	that	the	default	behavior	of	animals	 is	much	closer	to	an	optimal	policy	
for	foraging	than	a	random	policy	(30)	and	also	human	navigation	follows	regularities	(1)	that	
might	be	considered	as	a	"default"	 in	an	InfoRL	setting.	Furthermore,	one	can	find	regularities	
not	just	in	human	or	animal	behavior	but	also	in	the	way	cities	are	designed,	e.g.,	in	such	a	way	
that	 they	afford	an	easy	navigation	 to	salient	 locations.	This	 is	 somewhat	reflected	also	 in	 the	
design	 of	 the	 experiment	 of	 (36),	 in	 which	 the	 habitual	 route	 is	 at	 the	 periphery	 whereas	
shortcuts	are	almost	always	 in	the	middle.	This	 is	a	sensible	design	choice,	since	 if	 the	default	
were	through	the	center	of	the	maze,	then	it	would	be	very	difficult	to	obtain	a	large	number	of	
start-goal	configurations	 in	which	a	shortcut	(passing	through	the	periphery)	exists.	 In	turn,	a	
paucity	of	shortcuts	would	"flatten"	the	theoretical	InfoRL	curves	shown	in	Figures	1B	and	4A,	
since	 selecting	 a	 path	 that	 differs	 from	 the	 default	 policy	 would	 not	 increase	 reward.	 At	 the	
same	 time,	 the	 choice	 to	 place	 the	 habitual	 route	 at	 the	 periphery	 and	 the	 shortcuts	 at	 the	
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middle	 implies	 that	 shortcuts	 are	 invariably	 linked	 to	 places	 having	 high	 relevant	 goal	
information	or	betweenness	 centrality.	 Future	 experiments	 could	 therefore	 consider	different	
designs	 in	 which	 shortcuts	 and	 places	 with	 high	 relevant	 goal	 information	 or	 betweenness	
centrality	could	be	disentangled	more	clearly.		
	
With	regard	to	the	use	of	path	length	as	a	measure	of	value	and	reward,	it	is	possible	that	other	
metrics	could	be	explored,	such	as	time	taken,	smoothness	of	paths,	angular	displacement	from	
the	goal.	Such	other	metrics	have	been	successfully	explored	 in	studies	examining	behavior	 in	
humans	 and	 rats	 in	 relation	 to	 RL	 (79,80).	 Such	 metrics	 could	 be	 incorporated	 into	 future	
studies,	particularly	where	these	vary,	such	as	open	mazes	and	mazes	with	dead-ends	(78).	 In	
addition	to	analysis	of	VTE	it	would	also	be	useful	to	explore	eye-movements	and	neural	activity	
in	 future	 studies	 with	 an	 InfoRL	 approach.	 Eye-movement	 analysis	 combined	 with	 RL-agent	
modeling	 have	 proved	 useful	 in	 exploring	 the	 underlying	 mechanism	 involved	 in	 navigation	
(81).	For	human	imaging	or	neural	recording	studies	it	may	be	possible	to	probe	the	responses	
with	regressors	such	as	the	amount	of	Control	Information	alongside	various	other	regressors	
explored	in	studies	of	navigation	(11,82).		
	
This	 study	 has	 some	 limitations	 that	 could	 be	 addressed	 in	 future	 studies.	 First,	 it	 is	 worth	
noting	 that	 InfoRL	 speaks	 to	 a	 specific	 notion	of	 effort	 and	decision	 complexity	 that	 does	not	
fully	 cover	 other	 sources	 of	 difficulty	 that	 arise	 during	 decision-making.	 The	 instruction	 to	
"Take	Shortcut"	is	more	challenging	in	InfoRL	terms,	since	it	requires	investing	cognitive	effort	
(27);	however,	it	is	also	less	ambiguous,	as	it	specifies	that	a	shortcut	is	the	only	valid	solution.	
On	 the	 contrary,	 the	 instruction	 to	 "Go	 To	 Goal"	 is	 more	 ambiguous	 as	 it	 allows	 for	 several	
solutions,	at	different	levels	of	cognitive	effort	(e.g.,	do	I	simply	re-activate	the	learned	path	or	
try	 a	 risky	 new	one?)	 The	 InfoRL	 framework	 does	 not	 fully	 capture	 this	 notion	 of	 ambiguity,	
which	would	 require	more	 sophisticated	methods.	 Another	 limitation	 of	 the	 study	 is	 that	 the	
design	of	the	experiment	does	not	fully	separate	information-	and	graph-theoretic	measures	of	
relevant	 goal	 information,	 betweenness	 centrality	 and	 closeness	 centrality,	 all	 of	 which	 are	
correlated.	Future	studies	could	consider	maze	designs	that	better	disambiguate	between	these	
measures	 and	 permit	 assessing	 their	 effects	 on	 navigational	 planning	 (83)).	 Furthermore,	 it	
would	be	possible	to	design	mazes	in	which	the	costs	of	shortcuts	vary,	or	adapt	navigation	to	
hunting	(84),	to	study	how	these	costs	influence	the	participants'	propensity	to	select	shortcuts	
or	default	policies.		
	
Methods	
	
Markov	Decision	Processes	
	
A	Markov	Decision	Process	(MDP)	is	a	mathematical	framework	for	modeling	decision	making	
in	 aleatory	 environments.	 It	 is	 defined	 by	 a	 tuple	 ⟨𝑆,𝐴,𝑅,𝑃,𝜋⟩	 where:	 𝑆 = {𝑠!,⋯ , 𝑠!} 	 and	
𝐴 = {𝑎!,⋯ , 𝑎!}	 are,	 respectively,	 finite	 sets	of	N	 states	and	M	actions;	𝑅 = 𝑅(𝑎, 𝑠)	 	 is	 a	 scalar	
function	 representing	 the	 reward	 obtained	 in	 state	 𝑠	 after	 taking	 action	 a;	𝑃 = 𝑃(𝑠′|𝑠, 𝑎)	 is	 a	
transition	model	obeying	the	Markov	property	-	 i.e.,	 the	outcome	for	taking	action	𝑎	 in	state	𝑠	
depends	solely	on	the	current	state	𝑠,	and	not	on	the	history	of	states	and	actions	that	precedes	
it	-,	where	𝑃(𝑠′|𝑠, 𝑎)	represents	the	probability	of	transition	to	state	𝑠′	when	taking	action	𝑎	 in	
state	𝑠;	and	𝜋 = 𝜋(𝑎|𝑠)	is	a	state	to	action	mapping,	which	represents	the	stationary	probability	
for	the	agent	to	take	action	𝑎	in	state	𝑠,	and	is	known	as	the	agent’s	policy.	
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In	 this	 article,	 we	 focus	 on	 episodic	 pathfinding	 tasks,	 i.e.,	 tasks	where	 the	 aim	 is	 to	 reach	 a	
terminal	state	𝑠!"#$ ,	with	the	absorbing	property	𝑃(𝑠!"#$|𝑠!"#$ , 𝑎) = 1  ∀𝑎 ∈ 𝐴.	Additionally,	the	
reward	function	is	negative	for	all	states	and	actions	combinations	outside	the	absorbing	state	
and	zero	otherwise:	𝑅(𝑠, 𝑎) < 0  ∀𝑎 ∈ 𝐴, 𝑠 ∈ 𝑆,	and		𝑅(𝑠!"#$ , 𝑎) = 0  ∀𝑎.	
	
We	define	the	value	function	of	a	policy	𝜋	as	the	expected	accumulated	reward	for	executing	𝜋	
starting	from	state	𝑠!:	

𝑉!(𝑠!) = 𝐸[  
!

!!!

  𝑅(𝑠! , 𝑎!)]  

	
where	the	expectation	is	taken	over	the	probability	of	all	 future	trajectories,	starting	in	𝑠!	and	
executing	𝜋,	with	𝑉!(𝑠!"#$) = 0.	
	
Furthermore,	 we	 define	 the	 optimal	 value	 function,	 𝑉∗(𝑠) = 𝑚𝑎𝑥

!
𝑉!(𝑠),	 as	 the	 maximal	

achievable	value,	and	we	define	optimal	policy	𝜋∗	the	policy	that	achieves	it.	
	
Control	Information	
	
A	starting	point	of	InfoRL	is	that	searching	for	the	shortest	path	(or	optimal	policy)	requires	a	
cognitive	or	computational	effort.	Thus,	next	to	the	concept	of	value,	we	introduce	the	concept	
of	Control	Information	(or	control	cost)	to	deviate	from	a	default	or	habitual	policy.	
	
We	define	the	Control	Information	to	execute	a	policy	𝜋	in	state	𝑠,	with	regard	to	a	policy	𝜌,	as	
the	Kullback-Leibler	divergence	between	the	two	policies	in	state	s:		

𝛥𝐼(𝑠;𝜋) =  
 

!

 𝜋(𝑎|𝑠)  𝑙𝑜𝑔
𝜋(𝑎|𝑠)
𝜌(𝑎|𝑠)

 

where	𝛥𝐼(𝑠;𝜋) = 0	for	terminal	states,	and	𝜌	is	an	arbitrary	“default	policy”	which	represents	a	
standard	 behavior	 the	 agent	 follows	 when	 not	 exerting	 control.	 The	 Control	 Information	
quantifies	 in	natural	units	(or	bits,	 if	 the	 logarithm	has	base	2)	how	much	the	agent’s	policy	𝜋	
deviates	from	the	default	policy	𝜌	at	a	given	state	𝑠.		
	
Although	the	default	policy	is	arbitrary,	a	common	choice	is	to	take	it	uniformly	distributed	over	
all	the	available	actions	in	state	𝑠	(24,22,23).	In	this	work,	instead,	we	define	the	default	policy	
as	the	policy	the	participants	learned	during	the	training	phase	of	the	experiment.		
	
In	 the	previous	 section,	we	defined	a	value	 function	 for	a	policy	as	 the	expected	accumulated	
reward	 for	 executing	 𝜋	 starting	 from	 state	 𝑠!.	 Here,	 following	 (22),	 we	 define	 a	 Control	
Information	 function	as	 the	expected	Control	 Information	cost	over	all	 the	 trajectories	 from	a	
starting	state	𝑠!,	using	a	policy	𝜋	and	default	policy	𝜌:	

𝐼(𝑠!;𝜋)  = 𝑙𝑖𝑚
! →!

𝐸[  
!!!

!!!

 𝑙𝑜𝑔
𝜋(𝑎!|𝑠!)
𝜌(𝑎!|𝑠!)

] = 𝑙𝑖𝑚
! →!

𝐸[𝑙𝑜𝑔
𝑃𝑟(𝑎!, . . . , 𝑎!|𝑠!;𝜋)
𝑃𝑟(𝑎!, . . . , 𝑎!|𝑠!; 𝜌)

] 

where	the	expectation	is	taken	with	respect	to	all	possible	paths	starting	in	𝑠!.	
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However,	 in	our	experiment,	 this	 formulation	poses	 three	 issues.	First,	 it	 requires	assuming	a	
default	policy;	as	explained	above,	we	assume	that	 the	default	policy	 is	 the	policy	that	 follows	
the	training	path.		
	
Second,	 unlike	 in	 simulation	 studies,	 we	 do	 not	 have	 direct	 access	 to	 the	 participants’	 true	
policies	 policy	 𝜋(𝑎|𝑠)	 for	 a	 given	 start-goal	 setup.	 However	 we	 can	 infer	 an	 approximation	
𝜋(𝑎|𝑠)	 from	 the	 state-action	 sequence	 {𝑠!, 𝑎!,… , 𝑎!!! , 𝑠!}	 that	 corresponds	 to	 the	 paths	
selected	 by	 the	 participants,	 by	 computing	 a	 matrix	 of	 co-occurrences	 of	 states	 and	 actions	
𝑛(𝑎, 𝑠).	By	normalizing	this	matrix,	we	obtain	the	joint	probability	of	actions	and	states	𝑝(𝑎, 𝑠).	

Consequently,	we	write	 the	 participant’s	 observed	 policy	 as	𝜋(𝑎|𝑠) = !(!,!)
!(!)

= !(!,!)
  

!   !(!,!)
,	where	

𝑝(𝑠)	is	the	marginal	probability	of	the	states.	Note	that	the	joint	probability	is	computed	over	a	
single	participant’s	 trial	 trajectory,	and	as	 such	 the	observed	policy	 reflects	a	particular	 start-
goal	setup.	
	
Third,	 unlike	 in	 simulation	 studies,	 in	 this	 experiment	 we	 cannot	 average	 across	 multiple	
trajectories	 to	 calculate	 Control	 Information,	 because	 participants	 completed	 single	 start-goal	
trials.	 Thus,	 we	 assumed	 this	 single	 sample	 to	 be	 representative	 of	 the	 statistics	 of	 the	 path	
distribution	 for	 the	 agent	 (as	 a	unimodal	distribution	 sharply	peaked	around	 the	mean).	This	
allows	to	define	an	“empirical”	control	information	as:	

𝐼(𝑠!;𝜋)  =   
 

! ∈ {!!,…,!!}

 𝛥𝐼(𝑠;𝜋)  

	
In	the	special	case	of	a	deterministic	policy	𝜋(𝑎|𝑠),	this	is	not	a	problem,	because	there	is	only	a	
single	path	starting	from	𝑠!	with	nonzero	probability,	and	(for	the	states	visited	by	the	agent)	
the	inferred	policy	𝜋(𝑎|𝑠)	is	exactly	the	agent’s	policy	𝜋(𝑎|𝑠).	
	
Free	energy	formulation	and	InfoRL	
	
By	combining	the	definitions	of	value	and	cost	from	previous	sections,	in	this	section	we	expand	
the	 notion	 of	 optimality	 by	 taking	 in	 consideration	 not	 only	 the	 expected	 reward,	 but	 the	
expected	Control	 Information	cost	exerted	by	 the	agent.	This	 leads	 to	changes	 in	 the	shape	of	
the	value-information	curve.	
	
Following	Rubin	et	al.	(22),	we	define	a	free	energy	function	𝐹(𝑠!;𝛽)	which	combines	the	value	
and	the	information	terms:	
	

𝐹(𝑠!;𝛽) = 𝐼(𝑠!;𝜋) − 𝛽𝑉(𝑠!;𝜋) 
	
where	the	parameter	𝛽 ≥ 0	controls	the	tradeoff	between	information	and	value.	
	
We	want	to	find	the	policy	that	maximizes	the	value,	while	keeping	the	information	cost	under	a	
threshold:	
	

𝜋∗ = 𝑚𝑎𝑥
!
𝑉(𝑠!;𝜋)   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝐼(𝑠!;𝜋) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
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where	 the	 threshold	on	 information	 cost	 can	be	 thought	of	 as	 a	 cognitive	 resource	 limit.	 This	
constrained	optimization	problem	is	similar	to	the	one	in	Rate-Distortion	Theory	(85)	and	the	
Information	Bottleneck	(86).		
	
Rubin	 et	 al.	 (22)	 showed	 that	 the	 optimal	 free	 energy	 vector	 𝐹∗(𝑠!;𝛽)	 satisfies	 Bellman’s	
equation	(87)	and	then	they	proposed	an	algorithm	to	calculate	the	optimal	free	energy	vector,	
InfoRL,	for	a	given	MDP	model	and	tradeoff	parameter	𝛽.		
	
Note	 that	 the	solutions	 for	different	values	of	𝛽	 are	shown	to	 form	 in	 the	reward-information	
control	 domain	 a	 nonlinear	 concave	 curve	 (see	 Figure	 1),	 whose	 shape	 is	 dependent	 on	 the	
topology	 of	 the	map,	 the	MDP	model	 and	which	 default	 policy	 is	 used.	 The	 points	 along	 the	
curve	 include	 all	 the	 optimal	 solutions	 under	 the	 free	 energy	 definition.	 The	 leftmost	 point	
(𝛽 → 0)	represents	the	highest	rewarding	among	the	zero	control	information	solutions	(i.e.,	the	
agents	followed	blindly	the	default	policy)	while	the	rightmost	(𝛽 → ∞)	has	the	lowest	control	
cost	among	the	solutions	with	the	highest	reward	(i.e.,	a	shortest	path	strategy).	In	general,	the	
solutions	 along	 the	 curve	 are	 the	 only	 solutions	 in	 the	 map	 showing	 an	 optimal	 resource	
(information	 control	 and	 reward)	 allocation	 strategy.	 In	 fact,	 the	 top-left	 area	 of	 the	 graph	 is	
unachievable	(e.g.:	solutions	with	higher	reward	than	the	shortest	path).	The	bottom-right	area	
includes	 all	 the	 suboptimal	 solutions,	 i.e.,	 the	 agent	 pays	 a	 higher	 control	 information	 cost	 to	
obtain	an	equivalent	reward	to	the	optimal	curve	(shifted	to	the	right	of	the	optimal	solution),	
or,	 equivalently,	 the	 agent	 achieves	 a	 lower	 reward	 for	 the	 control	 information	 cost	 paid,	
compared	 to	 the	 optimal	 curve.	 In	 practice,	 this	 means	 that	 suboptimal	 agents	 pay	 an	
information	control	cost	for	deviating	from	the	default	policy	but	spend	it	in	a	worse	way	than	
their	optimal	counterparts.	
	
Relevant	Goal	Information	
	
The	 Relevant	 Goal	 Information	 (RGI)	 (35)	 is	 defined	 as	 the	 conditional	 mutual	 information	
between	current	goal	 and	action	given	 the	 current	 state.	 It	 is	 a	way	of	quantifying	how	much	
information	 (in	 bits	 or	 nats)	 is	 required	 in	 a	 given	 state	 to	 reach	 a	 goal	 through	 action.	 This	
amount	of	 information	depends	on	 task	 constraints	 (i.e.,	what	kind	of	optimality	 is	 required).	
For	example,	 let’s	consider	a	navigational	task	in	a	two-room	maze,	where	the	goal	consists	in	
reaching	a	specific	goal	location	with	the	shortest	path	(optimality	condition).	Let’s	imagine	we	
start	from	the	bottom	of	one	room,	and	we	are	told	that	the	goal	is	in	the	left	corner	of	the	other	
room.	For	the	first	steps,	the	only	information	we	need	to	keep	in	mind	is	that	the	goal	location	
is	 in	 the	 other	 room,	 but	 not	 the	 specific	 goal	 location;	 this	 is	 because,	 regardless	 of	 the	 goal	
position,	the	action	we	must	select	is	reaching	the	other	room.	Thus,	at	the	bottom	of	the	start	
room,	the	relevant	goal	information	is	low.	However,	when	we	enter	the	other	room,	we	need	to	
choose	 more	 carefully	 which	 direction	 to	 take	 to	 reach	 the	 left	 corner.	 Because	 knowing	
precisely	 the	 goal	 location	 is	 key	 for	 action	 selection	 at	 the	 entrance	 of	 the	 goal	 room,	 the	
relevant	goal	information	is	high.		
	
Formally,	 the	 RGI	 can	 be	 defined	 as	 the	 difference	 (in	 bits)	 of	 the	 entropy	 of	 the	 action	
distribution	at	each	state	between	the	case	mentioned	above	(when	the	goal	location	is	known)	
and	the	case	in	which	the	goal	location	is	unknown,	and	hence	one	cannot	discard	any	action	a-
priori.	 As	 in	 our	 analyses	we	 compare	 RGI	with	 graph-theoretic	measures	 (betweenness	 and	
closeness	centrality),	we	use	RGI	per	state,	defined	as	follows:	
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𝐼(𝐺;𝐴!|𝑠!)  = 𝐻(𝑎!|𝑠!) − 𝐻(𝑎!|𝑔, 𝑠!) =  

= −  
 

!!∈!!

 𝑝(𝑎!|𝑠!)  𝑙𝑜𝑔  𝑝(𝑎!|𝑠!) − [−  
 

! ∈ !

 𝑝(𝑔)   
 

!!∈!!

 𝑝(𝑎!|𝑠! ,𝑔)  𝑙𝑜𝑔  𝑝(𝑎!|𝑠! ,𝑔) ]   

	
where	𝐻(⋅ | ⋅)	represents	a	conditional	entropy	between	two	variables.	The	RGI	per	state	can	be	
obtained	using	the	Blahut-Arimoto	(88,89)	optimization	algorithm.	
	
Vicarious	Trial	and	Error	
	
Vicarious	 Trial	 and	 Error	 (VTE)	 describes	 a	 stereotypical	 behavior	 that	 humans	 and	 rodents	
exhibit	when	uncertain	at	decision	points	 (e.g.,	 in	T-mazes)	and	which	consists	 in	moving	 the	
head	back	and	 forth	between	 the	possible	paths	 (39,41).	This	behavior	has	been	shown	 to	be	
associated	with	 endogenously	 generated	 hippocampal	 dynamics	 called	 "forward	 sweeps"	 and	
the	sequential	activation	of	sequences	of	place	cells	that	correspond	to	possible	future	locations	
(90).	
	
Here,	 we	 measure	 a	 “VTE	 event”	 by	 considering	 when	 the	 participant	 halts	 (speed	 under	 a	
threshold	 𝑣!!!"#!!"# = 1 [𝑓𝑟𝑎𝑚𝑒!!]	 )	 and	 looks	 around	 (angular	 velocity	 over	 a	 threshold	
𝜃!!!"#!!"# = 10 [𝑑𝑒𝑔𝑟𝑒𝑒/𝑓𝑟𝑎𝑚𝑒]	),	and	“VTE	rate”	is	the	percentage	of	time	over	the	entire	trial	
time	spent	doing	VTE.	
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Supplementary	Materials	
	
Supplementary	Video	
	
The	Supplementary	Video	V1	shows	the	different	families	of	solutions	discussed	in	Figure	4	of	
the	main	text.		
	
Supplementary	Figures	
	

	
Figure	S1:	Reward	/	Control	Information	plots	for	the	20	pairs	of	start-goal	locations	collected	by	
(33).	 The	 blue	 points	 represent	 participants’	 single	 trial	 data	 (darker	 blue	 means	 more	 points	
overlapping),	 solid	 black	 curve	 is	 the	 optimal	 curve,	 and	 together	 with	 the	 dashed	 black	 curve	
delimits	the	unachievable	area	(upper	left	portion	of	the	plot).	
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Figure	S2:	A)	Betweenness,	Degree,	Closeness	and	Katz	Centrality	values	for	each	state	of	the	map;	
B)	(Betweenness,	Degree,	Closeness	and	Katz)	centrality	value	vs	VTE	value	plots.	
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Figure	 S3:	 Scaled	 VTE	 for	 locations	 in	 the	 maze	 comparison	 for	 states	 with	 Degree	 Centrality	
equal	 to	 2	 and	 3.	 A	 2-sample	Kolmogorov-Smirnov	 test	 confirmed	 (D=0.74,	 p<0.001)	 that	 states	
with	Degree	Centrality	equal	to	3	show	greater	VTE	values.	
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Figure	 S4:	 Left:	 Scaled	 VTE	 for	 locations	 in	 the	 maze	 compared	 by	 gender	 (D=0.38,	 p=0.006).	
Right:	VTE	values	by	condition	(D=0.16,	p=0.66).	
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Figure	 S5:	 Boxplots	 of	 the	 Distance	 from	 the	 optimal	 curve	 (bottom	 two	 panels),	 ordered	 by	
median	value	and	subdivided	by	group	(magenta:	“Go	To	Goal”	group,	light	blue:	“Take	Shortcut”	
group);	 we	 found	 no	 significant	 difference	 in	 the	 variance	 of	 Distance	 from	 the	 optimal	 curve	
(𝑊 = 0.050, 𝑝 = 0.82)	in	the	two	participant	groups.	
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Figure	S6:	Histogram	of	the	variability	(i.e.,	standard	deviation)	of	the	Control	Information	–	Path	
Length	 ratio	across	participants,	 as	 shown	 in	Figure	7	 (magenta:	 “Go	To	Goal”	 instruction,	 light	
blue:	“Take	Shortcut”	instruction).	
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