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ABSTRACT 1 

The rapid growth in genomic selection data provides unprecedented opportunities to discover and 2 

utilize complex genetic effects for improving phenotypes but methodology is lacking. Epistasis 3 

effects are interaction effects and haplotype effects may contain local high-order epistasis effects. 4 

Multifactorial methods with SNP, haplotype and epistasis effects up to the third-order are 5 

developed to investigate the contributions of global low-order and local high-order epistasis effects 6 

to the phenotypic variance and the accuracy of gnomic prediction of quantitative traits. These 7 

methods include genomic best linear unbiased prediction (GBLUP) with associated reliability for 8 

individuals with and without phenotypic observations including a computationally efficient 9 

GBLUP method for large validation populations, and genomic restricted maximum estimation 10 

(GREML) of the variance and associated heritability using a combination of EM-REML and AI-11 

REML iterative algorithms. These methods were developed for two models, Model-I with 10 effect 12 

types, and Model-II with 13 effect types including intra- and inter-chromosome pairwise epistasis 13 

effects that replace the pairwise epistasis effects of Model-I. GREML heritability estimate and 14 

GBLUP effect estimate for each effect of an effect type are derived except for third-order epistasis 15 

effects. The multifactorial models evaluate each effect type based on the phenotypic values 16 

adjusted for the remaining effect types and can use more effect types than separate models of SNP, 17 

haplotype and epistasis effects; and provide a methodology capability to evaluate the contributions 18 

of complex genetic effects to the phenotypic variance and prediction accuracy, and to discover and 19 

utilize complex genetic effects for improving the phenotypes of quantitative traits.  20 
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INTRODUCTION 21 

Genomic estimation and prediction of quantitative traits using single nucleotide polymorphism 22 

(SNP) markers and mixed models have become a widely approach for genetic improvement in 23 

livestock and crop species. The rapid growth in genomic selection data provides unprecedented 24 

opportunities to discover and utilize complex genetic mechanism but methodology and computing 25 

tools are lacking for investigating complex genetic mechanisms using the approach of genomic 26 

estimation and prediction. The integration of global low-order epistasis effects and local high-27 

order epistasis effects contained in haplotypes for genomic estimation and prediction is a step 28 

forward for the discovery and application of complex genetic mechanisms to improve the 29 

phenotypes of quantitative traits. The integrated model with multiple types of genetic effects can 30 

use more effect types than separate models SNP, haplotype and epistasis effects, and may provide 31 

more accurate understanding of each effect type than the separate models due to the use of 32 

phenotypic values adjusted for the genetic values of the remaining effect types in the model. 33 

The theory of genetic partition of two-locus genotypic values defines four types of epistasis 34 

values, additive × additive (A×A), additive × dominance (A×D), dominance × additive (D×A), 35 

and dominance × dominance (D×D) epistasis values by Cockerham and Kempthorne [1, 2]. The 36 

Cockerham method defines each epistasis coefficient as the product of the coefficients of the two 37 

interacting effects that each can be additive or dominance [1]. This definition of epistasis 38 

coefficient is the basis for defining epistasis model matrices in terms of the model matrices of 39 

additive and dominance effects. Cockerham also defines a pedigree epistasis relationship as the 40 

product between the pedigree additive and dominance relationships [1], and this definition is the 41 

theoretical basis for Henderson’s approach to express epistasis relationship matrices as the 42 

Hadamard products of the additive and dominance relationship matrices [3].  43 

 44 
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The Henderson approach of Hadamard products for epistasis relationship matrices was 45 

suggested for genomic prediction using epistasis effects by replacing the pedigree additive and 46 

dominance relationship matrices with the genomic additive and dominance relationship matrices 47 

calculated from SNP markers [4-6]. This genomic version of the Henderson’s Hadamard products 48 

calculates genomic epistasis relationship matrices based on the model matrices of SNP additive 49 

and dominance effects without creating large epistasis model matrices that can be difficult or 50 

impossible to compute. For m SNPs, each pairwise (second-order) epistasis model matrix is 51 

(m 1)/2  times as large as the SNP additive or dominance model matrix. For 50,000 SNPs, an 52 

epistasis model matrix is nearly 25,000 times as large as the SNP additive or dominance matrix. 53 

The calculation of such a large model matrix for pairwise epistasis effects is difficult and the 54 

calculation of the model matrices for epistasis effects higher than the second-order is practically 55 

impossible for 50,000 or more SNPs. Since genomic additive and dominance relationship matrices 56 

are calculated from the SNP additive and dominance model matrices [7-10], the Hadamard 57 

products between SNP additive and dominance relationship matrices removes the computing 58 

difficulty associated with the large epistasis model matrices for calculating genomic epistasis 59 

relationship matrices. However, this genomic version of the pedigree-based epistasis relationship 60 

matrices contains intra-locus epistasis effects that is not present in the epistasis model [11]. For 61 

this reason, the genomic version of Henderson’s Hadamard product could be described as 62 

approximate genomic epistasis relationship matrices (AGERM). Formulations have been 63 

developed to obtain the exact genomic epistasis relationship matrices (EGERM) by removing the 64 

intra-locus epistasis effects contained in AGERM by modifying Henderson’s Hadamard products 65 

without creating the epistasis model matrices  [11-14]. The difference between AGERM and 66 

EGERM tends to diminish as the number of SNPs increases [13]. A Holstein dataset with 60,671 67 

SNPs showed AGERM and EGERM had the same heritability estimates and the same accuracy of 68 
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predicting the phenotypic values [15] , and the swine dataset with 52,842 SNPs in this manuscript 69 

showed the two methods had similar results. However, EGERM required many times of computing 70 

time as required by AGERM. The methods in this article allow the use of either AGERM or 71 

EGERM, and our computing package of EPIHAP implements both AGERM and EGERM. 72 

Henderson’s Hadamard products [3] and hence AGERM are applicable to any order of epistasis 73 

effects, and EGERM also has a general formula for any order of epistasis effects [13]. However, 74 

limited tests showed that fourth-order global epistasis virtually contributed nothing to the 75 

phenotypic variance but generated considerable computing difficulty [16], raising question about 76 

the value for global epistasis effects beyond the third-order. Methods of genomic estimation and 77 

prediction of global epistasis effects up to the third-order should have a wide-range applications, 78 

given that the number of reported epistasis effects lag far behind the number of single-point effects 79 

[17-19] even though epistasis effects are important genetic effects [20-22]. In contrast to the 80 

computing difficulty and uncertain impact of global high-order epistasis effects beyond the third-81 

order, local high-order epistasis effects in haplotypes with many SNPs were responsible for the 82 

increased accuracy of predicting phenotypic values of certain traits. For examples, a haplotype 83 

model with 12 SNPs per haplotype block had the best prediction accuracy for low density 84 

lipoproteins in a human population  [23], a haplotype model with 500 Kb haplotype blocks that on 85 

average had 105 SNPs per block had the best prediction accuracy for average daily gain in a swine 86 

population [24], and a haplotype model with 15 SNPs per haplotype block had the best prediction 87 

accuracy in a wheat study [25]. The integration of haplotype and epistasis effects provides an 88 

approach to investigate the contributions of global low-order epistasis effects and local high-order 89 

epistasis effects to the phenotypic variance and the accuracy of genomic prediction under the same 90 

model.  91 
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An epistasis GWAS in Holstein cattle showed that intra- and inter-chromosome epistasis 92 

effects affected different traits differently, e.g., daughter pregnancy rate was mostly affected by 93 

inter-chromosome epistasis effects whereas milk production traits were mostly affected by intra-94 

chromosome epistasis effects [26]. Genomic heritability estimates of intra- and inter-chromosome 95 

heritabilities for daughter pregnancy rate using methods in this article showed that intra-96 

chromosome A×A heritability was 0.031, and inter-chromosome A×A heritability 0.178 [15], 97 

consistent with the GWAS results of 21% intra-chromosome and 79% inter-chromosome A×A 98 

effects among the top 33,552 pairs of A×A effects in the GWAS study [26]. Therefore, dividing 99 

pairwise epistasis effects into intra- and inter-chromosome epistasis effects for genomic prediction 100 

and estimation allows the investigation of the contributions of intra- and inter-chromosome 101 

pairwise epistasis effects to the phenotypic variance and prediction accuracy.  102 

The purpose of the multifactorial model in this article is to integrate haplotype effects and 103 

epistasis effects up to the third-order for genomic estimation and prediction of quantitative traits, 104 

to provide a general and flexible methodology framework for genomic prediction and estimation 105 

using complex genetic mechanisms, and to provide methodology details of the EPIHAP computer 106 

package that implements the integration of haplotype and epistasis effects [15, 16]. The 107 

multifactorial model has the advantage of using more effect types and assessing each effect type 108 

based on the phenotypic values adjusted for all remaining effect types over separate SNP, 109 

haplotype and epistasis models. We hypothesize that some traits involve only a small number of 110 

the effect types, some traits are more complex and involve more effect types, global low-order 111 

epistasis are more important than local high-order epistasis effects of haplotypes for some traits 112 

whereas the reverse is true for some other traits, and some traits may be affected by both global 113 

low-order and local high-order epistasis effects. The methodology in this article will provide an 114 

approach to evaluate these hypotheses, facilitate the discovery and utilization of global low-order 115 
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and local high-order epistasis effects relevant to the phenotypic variance and prediction accuracy 116 

of each trait, and obtain new knowledge of complex genetic mechanisms underlying quantitative 117 

traits. 118 

 119 

METHODS  120 

Quantitative genetics (QG) model with SNP, haplotype and epistasis effects and values 121 

The mixed model with single-SNP additive and dominance effects, haplotype additive effects and 122 

pairwise SNP epistasis effects in this article is based on the quantitative genetics (QG) model 123 

resulting from the genetic partition of single-SNP genotypic values [9, 10], haplotype genotypic 124 

values [27], and pairwise genotypic values [1]. An advantage of this QG model is the readily 125 

available quantitative genetics interpretations of SNP additive and dominance effects, values and 126 

variances; haplotype additive effects, values and variances; epistasis effects, values and variances; 127 

and the corresponding SNP, haplotype and epistasis heritability estimates. Two QG models are 128 

developed: Model-I with 10 effect types including SNP additive and dominance effects, haplotype 129 

additive effects, and epistasis effects up to the third-order; and Model-II with 13 effect types 130 

resulting from replacing the pairwise epistasis effects of Model-I with intra- and inter-chromosome 131 

epistasis effects. Detailed descriptions of the effects, values, model matrices and the coding of the 132 

model matrices as well as the precise definition of each term in the two QG models are provided 133 

in Supplementary Text S1 and Table S1. With these precise definitions of genetic effects, values 134 

and model matrices in the QG models, a concise multifactorial QG model covering both Model-I 135 

and Model-II is established, i.e.:  136 

f f
i io ii=1 i=1      g I W τ I u  (1) 137 

i i iou W τ  (2) 138 
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where ioτ = genetic effects of the thi  effect type from the original QG model based on genetic 139 

partition, iW  = model matrix of ioτ , iu  = genetic values of the thi  effect type from the original 140 

QG model, and f = number of effect types. For Model-I, subscripts i=1,...,10  represent SNP 141 

additive (A), SNP dominance (D), haplotype additive, A×A, A×D, D×D, A×A×A, A×A×D, 142 

A×D×D and D×D×D effects sequentially. For Model-II, subscripts i=1,...,13  represent SNP 143 

additive, SNP dominance, haplotype additive, intra-chromosome A×A, intra-chromosome A×D, 144 

intra-chromosome D×D, inter-chromosome A×A, inter-chromosome A×D, inter-chromosome 145 

D×D, A×A×A, A×A×D, A×D×D and D×D×D effects sequentially. The variance-covariance 146 

matrix of the genetic values of Equations 1 and 2 is: 147 

f f f f 2
i i i io i ii=1 i=1 i=1 i=1

var( ) Var( ) σ '      G u u G WW  (3) 148 

2
io ioVar( ) =στ I  (4) 149 

iG = iVar( )u  = i io iVar( ) 'W τ W = 2
io i iσ 'W W  (5) 150 

where 2
io ijoσ =Var(τ )  = genetic variance of the thi  effect type under the original QG model common 151 

to all individuals (all j values). Note that i i'WW  is not a genomic relationship matrix but is the 152 

primary information for calculating each genomic relationship matrix. The structure of the G 153 

matrix of Equation 3 assumes independence between the genetic values of different effect types. 154 

However, the GBLUP values of different effect types using the G matrix of Equation 3 could be 155 

correlated. Under the Hardy-Weinberg equilibrium (HWE) and LE assumptions, additive, 156 

dominance and epistasis effects are independent of each other [1, 2]. For genome-wide SNPs, the 157 

LE assumption generally does not hold for closely linked loci, and nonzero Hardy-Weinberg 158 

disequilibrium (HWD) may exist numerically. These and other unknown factors in real data may 159 

result in the existence of correlations between different effect types. Haplotype additive values are 160 
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correlated with SNP additive effects because a haplotype additive value is the sum of all SNP 161 

additive values and an epistasis value within the haplotype block plus a potential haplotype loss 162 

[28]. In two recent haplotype studies for genomic prediction, the integration of SNP and haplotype 163 

effects increased the prediction accuracy for four of the seven traits in the human study [23] and 164 

for three of the eight traits in the swine study [24], showing that SNP and haplotype additive values 165 

compensated each other for prediction accuracy and that the correlation between SNP and 166 

haplotype additive values were incomplete for those traits. The correlation between haplotype and 167 

epistasis values can be complex: the correlation should be nonexistent if the A×A values are inter-168 

chromosome A×A values or intra-chromosome A×A values involving distal SNPs not covered by 169 

the haplotypes, but the correlation could be strong if the A×A values are intra-chromosome A×A 170 

values involving proximal SNPs covered by the haplotypes.  171 

The reparametrized and equivalent QG model for genomic estimation and prediction  172 

Genomic relationship matrices will be used for genomic estimation and prediction, and the use of 173 

genomic relationship matrices results in a reparametrized and equivalent model of the original QG 174 

model for genetic values, to be referred to as the RE-QG model, where “reparametrized” refers to 175 

the reparameterization of the genetic effects, model matrix and genetic variance of each effect type; 176 

and “equivalent” refers to the requirement of the same first and second moments for the original 177 

QG model (Equations 1-5) and the RE-QG model described below. This RE-QG model of genetic 178 

values can be expressed as:  179 

f f
i i ii=1 i=1      g I T τ I u  (6) 180 

f f f f f2 2 2
i i i i i i i io i ii=1 i=1 i=1 i=1 i=1

var( ) σ ' σ σ '        G u G TT S WW  (7) 181 

where  182 

i i iokτ τ  = genetic effects of the thi  effect type (8) 183 
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i i i/ kT W = model matrix of iτ  (9) 184 

n2 jj 2
i ij i i i ioj=1

σ = Var(τ ) = tr( )/n G /n= k σG   (10) 185 

     = variance of the genetic effects of the thi  effect type common to all individuals  186 

     = average variance of all individuals for the genetic values of the thi  effect type 187 

i i i i io u T τ W τ  = genetic values of the thi  effect type (11) 188 

2 2 2
i i i i i i i io i iVar( ) σ ' σ σ '   G u TT S W W  (12) 189 

  = variance-covariance matrix of the genetic values of the thi  effect type 190 

i i i i i i' ' / k S TT W W  = genomic relationship matrix of the thi  effect type (13) 191 

i i ik tr( ')/n W W  = average of the diagonal elements of i i'WW  (14) 192 

Equations 8-10 are the reparametrization of the genetic effects, model matrices and genetic 193 

variances of the original QG model, whereas Equations 11 and 12 show the genetic values and the 194 

variance-covariance matrix of the genetic values are the same under the RE-QG and QG models. 195 

In Equation 10, jj
iG  = the genetic variance of the thj  individual for the  thi  effect type = the thj  196 

diagonal element of the iG matrix defined by Equation 12. The ik  formula of Equation 14 as the 197 

average of the diagonal elements of i i'WW  was originally proposed for genomic additive 198 

relationships [8], and was used for genomic dominance relationships [9, 10], haplotype additive 199 

genomic relationships [27], and pairwise epistasis genomic relationships [6]. The need of this RE-200 

QG model is due to the use of the genomic relationship matrices (e.g., Equation 13), because the 201 

QG model does not contain genomic relationship matrices (Equation 3). Detailed notations of the 202 

QG model of Equations 1-5 in reference to the RE-QG model described by Equations 6-14 are 203 

summarized in Supplementary Table S1.  204 
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The formula of genomic relationship matrix ( iS  of Equation 13) is based on the model matrix 205 

of each effect type and can be difficult or impossible to compute if epistasis model matrices are 206 

used. This computing difficulty of epistasis model matrices is removed by calculating iS  based on 207 

the model matrices of SNP additive and dominance effects without creating the epistasis model 208 

matrices using either AGERM or EGERM. AGERM refers the genomic version of Henderson’s 209 

Hadamard products between pedigree additive and dominance relationship matrices [3] with the 210 

pedigree additive and dominance relationship matrices replaced by the genomic additive and 211 

dominance relationship matrices [4-6]. AGERM contains intra-locus epistasis that should not exist 212 

[11] and EGERM removes intra-locus epistasis from AGERM based on products between genomic 213 

additive and dominance relationship matrices [11, 13].  214 

The QG and RE-QG models have the same prediction accuracy due to the equivalence between 215 

these two models. The genetic values ( iu , Equations 1 and 6) and the variance-covariance matrix 216 

of the genetic values ( iG , Equations 5 and 12) under the QG and RE-QG models are identical, 217 

although these two equations have different expressions for the genetic effects and model matrices. 218 

Consequently, the QG model without using genomic relationship matrices and the RE-QG model 219 

using genomic relationship matrices have identical accuracy of genomic prediction. The choice of 220 

the ik  formula for defining the genomic relationship matrix does not affect the accuracy of 221 

genomic prediction but affects the interpretation and application of the genetic variance and 222 

genomic relationships for each effect type. Since the interpretation of each genetic variance is a 223 

focus whereas the interpretation of the genomic relationships is not a focus in this study, the 224 

interpretation of the genetic variance and associated heritability is the consideration in choosing 225 

the ik  formula of Equation 14. 226 
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The RE-QG model using genomic relationships (Equations 6-14) has two major advantages 227 

over the QG model without using genomic relationship matrices (Equations 1-5) although the two 228 

models have the same prediction accuracy. First, the use of genomic relationships, originally 229 

proposed for genomic additive relationships [7], provides a genomic version of the traditional 230 

theory and methods of best linear unbiased prediction (BLUP) that uses pedigree relationships, 231 

and this genomic version can utilize a wealth of BLUP-based theory, methods and computing 232 

strategies. Second, the genetic variance of the genetic effects of each effect type under the RE-QG 233 

model can be used for estimating genomic heritability whereas the genetic variance of the genetic 234 

effects under the QG model cannot be used for estimating genomic heritability. With the ik  value 235 

defined by Equation 14, The variance of the genetic effects of the thi  effect type, 2 2
i i ioσ k σ  236 

(Equation 10), has the unique interpretation as the average variance of the genotypic values of all 237 

individuals and is a common variance to all individuals. Moreover, 2 2
i i ioσ k σ  is unaffected by the 238 

number of levels for each effect type, unless the number of levels such as the number of SNPs is 239 

too small to provide sufficient coverage of the genome [9, 23, 29]. In contrast, the QG model does 240 

not have a method to estimate genetic variance components for calculating genomic heritabilities, 241 

because 2
ioσ  is an inverse function of the number of effect levels. As the number of effect levels 242 

such as the number of SNPs increases or decreases, the value of each element in i i'W W  changes 243 

in the same direction and the 2
ioσ  estimate changes in the opposite direction, i.e., as the number of 244 

effect levels increases or decreases, 2
ioσ  decreases or increases. Consequently, the 2

ioσ  estimate does 245 

not have a unique interpretation and cannot be used for estimating genomic heritability [9]. 246 

Moreover, the variance of the genetic value of an individual ( 2
ioσ

jj
i i( ')W W ) cannot be used for 247 
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calculating genomic heritability because of the individual specificity of the jj
i i( ')W W  values, as 248 

shown as follows. 249 

 The exact relationship between the genetic variance for the thi  effect type of the thj  individual 250 

under the RE-QG model and the QG model can be described based on the iG matrix defined by 251 

Equation 12,  i.e.: 252 

jj 2 jj 2 jj
i ij i i io i iG Var(u )=σ ( ) σ ( ') S WW  (15) 253 

where jj
iG  = the thj  diagonal element of the iG matrix defined by Equation 12 = the genetic 254 

variance of the thj  individual for the genotypic value of the thi  effect type, and iju  = the thj  255 

element of iu  defined by Equation 11. Equation 15 shows that different individuals do not have a 256 

common variance of the genetic values ( jj
iG ) unless all diagonal elements of iS or i i'WW  are 257 

identical, which could not happen with genome-wide SNP data in the absence of identical twins 258 

because genome-wide SNPs have a high degree of individual specificity. Consequently, jj
iG  is not 259 

a common variance to all individuals and cannot be used for calculating the genomic heritability 260 

of the thi  effect type. In contrast, 2
iσ  of Equation 10 under the RE-QG model as the average 261 

variance of the genotypic values of all individuals is common to all individuals and can be used 262 

for calculating the heritability of each effect type. For the example of Model-I, the exact genetic 263 

interpretation of jj
iG  is: jj 2

i ajG σ  = the variance of the genomic additive (breeding) value of the thj  264 

individual for i =1, jj 2
i djG σ = the variance of the genomic dominance value of the thj  individual 265 

for i = 2 , jj 2
i ahjG σ  = the variance of the genomic haplotype additive value of the thj  individual 266 

for i =3, jj 2
i aajG σ = the variance of the A×A value of the thj  individual for i = 4 , jj 2

i adjG σ = the 267 

variance of the A×D value of the thj  individual for i =5, jj 2
i ddjG σ = the variance of the D×D value 268 
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of the thj  individual for i = 6 , jj 2
i aaajG σ = the variance of the A×A×A value of the thj  individual 269 

for i = 7 , jj 2
i aadjG σ = the variance of the A×A×D value of the thj  individual for i =8, jj 2

i addjG σ = 270 

the variance of the A×D×D value of the thj  individual for i =9 , and jj 2
i dddjG σ = the variance of 271 

the D×D×D value of the thj  individual for i =10 . These genetic interpretations along with those 272 

for intra- and inter-chromosome pairwise epistasis effects of Model-II under the QG and RE-QG 273 

models are summarized in Supplementary Table S1.  274 

 275 

RESULTS AND DISCUSSION  276 

The multifactorial model of phenotypic values  277 

Based on the RE-QG model of Equations 6-14, the multifactorial model for phenotypic values is: 278 

f
i ii=1

f
ii=1

     

  




y Xb Zg e Xb Z T τ e

Xb Z u e
 (16) 279 

f2 2
e N i e Ni=1

f f2 2 2 2
i i i e N i i e Ni=1 i=1

' σ ( ) ' σ

( σ ') ' σ ( σ ) ' σ

   

   


 

V ZGZ I Z G Z I

Z TT Z I Z S Z I
 (17) 280 

where y = N×1 column vector of phenotypic observations, Z = N×n  incidence matrix allocating 281 

phenotypic observations to each individual = identity matrix for one observation per individual (N 282 

= n), N = number of observations, n = number of individuals, b = c×1  column vector of fixed 283 

effects such as heard-year-season in dairy cattle, c = number of fixed effects, X = N×c  model 284 

matrix of b, e = N×1 column vector of random residuals, 2
eσ  = residual variance, and 

f

ii=1
G G  285 

(Equation 7). The phenotypic values (y) are assumed to follow a normal distribution with mean 286 

Xb  and variance-covariance matrix of V. The methods described below for genomic estimation 287 

and prediction are based on the conditional expectation (CE) method, which is more efficient 288 
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computationally than the methods based on mixed model equations (MME) when the number of 289 

genetic effects is greater than the number of individuals [9, 27].  290 

For Model-I with 10 effect types, the genomic epistasis relationship matrices can be calculated 291 

using either EGERM or AGERM. However, EGERM or AGERM did not consider intra- and inter-292 

chromosome genomic epistasis relationship matrices that are required by Model-II with 13 effect 293 

types. This research derives intra- and inter-chromosome genomic epistasis relationship matrices 294 

for both EGERM and AGERM. 295 

Intra- and inter-chromosome genomic epistasis relationship matrices 296 

The main derivation of the intra- and inter-chromosome genomic epistasis relationship matrices is 297 

the partition of the numerator of a genomic epistasis relationship matrix into intra- and inter-298 

chromosome numerators. The first step is to derive the intra-chromosome numerator, and the 299 

second step is to derive the inter-chromosome numerator as the difference between whole-genome 300 

numerator and the intra-chromosome numerator. The last step is to divide the intra-chromosome 301 

numerator by the average of the diagonal elements of the intra-chromosome numerator, and to 302 

divide the inter-chromosome numerator by the average of the diagonal elements of the inter-303 

chromosome numerator. Using this procedure, intra- and inter-chromosome epistasis relationship 304 

matrices were derived for both EGERM and AGERM (Supplementary Text 1). 305 

Genomic best linear unbiased prediction (GBLUP) and reliability 306 

Based on the multifactorial genetic model of Equations 16 and 17, the GBLUP of the genetic 307 

values of the thi  effect type ( iû ) and the best linear unbiased estimator (BLUE) or generalized 308 

least squares (GLS) estimator of fixed effect ( b̂ ) are: 309 

2 1 2
i i i i i

ˆˆ σ ' ( ) σ '  u S Z V y Xb S Z Py ,    i =1,...,f  (18) 310 

1 1 1ˆ ( ' ) '  b X V X X V y  (19) 311 
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where  1 1 1 1' '   
P V V X X V X X V . The GBLUP of total genetic values of the n individuals 312 

is the summation of all types of genetic values: 313 

 
f

ii=1
ˆ ˆ g u  (20) 314 

Reliability of GBLUP is the squared correlation between the GBLUP of a type of genetic values 315 

and the unobservable true genetic values being predicted by the GBLUP. The expected accuracy 316 

of predicting the genetic values by the GBLUP is the square root of reliability, or the correlation 317 

between the GBLUP of a type of genetic effects and the unobservable true genetic effects being 318 

predicted by the GBLUP. In the absence of validation studies for observed prediction accuracy, 319 

reliability or the expected prediction accuracy is the measure of prediction accuracy of the GBLUP. 320 

The reliability of the GBLUP of the total genetic value (Equation 20) of the thj  individual is: 321 

2 jj jj
gjR [ ( ' ) ] / G Z PZ G G  (21) 322 

where 
f f f2 2

i i i i ii=1 i=1 i=1
σ ' σ    iG G TT S  (Equation (36)), 

f fjj jj 2 jj
i i ii=1 i=1

σ  G G S , and 323 

subscript or superscript jj denotes the thj  diagonal element. The reliability formula for any or a 324 

combination of genetic values can be readily derived from Equation 21, e.g., the reliability of 3û  325 

(GBLUP of haplotype additive values) is obtained from Equation 21 by deleting all terms except 326 

3 3( ' )G Z PZ G  in the numerator and 2 jj
3 3σ S  in the denominator, with changes in the V and P 327 

matrices accordingly.  328 

Calculation of GBLUP and reliability for individuals with and without phenotypic 329 

observations separately 330 

Two strategies are available for calculating GBLUP and reliability of Equations 20 and 21.  331 

Strategy-1 is a one-step strategy that include all individuals with and without phenotypic 332 

observations in the same system of equations so that GBLUP and reliability are calculated 333 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2022. ; https://doi.org/10.1101/2022.08.06.503033doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.06.503033
http://creativecommons.org/licenses/by/4.0/


17 
 

simultaneously for all individuals. This strategy essentially augments the mixed model for 334 

individuals with phenotypic observations with a set of null equations consists of ‘0’s but uses each 335 

genomic relationship matrix for all individuals, and these null equations and the use of the 336 

relationship matrix for all individuals do not affect the GBLUP, reliability and heritability of 337 

individuals with phenotypic observations. The advantage of this one-step strategy is the simplicity 338 

of data preparation. For example, for a k-fold cross validation study, the phenotypic input file only 339 

needs to have k columns of the trait observations, with one column for each validation where the 340 

phenotypic observations for the validation individuals are set as ‘missing’ and the X and Z model 341 

matrices for the ‘missing’ observations are set to zero. With this strategy, the genotypic data needs 342 

to be processed only once. As the number of traits increases for validation studies, this one-step 343 

strategy becomes more appealing due to the savings in data preparation work. This strategy has 344 

been implemented in our computing tools of GVCBLUP [30], GVCHAP [31] and EPIHAP [15, 345 

16]. However, when the number of validation individuals or individuals without phenotypic values 346 

is large, each genomic relationship matrix ( iS  matrix) is large and the one-step strategy becomes 347 

more difficult as the number of individuals increases.  348 

For large numbers of calculating GBLUP for individuals with and without phenotypic values 349 

separately is more efficient computationally than calculating GBLUP for all individuals in the 350 

same system of equations by applying Henderson’s BLUP for animals without phenotypic 351 

observations [32] to GBLUP. Let 1n  = number of individuals with phenotypic observations, 0n  = 352 

number of individuals without phenotypic observations, 1 0n n n  , and let the iS matrix be 353 

partitioned as: 354 

i11 i10
i

i01 i00

, i =1,...,f
 

  
 

S S
S

S S
 (22) 355 
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where i11S  = 1 1n n  genomic relationship matrix of the genetic values of the thi  effect type for 356 

individuals with phenotypic observations, i01S  = 0 1n n = genomic relationship matrix of the 357 

genetic values of the thi  effect type between individuals without phenotypic observations and 358 

individuals with phenotypic observations, i10S  = i01 'S  = 1 0n n  = genomic relationship matrix 359 

between individuals with phenotypic observations and individuals without phenotypic 360 

observations, and i00S  = 0 0n n  genomic relationship matrix of the genetic values of the thi  effect 361 

type for individuals without phenotypic observations. In Equations 16 and 17, 1y y , and the Z 362 

matrix needs to be changed to  1Z Z 0 , the iu vector partitioned as  i i1 i0' ' 'u u u , and the 363 

g vector partitioned as  1 0' 'g g g , where 1Z = 1N n  incidence matrix allocating phenotypic 364 

observations to individuals with phenotypic observations, 0 = 0N n  incidence matrix with 365 

elements ‘0’ connecting phenotypic observations to individuals without phenotypic observations. 366 

With these changes and Equation 22, the V matrix of Equation 17 can be re-written as: 367 

f f2 2 2
1 i 1 e N 1 i i11 1 e Ni=1 i=1
( ) ' σ ( σ ) ' σ    V Z G Z I Z S Z I  (23) 368 

and the GBLUP and reliability for individuals with and without phenotypic observations can be 369 

calculated as: 370 

2 1 2
i1 i i11 1 1 i i11 1 1

ˆˆ σ ' ( ) σ '  u S Z V y Xb S Z Py ,    i =1,...,f  (24) 371 

f
1 i1i=1

ˆ ˆ g u  (25) 372 

2 jj jj
g1j 11 1 1 11 11R [ ( ' ') ] / G Z PZ G G  (26) 373 

2 1 2
i0 i i01 1 1 i i01 1 1

ˆˆ σ ' ( ) σ '  u S Z V y Xb S Z Py ,    i =1,...,f  (27) 374 

           2 1 1 1
i i01 i11 i11 1 1 i01 i11 i11 1 1 i01 i11 i1ˆσ ' '    S S S Z Py G G G Z Py G G u ,    i =1,...,f  (28) 375 

f
0 i0i=1

ˆ ˆ g u  (29) 376 
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2 jj jj
g0j 01 1 1 10 00R [ ( ' ') ] / G Z PZ G G  (30) 377 

where i1û = 1n 1  column vector of the GBLUP of the genetic values of the thi  effect type for 378 

individuals with phenotypic observations, 1ĝ  = 1n 1  column vector of the GBLUP of the total 379 

genetic values for individuals with phenotypic observations, 2
g1jR = reliability  for the thj380 

individuals with phenotypic observations, i0û  = 0n 1  column vector of the GBLUP of the genetic 381 

values of the thi  effect type for individuals without phenotypic observations 0ĝ  = 0n 1  column 382 

vector of the GBLUP of the total genetic values for individuals without phenotypic observations, 383 

2
g0jR = reliability  for the thj individuals without phenotypic observations, 384 

f f 2
11 11 i i11i=1 i=1

σ  iG G S , 
f f 2

01 01 i i01i=1 i=1
σ  iG G S , 

f f 2
10 10 i i10i=1 i=1

σ  iG G S , 385 

fjj jj 2
11 i11 ii=1

σG S , and 
fjj jj 2

00 i00 ii=1
σG S . 386 

Equations 27 and 28 yield identical results if 1
i11
S  exists. However, when the number of 387 

individuals is greater than the number of effect levels such as the number of SNPs, 1
i11
S  in Equation 388 

28 does not exist and Equation 27 still can calculate the GBLUP. The usefulness of Equation 28 389 

is showing the GBLUP of individuals without phenotypic observations is the regression of the 390 

genetic values of individuals without phenotypic observations on the genetic values of individuals 391 

with phenotypic observations. The advantage of Equation 27 is that it does not calculate 1
i11
S  and 392 

hence is unaffected by the singularity of i11S . Therefore, Equation 27 is recommended for 393 

calculating GBLUP for individuals without phenotypic observation when the number of such 394 

individuals is large. The GBLUP calculations of Equations 24, 27 and 28 do not involve the 395 

genomic relationship matrix among individuals without phenotypic observations i00S , which is 396 

much larger than i11S  when 1n  is much larger than 0n . The reliability calculation for individuals 397 
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without phenotypic observations (Equation 30) only uses the diagonal elements of i00S , not the 398 

entire i00S . 399 

Advantage of integrated model over separate models 400 

The multifactorial model of Equations 16 and 17 integrating SNP, haplotype and epistasis effects 401 

have the advantage of using more effect types and assessing each effect type based on the 402 

phenotypic values adjusted for all remaining effect types over separate models for SNP, haplotype 403 

and epistasis effects that do not have a mechanism to adjust for effect types not in the model and 404 

each uses a smaller number of genetic effects in the model.  405 

This advantage of the multifactorial model assessing each effect type based on the phenotypic 406 

values adjusted for all remaining effect types can be shown using the MME version of the GBLUP 407 

for the thi  effect type, i.e., 408 

f1 1
j=1i i i i i i i j j
j¹i

f1 1 1 1 *
j=1i i i i j j i i i i bu
j¹i

ˆˆ ˆ( ' ) [ ' ( ' ' )]

ˆ ˆ( ' ) '( ) ( ' ) '

 

   

   

     





u Z Z G Z y Z Xb Z Z u

Z Z G Z y Xb Z u Z Z G Z y
 (31) 409 

f
i ii=1

f *
i i ui=1

ˆ ˆ( ' ) ( ' ' )

ˆ( ' ) '( ) ( ' ) '



 

 

  




b X X X y X Z u

X X X y Z u X X X y
 (32) 410 

where f*
j=1bu j j
j¹i

ˆ ˆ  y y Xb Z u = phenotypic observations adjusted for the fixed effects and all 411 

random genetic values except those of iû , f*
u i ii=1

ˆ y y Z u  = phenotypic observations adjusted 412 

for all random genetic values, and ( ' )X X  is a generalized inverse of 'X X . Equation 31 shows 413 

the MME version of iû  uses the phenotypic values adjusted for the GBLUP of all other effect 414 

types in the model. Since the MME version of iû  (Equation 31) and b̂  (Equation 32) are identical 415 

to the CE version of iû  (Equation 18) and b̂  (Equation 19), the CE version of iû  (Equation 18) 416 
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uses the phenotypic values adjusted for the GBLUP of all other effect types in the model even 417 

though the CE version does not do such adjustments explicitly. 418 

Genomic restricted maximum estimation (GREML) of variances and heritabilities 419 

The estimation of variance components uses GREML and a combination of EM-REML and AI-420 

REML algorithms of iterative solutions. EM-REML is slow but converges whereas AI-REML is 421 

fast but fails for zero heritability estimates. In our GVCBLUP and GVCHAP computing packages 422 

that implement these two algorithms [30, 31], EM-REML is used automatically when AI-REML 423 

fails. The EM-REML iterative algorithm for the multifactorial model of Equations 16 and 17 is: 424 

 2(j+1) 2(j) (j) (j) (j)
i i i iσ σ ' / tr( ') yP ZS Z P y P ZS Z , i =1,...,f    (33) 425 

 2(j+1) 2(j) (k) (j) (j)
e eσ σ / tr( ) yP P y P     (34) 426 

where j = iteration number. The AI-REML iterative algorithm is an extension of the early 427 

formulations [33, 34] to the multifactorial model of Equations 16 and 17: 428 

  1(j+1) (j) (j) (j)
 θ θ AI Δ          (35) 429 

where 2 2 2 2
1 2 f f+1(σ ,σ ,...,σ ,σ ) 'θ  = (f +1)×1  column vector of variance-covariance components, 430 

2 2
f+1 eσ σ  = residual variance, 1 2 f f+1( , ,..., , ) '    Δ  = (f +1)×1  column vector of the partial 431 

derivatives of the log residual likelihood function with respect to each variance component, and j 432 

= iteration number. A typical term in Δ  ( iΔ ) and a typical term in AI ( ikAI ) are: 433 

i 2 2
i i

i i

1 1
Δ tr( ) '

2 σ 2 σ

1 1
tr( ') ' ' , i =1,...,f+1

2 2

 
 

 

  

V V
P y P Py

PZS Z y PZS Z Py

     (36) 434 

ik 2 2
i k

i k

1
AI '

2 σ σ

1
' ' ' ' , i, k =1,...,f+1

2

 


 



V V
y P P Py

y PZ S Z PZS Z Py

      (37) 435 
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where f+1 NS I . For the full Model-I or Model-II, some effect types inevitably may have zero 436 

variances. In those cases, AI-REML (Equations 35-37) fails, and EM-REML (Equations 33 and 437 

34) still converges although slow convergence rate can be expected for the full Model-I or Model-438 

II. Once the effect types with zero variances are removed from the model, AI-REML converges, 439 

and fast convergence rate can be expected. The estimate of the genomic heritability for each type 440 

of genetic effects ( 2
ih ) and the total heritability of all types of genetic effects ( 2H ) are:  441 

2 2 2
i i yh = σ /σ   i =1,...,f  (38) 442 

f2 2
ii=1

H = h  (39) 443 

where 
f2 2 2

y i ei=1
σ = σ +σ  = phenotypic variance.  444 

The heritability estimates of Equation 38 can be used for model selection by removing effect 445 

types with heritability estimates below a user determined threshold value from the prediction 446 

model. Since different traits may have different genetic architectures, we hypothesize that some 447 

traits may involve only a small number of the effect types and some traits are more complex and 448 

involve more effect types, global epistasis may be more important than local high-order epistasis 449 

effects of haplotypes for some traits whereas the reverse may be true for other traits, and some 450 

traits may be affected by both global high-order and local high-order epistasis effects. The 451 

heritability estimates from Equation 37 provide an approach to evaluate these hypotheses and 452 

identify effect types relevant to the phenotypic variance whereas the total heritability of Equation 453 

38 provides an estimate of the total genetic contribution to the phenotypic variance. In addition to 454 

the use of heritability estimates, prediction accuracy based on GBLUP can be used for model 455 

selection by requiring a threshold accuracy level for the effect type to be included in the prediction 456 

model, e.g., we identified the A + A×A model to have the same accuracy of predicting the 457 

phenotypic values of daughter pregnancy rate as the full Model-I in U.S. Holstein cows [15]. 458 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2022. ; https://doi.org/10.1101/2022.08.06.503033doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.06.503033
http://creativecommons.org/licenses/by/4.0/


23 
 

Estimation of pairwise epistasis effect and heritability 459 

The heritability of a SNP, haplotype block or pairwise epistasis effect is the contribution of the 460 

genetic effect to the phenotypic variance and is also the contribution to the heritability of the effect 461 

type, and is estimated through the GBLUP of the corresponding genetic effects. These heritability 462 

estimates can be used to identify genome locations with large contributions to the phenotypic 463 

variance. The estimation of pairwise epistasis effects and heritability is the most demanding 464 

computing because the pairwise epistasis model matrices must be creased and are no longer 465 

avoidable. Estimating the effects and heritabilities for third-order epistasis effects is 466 

computationally unfeasible and is not considered. GBLUP of SNP, haplotype and pairwise 467 

epistasis effects of Model-I (Supplementary Table S1) are calculated as: 468 

2 1
i i i i i iˆ ˆσ ' ' '  τ T Z Py T S u ,    i =1-6  (40) 469 

where iτ̂  is the m×1 column vector of SNP additive effects for i =1 , or SNP dominance effects 470 

for i = 2 ; or b×1  column vector of haplotype additive effects for i = 3 ; or m
2( ) 1  column vector 471 

of A×A epistasis effects for i = 4 , or m
22( ) 1  column vector of A×D epistasis effects for i = 5 , or 472 

m
2( ) 1  column vector of D×D epistasis effects for i = 6 . For i = 5 , the order of A×D and D×A 473 

effects is determined by the order of the model matrices of those effects, i.e., 5 αδ δαˆ ˆ ˆ( ', ') 'τ τ τ  if  474 

5 αδ δα( , )T T T , or 5 δα αδˆ ˆ ˆ( ', ') 'τ τ τ  if  5 δα αδ( , )T T T . The heritability of the thj  effect of the thi  475 

effect type ( 2
ijĥ ) is estimated as a faction of the genomic heritability of the thi  effect type ( 2

iĥ ):  476 

m2 2 2 2 2 2 2 2
ij ij ij i ij i i i ij yi=1

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆh =(τ / τ )h =(τ / ' )h =σ /σ τ τ  (41) 477 

where ijτ̂ = the thj  effect of iτ̂  i =1-6 ;  2
iσ̂  = estimated variance of the thi  effect type; 2

ijσ̂ = 478 

estimated variance of the thj  effect of the thi  effect type; 2
iĥ  = the genomic heritability of the thi  479 
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effect type defined by Equation (52). For proving Equation 57, 2
iσ̂  and 2

ijσ̂  can be formulated 480 

based on the method of mixed model equations (MME), i.e., 481 

i im m2 ii 2 ii 2
i i i i i ij i i ijj=1 j=1

ˆ ˆ ˆ ˆσ = ' /[m tr( )λ ]= τ /[m tr( )λ ]= σ  τ τ C C  (42) 482 

2 2 ii
ij ij i iˆ ˆσ  = τ /[m tr(C )λ ]  (43) 483 

where iiC  is the submatrix in the inverse or generalized inverse of the coefficient matrix of the 484 

MME corresponding to the thi  effect type, im = number of effects of the thi  effect type, and 485 

2 2
i e iˆ ˆλ =σ /σ . Dividing Equation 43 by 2

yσ̂  and multiplying by 2 2
i iˆ ˆσ /σ  yield Equation 41, i.e., 486 

m2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ij ij y i i ij i i y ij ij i ij i i i ij yi=1

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆh = (σ /σ )(σ /σ )= (σ /σ )(σ /σ ) = (τ / τ )h = (τ / ' )h = (σ /σ ) τ τ . 487 

It is readily seen that the sum of all heritability estimates of the thi  effect type is the genomic 488 

heritability of the thi  effect type, i.e., im 2 2
ij ii=1

ˆ ˆh =h . Note that Equations 42 and 43 using MME are 489 

only for proving Equation 41. The MME method is computationally prohibitive for estimating 490 

genetic effects and their variances under the multifactorial model although the MME method yield 491 

identical results as the CE method, which is computationally feasible for genomic estimation and 492 

prediction under the multifactorial model.  493 

Comparison between exact and approximate genomic epistasis relationship matrices  494 

We evaluated the differences between AGERM and EGERM in genomic heritability estimates and 495 

prediction accuracies using a publicly available swine genomics data set that had 3534 animals 496 

from a single PIC nucleus pig line with  five anonymous traits and 52,842 genotyped and imputed 497 

autosome SNPs after filtering by requiring minor allele frequency (MAF) > 0.001 and proportion 498 

of missing SNP genotypes < 0.100 [35]. The EGERM used the method of Jiang and Reif [13] and 499 
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the AGERM methods were described in Supplementary Text 1. The heritability results showed 500 

that EGERM had slightly higher heritability estimates than AGERM except the A×A heritability 501 

of T3 where AGERM had slightly high estimate than EGERM (0.280 vs. 0.278, Table 1). From 502 

Table 1, effect type with nonzero heritability estimates was included in the prediction model for 503 

evaluating the observed prediction accuracy as the correlation between the GBLUP of genotypic 504 

values and the phenotypic values in each validation population and then averaged over all 10 505 

validation populations. The results showed that AGERM and EGERM had the same prediction 506 

accuracy for this swine sample (Table 2). A disadvantage of EGERM is the computing time for 507 

the construction of EGERM, about 9.51 times as much time for pairwise relationship matrices, 508 

8.29 as much time for third-order and 9.44 times as much time for fourth-order as required for 509 

AGERM (Table 3). However, computing time is not the deciding factor for choosing between the 510 

exact and approximate methods, because the multi-node approach that calculate each genomic 511 

relationship matrix in pieces and adds those pieces together can reduce the computing time to an 512 

acceptable level when multiple threads/cores are available and the two-step strategy can be used 513 

so that each genomic relationship is calculated only once for different traits and validation 514 

populations [31]. Prediction accuracy is the ultimate deciding factor for choosing between different 515 

methods. We reported results of comparing AGERM and EGERM using 60,671 SNPs and 22,022 516 

first-lactation Holstein cows with phenotypic observations of daughter pregnancy rate, showing 517 

that AGERM and EGERM had the same heritability estimates and prediction accuracy, but 518 

EGERM required 21 times as much computing time as required by AGERM, which required 1.32 519 

times as much time for the genomic additive relationship matrix [15]. The combined results of the 520 

swine and Holstein samples indicated that EGERM and AGERM had similar results and that the 521 

computing difficulty of EGERM over AGERM increased rapidly as the sample size increased. 522 

Given the computing difficulty of EGERM and the negligible differences between EGERM and 523 
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AGERM in prediction accuracy, AGERM should be favored for its mathematical simplicity and 524 

computing efficiency at least for samples with 50,000 SNPs or more.  525 

Numerical demonstration 526 

The methods of genomic epistasis relationship matrices based on the additive and dominance 527 

model matrices, GREML, GBLUP and reliability, and estimation of effect heritability are 528 

demonstrated using a R program (DEMO.R) and a small artificial sample for the convenience of 529 

reading the numerical results (Supplementary Text S2 and R program). Because of the artificial 530 

nature and the extremely small sample size, this numerical demonstration does not have any 531 

genetic and methodology implications and is for showing calculations of the methods only. This 532 

R program is an extension of the R demo program of GVCHAP that integrates SNP and haplotype 533 

effects and has a computing pipeline for producing the input haplotype data from the SNP data 534 

[31]. 535 

 536 

  537 
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CONCLUSION 538 

The multifactorial methods with SNP, haplotype and epistasis effects up to the third-order provide 539 

an approach to investigate the contributions of global low-order and local high-order epistasis 540 

effects to the phenotypic variance and the accuracy of gnomic prediction. Genomic heritability of 541 

each effect type from GREML and prediction accuracy from validation studies using GBLUP can 542 

be used jointly to identify effect types contributing to the phenotypic variance and the accuracy of 543 

genomic prediction, and the GBLUP for the multifactorial model with selected effect type can be 544 

used for genomic evaluation. With many capabilities including the use of intra- and inter-545 

chromosome separately, the multifactorial methods offer a significant methodology capability to 546 

investigate and utilize complex genetic mechanisms for genomic prediction and for understanding 547 

the complex genome-phenome relationships. 548 

 549 
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SUPPLEMENTARY MATERIAL 

Text S1. Quantitative Genetics Models and Genomic Epistasis Relationship Matrices 

Text S2. Numerical Demonstration 

R program. DEMO.R for Numerical Demonstration 

TABLE S1 | Notations of the quantitative genetics (QG) model, reparameterized and equivalent 

QG (RE-QG) model, and multifactorial (MF) model. 
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Table 1 | Genomic heritability estimates of additive, dominance and epistasis effects up to 
the third-order for five traits in a swine population 

 Trait 

 T1 T2 T3 T4 T5 
Effect Exact genomic epistasis relationship matrices (EGERM) 
A 0.023  0.217  0.131  0.336  0.366  
D 0.000 0.013  0.000 0.000 0.052  
A×A 0.046  0.186  0.278  0.017  0.054  
A×D 0.000 0.000 0.091  0.000 0.000 
D×D 0.000 0.000 0.091  0.000 0.000 
A×A×A 0.000 0.000 0.000 0.000 0.000 
A×A×D 0.000 0.000 0.079  0.000 0.000 
A×D×D 0.000 0.000 0.102  0.000 0.000 
D×D×D 0.000 0.000 0.117  0.000 0.000 
Total heritability 0.069  0.416 0.889  0.354  0.471  
Effect Approximate genomic epistasis relationship matrices (AGERM) 
A 0.022  0.215  0.139  0.329  0.360  
D 0.000 0.013  0.000 0.000 0.051  
A×A 0.043  0.176  0.280  0.016  0.050  
A×D 0.000 0.000 0.091  0.000 0.000 
D×D 0.000 0.000 0.090  0.000 0.000 
A×A×A 0.000 0.000 0.000 0.000 0.000 
A×A×D 0.000 0.000 0.075  0.000 0.000 
A×D×D 0.000 0.000 0.095  0.000 0.000 
D×D×D 0.000 0.000 0.109  0.000 0.000 
Total heritability 0.065  0.404  0.879  0.346  0.461  
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Table 2 | Observed prediction accuracy of epistasis models relative to the additive model 
for five traits in a swine population  

 Trait 

 T1 T2 T3 T4 T5 

Prediction accuracy of SNP model 
   A 0.066  0.495  0.326  0.468  0.493 
   A+D 0.056 0.495 0.326 0.468 0.496 

Epistasis model  A+AA  A+D+AA 
A+AA+AD+DD+ 
AAD+ADD+DDD 

A+AA  A+D+AA 

EGERM 
   Prediction accuracy 0.063  0.498  0.336  0.468  0.497 
   Accuracy increase (%)  −4.545  0.606  3.067  0.000  0.202 
AGERM 

   Prediction accuracy  0.063  0.498  0.336  0.468  0.497 
   Accuracy increase (%)  −4.545  0.606  3.067  0.000  0.202 

‘Prediction accuracy’ is the observed prediction accuracy calculated as the correlation between 
the GBLUP of genotypic values and the phenotypic values in each validation population and 
then averaged over all 10 validation populations. ‘Accuracy increase’ is percentage increase of 
the observed prediction accuracy of the epistasis model over the observed prediction accuracy of 
the best SNP model, which was the additive model (A) for T1-T4 and the A+D model for T5. A 
= additive effects, D = dominance effects, AA = A×A effects, AD = A×D effects, DD = D×D 
effects, AAA = A×A×A effects, AAD = A×A×D effects, ADD = A×D×D dominance effects, 
DDD = D×D×D dominance effects. 

 

Table 3 | Computing time (in seconds) for the construction of exact and approximate 
genomic epistasis relationship matrices for a swine population with 3534 pigs and 52,843 
SNPs using 20 threads of the Mangi supercomputer of the Minnesota Supercomputer 
Institute at the University of Minnesota.  

Genomic epistasis relationship matrices Pairwise Third_order Fourth_order 
EGERM 666 796 1256 
AGERM 70 96 133 
EGERM/AGERM 9.51 8.29 9.44 
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