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Summary statement 1 

Explanation of different responses against single positional information by different 2 

algorithms for two types of growth modes. 3 

 4 

 5 

Abstract 6 

Regulation of positional information in fields with different sizes are known as 7 

scaling in the area of morphogenesis, and enable integrated and robust developmental 8 

processes. Although it is known that interpretation of such scaled patterns leads to formations 9 

of relative shapes, the same positional information brings about diversities in morphogenesis. 10 

In this research, a boundary of a two-dimensional shape was constructed by 11 

propagating points and segments connecting them for a description of a growing form. Cell 12 

expansion “with” or “without” cell proliferation were implemented using different simple 13 

algorithms, as “additive growth” and “expansive growth”, respectively. When the different 14 

types of growth algorithm with a biased restriction were calculated, the additive growth 15 

maintained a relative shape corresponding to the gradients with different lengths. However, 16 

diverse shapes were generated by the gradients in the cases of expansive growth and its 17 

combinations even with negate effects by additive growth. As an operative example of this 18 

attempt, leaf shapes with smooth margins were calculated using a combination of these 19 

growth algorithms. 20 

Finally, we concluded that different algorithms brought different responses against the 21 

simple positional information, i.e., additive growth always governed by it or expansive 22 

growth can escape it. It was predicted theoretically that an expansive growth has a capacity to 23 

become a generator of diversity at least in leaf morphogenesis. 24 

 25 

Introduction 26 

 Developmental processes are reproduced. For this purpose, a positional information 27 

need to be read out identically. It is well known that small plteus larvae can be obtained from 28 

half embryos of sea urchin (Driesh, 1892). Similar phenomena have also been observed in 29 

Salamandridae embryos (Spemann, 1938), among other organisms. Therefore, robust shaping 30 

can be achieved even with different sizes of positional information. If so, how we can obtaine 31 

diversity? 32 

In the context of such regulative developments, dynamic adjustments of axial patterns 33 

to embryonic sizes have been reported (Cooke, 1981). Such regulation of positional 34 

information is known as “scaling” (Schmid-Nielsen, 1984). The mechanisms for the scaling 35 

of positional information have been treated theoretically (Murray, 2001), then investigated in 36 

several model systems on a molecular level as summarized in (Capek and Müller, 2019). 37 

To obtain robust shape from such scaled patterns as positional information, relative 38 

shaping is needed during outline-shaping processes. Cell or tissue determination or 39 

differentiation processes based on positional information were also discussed theoretically as 40 

interpretation of French Flag by (Wolpart, 1969), and a biochemical analogue-to-digital 41 

converter by (Meinhardt, 1982), among others. Experimental systems, e.g., a proximo-distal 42 

sequence of cartilage structure in chick limbs (Summerbell, 1973; Morishita et al., 2014), and 43 

insect legs, and so on were selected to address this problem. However, information regarding 44 

the robustness in two-dimensional outline-shaping processes is still insufficient. 45 

Formations of plant leaves also follow the shaping robustness. However, at a same 46 

time, morphological diversities are derived from differences in positional information. For 47 
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example, it is known that a difference in the boundaries of basal growth zones influence on a 1 

leaf-shape complexity through a control of marginal outgrowths in their formation processes 2 

(Kierzkowski et al., 2019). Then leaf-shape diversities can also be observed in simple leaves 3 

with an entire margin. For example, the diversity of foliage leaves even within a single plant 4 

is known as a heteroblasty in Arabidopsis thaliana (Tsukaya, 2000). Then the WOX related 5 

change in proportion was suggested in (Zhang et al., 2020). Such diversities may also be 6 

obtained by similar differences in positional information. In this current work, we explore 7 

mechanisms by such proximodistal positional information might affect leaf morphogenesis. 8 

In this research, a simple two-dimensional system of shape boundary was utilized for 9 

descriptions of growing forms, because of the complexity in three-dimensional 10 

morphogenesis including many information and events. The modeling of a leaf formation 11 

was tried in Kuchen et al., 2012 as mentioned cell growth on blade other than peripheral, and 12 

importance of feedback effect was suggested in Hervieux et al., 2016. The description of a 13 

shape boundary for simple leaf with serration was done in (Bilsborough et al., 2011). Then a 14 

similar boundary method constructed by propagating points and segments connecting 15 

adjacent points was previously proposed in (Nakamasu et al., 2014).  16 

In plant morphogenesis, that lack almost cell movements, different growth modes 17 

caused by cell expansions with or without cell proliferations mainly contribute to the 18 

resulting shapes. Therefore, effects of these biological events on a shape formation were 19 

expressed by simple algorithms as additive growth and expansive growth. A linear gradient 20 

starting from the base of a shape was set as the simplest positional information. Then the 21 

effects of difference in gradient lengths were investigated about the respective growth 22 

algorithms. Finally, as an operative example of a combination of these growth modes, leaf 23 

formations without the marginal indentations were calculated. 24 

 25 

Materials and methods 26 

Algorithms for additive and expansive growth  27 

Follow a boundary propagation method (Sethian 1999) that is, space propagation over 28 

time for geometrical deformations, we utilize boundary description in this paper. In our 29 

method, a contour is expressed discretely (i.e., by segments and connection points of them) 30 

then propagation is applied iteratively by updating the connection points (Nakamasu et al., 31 

2014). When the lengths of the segments exceed a threshold through the propagation, the 32 

segments are divided into two. The connection point ������ � �������, 	�����
of the adjacent 33 

�th and �th segments is displaced as ���  � �������
������. Here, for a description of the effect by 34 

cell proliferation, ������� is a velocity and ���
��������� is a local unit vector on an apex pointing 35 

outward from a closed contour. (Fig. 1A). This rule for boundary movement is fundamentally 36 

different from Bilthborough et al. 2011. The cell proliferation results in a local deformation, 37 

subsequently brings a hebetate protrusion. Such a shape can be observed in leaflets of 38 

Eschscholzia californica primordia with similar sizes of cells on the tips (i.e., they seem to be 39 

caused by cell proliferation) (Ikeuchi et al., 2013). The value of ������� is assumed to be 40 

affected by morphogen concentrations at that time, for example, ��  and ��  in adjacent 41 

segments on the contour and/or ��� that is determined in a position unrestricted on the 42 

contour. In this research, it only depends on 	, i.e., ��. Therefore, the growth speed at the 43 

point ��� is determined as a function of ��� � ��� and/or ��. For description of the growth 44 

caused by cell expansion without cell proliferation had been treated in (Nakamasu et al., 45 
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2017), though, for its biased case, the connection point ������ is propagated along the vector 1 

from the geometrical center of the initial condition as ��� � �������
�������. Here, ���

������� is defined 2 

as the vector on each point in the direction mentioned above and with a length of the distance 3 

from the origin is divided by a representative length � of the shape (� is the length of the 4 

tallest vector) (Fig. 3A). Then ������� is also affected by �� in this research. Calculations 5 

are done on the platform Wolfram Mathematica ver. 12.1.1. Then parameters αs, βs, and γs 6 

utilized in simulations are shown in Table 1. Resulted shapes without biase are obtained in 7 

every 5000 iterations then superimposed without alignment in Fig. 1B, J, Fig. 3B. 8 

 9 

Analyses for biased growths  10 

For a biased inhibition of the growth speed, �� decreases linearly corresponding to 11 

the 	-coordinate from the base 	����, and eventually drops to zero at the distal part of the 12 

shape, as shown in Fig. 1C, 13 

�� � � 01 " �	�� " 	�� #⁄           % ��	�� " 	�� # & 1⁄ �
�0 ' �	�� " 	�� # ( 1⁄ � (1) 

Then, ���� � )�1 " ��� for an additive growth and ���� � *�1 " ��� for 14 

expansive growth are utilized in this research. Both modes are constantly repressed by the 	 15 

dependent linear gradient ��, in the same form, but via different constants α and γ, 16 

respectively. As an initial condition, a regular polygon composed of 10, or 20 nodes is 17 

utilized. Resulted shapes are obtained in every 5000 iterations then superimposed aligning 18 

the bottoms in Fig. 1D, F, and Fig. 2A-C, E-G, and Fig. 3D, F, H. 19 

 20 

Simulation for leaf-like shapes  21 

Following the methods of Harrison and Kolar in 1988, a Turing pattern of a 22 

reaction-diffusion (RD) system (Turing, 1952) is utilized to implement an arbitral periodicity, 23 

although the pattern is thought to be biologically induced by a polar auxin transport (PAT). 24 

The utilized condition have a critical wavelength at a selected parameter set, and the 25 

wavelength is stable against growth. The partial differential equations used in the simulation 26 

have linear type reaction terms with limits (Kondo and Asai, 1995). 27 

�+� +� � ,�∆	� � .��, /� " 0�⁄+/ +�⁄ � ,
∆	/ � 1��� " 2/ % (2) 

.��, /� � 3 0   4� " 5/.���

%    �. ( 0��0 ' . ( .�����. 6 .����  (3) 

 28 

1��� � 3 0   7� " 8
1���

%    �1 ( 0��0 ' 1 ( 1�����1 6 1����  (4) 

The parameters used in the simulation are as follows; 9� � 0.2, 9< � 1, ,� � 0.015, 29 ,
 � 0.45, 4 � 0.04, 5 � 0.04, 0 � 0.012, 7 � 0.07, 2 � 0.05, 8
 � 0.025, .��� �30 0.01, and 1��� � 0.05. The periodical positional information by RD is espressed by 31 

different concentrations of component � on respective connected segments �th jth, i.e., �� , 32 ��, …etc. Then the pattern is affected by the gradient �� that work on the diffusivity ,� as 33 ,� �0.1 � 0.9���⁄ . Therefore, the wavelength become long and finally pattern disappear for 34 
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the deficient of ��. This would strongly change the local outgrowths of the contour. The 1 

parameter-set yields a stable splitting with domain extensions as similar shown in (Nakamasu 2 

et al. 2014). 3 

For a leaf-like shape, a combination of above two growth algorithms is utilized.  As 4 

mentioned in (Bilsborough et al. 2014), the propagation is periodically changed on the 5 

boundary, in the model for leaf serration of A. Thaliana. In this research, the boundary 6 

propagation of additive growth is periodically inhibited by the periodic pattern. A gradient, 7 

that composed in the leaf model by (Bilsborough et al. 2014) inhibited a periodical growth on 8 

the margin, although, the gradient activates the periodical pattern formation in this research 9 

(i.e., activation of the biased restriction of additive growth with periodicity), and the gradient 10 

also inhibits the expansive growth. The speeds set as ���� � )�1 " ��� � ��� 2⁄ � for 11 

periodical additive-growth, then ���� is same as the form mentioned above for the 12 

expansive growth. Resulted shapes are obtained in every 10000 iterations then superimposed 13 

aligning the bottoms in Fig. 4A, B. 14 

 15 

Results 16 

Plant morphogenesis is known to lack drastic cell movements. Therefore, in cell 17 

based growth the existence of cell proliferation greatly affect the shaping processes. 18 

Boundary growth keeps the polygon with straight line by expansion, though cell proliferation 19 

can absorb the straightness with local deformation. The difference in the involvement of cell 20 

proliferation was implemented in a boundary of a growing form by simple algorithms as 21 

different growth modes (Fig. 1A, Fig. 3A). The algorithms are named as additive growth and 22 

expansive growth, respectively. The shapes that can be generated by these algorithms were 23 

explored, as follow. 24 

Relative shapes were obtained against uniaxial positional information with different 25 

lengths in the additive growth algorithm 26 

In the algorithm for additive growth, a contour was expressed by the closed polygon 27 

composed of a set of points and segments, what connect two adjacent points. Each point 28 

propagated over time to the centrifugal side along its normal vector (Fig. 1A). When the 29 

length of a segment exceeded a threshold by the propagation, the segment was divided. If an 30 

initial condition was given as a regular-polygon arrangement composed of 10 nodes, the 31 

shape grew with a constant ) as the propagation speed. The propagated boundaries keeping 32 

smooth curves were superimposed in Fig. 1B as a time-series. 33 

Next, a uniaxial linear-gradient with a length # was added as stable positional 34 

information to this system (Fig. 1C). Subsequently, a symmetrical growth from a regular 35 

polygon (includes 20 nodes) was biased (Fig. 1D). If the gradient (starting from the base) had 36 

a function to suppress the growth, the shape grew laterally. It was caused by a continuous 37 

suppression of the local growth within the # height. As a result, it became an oval shape 38 

with a long horizontal-axis. Three trials of calculation against a geometric sequence of 39 # � #B���# � 10, B � 2, C ' 3� were shown in Fig. 1D. The calculations were continued 40 

until the number of segments over 200, in these trials. The time-series with their respective 41 C’s seemed to include similar shapes. A contour with a different size was observed in an 42 

earlier time of another time-series with a smaller C (i.e., these time-series till a certain time 43 

seemed to be nested). When the calculation of each trial was extended until the number of 44 

segments had reached the values of B�� of 200 for respective Cs, the boundaries had an 45 
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asymptotically equivalent shape (Fig. 1F). 1 

When horizontal to vertical (H/V) ratios were obtained as an allometric index of these 2 

shapes, the H/ V ratios increased with an increase in the number of line segments (Fig. 1E, 3 

Fig. 1G). Then, the overlap of the plots could be confirmed when the lengths were 4 

standardized with # (Fig. 1H). Therefore, obtained shapes were relative to the #s; each 5 

length of gradient. 6 

In the case of a periodical growth on the boundary (Fig. 1I), the relative shaping can 7 

also be obtained (Fig. 1J). A characteristic rule mentioned in (Nakamasu et al., 2014; 8 

Nakamasu et al., 2017, Nakamasu and Higaki, 2019) was followed in the branch 9 

arrangements caused by positional information with different wave lengths of periodicity. 10 

Therefore, this additive growth algorithm seemed to give similar shapes in the 11 

morphogenesis. That is, relative shaping could be observed as the percentage of # that was 12 

determined by ��-related positional information. 13 

 14 

A shaping robustness was observed against different shapes of initial condition in the 15 

additive growth algorithm 16 

Although the shape was updated at each step, relative shapes could be obtained to the 17 

length of gradients for the uniaxial restriction of additive growths. These growing shapes 18 

were regarded as robust against difference in sizes of initial conditions, and time- and 19 

spatial-intervals for calculations, i.e., the propagation speed α and the segment threshold �E  20 

with #-scalings, in a certain range. 21 

Considering about initial conditions, symmetrical growths from a regular polygon 22 

with 20 nodes weren’t hardly disturbed within the early calculation steps. Because the effects 23 

of the gradient were small enough on a small shape when it was compared with the gradient. 24 

Even in the cases of the polygon shape as an initial condition was changed to wider or taller 25 

polygonal ring, shaping robustness was also observed (Fig. 2A-C). However, obtained shapes 26 

were slightly affected by the initial conditions (Fig. 2D). A 20-nodes polygon with a 2:1 H/V 27 

ratio resulted in a longer horizontal axis than the others, and a polygon with a 1:2 H/V ratio 28 

resulted in a shape with a longer vertical axis than the others. When the simulation was 29 

started from a square or an up- or a down-ward-pointed triangles, the obtained shape also 30 

affected by the initial condition (Fig. 2E-G). Though, they approached the asymptotically 31 

equivalent shape that starting from a regular polygon (Fig. 2A). That is, the robustness during 32 

shaping processes could be obtained against different shapes of initial conditions.  33 

A comparison of plots of aspect ratios in these shapes showed a greater overlap 34 

between the down-ward-pointed-triangle case and the square case (Fig. 2H). It was obvious 35 

that the lower side (with less propagation by a biased restriction) was more robust to the 36 

change in shapes. 37 

Therefore, it was found that a uniaxial gradient was sufficient to regulate a 38 

two-dimensional shape. It was then considered that the restrictions of growth speed were 39 

effective for the shaping robustness. 40 

 41 

A shaping variation was obtained by a difference in lengths of inhibitory gradients in 42 

this expansive growth algorithm 43 

In the case of expansive growth, connection points in a closed polygon were 44 

propagated along the vectors from the geometric center of the initial condition. As a result, 45 

divided triangles in the polygon that share each apex at the geometrical center were 46 

magnified then the growth kept shape similarity. A set of 10 segments arranged as a regular 47 
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polygon for the initial condition, the shape was simply magnified, although the edges 1 

composed of some line segments because, initial segments were divided in several times into 2 

two segments when it exceeded a threshold. They sustained straightness (Fig. 3B), while 3 

additive growth bend it. Even though each propagation proceeded at a constant rate *, the 4 

magnification process was accelerated by extending vectors referenced. To remove the 5 

acceleration, the vectors were normalized by the representative; i.e., tallest, vector. 6 

The time-series of growing shapes by the expansive growth with inhibitory gradients 7 

were shown in Fig. 3D. A uniaxial linear-gradient with a length # was added as positional 8 

information to this system. Three trials of calculation for each # in geometric sequence of   9 # were done. Each initial polygon (composed of 20 nodes) seemed to grow taller with the 10 

biased growth. Because the differences between the lengths of adjacent vectors were 11 

emphasized during the growing shape within the gradient. 12 

When the aspect ratio was plotted against the number of segments in a contour, the 13 

time series was decreased from a value of 1 for extension along the vertical axis. The 14 

declining plot showed a similar transition rate within each gradient (Fig. 3E). Subsequently, 15 

when the growing shapes escape the gradient, they started to expand maintaining the 16 

proportion at that point. Therefore, boundaries with a similar shape were commonly observed 17 

among these time-series with the respective C’s. A shape with a different size observed at an 18 

earlier time of the time series with a larger C (i.e., the time series seemed to be nested in 19 

reverse order of the case of additive growth). 20 

Therefore, in this expansive algorithm, it was found that the difference in the lengths 21 

of inhibitory gradient will be converted to a diversity in shaping. 22 

 23 

The shaping variation caused by the expansive growth algorithm was not cancelled even 24 

in combinations of additive growths 25 

When the expansive growth was combined with additive growth with or without biase 26 

(Fig. 3C), the time-series of shapes obtained by different #, showed no longer similar (Fig. 27 

3F-I). The shape variation, i.e., oblong diversity caused by the expansive growth algorithm, 28 

were not cancelled even with the negate effects by the additive growths. Therefore, the 29 

changing shape did not show a shaping robustness corresponding to the length of the gradient. 30 

In the H/V ratios plotted against the number of line segments within a contour, the ratios first 31 

decreased with overlap then increased at respective timings, as shown in Fig. 3G, I. A larger 32 C thus has a longer vertical axis within these ranges.  33 

In the case ofleaf shape formation, such a combination of growth modes seems to be 34 

operative. Mixtures of cell sizes observed in marginal serrations in A. thaliana leaves 35 

(Kawamura et al., 2010) indicate the existence of cell expansions accompanied by cell 36 

proliferations i.e., a combined growth modes mentioned above. As shown in (Bilthborough et 37 

al., 2011), periodical growth at the margin and the bias of the growth rate were incorporated 38 

together for description of leaf development. Difference in the biased positional information 39 

is known to be important for a particular shaping in actual leaves. That is, the boundary of the 40 

graded basal growth zone can change the complexities of the leaf shape (Kierzkowski et al., 41 

2019).  42 

It was considered the cases even in entire leaves. When the gradient lengths were 43 

fixed within about double wavelengths (i.e., # F 2G) of the periodic pattern, entire leaf-like 44 

shapes with smooth margin could be obtained autonomously. G is the critical wavelength of 45 

a Turing pattern that caused by interactions between � and / (Miura and Maini, 2004), 46 

then it was derived as ~8.8 in this parameter set. In Fig. 4A, B, both leaf shapes were simple 47 
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within the entire margins, although, these leaves indicated different proportions by different 1 #s. The longer bias resulted in a narrower proportion, as expected from the above result of 2 

combination in Fig. 3F, H. The change in the aspect ratios (Fig. 4C, D) were also follow the 3 

result of combined case in Fig. 3G, I. These effects of additive growth were not linear in this 4 

case (as shown in the graphs in Fig. 4A, B), though, a difference in the proportions was 5 

obtained certainly by the expansive growth that encouraged by inhibitory gradients with 6 

different lengths. 7 

It was confirmed that when the expansive growth read out inhibitory gradients, it 8 

became a generator of diversity in terms of shape, as well as in the case of the combination of 9 

the algorithms. Leaf-like shapes with different proportions were regenerated by different 10 

lengths of the gradient in simulations of combined growth modes. 11 

 12 

Discussion 13 

In this research, different algorithms, based on different growth modes, and their 14 

combinations were examined to considering the morphogenetic problems related to response 15 

to positional information. These growth modes, cell expansion with or without cell 16 

proliferation, were implemented with simple algorithms, additive and expansive, respectively. 17 

During these trials, uniaxial gradients with different lengths were given as the positional 18 

information for biased restrictions of additive (Fig. 1) and/or expansive (Fig. 3) growths. 19 

In the additive growths, relative shapes correspond to the length of the gradient was 20 

observed (Fig. 1D-J, Fig. 2). The relative shaping was maintained against spatial- and 21 

temporal- difference in intervals of the calculations (Fig. 1F-H). Then the shaping similarity 22 

could also be obtained against different lengths of periodicity on the margins (Fig. 1I,J). It 23 

may seem geometrically self-evident, though the robustness of growing shapes from different 24 

sizes and shapes of initial conditions (Fig. 2) indicates a two-dimensional effect on shaping 25 

by positional information of uniaxial gradient. The obtained shape resembled a bacterial 26 

colony grown on inhomogeneous environment (Tasaki et al., 2017), that seems to be brought 27 

by the proliferations of linked cells on the edge. Such regularities to positional information 28 

may follow the morphogenetic robustness in development and regeneration as described in 29 

(Thompson, 1917; Niklas, 1994; Fujiwara et al., 2021), and so on.  30 

It is known that activated area in a reaction-diffusion pattern is approximately 31 

proportional to total size even though it can be affected by boundary condition as discussed in 32 

(Gierer and Meinhardt, 1972) and reviewed in (Chapek and Müller, 2019). Therefore, actual 33 

positional information usually sets into the intended domain as an effect of scaling. Though, 34 

the positional information in this study was a uniaxial gradient that ignore the size of the 35 

object, the characteristic shape of additive growth became obvious when the boundaries grow 36 

over the lengths of the gradients. In Fig. S1, we show a case of shift of the positional 37 

information from without (�� � 0) inhibition when the shape within length β to a gradient 38 

when it over the length. This trial did not affect the results obtained. Such positional 39 

information is exist especially in leaf developments (Kazama et al., 2010, Tsukaya, 2013, 40 

Nakayama et al., 2014). That is, in actual leaf, it seemed that cell proliferation dosen’t biased 41 

in their early stage of formation within a boundary of cell cycle arrest front (AF).  42 

However, the same gradient became a generator of various shapes in the case of 43 

expansive growth implemented as an algorithm (Fig. 3D, E). Differences in initial conditions 44 

or in propagation speeds will also change the shapes obtained. Even in a combination with 45 

the additive growth, the expansive growth kept the capacity to generate shape variation, 46 

accompanied by a loss of the regulation to the gradient (Fig. 3F-I). Therefore, the additive 47 
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always governed by the gradient, though, the expansive which can escape it. However, these 1 

shapes still maintain robustness if the set of parameters is fixed. A same shape can be 2 

obtained repeatedly by an appropriate adjustment of the set of parameters. 3 

Entire leaves with different proportions were reproduced by the combination of both 4 

modes with a difference in lengths of graded positional information (Fig. 4). The molecular 5 

mechanism for such difference was suggested in (Kierzkowski et al., 2019), then we treated 6 

“growth” of different modes expressed by simple algorithms. The different modes are 7 

considered caused by difference in progressions of tissue differentiation, in where the 8 

corresponding cells were located. In this case the positional information will be read-out to 9 

the boundary between cell proliferative phase and cell expansions after determination, known 10 

as AF on leaves in A. thaliana (Donnelly et al., 1999; Kazama, et al., 2010). Several 11 

molecules on the leaf blade are known to be related to the boundary determination of the 12 

plate meristem (Tsukaya, 2021). There are several examples that shows perturbations of such 13 

positional information change leaf proportions (Horiguchi et al., 2005; Kawade et al., 2010). 14 

Then differences in size and shape among other simple leaves are known to be derived from 15 

allometric growth patterns along with proximo-distal axis (Gupta & Nath, 2015). It was 16 

considered that the difference in proportions might be caused by the axially biased 17 

expansions at the different ranges, though, the combination of the boundary growths was not 18 

simple, i.e., a combination of a biased periodicity and graded uniaxial expansions. 19 

As a biological relevance of this model, the hebetate protrusions that obtained by 20 

local growth in the additive growth algorithm (Nakamasu et al., 2014) can be observed in 21 

actual leaflets (Gleissberg, 2004, Ikeuchi et al., 2013) and in younger tooth in A. thaliana 22 

(Kawamura et al., 2010). Papaveraceae primordia with a certain difference in cell sizes 23 

shows such shapes in leaflets in early organogenesis stage (Gleissberg et al., 2004). Thought, 24 

it might not be derived from the difference in the tissue maturation states as mentioned in 25 

(Ikeuchi et al., 2013). Therefore, almost similar sizes of cells on the tips of the primordia 26 

might be caused by repeated cell proliferations that were described by the additive growth 27 

algorithm. Furthermore, the combined growth modes confirmed as mixed cell sizes is known 28 

to result in pointed protrusions observed in leaf serration in A. thaliana (Kawamura et al., 29 

2010). Similar pointed shapes can be observed in unicellular algae, then it was treated with 30 

decrease in spacing in a developmental model (Laccalli and Harrison, 1987; Holloway and 31 

Harrison, 1999). However, the cases with bias had not been investigated. D’Arcy Thompson 32 

dealt with leaf shape in chapter IX of his book “On Growth and Form” (Thompson, 1917). In 33 

this chapter, he said that the balance between radial and tangential growth velocities is 34 

important for the leaf shapes exemplified in the Fig. 127. The present algorithm for biased 35 

expansion seems to affect this balance. 36 

It was expected that the expansive growth in this study included distortions caused by 37 

the bias as shown in Fig. 8. Magnification of a triangle gives equal extensions of the three 38 

sides; however, it is obvious that magnified triangles with different expansion rates cannot 39 

connect their adjacent apical edges, even though they share basal apices at the geometric 40 

center. In closed contour, these apical edges need to be connected. As shown in Fig. 5A, 41 

polygons with different growth rates in its sides always have slants. i.e., an isosceles shown 42 

as meshed triangle in Fig.5A has slant. It can observe in serrations but it is uncertain whether 43 

it occur in formation of entire leaves. Though the whole shape in schematics of simulations 44 

(Fig.5A) has sharper distal and blunter proximal as frequently sown in leaf shapes. When we 45 

pick up arbitral one of divided triangles in a polygon (Fig. 5B), the apical edge propagates 46 

with some slants. The degree of slants will different with degree of the center angles, 47 
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propagation speeds, and position of the triangle, dependently. As a results, generated 1 

differences in edge lengths and interior angles lead to slants in the shape. These problems yet 2 

have less biological relevance so they need to be addressed in more detail.  3 

 4 

Conclusion 5 

Different algorithms for two types of growth modes brought different responses against 6 

simple positional information, i.e., that always governed by it or that can escape it. It was 7 

predicted theoretically that an expansive growth has a capacity to become a generator of 8 

oblong diversity in leaf morphogenesis. The effect was confirmed even in the combination 9 

case of additive growth with negate effects. 10 
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 9 

Table 10 

Table 1. Parameters utilized in the biased restriction of growth. 11 

 HI�� J HK�� 
Initial 

condition 

Fig. 1B 0.002 - 0 
10-nodes reg.1 

polygon 

Fig. 1D-H 
0.002 

(1-w�) 10, 20, 40 0 
20-nodes reg. 

polygon 

Fig. 1I, J 
0.002 

(1-�u� � u�� 2⁄ ) 
- 0 

10-nodes reg. 
polygon 

Fig. 2A 
0.002 

(1-w�) 10 0 20-nodes reg. 
polygon 

Fig. 2B 
0.002 

(1-w�) 10 0 
20-nodes hl.2 

polygon 

Fig. 2C 
0.002 

(1-w�) 10 0 
20-nodes vl.3 

polygon 

Fig. 2D 
0.002 

(1-w�) 10 0 
20-nodes 
rectangle 

Fig. 2E 
0.002 

(1-w�) 10 0 
12-nodes 

d-p-triangle4 

Fig. 2F 
0.002 

(1-w�) 10 0 
12-nodes 

u-p-triangle5 

Fig. 3B 0 - 0.002 
10-nodes reg. 

polygon 

Fig. 3D,E 0 10, 20, 40 
0.002 

(1-w�) 
20-nodes reg. 

polygon 

Fig. 3F,G 
0.002 

(1-w�) 10, 20, 40 
0.002 

(1-w�) 
20-nodes reg. 

polygon 

Fig. 3H,I 0.002 (10, 20, 40) 
0.002 

(1-w�) 
20-nodes reg. 

polygon 

Fig. 4 
0.0005 

(1-�u� � u�� 2⁄ ) 
10, 20 

0.0005 
(1-w�) 

20-nodes reg. 
polygon 

Notes:1. regular, 2. horizontal long, 3. vertical long, 4. down-pointed-triangle, 5 12 

up-pointed-triangle. 13 
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Figure legends 1 

Fig. 1 An algorithm for expansive growth. 2 

(A) Schematics of propagation of a connection point. Deformation rules of a polygon in 3 

additive growth algorithm was shown. A connection point of two segments that composes a 4 

contour was moved along a unit normal vector of the apex (B) Superimposed time series of 5 

shapes obtained by the additive growth. (C) Schematics of the given gradient and its function 6 

on growth speed are illustrated. The concentration of the substance �� linearly decreased 7 

along the vertical axis from the base of the shape. It functions as a biased restriction of 8 

growth. Then the size of initial condition was superimposed in it. (D) Superimposed time 9 

series of shapes obtained by a geometrical sequence of β � 10, 20, 40 in the additive 10 

growths. Different lengths of the inhibitory gradients resulted in a nested similarity. (E) H/V 11 

ratios plotted against number of segments. (F-H) Shaping robustness corresponding to the 12 

lengths of inhibitory gradient with different length β � 10, 20, and 40. (F) Superimposed 13 

time series till segments had reached the values of 2�� of 200 segments for respective 14 C � 1, 2, 3. Horizontal/vertical ratios were plotted against (G) the number of segments in 15 

each contour and (H) standardized heights of the shapes. 16 

(I, J) Shaping robustness corresponding to the wave lengths of periodicity that inhibit the 17 

additive growths. (I) Schematics of prophyles of �-distribution and ���� on the peripheral. 18 

(J) Superimposed time series of boundaries obtained by an additive growth with periodical 19 

inhibition on the margin. The periodic patterns as each positional inhibition were generated 20 

by a reaction-diffusion system with different scale parameters (Murray, 2001). 21 

 22 

Fig. 2 A shaping robustness was observed against a shape difference in initial 23 

conditions. 24 

Examples of superimposed time series of shape boundaries from each trial of additive 25 

growths. Simulations were started from initial conditions with different shapes as (A) regular 26 

polygon, (B) wide- and (C) tall- polygons. (E) square, (F) up-ward-pointed triangle, and (G) 27 

down-ward-pointed triangle. (D), (H) Horizontal/vertical ratios plotted against the number of 28 

segments in each contour. 29 

 30 

Fig. 3 An algorithm for expansive growth and combination with additive growth. 31 

(A) Schematics of propagation of a connection point. Vector from the geometrical center of 32 

the initial condition in expansive growth algorithm. (C) Schematics of the biased expansive 33 

growth and their combinations. (D, F, H) Superimposed time series of shapes obtained by a 34 

geometrical sequence of β � 10, 20, 40 in the expansive growths (D) and combinations 35 

with additive growths with biase (F) and without biase (H). (E, G, I) H/V ratios plotted 36 

against number of segments. (E) expansive growth, and combinations with biased (G) or 37 

unbiased (I) additive growths.  38 

 39 

 40 

Fig. 4 Leaf-like shapes with different proportions generated by inhibitory biases in 41 

combination of additive- and expansive- growths.  42 

Examples of superimposed time series of shape boundaries obtained by a simulation result of 43 

leaf like shape (A, B). (A) Shorter bias with β � 10 and (B) longer bias with β � 20. The 44 

gradient lengths were set within a triple the length of marginal periodicity. In their 45 

right-hands, distributions of two kinds of speed (�� and ��) in each last frame were shown 46 

in respective graphs. These distributions along the margin from the proximal to the distal of 47 
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each shape were plotted. Uppers are ���� for additive growth and lowers are ����  for 1 

expansive growth. Dashed lines indicate α of   ���� and γ of ����, respectively. (C) 2 

The time-series plot of H/V ratios and (D) H/V ratios plotted to the number of segments in 3 

the contour. 4 

 5 

Fig. 5 Illustration of slants included in biased expansive growth. 6 

(A)Superimposed magnified triangles with graded growth rates and expected results of biased 7 

expansion in this study. Former are shown by solid lines, and the latter are indicated by 8 

dashed lines. An initial isosceles (meshed triangle) become slant with change in lengths of 9 

the sides. (B) One of the divided triangles in a polygon. The apical edge propagates with 10 

some slants in the gradient (gray shade). The change in the directions of edges (the points at a 11 

start and when the edge escaped the gradient) were shown by two axes with a curved allow. 12 
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