Indoxyl Sulfate, a Uremic Toxin, Induces Trained Immunity of Monocytes through the AhR-Dependent Arachidonic Acid Pathway

3

Hee Young Kim^{1,2,*}, Dong Hyun Kim³, Su Jeong Lee³, Yeon Jun Kang³, Gwanghun Kim⁴,
Hyun Mu Shin^{4,5}, Hajeong Lee⁶, Tae-Hyun Yoo⁷, and Won-Woo Lee^{1,2,3,8,*}

- 6
- 7 ^{1.} Department of Microbiology and Immunology, Seoul National University College of
- 8 Medicine, Seoul 03080, Republic of Korea.
- ⁹ ^{2.} Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul
 03080, Republic of Korea.
- ^{3.} Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences,
- 12 and BK21Plus Biomedical Science Project, Seoul National University College of Medicine,
- 13 Seoul 03080, Republic of Korea.
- ⁴ Department of Biomedical Sciences, College of Medicine and BK21Plus Biomedical
- Science Project, Seoul National University College of Medicine, Seoul 03080, Republic ofKorea.
- ^{5.} Wide River Institute of Immunology, Seoul National University, Hongcheon 25159,
- 18 Republic of Korea.
- ⁶ Division of Nephrology, Department of Internal Medicine, Seoul National University
- 20 Hospital, Seoul 03080, Republic of Korea.
- ²¹ ^{7.} Division of Nephrology, Department of Internal Medicine, Yonsei University College of
- 22 Medicine, Seoul 03722 Republic of Korea.
- ⁸ Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine; Seoul
- National University Hospital Biomedical Research Institute, Seoul 03080, Republic of Korea.
- 26 27
 - * contributed equally
- 28 29

30 Correspondence

- 31
- 32 Won-Woo Lee D.V.M., Ph.D.
- 33 Professor,
- 34 Department of Microbiology and Immunology
- 35 Department of Biomedical Sciences
- 36 Seoul National University College of Medicine
- 103 Daehak-ro, Jongno-gu, Seoul 03080, South Korea.
- 38 Tel) +82-2-740-8303, Fax) +82-2-743-0881
- 39 E-mail) <u>wonwoolee@snu.ac.kr</u>
- 40
- 41 Hee Young Kim Ph.D.
- 42 Research Professor,
- 43 Department of Microbiology and Immunology
- 44 Seoul National University College of Medicine
- 45 103 Daehak-ro, Jongno-gu, Seoul 03080, South Korea.
- 46 Tel) +82-2-740-8545
- 47 E-mail) <u>hyk0801@hotmail.com</u>

H.Y. Kim et al. Manuscript

48 ABSTRACT

49	Trained immunity is the long-term functional reprogramming of innate immune cells
50	following exposure to various insults that results in altered responses towards a secondary
51	challenge. Indoxyl sulfate (IS) is a potent uremic stimulus associated with inflammation in
52	chronic kidney disease (CKD). However, the impact of IS on trained immunity remains
53	unknown. Here, we find that IS induces trained immunity in monocytes via epigenetic and
54	metabolic reprogramming, resulting in augmented cytokine production upon LPS-
55	stimulation. Further, the aryl hydrocarbon receptor contributes to IS-trained immunity by
56	enhancing expression of arachidonic acid metabolism-related genes ALOX5 and ALOX5AP.
57	Monocytes from end-stage renal disease (ESRD) patients have increased ALOX5 expression
58	and healthy monocytes trained with uremic sera from ESRD patients exhibit increased TNF- α
59	and IL-6 production. Moreover, IS-trained mice have augmented TNF- α production
60	following LPS-stimulation. These results provide insight into the role of IS in trained
61	immunity, which is critical during inflammatory responses in CKD patients.
62	Key Words: Indoxyl Sulfate, Chronic Kidney Disease, Trained Immunity, Aryl Hydrocarbon
63	Receptor, Epigenetic and Metabolic Reprogramming

64 INTRODUCTION

65	Over the last decade, a large body of evidence has demonstrated that innate cells can
66	build up immunological memory resulting in enhanced responsiveness to subsequent
67	stimulation, a phenomenon termed trained immunity ¹ . Compared with classical epitope-
68	specific adaptive immunological memory based on an antigen-receptor, trained immunity of
69	monocytes and macrophages is the long-term functional reprogramming elicited by an initial
70	primary insult, mainly pathogen-associated molecular patterns (PAMPs), which leads to an
71	altered response towards a subsequent, unrelated secondary insult after the return to a
72	homeostatic state ^{2, 3} . It has been well demonstrated that exposure of monocytes or
73	macrophages to Candida albicans, fungal cell wall component β -glucan, or BCG (Bacille
74	Calmette-Guérin) vaccine enhances their subsequent responses to unrelated pathogens or
75	pathogen components such as lipopolysaccharide (LPS) ^{4, 5} . The induction of trained
76	immunity is associated with the interaction of epigenetic modifications and metabolic
77	rewiring, which can last for prolonged periods of time ^{2, 3, 5, 6, 7, 8} . Mechanistically, certain
78	metabolites derived from the upregulation of different metabolic pathways triggered by
79	primary insult can influence enzymes involved in remodeling the epigenetic landscape of
80	cells. This leads to specific changes in epigenetic histone markers, such as histone 3 lysine 4
81	trimethylation (H3K4me3) or histone 3 lysine 27 acetylation (H3K27ac), which regulate
82	genes resulting in a more rapid and stronger response upon a subsequent, unrelated secondary
83	insult ^{2, 3, 4, 7} . In addition, it has been recently reported that long non-coding RNAs induce
84	epigenetic reprogramming via the histone methyltransferase, MLL1. Subsequently,
85	transcription factors such as Runx1 regulate the induction of proinflammatory cytokines
86	following the secondary insult ^{9, 10, 11} .

H.Y. Kim et al. Manuscript

87	Many studies have provided evidence that trained immunity likely evolved as a
88	beneficial process for non-specific protection from future secondary infections ³ . However, it
89	has also been suggested that augmented immune responses resulting from trained immunity is
90	potentially relevant to deleterious outcomes in immune-mediated and chronic inflammatory
91	diseases such as autoimmune diseases, allergy, and atherosclerosis ^{8, 10, 12, 13, 14, 15} . Thus,
92	although most studies have focused on the ability of exogenous microbial insults to induce
93	trained immunity, it is also conceivable that sterile inflammatory insults can evoke trained
94	immunity. In support of this idea, oxLDL, lipoprotein a (Lpa), uric acid, hyperglycemia, and
95	the Western diet have all been recently identified as endogenous sterile insults that induce
96	trained immunity in human monocytes via epigenetic reprogramming ^{8, 10, 12, 13, 16} . Thus, it is
97	tempting to speculate that many endogenous insults that cause chronic inflammatory
98	conditions may be involved in the induction of trained immunity in human monocytes and
99	macrophages.

100 Chronic kidney disease (CKD) is recognized as a major non-communicable disease with increasing worldwide prevalence^{17, 18}. Loss of renal function in CKD patients causes the 101 accumulation of over 100 uremic toxins, which are closely associated with cardiovascular 102 risk and mortality due to their ability to generate oxidative stress and a proinflammatory 103 cvtokine milieu¹⁹. Reflecting this, cardiovascular disease (CVD) is a leading cause of death 104 among patients with end-stage renal disease (ESRD)²⁰. Indoxyl sulfate (IS) is a major uremic 105 toxin derived from dietary tryptophan *via* fermentation of gut microbiota²¹. Since it is poorly 106 cleared by hemodialysis, IS is one of the uremic toxins present at higher than normal 107 concentrations in the serum of CKD patients^{22, 23} and is associated with the progression of 108 CKD and the development of CKD-related complications such as CVD²⁴. We and others have 109

H.Y. Kim et al. Manuscript

110	shown that IS promotes the production of proinflammatory cytokines such as TNF- α and IL-
111	1β by monocytes and macrophages through aryl hydrocarbon receptor (AhR) signaling and
112	organic anion transporting polypeptides 2B1 (OATP2B1)-Dll4-Notch Signaling ^{21, 25, 26} ,
113	suggesting a role of IS as an endogenous inflammatory insult in monocytes and macrophages.
114	Moreover, pretreatment with IS greatly increases TNF- α production by human macrophages
115	in response to a low dose of LPS ²⁵ . Despite the function of IS as an endogenous
116	inflammatory insult in monocytes and macrophages, little is known with regard to whether IS
117	induces trained immunity. Thus, we investigated whether exposure to IS triggers trained
118	immunity in an <i>in vitro</i> human monocyte model and an <i>in vivo</i> mouse model, as well as the
119	mechanisms involved in IS-induced trained immunity. Our data show that IS triggers trained
120	immunity in human monocytes/macrophages via AhR-dependent alteration of the arachidonic
121	acid (AA) pathway, epigenetic modifications, and metabolic rewiring. Thus, this suggests IS
122	plays a critical role in the initiation of inflammatory immune responses in patients with CKD.

H.Y. Kim et al. Manuscript

123 **RESULTS**

124 Indoxyl sulfate (IS) induces trained immunity in human monocytes

125 To explore whether exposure to IS is involved in the induction of trained immunity in human monocytes, an *in vitro* model of trained immunity was applied as previously reported 126 by the Netea group⁴. Freshly isolated human monocytes were preincubated for 24 hrs with or 127 128 without IS and, after a subsequent 5-day culture in human serum, restimulated with lipopolysaccharide (LPS) or Pam3cys for final 24 hrs (Fig. 1A). Preincubation of monocytes 129 with IS led to enhanced production of TNF- α , a major monocyte/macrophage-derived 130 131 inflammatory cytokine, upon LPS stimulation. Since 10 ng/ml of LPS significantly increased both TNF- α and IL-6 secretion in IS-pretreated macrophages (Fig. 1B), we used this 132 concentration of LPS in subsequent experiments. The preincubation effect of IS on cvtokine 133 production was observed at a concentration as low as 250 µM, which is the average IS 134 concentration in patients with ESRD in our cohort (Fig. 1C)²⁵. Unlike IS, preincubation with 135 136 other protein-bound uremic toxins (PBUTs), such as p-cresyl sulfate (PCS), Hippuric acid (HA), Indole 3-acetic acid (IAA) and kynurenic acid (KA), did not cause increased secretion 137 of TNF-α or IL-6 in response to LPS stimulation (Fig. S1A). In addition, there was no 138 139 obvious effect on cell viability following pre-incubation of macrophages with 1,000 µM of IS after a subsequent 5-day culture in human serum or after LPS stimulation (Fig. S1B). We also 140 found that the enhanced cytokine production of IS-pretreated macrophages was not 141 attributable to potassium derived from IS potassium salt (Fig. S1C). Moreover, the increased 142 TNF- α and IL-6 production in IS-pretreated macrophages was not limited to LPS stimulation, 143 144 as similar phenomena were observed following stimulation with Pam3cys, a TLR1/2 agonist (Fig. 1D). β-glucan-pretreated macrophages exhibit a prototypic feature of trained immunity, 145

146	characterized by enhanced production of inflammatory cytokines upon restimulation with
147	heterologous stimuli, LPS or Pam3cys ^{6, 27} . As seen in Figure S1D, the level of TNF- α
148	secreted by IS-pretreated macrophages was comparable with that secreted by β -glucan-
149	trained macrophages, although β -glucan had a more potent effect on IL-6 production than did
150	IS, suggesting that IS plays a role in the induction of trained immunity of human monocytes.
151	In addition to TNF- α and IL-6, mRNA expression of IL-1 β and MCP-1 (CCL2) was
152	significantly increased in IS-pretreated macrophages, whereas the anti-inflammatory cytokine
153	IL-10 was greatly reduced in the same cells (Fig. 1E). These results suggest that IS induces
154	trained immunity in human monocytes, characterized by the increased expression of
155	proinflammatory cytokines TNF- α and IL-6 and reduced expression of anti-inflammatory IL-
156	10 in response to secondary TLR stimulation.

157 *Epigenetic modifications control IS-induced trained immunity.*

The induction of trained immunity relies on two key, closely intertwined 158 mechanisms, epigenetic modification and metabolic rewiring of innate immune cells^{2, 28, 29}. 159 160 We first sought to determine whether increased expression of TNF- α and IL-6 is a result of epigenetic changes. To this end, chromatin modification of histone 3 trimethylation of lysine 161 4 (H3K4me3) at the promoter sites of TNFA and IL6 was analyzed. Chromatin 162 immunoprecipitation (ChIP)-qPCR data illustrate that IS-trained macrophages exhibit 163 enhanced H3K4me3 of *TNFA* and *IL6* promoters by day 6 after IS treatment (Fig. 2A and B). 164 This reflects what was previously demonstrated in trained innate immune cells^{4, 22, 30}. 165 Moreover, IS-mediated enrichment of H3K4me3 was maintained even after secondary 166 stimulation with LPS compared with non-trained cells (Fig. S2A-B). When IS-trained 167 macrophages were pretreated with 5'-methylthioadenosine (MTA), a non-selective 168

169	methyltransferase inhibitor, their production of TNF- α and IL-6 upon LPS stimulation was
170	reversed to baseline (Fig. 2C), implying that IS-induced trained immunity is associated with
171	epigenetic modification. To further elucidate epigenetic modifications in IS-induced trained
172	immunity, we performed a whole-genome assessment of the histone marker H3K4me3 by
173	ChIP-sequencing (ChIP-Seq) in IS-trained cells on day 6. Among 7,136 peaks, 59
174	differentially upregulated peaks and 316 downregulated peaks were detected in IS-trained
175	cells (Fig. 2D and Table S1). To identify the biological processes affected in IS-mediated
176	trained immunity, 59 upregulated peaks in IS-trained macrophages were analyzed through
177	Gene Ontology (GO) analysis with Go biological process and the Reactome Gene Set.
178	Activation of the innate immune response and positive regulation of the defense response
179	were identified as major processes via Go biological process analysis. Further, genes
180	involved in regulation of ornithine decarboxylase (ODC) and metabolism of polyamine were
181	recognized as major gene sets via Reactome Gene Set analysis (Fig. 2E). A genome browser
182	snapshot showing H3K4me3 binding illustrates that H3K4me3 is elevated at the promoters of
183	important target genes associated with activation of the innate immune response, such as
184	IFI16 (interferon-gamma inducible protein 16), XRCC5 (X-ray repair cross-complementing
185	5), and PQBP1 (polyglutamine binding protein 1) and genes linked to the regulation of
186	ornithine decarboxylase (ODC), such as PSMA1 (proteasome 20S subunit alpha 1), PSMA3
187	(proteasome 20S subunit alpha 3), and OAZ3 (Ornithine Decarboxylase Antizyme 3, a
188	protein that negatively regulates ODC activity) (Fig. 2F) ³¹ . Our results show that epigenetic
189	modification of innate immune response-related genes contributes to the induction of IS-
190	trained immunity in human monocytes.

191 *IS-induced trained immunity is regulated by metabolic rewiring.*

H.Y. Kim et al. Manuscript

192	Metabolic rewiring is one of the most crucial processes regulating trained immunity
193	of monocytes and macrophages ³² . Assessment of the metabolic profile of IS-trained
194	macrophages on day 6 (prior to restimulation with LPS) showed that training with IS led to
195	an enhanced extracellular acidification rate (ECAR) as a measure of lactate production and
196	resultantly, glycolysis and glycolysis capacity were increased (Fig. 3A and B). Moreover,
197	basal and maximal respiration and ATP production gauged by the oxygen consumption rate
198	(OCR) were also increased compared to that of non-trained cells (Fig. 3C and D). Enhanced
199	glycolysis and glycolytic capacity in IS-trained cells remained higher even after re-
200	stimulation with LPS (Fig. S2A-B), implying that the IS-training effect on metabolic rewiring
201	is sustained regardless of the secondary stimulation. To further examine whether the
202	metabolic rewiring by IS-trained cells is linked to the regulation of trained immunity, 2-
203	deoxy-d-glucose (2-DG), a general inhibitor of glycolysis, was added to monocytes before
204	training with IS. 2-DG completely inhibited the augmented production of TNF- α and IL-6 in
205	IS-trained macrophages in response to re-stimulation with LPS (Fig. 3E). Our findings were
206	corroborated by the finding that on day 6 IS-trained macrophages showed an enhanced
207	enrichment of H3K4m3 on promoter sites of HK2 and PFKP, major glycolysis-related genes
208	(Fig. S2C). These data demonstrate that IS-trained immunity is linked to metabolic rewiring
209	characterized by both enhanced glycolysis and augmented oxidative respiration.

AhR, a potent endogenous receptor for IS, contributes to the induction of IS-trained *immunity*.

212 Our previous study demonstrated that IS-induced TNF- α production in macrophages 213 is regulated through a complicated mechanism involving the interaction of NF- κ B and 214 SOCS2 with AhR²⁵. To explore the molecular mechanism underlying the regulation of IS-

H.Y. Kim et al. Manuscript

215	trained immunity, we investigated the role of AhR, a potent endogenous receptor for IS.
216	Ligand-bound activated AhR is known to be immediately translocated into the nucleus and
217	rapidly degraded ^{25, 33, 34, 35} . Immunoblot data in Figure 4A shows that IS-mediated
218	degradation of AhR was not fully recovered even on day 6 (prior to restimulation with LPS)
219	and was completely inhibited by treatment with GNF351, an AhR antagonist, on day 6.
220	Inhibition of AhR by GNF351 during IS training suppressed the increase in production of
221	TNF- α and IL-6 following LPS restimulation on day 6 in IS-trained cells (Fig. 4B and C),
222	implying that IS-mediated AhR activation may be involved in trained immunity. In addition
223	to TNF- α and IL-6, enhancement of IL-1 β and MCP-1 mRNA expression in IS-trained cells
224	was also completely inhibited, whereas decreased IL-10 expression was completely reversed
225	by GNF351 (Fig. 4D). To confirm the regulatory role of AhR in trained immunity, we tested
226	whether 6-Formylindolo[3,2-b]carbazole (FICZ), a tryptophan-derived agonist of AhR, also
227	induced trained immunity in human monocytes. FICZ-pretreated monocytes exhibited
228	augmented expression of TNF- α and IL-6 in response to secondary stimulation with LPS
229	compared to non-trained cells (Fig. S4A). Thus, this suggests an important role of ligand-
230	bound activated AhR in the trained immunity of human monocytes. We next examined
231	whether inhibition of AhR with GNF351 influences epigenetic modification and metabolic
232	rewiring. Our ChIP-qPCR assay showed that enrichment of H3K4m3 on TNFA and IL6
233	promoters in IS-trained macrophages was inhibited by GNF351 (Fig. 4E). Of note,
234	assessment of the metabolic profile by measuring ECAR and OCR illustrates that GNF351
235	has no effect on metabolic rewiring, including enhanced glycolysis and mitochondrial
236	respiration, in IS-trained cells on day 6 as depicted in Figure 3 (Fig. S4B-C). This finding
237	was corroborated by the immunoblotting data, which showed GNF351 had no inhibitory
238	effect on IS-mediated enhancement of S6K activity, which is critical for inducing the aerobic

239	glycolysis in hun	nan monocytes/macro	ophages (Fig. S	S4D). Our f	indings suggest that IS-

240 activated AhR is involved in regulating epigenetic modifications of IS-trained macrophages.

241 *AhR-dependent induction of the arachidonic acid pathway is involved in IS-induced*242 *trained immunity*

To explore which molecular mechanism is involved in the induction of IS-trained 243 immunity, we performed RNA-sequencing (RNA-Seq) on day 6 (prior to restimulation with 244 LPS) in IS-trained human macrophages. A total of 218 differentially expressed genes (DEGs), 245 consisting of 71 upregulated and 147 downregulated genes, were identified in IS-trained 246 macrophages compared to non-trained cells (Fig. 5A and B; FC $\geq \pm 2$, p < 0.05). Gene 247 ontology (GO) analysis of these expression data using the Reactome Gene Set is displayed in 248 Figure 5C. IS-trained macrophages had upregulated pathways including those involved in 249 neutrophil degranulation, integrin cell surface interactions, extracellular matrix organization 250 and arachidonic acid metabolism, whereas pathways associated with kinesins, cell cycle, and 251 the $G\alpha(i)$ signaling pathway were downregulated (Fig. 5C). Considering the key role of the 252 arachidonic acid (AA) pathway in many inflammatory disorders, we decided to focus on this 253 pathway in the induction of trained immunity by IS. Our findings were supported by Gene 254 Set Enrichment Analysis (GSEA) using Molecular Signatures Database (MsigDB), in which 255 genes related to AA metabolism were enriched in IS-trained macrophages compared to non-256 257 trained cells and more importantly, upregulated expression of these genes was inhibited by treatment with GNF351 as illustrated by heatmap analysis of major genes related to AA 258 259 metabolism (Fig. 5D and E and Fig. S5E). Among AA metabolism pathways, the leukotriene metabolic process, but not the cyclooxygenase (COX) pathway, was primarily involved in the 260 induction of IS-mediated trained immunity (Fig. S5A). Confirmatory RT-qPCR analysis on 261

262	major AA metabolism-related genes was conducted using IS-trained macrophages obtained
263	from independent, HCs (Fig. 5F). The mRNA expression of arachidonate 5-lipoxygenase
264	(ALOX5: also known as 5-LOX or 5-LO) and arachidonate 5-lipoxygenase activating protein
265	(ALOX5AP: also known as FLAP), the enzymes catalyzing AA into leukotrienes (a group of
266	pro-inflammatory lipid mediators) ^{36, 37, 38} , was higher in IS-trained macrophages than non-
267	trained cells. In addition, the mRNA expression of LTB4R1 (also known as BLT1), a high-
268	affinity receptor for leukotriene B4 (LTB4), was also upregulated. The augmented expression
269	of these AA metabolism-related genes was repressed by GNF351 pretreatment as shown by
270	changes in expression of CYP1B1, a typical AhR target gene. Thus, this suggests that the IS-
271	activated AhR pathway is involved in enhanced AA-metabolism in IS-induced trained
272	immunity. Immunoblot analysis confirmed that the expression of ALOX5 and ALOX5AP is
273	upregulated in IS-trained immunity and is inhibited by GNF351 at the protein level (Fig. 5G).

We previously reported alterations in the transcriptome signature of monocytes 274 treated with IS for 24 hr and ex vivo monocytes of ESRD patients³⁹. Comparison of the fold 275 changes of RNA-Seq data in the present study and microarray data reported previously 276 277 (GSE155325 and GSE155326) revealed that the expression of ALOX5 and LTB4R1 is 278 enhanced in IS-trained macrophages and ex vivo monocytes of ESRD patients, but not in IStreated monocytes, for 24 hr (Fig. S5B). Differential expression of ALOX5, ALOX5AP, and 279 LTB4R1 shown by transcriptome analysis (Fig. S5B) were confirmed by RT-qPCR (Fig. 5F 280 281 and Fig. S5C). To further investigate the roles of the AA metabolism pathway in IS-trained immunity, Zileuton, an ALOX5 inhibitor, and U75302, a BLT1 receptor inhibitor were used 282 during the induction of trained immunity by IS (Fig. S5D). We found that IS-induced TNF- α 283 and IL-6 production were largely suppressed by both zileuton and U75302 (Fig. 5H-I). 284

Therefore, these findings suggest that AA metabolism plays an important role in the inductionof IS-trained immunity.

287	Histone-modifying enzymes such as lysine demethylase (KDM) and lysine
288	methyltransferase (KMT) are linked to the induction of trained immunity by remodeling the
289	epigenetic status of cells ^{3, 4} . However, RNA-Seq data of IS-trained macrophages showed no
290	obvious change in the expression profile of major histone-modifying enzymes (Fig. S6A). In
291	agreement with this, mRNA expression of major histone modifying enzymes including
292	KDM5A, KDM5B, KDM5C, Setdb2, SETD7, and SETD3 were not changed in IS-trained
293	macrophages on day 6 (Fig. S5B) ^{4, 40, 41, 42} . Treatment with MTA, a non-selective
294	methyltransferase inhibitor, partially inhibited expression of ALOX5 and ALOX5AP mRNA
295	(Fig. 5J), suggesting limited epigenetic regulation of the AA pathway (Fig. 5J).

296 Ex vivo and in vivo validation of IS-induced trained immunity

Circulating monocytes have been identified as a major immune cell subset that 297 responds to IS in the serum of ESRD patients^{21, 25}. To examine whether uremic serum induces 298 trained immunity of monocytes/macrophages, pooled sera from ESRD patients ($184 \pm 44 \ \mu M$ 299 of average IS level) or from HCs were used to treat monocytes isolated from HCs for 24 hr at 300 30% (v/v), followed by training for 5 days. Treatment with pooled uremic serum of ESRD 301 patients increased the production of TNF-a and IL-6 upon restimulation with LPS compared 302 to monocytes treated with the pooled sera of HCs (Fig. 6A-B). In addition, expression of IL-303 1β and MCP-1 mRNA was also augmented by treatment with the pooled uremic sera of 304 ESRD patients (Fig. S7A). We next tested whether treatment with uremic serum leads to 305 increased expression of AA pathway-related genes within 6 days (prior to restimulation with 306

307	LPS) as found in IS-trained macrophages. The expression of ALOX5, ALOX5AP, and
308	LTB4R1 mRNA was augmented by treatment with pooled uremic sera of ESRD patients
309	compared with HCs (Fig. 6C), and this augmented expression was maintained after re-
310	stimulation with LPS (Fig. S7B). Since peripheral monocytes in ESRD patients are
311	chronically exposed to uremic toxins like IS, we examined whether ex vivo monocytes
312	purified from ESRD patients before hemodialysis exhibit features of IS-trained macrophages.
313	The expression of ALOX5, but not ALOX5AP, in ex vivo monocytes of ESRD patients was
314	significantly increased at the protein level compared with that of age-matched HCs (Fig. 6D-
315	E). Moreover, monocyte-derived macrophages (MDMs) from ESRD patients also had higher
316	expression of ALOX5 compared to MDMs of HCs (Fig. 6F-G), suggesting that IS in serum
317	of ESRD patients contributes to the induction of trained immunity of
318	monocytes/macrophages.

To examine the biological relevance of IS-trained immunity, we adopted a murine 319 model in which IS was intraperitoneally injected daily for 5 days, followed by training for 320 another 5 days and then restimulation with 5 mg/kg LPS for 75 min (Fig. 6H). The level of 321 TNF- α in serum was increased in IS-trained mice compared to that of control mice (Fig. 6I). 322 323 To further examine the effect of IS-training on innate responses, splenic myeloid cells were isolated after 5 days of training (prior to injection with LPS) followed by in vitro stimulation 324 with 10 ng/ml LPS for 24 h. The amount of TNF-α in the supernatant was augmented 325 326 following culture with LPS-stimulated mouse splenic myeloid cells derived from IS-trained mice compared the control condition (Fig. 6J). Finally, we found that the expression of 327 ALOX5 was upregulated in ex vivo splenic myeloid cells of IS-treated mice compared to 328 control mice (Fig. 6K), similar to what was observed in monocytes and macrophages from 329

H.Y. Kim et al. Manuscript

- ESRD patients (Fig. 6E-G). Together, these data provide evidence for the role of IS and the
- induction of the AA pathway in the establishment of trained immunity of monocytes and
- 332 macrophages both *ex vivo* and *in vivo*.

H.Y. Kim et al. Manuscript

333 **DISCUSSION**

334	The capability to develop adaptive features in innate immune cells, a <i>de facto</i>
335	memory response, is an evolutionarily conserved trait that enhances the fitness of plants,
336	invertebrates, and vertebrates against pathogenic microbes ⁴³ . Conceptually, this innate
337	memory most likely evolved as a beneficial immune process to improve host defense against
338	reinfections ^{3, 44} . Recent studies have shown that BCG-induced trained immunity has
339	protective effects against unrelated secondary infections, both viral and bacterial, including
340	COVID-19 ^{45, 46} . BCG vaccination has also been shown to induce antitumor effects with
341	elimination of cancers including bladder cancer and melanoma through efficient activation of
342	the immune system ⁴⁷ . On the other hand, a maladaptive or successive effect of trained
343	immunity can be potentially detrimental in immune-mediated and chronic inflammatory
344	diseases ¹⁵ . Several studies have reported that endogenous sterile inflammatory insults
345	including ox-LDL, hyperglycemia and uric acid, trigger trained immunity and contribute to
346	chronic inflammation in cardiovascular diseases and gout ^{8, 10, 12, 16} . Here, our study provides
347	evidence that IS, a major uremic toxin, provokes trained immunity in human
348	monocytes/macrophage through epigenetic modification, metabolic rewiring, and AhR-
349	dependent induction of the AA pathway, suggesting its important role in inflammatory
350	immune responses in patients with CKD (Fig. 7).

Chronic kidney disease (CKD) is pervasive, affecting 8-16% of the population worldwide¹⁷. CKD is associated with increased risk factors of cardiovascular disease (CVD) including traditional risk factors, such as hypertension, age and dyslipidemia, as well as nontraditional risk factors, such as oxidative stress and inflammation^{23, 48}. Further, recent cohort studies have shown that CKD is an independent risk factor for CVD⁴⁸. Since CVD is the

356	major cause of death in patients with ESRD, therapeutic manipulation of risk factors
357	associated with CVD is important to reduce the associated mortality and morbidity ^{49, 50} .
358	Uremia accompanying renal failure causes immune dysfunction, which is closely linked to
359	the pathogenesis of CKD-related CVD ⁵¹ . Among over 100 uremic toxins identified, IS is a
360	prototypical protein-bound uremic toxin most likely to be participating in progressive
361	pathophysiology of CVD including endothelial dysfunction, vascular calcification, and
362	increased atherosclerosis ^{21, 26, 49, 52} . Immunologically, IS activates monocytes and
363	macrophages and enhances the production of their proinflammatory cytokines, TNF- α and
364	IL-1β, <i>via</i> AhR signaling ^{21, 25} . IS-induced activation of AhR/Nuclear factor erythroid-2-
365	related factor2 (Nrf2) axis promotes monocyte differentiation into profibrotic macrophages ⁵³
366	and the progression of atherosclerosis and calcification is accelerated by IS-mediated
367	activation of proinflammatory macrophages through Dll4-Notch signaling ²⁶ . Mounting
368	evidence suggests that a prolonged hyperactivation of trained immunity is intimately related
369	to the pathogenesis of atherosclerosis, the major contributor to cardiovascular diseases.
370	Oxidized low-density lipoprotein (oxLDL), hyperglycemia, and the Western diet, all known
371	to be associate with the progression of atherosclerosis, have been reported to induce trained
372	immunity through epigenetic reprogramming ^{8, 10, 12} . These findings suggest that IS plays a
373	role as a typical endogenous inflammatory insult in activating monocytes and macrophages
374	and modulating their responses. Given that IS is difficult to clear by hemodialysis, this toxin
375	has a chronic effect on the immune system of patients. Nonetheless, little is known about the
376	effects of IS on trained immunity.

Our previous studies have revealed that pretreatment with IS markedly augmented
 TNF-α production by human macrophages in response to a low dose of LPS and IS-bound

379	AhR activation is likely linked to this phenomenon ²⁵ . This prompted us to examine the
380	possible role of IS as a trigger of trained immunity of human monocytes. As observed using a
381	common in vitro model of trained immunity established by Netea and other groups (Fig. 1A),
382	CD14 ⁺ monocytes, which are exposed for 24 h to the first insult with IS and rested for 5 days
383	without IS, produced an augmented level of TNF- α and IL-6 and decreased level of IL-10 in
384	response to an unrelated second insult with LPS or Pam3cys, which is a feature typical of
385	trained immunity of monocytes (Fig. 1B-E). Mechanistic studies have demonstrated that the
386	induction of trained immunity is coordinated through the interplay of epigenetic
387	modifications and metabolic rewiring, which is broadly characterized as prolonged changes
388	in transcription programs and cell physiology that do not involve permanent genetic changes,
389	such as the mutations and recombination events crucial for adaptive immunity ² . In the present
390	study, ChIP-Seq and real-time metabolic analysis show that the induction of IS-trained
391	immunity in human monocytes is attributable to epigenetic modification and metabolic
392	rewiring (Fig. 2 and 3). Consistent with previous findings ^{5, 12} , trimethylation of histones at
393	H3K4 on TNFA and IL6 promoters was increased in IS-trained macrophages and maintained
394	even after secondary stimulation with LPS (Fig. 2B and Fig. S2B). Furthermore, the
395	production of TNF- α and IL-6 upon LPS stimulation was completely inhibited by
396	pretreatment with 5'-methylthioadenosine (MTA), a methyltransferase inhibitor (Fig. 2C),
397	demonstrating that IS-induced trained immunity is associated with epigenetic modification.
398	Moreover, H3K4me3-ChIP-Seq data showed that IS-induced trained immunity accompanied
399	by epigenetic reprogramming and H3K4me3 was enriched in genes related to activation of
400	the innate immune responses as illustrated by gene ontology (GO) analysis (Fig. 2D-E).

H.Y. Kim et al. Manuscript

401	Here, we identified AhR as a critical mediator of IS-trained immunity in human
402	monocytes (Fig. 4). AhR is a ligand-activated nuclear transcription factor (TF), which is
403	activated by several exogenous compounds, such as benzo[a]pyrene environmental pollutants
404	and 2,3,7,8-tetrachloro-dibenzo- <i>p</i> -dioxin (TCDD), as well as by multiple endogenous ligands
405	including tryptophan and indole metabolites ⁵⁴ . AhR plays a multifaceted role in modulating
406	cellular mechanisms such as inflammation, cell growth, and antioxidant responses ⁵⁵ .
407	Mounting evidence has shown that AhR is involved in the regulation of cellular metabolism
408	in many types of cells by acting as a TF to control the expression of metabolism-related
409	genes, by interacting with intracellular signaling pathways related to metabolism, or by
410	disturbing mitochondrial function ^{56, 57} . AhR is expressed by various immune cells, and its
411	signaling exerts integrative effects on the cellular environment and metabolism of the
412	immune responses ⁵⁸ . However, little is known about the role of AhR in the induction of
413	trained immunity.

AhR has been identified as a potent endogenous receptor for IS in human 414 monocytes/macrophages and is responsible for IS-mediated proinflammatory responses^{21, 25,} 415 ³³. In the present study, we show that IS-trained immune responses, characterized by the 416 417 expression of proinflammatory cytokines and chemokines, were inhibited by GNF351, an AhR antagonist (Fig. 4B-D), accompanied by repression of enriched H3K4me3 on TNFA and 418 *IL6* promoters in IS-trained macrophages (Fig. 4E), indicating an AhR-dependent 419 mechanism. However, increased glycolysis and mitochondria respiration in IS-trained 420 macrophages were not suppressed by the blockade of AhR activation with GNF351, 421 suggesting the AhR activation is not directly involved in metabolic rewiring in IS-trained 422 immunity (Fig. S4B-C). It has been demonstrated that metabolic rewiring, especially 423

H.Y. Kim et al. Manuscript

424	upregulation of aerobic glycolysis and the TCA cycle, is a major mechanism underlying the
425	induction of trained immunity, and metabolites such as mevalonate and fumarate generated
426	from this metabolic rewiring can in turn regulate epigenetic modification ⁴³ . Although
427	inducers of trained immunity, such as β -glucan, BCG, uric acid, and oxLDL, initiate
428	intracellular signaling and metabolic pathways, each via different receptors, the most
429	common pathway is the Akt/mTOR/HIF1 α -dependent induction of aerobic glycolysis ^{3, 15, 43} .
430	Our data also revealed that training with IS led to enhanced glycolysis, which is critical for
431	the production of TNF- α and IL-6 upon LPS stimulation as confirmed by experiments with
432	2DG, a glycolysis inhibitor (Fig. 3E). Recent studies have shown that IS activates mTORC1
433	in a variety of cells such as epithelial cells, fibroblasts, and THP-1 cells mainly via the
434	Organic Anion Transporters (OAT)/NADPH oxidase/ROS pathway, but not the AhR
435	pathway ⁵⁹ . Our findings suggest that IS-trained macrophages acquire the characteristics of
436	trained immunity by AhR-dependent and -independent mechanisms and enhances
437	proinflammatory responses upon secondary stimulation. Thus, addressing the mechanism
438	underlying AhR-independent metabolic rewiring in IS-trained macrophages will require
439	further investigations.

A finding of particular interest in our study is that the induction of IS-induced trained
immunity is dependent on the AhR-ALOX5/ALOX5AP axis, as depicted by RNA-Seq
analysis and confirmatory *in vitro* analysis of mRNA and protein expression (Fig. 5 and Fig.
S5). ALOX5 and ALOX5AP are major rate-limiting enzymes associated with the arachidonic
acid (AA) pathway, involved in the production of leukotrienes, proinflammatory lipid
mediators derived from AA³⁷. Among leukotrienes, leukotriene B4 (LTB4), an extremely
potent inflammatory mediator, binds to G protein-coupled protein, LTB4R, and enhances

447	inflammatory responses by increased phagocytosis and activation of the signaling pathway
448	for the production of cytokines ^{36, 38} . Mechanistically, the LTB4-LTB4R signaling pathway
449	induces the PI3K/Akt or NF-κB pathways ^{60, 61} . AhR-dependent LTB4 production through
450	enhanced ALOX5 expression in hepatocytes reportedly induces hepatotoxicity via neutrophil
451	infiltration ⁶² . We found that AhR-dependent ALOX5 expression was induced at 6 days (prior
452	to restimulation with LPS), and not at day 1, after IS treatment of human monocytes (Fig. 5
453	and S5B-C). The increase in ALOX5 activity and LTB4 expression has been reported in
454	patients with ESRD ^{63, 64, 65} and ALOX5 mediates mitochondrial damage and apoptosis in
455	mononuclear cells of ESRD patients ⁶³ . Thus, antagonists of ALOX5/ALOX5AP have been
456	used for treatment in CKD ⁶⁵ . Consistent with these findings, peripheral monocytes derived
457	from ESRD patients in our cohort have increased expression of ALOX5 and this increase was
458	maintained after differentiation into macrophages with M-CSF (Fig. 6D-G). Considering that
459	pretreatment with the uremic serum of ESRD patients elicits a change in gene expression and
460	cytokine production as observed in IS-trained macrophages, it is likely that increased ALOX5
461	in monocytes and macrophages of ESRD patients is mediated by IS in uremic serum. Our
462	previous studies have shown that IS is an important uremic toxin in the serum of ESRD
463	patients that elicits proinflammatory responses of monocytes ²¹ . Furthermore, the AhR-
464	ALOX5-LTB4R1 pathway is involved in IS-induced trained immunity of patients with
465	ESRD.

466 Murine models have been widely used to investigate the specific contribution of 467 inducers of trained immunity and the underlying mechanisms to a long-term functional 468 modification of innate cells *in vivo*^{7, 42, 66}. Mice trained with β -glucan enhance the production 469 of proinflammatory cytokines such as TNF- α , IL-6, and IL-1 β by monocytes and

470	macrophages in response to secondary microbial stimuli and subsequently obtain increased
471	protection against various microbial infections ^{15, 43} . Our <i>in vivo</i> and <i>ex vivo</i> mouse
472	experiments for trained immunity demonstrate that IS-trained immunity has biological
473	relevance (Fig. 6I). Previous studies have shown that intraperitoneal injection of exogenous
474	IS into wild-type C57BL/6 mice leads to an increase of IS in the plasma until 3~6 hr post-
475	injection despite its rapid excretion by the kidney. In this period, the expression of pro-
476	inflammatory, pro-oxidant, and pro-apoptotic genes in peritoneal macrophages was
477	upregulated ^{59, 67} . Moreover, intraperitoneal injection of IS daily for 3 days elevates IS in the
478	plasma of mice and activates the mTORC1 signaling pathway in the mouse kidney ⁵⁹ . This
479	suggests that the IS-injected mouse model is suitable for investigating the mechanisms
480	underlying IS-mediated immune responses. Our data show increased TNF- α and IL-6 in
481	serum after injection of LPS (Fig. 6I). Moreover, ALOX5 protein expression was increased in
482	splenic myeloid cells derived from IS-trained mice and ex vivo stimulation with LPS for 24 hr
483	induced TNF- α expression in these splenic myeloid cells (Fig. 6J-K). Thus, this suggests a
484	systemic induction of IS-trained immunity in the mouse model.

In conclusion, the current study provides new insight into the role of IS as an inducer 485 of trained immunity as well as the underlying mechanisms in human monocytes/macrophages 486 by investigating the effect of IS in vivo and in vitro using experimental models of trained 487 immunity. Here, we demonstrate that IS, a major uremic toxin, induces trained immunity 488 characterized by the increased proinflammatory TNF-α and IL-6 in human monocytes 489 following secondary stimulation through epigenetic modification and metabolic rewiring. IS-490 mediated activation of AhR is involved in the induction of trained immunity through 491 enhanced expression of arachidonic acid (AA) metabolism-related genes such as ALOX5 and 492

493	ALOX5AP. Monocytes from patients with ESRD exhibit increased expression of ALOX5 and
494	their uremic serum causes HC-derived monocytes to increase the production of TNF- α and
495	IL-6 upon LPS restimulation, implying IS-mediates trained immunity in patients. Supporting
496	our in vitro findings, mice trained with IS and their splenic myeloid cells had increased
497	production of TNF- α after <i>in vivo</i> and <i>ex vivo</i> LPS stimulation. These results suggest that IS
498	plays an important role in the induction of trained immunity, which is critical in inflammatory
499	immune responses in patients with CKD and thus, it holds potential as a therapeutic target.

H.Y. Kim et al. Manuscript

500 MATERIALS AND METHODS

501 Cell preparation and culture

502 Study protocols were reviewed and approved by the IRB (institutional review board) of Seoul National University Hospital and Severance Hospital. Peripheral blood of ESRD 503 patients and healthy controls (HCs) was drawn after obtaining written, informed consent. The 504 505 methods were performed in accordance with the approved guidelines. Peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood by density gradient 506 centrifugation (Bicoll-Separating Solution; BIOCHROM Inc, Cambridge, UK). Monocytes 507 508 were positively purified from PBMCs with anti-CD14 magnetic beads (Miltenvi Biotec Inc, Auburn, CA). For in vitro trained immunity experiments, purified monocytes were treated 509 with IS for 24 h, followed by washing with pre-warmed PBS and incubation for another 5 510 days in RPMI medium supplemented with 10% human AB serum (HS, Sigma-Aldrich, St. 511 Louis, MO), 100 U/ml penicillin, and 100 µg/ml streptomycin (Gibco, Grand Island, NY). On 512 513 day 6, cells were re-stimulated with LPS or Pam3cys for 24 hr and the supernatants and their lysates were collected and stored at -80°C until use. In some experiments, chemical inhibitors 514 were used for a 1 hr pre-treatment at the indicated concentrations prior to the treatment with 515 IS. To test the effect of uremic serum on the induction of trained immunity, CD14⁺ 516 monocytes purified from HC donors were seeded into 48-well plates and incubated for 24 hr 517 at 30% (v/v) with the pooled uremic sera (US) from ESRD patients or the pooled normal sera 518 (NS) from HCs, followed by washing with pre-warmed PBS and incubation for another 5 519 days. On day 6, cells were re-stimulated with LPS for 24 hr. In some experiments, monocyte-520 derived macrophages (MDMs) were differentiated from purified CD14⁺ monocytes from 521 ESRD patients or age-matched HCs in RPMI 1640 medium supplemented with 10% fetal 522

H.Y. Kim et al. Manuscript

- 523 bovine serum (FBS, BioWest, Nuaill'e, France), 50 ng/ml recombinant human M-CSF
- 524 (PeproTech, Rocky Hill, NJ, USA), 100 U/ml penicillin, and 100 mg/ml streptomycin. On
- 525 day 6, MDMs were used for immunoblot analysis.
- 526 Chemicals and antibodies
- 527 Indoxyl sulfate (IS) potassium salt, GNF351, 5'-methylthioadenosine (MTA), 2-
- deoxy d-glucose (2DG), and zileuton were purchased from Sigma-Aldrich (Burlington, MA,
- 529 USA). Lipopolysaccharides (LPS) from E. coli 0111: B4 were purchased from InvivoGen
- 530 (San Diego, CA, USA) for *in vitro* experiments and Sigma-Aldrich for *in vivo* experiments.
- 531 U-75302 was obtained from Cayman Chemical (Ann Arbor, Michigan, USA). Anti-AhR and
- anti-5-loxygenase (5-LOX) antibodies (Ab) for immunoblot assay and anti-trimethyl H3K4
- 533 (H3K4me3) Ab for chromatin immunoprecipitation (ChIP) were purchased from Cell
- 534 Signaling Technology (Danvers, MA, USA). Anti-ALOX5AP (FLAP) antibody was obtained
- 535 from Abcam Inc. (Cambridge, UK).

536 Enzyme-linked immunosorbent assay (ELISA)

- The amounts of TNF-α and IL-6 in culture supernatants of LPS or Pam3cys-restimulated IS-trained macrophages were quantified using commercial human ELISA kits
 (Thermo Fisher Scientific, Waltham, MA, USA). Optical density was measured using the
 Infinite M200 (Tecan, Männedorf, Switzerland).
- 541 **Quantitative RT-PCR**
- 542 Total RNA was prepared using RNA purification kit (Macherey-Nagel GmbH & Co.
 543 KG, Germany), followed by cDNA synthesis (Bio-line, London, UK), and then real-time

544	quantitative RT-PCR was performed with the CFX system (Bio-Rad, Hercules, CA) using the
545	SensiFAST SYBR® Lo-ROX (Bio-line, London, UK). Sequences of primers used in this
546	investigation are shown in Table S2. Normalization of gene expression levels against the
547	expression of ACTINB using the comparative CT method ($\Delta\Delta$ CT) was used for quantification
548	of gene expression.

549 ChIP-qPCR and ChIP-Seq

Cells were washed with Dulbecco's PBS and crosslinked for 5 min with 1% 550 formaldehyde at room temperature (RT), followed by quenching with 100 mM glycine for 5 551 min. Cells were harvested with lysis buffer (50 mM HEPES, pH7.5, 140 mM NaCl, 1 mM 552 EDTA, 10% glycerol, 0.5% NP-40 and 0.25% Triton X-100) with protease inhibitors on ice 553 for 10 min and were then washed with washing buffer (10 mM Tris-HCl, pH7.0, 200 mM 554 555 NaCl, 1 mM EDTA, and 0.5 mM EGTA) for 10 min. The lysates were resuspended and sonicated in sonication buffer (10 mM Tris-HCl, pH8.0, 100 mM NaCl, 1 mM EDTA, 0.5 556 mM EGTA, 0.1% sodium deoxylcholated and 0.5% N-laurolsarcosine) using a Bioruptor® 557 (diagenode, Denville, NJ) with 30s on and 30s off on a high-power output for 25 cycles. After 558 sonication, samples were centrifuged at 12,000 rpm for 10 min at 4 °C and 1% sonicated cell 559 extracts were saved as input. Cell extracts were incubated with protein A agarose loaded with 560 the H3K4me3 Ab overnight at 4 °C, and then Ab-bound agarose beads were washed twice 561 with sonication buffer, once with sonication buffer with 500 mM NaCl, once with LiCl wash 562 buffer (10 mM Tris-HCl, pH8.0. 1 mM EDTA, 250 mM LiCl and 1% NP-40), and once with 563 TE with 50 mM NaCl. After washing, DNA was eluted in freshly prepared elution buffer (1% 564 SDS and 0.1 M NaHCO₃). Cross-links were reversed by overnight incubation at 65°C with 565 RNase A, followed by incubation with proteinase K for 1 hr at 60°C. DNA was purified with 566

567	NucleoSpin [™] gDNA Clean-up Kit (Macherey-Nagel GmbH & Co. KG, Germany). For
568	ChIP-qPCR assays, immunoprecipitated DNA was analyzed by quantitative real-time PCR
569	and results were normalized against input DNA. The sequences of primers used for ChIP-
570	qPCR are shown in Table S3 ^{5, 68} .
571	For ChIP-seq experiments, purified DNA were prepared for DNA libraries using
572	TruSeq DNA Sample Prep Kit according to Library Protocol TruSeq ChIP Sample
573	Preparation Guide 15023092 Rev. B. Next, illumina sequencing were performed using
574	NovaSeq 6000 S4 Reagent Kit according to sequencing protocol of NovaSeq 6000 System
575	User Guide Document # 1000000019358 v02. Sequenced reads were trimmed using
576	Trimmomatic software. Fragments were aligned to hg19 using Bowtie2 software. Aligned
577	fragments of H3K4me3-ChIP samples were concatenated into a single file to generate
578	consistent peak ranges between samples using the makeTagDirectory function of Homer
579	Suite. For each sample, regions of H3K4me3 enrichment compared to the input sample were
580	collected using callpeaks function in MACS3 software. H3K4me3-rich regions from the same
581	group of different donors were compared to peaks in linked samples using the findoverlap
582	function of the GenomicRange R-package, and 11,123 peaks were collected for further
583	analysis. For quantitative comparisons between IC-trained groups and controls, the number of
584	fragments of each peak in BEDPE was collected using the coverage function of the BEDtools

- software. Then, the number of fragments in the peak was normalized to CPM and
- significance was compared using edgeR R-package. Finally, we selected 7,136 peaks with at
- 587 least 15 CPM from the larger average group to exclude lowly H3K4me3 enriched peaks.

Enriched peaks were selected base on a *p*-value of 0.05 or less and log2 fold change of > 1.3. The selected enriched peaks were used for Go pathway analysis. Pathway analysis

H.Y. Kim et al. Manuscript

590	was conducted using Metascape web-based platform ⁶⁹ and significant pathways were
591	identified on the basis of Go biological process and Reactome gene sets. Significant pathways
592	were selected with $p < 0.05$ and enrichment score (ES) > 1.5.

593 RNA-sequencing (RNA-Seq) and analysis

After RNA extraction, libraries for sequencing were prepared using the TruSeq 594 Stranded mRNA LT Sample Prep Kit and sequencing were performed using NovaSeq 6000 595 System User Guide Document # 1000000019358 (Illumina). To analyze RNA-Seq data, 596 trimmed reads were aligned to the human GRCh37 (NCBI 105.20190906). Gene expression 597 profiling was performed using StringTie and then read count and FPKM (Fragment per 598 Kilobase of transcript per Million mapped reads) were acquired. Differentially expressed 599 genes (DEGs) were selected based on p-value of 0.05 or less. Selected data were applied to 600 601 hierarchical cluster analysis to display basal and luminal differences and were further filtered according to gene expression levels with a log2 fold change of < -2 and > 2. DEGs were 602 visualized using the R (ver. 4.1.1) and pheatmap package (ver. 1.0.8). For Gene Set 603 604 Enrichment Analysis (GSEA), all transcripts within annotated genes (~14,404 features in total) regarding expression values were uploaded to locally-installed GSEA software (ver. 605 $(4.2.3)^{70}$. These transcripts were used for enrichment analysis in the C2 curated gene sets 606 (Canonical pathways) and GO Biological Process ontology from the Molecular Signature 607 608 Database (MSigDB). The reported GSEA outputs were filtered based on p < 0.05 and normalized enrichment score (NES) > 1.3. Pathway analysis was conducted using Metascape 609 web-based platform⁶⁹. Significant pathways were identified using DEGs and selected with p610 < 0.05 and enrichment score (ES) > 1.5. 611

H.Y. Kim et al. Manuscript

612 Metabolic analysis

613	To profile the metabolic state of the cells, CD14 ⁺ monocytes were seeded onto
614	XFe24 cell culture plates (Seahorse Bioscience, Lexington, MA) with RPMI medium with
615	10% HS, followed by the induction of trained immunity for 6 days as described in Fig. 1A.
616	Metabolic analysis on IS-trained macrophages was performed according to the
617	manufacturer's instructions. For the glycolysis stress test, culture media was replaced with
618	Seahorse XF Base media supplemented with 2 mM L-glutamine (pH7.4) and incubated for 1
619	hr in the non-CO2 incubator. Glucose (10 mM), oligomycin (2 μM), and 2-DG (50 mM, all
620	from Sigma-Aldrich) were sequentially used to treat cells during real-time measurements of
621	extracellular acidification rate (ECAR) using Seahorse XFe24 Analyzer (Seahorse
622	Bioscience). For the mito stress test, cells were incubated with Seahorse XF Base media
623	supplemented with 1 mM pyruvate, 2 mM L-glutamine, and 10 mM glucose (pH7.4) for 1 hr
624	in the non-CO2 incubator. Oligomycin (1.5 μM), FCCP (2 μM), and rotenone/antimycin A
625	(0.5 μ M, all from Sigma-Aldrich) were sequentially used to treat cells during real-time
626	measurements of oxygen consumption rate (OCR) using the Seahorse XFe24 Analyzer.
627	Parameters of glycolysis stress test and mito stress test were calculated using Seahorse XF
628	glycolysis or the mito stress test report generator program that was provided by the
629	manufacturer.

630 Immunoblot analysis

Total proteins were prepared using radioimmunoprecipitation assay (RIPA) buffer
(150 mM NaCl, 10 mM Na₂HPO₄, 0.5% sodium deoxycholate, 1% NP-40) containing a
protease and phosphatase inhibitor cocktail (Thermo Fisher Scientific, Waltham, MA, USA).

634	Cell lysates were separated on an 8-12% SDS-polyacrylamide gel and blotted onto a	
635	polyvinylidene difluoride (PVDF) membrane (Bio-Rad, Hercules, CA, USA), The membrane	
636	was incubated overnight at 4°C with primary Abs, such as anti-AhR, anti-ALOX5, and anti-	
637	ALOX5AP/FLAP, followed by incubation with peroxidase-conjugated secondary Abs for 1 h.	
638	The membranes were developed using the enhanced chemiluminescence (ECL) system.	
620		

639 WST (Water Soluble Tetrazolium Salt) assay

640 To test cell viability, IS-trained macrophages were re-stimulated with LPS for 24 hr.

641 Culture media was changed with serum-free RPMI medium and the WST reagent (EZ-

642 CYTOX, DoGenBio, Seoul, Korea) followed by incubation for 1-2 h. Measurement of the

optical density value (450 nm) was performed by Infinite M200 (Tecan).

644 Mouse *in vivo* studies

For in vivo experiments, C57BL/6 mice (7-8 weeks) were injected intraperitoneally 645 with 200 mg/kg IS in 100 µl PBS daily for 5 days. Another five days after IS injection, 5 646 mg/kg LPS (Sigma-Aldrich) were injected intraperitoneally 75 min prior to sacrifice. Whole 647 blood was incubated at RT for 30 min and centrifuged at 3,000 g for 10 min at 4°C to collect 648 649 mouse serum. The amount of TNF- α and IL-6 in serum was quantified using commercial mouse ELISA kits (Thermo Fisher Scientific). For ex vivo experiments using splenic myeloid 650 cells, IS-trained mice were sacrificed and their spleens were aseptically collected. Single-cell 651 652 splenic suspensions were prepared in PBS after passage through a 40 mm cell strainer. Splenocytes were seeded at 1×10^7 cells/well in 12-well plates. After incubation for 1 h, 653 adherent cells were harvested for immunoblot analysis or stimulated with 10 ng/ml LPS for 654 655 24 hr. The amount of TNF- α and IL-6 in culture supernatants was quantified using

656 commercial mouse ELISA kits (Thermo Fisher Scientific).

657 Statistics

- 658 A two-tailed paired or unpaired non-parametric *t*-test was performed to analyze data using
- 659 Prism 8 (GraphPad Software, La Jolla, CA, USA) and Microsoft Excel 2013. P values of less
- than 0.05 were considered statistically significant.

H.Y. Kim et al. Manuscript

661 AUTHOR CONTRIBUTIONS

H. Y. Kim: conceived of the study, participated in its design and coordination, performed most 662 of the experiments, data collection, and analysis, wrote manuscript and provided financial 663 support. D. H. Kim, S. J. Lee, Y. J. Kang, and G. Kim: performed the experiments and data 664 analysis. H. M. Shin: participated in its design and performed data analysis. H. Lee and T.-H. 665 Yoo: conceived of the study, participated in its design, collected patient samples and clinical 666 information, and performed data analysis. W-W.L.: conceived of the study, participated in its 667 668 design and coordination, performed data analysis and writing of manuscript, and has full access to all the data in this study and financial support. All authors have read and approved the final 669 manuscript. 670

671 ACKNOWLEDGMENTS

The authors thank Jiyeon Jang (Seoul National University College of Medicine) for assisting in the recruitment of human subjects and thank the Core Lab, Clinical Trials Center, Seoul National University Hospital for drawing blood. This work was supported in part by a grant (Grant no: 2022R1A4A1033767 and 2022R1A2C3011243 to W-W. Lee) from the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (MSIT) and by a grant (Grant no: NRF-2020R111A1A01063010 to H.Y.K.) of Basic Science Research Program through NRF funded by the Ministry of Education, Republic of Korea.

679 CONFLICT OF INTEREST

680 The authors declare that they have no conflicts of interest with the contents of this article.

681 **REFERENCES**

684

687

690

693

696

699

702

705

708

711

714

719

723

- Netea MG, Quintin J, van der Meer JW. Trained immunity: a memory for innate host defense. *Cell Host Microbe* 9, 355-361 (2011).
- Netea MG, *et al.* Trained immunity: A program of innate immune memory in health
 and disease. *Science (New York, NY)* 352, aaf1098 (2016).
- Netea MG, *et al.* Defining trained immunity and its role in health and disease. *Nature reviews Immunology* 20, 375-388 (2020).
- 4. Arts RJ, *et al.* Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic
 and Epigenetic Programs in Trained Immunity. *Cell metabolism* 24, 807-819 (2016).
- 5. Bekkering S, *et al.* Metabolic Induction of Trained Immunity through the Mevalonate
 Pathway. *Cell* **172**, 135-146.e139 (2018).
- 6. Cheng SC, *et al.* mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis
 698 for trained immunity. *Science (New York, NY)* 345, 1250684 (2014).
- 7. Saeed S, *et al.* Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. *Science (New York, NY)* 345, 1251086 (2014).
- 7038.Christ A, et al.Western Diet Triggers NLRP3-Dependent Innate Immune704Reprogramming. Cell 172, 162-175.e114 (2018).
- 7069.Fanucchi S, *et al.* Immune genes are primed for robust transcription by proximal long707noncoding RNAs located in nuclear compartments. Nat Genet 51, 138-150 (2019).
- 10. Edgar L, *et al.* Hyperglycemia Induces Trained Immunity in Macrophages and Their
 Precursors and Promotes Atherosclerosis. *Circulation* 144, 961-982 (2021).
- Jentho E, *et al.* Trained innate immunity, long-lasting epigenetic modulation, and
 skewed myelopoiesis by heme. *Proc Natl Acad Sci USA* **118**, (2021).
- Bekkering S, Quintin J, Joosten LA, van der Meer JW, Netea MG, Riksen NP. Oxidized
 low-density lipoprotein induces long-term proinflammatory cytokine production and
 foam cell formation via epigenetic reprogramming of monocytes. *Arterioscler Thromb Vasc Biol* 34, 1731-1738 (2014).
- van der Valk FM, *et al.* Oxidized Phospholipids on Lipoprotein(a) Elicit Arterial Wall
 Inflammation and an Inflammatory Monocyte Response in Humans. *Circulation* 134, 611-624 (2016).
- Arts RJW, *et al.* BCG Vaccination Protects against Experimental Viral Infection in
 Humans through the Induction of Cytokines Associated with Trained Immunity. *Cell Host Microbe* 23, 89-100 e105 (2018).

- Mulder WJM, Ochando J, Joosten LAB, Fayad ZA, Netea MG. Therapeutic targeting
 of trained immunity. *Nat Rev Drug Discov* 18, 553-566 (2019).
- 731 16. Cabău G, Crişan TO, Klück V, Popp RA, Joosten LAB. Urate-induced immune
 732 programming: Consequences for gouty arthritis and hyperuricemia. *Immunological*733 reviews 294, 92-105 (2020).
- 735 17. Chen TK, Knicely DH, Grams ME. Chronic Kidney Disease Diagnosis and
 736 Management: A Review. *Jama* 322, 1294-1304 (2019).
- 18. Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. *Kidney Int* 80, 1258-1270 (2011).
- Vanholder R, *et al.* Review on uremic toxins: classification, concentration, and
 interindividual variability. *Kidney Int* 63, 1934-1943 (2003).
- 745 20. Kato S, *et al.* Aspects of immune dysfunction in end-stage renal disease. *Clin J Am Soc*746 *Nephrol* 3, 1526-1533 (2008).
- Kim HY, *et al.* Indoxyl sulfate (IS)-mediated immune dysfunction provokes endothelial damage in patients with end-stage renal disease (ESRD). *Scientific reports* 7, 3057 (2017).
- Duranton F, *et al.* Normal and pathologic concentrations of uremic toxins. *Journal of the American Society of Nephrology : JASN* 23, 1258-1270 (2012).
- Lim YJ, Sidor NA, Tonial NC, Che A, Urquhart BL. Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. *Toxins* 13, (2021).
- Gao H, Liu S. Role of uremic toxin indoxyl sulfate in the progression of cardiovascular
 disease. *Life Sci* 185, 23-29 (2017).
- 76225.Kim HY, Yoo TH, Cho JY, Kim HC, Lee WW. Indoxyl sulfate-induced TNF- α is763regulated by crosstalk between the aryl hydrocarbon receptor, NF- κ B, and SOCS2 in764human macrophages. *FASEB journal : official publication of the Federation of*765*American Societies for Experimental Biology* **33**, 10844-10858 (2019).
- 767 26. Nakano T, *et al.* Uremic Toxin Indoxyl Sulfate Promotes Proinflammatory Macrophage
 768 Activation Via the Interplay of OATP2B1 and Dll4-Notch Signaling. *Circulation* 139,
 769 78-96 (2019).
- 27. Bekkering S, Blok BA, Joosten LA, Riksen NP, van Crevel R, Netea MG. In Vitro
 Experimental Model of Trained Innate Immunity in Human Primary Monocytes. *Clin Vaccine Immunol* 23, 926-933 (2016).

774

730

734

737

741

744

747

754

758

761

766

- Divangahi M, *et al.* Trained immunity, tolerance, priming and differentiation: distinct immunological processes. *Nature immunology* 22, 2-6 (2021).
- Gourbal B, Pinaud S, Beckers GJM, Van Der Meer JWM, Conrath U, Netea MG. Innate
 immune memory: An evolutionary perspective. *Immunological reviews* 283, 21-40
 (2018).
- 30. Stevens PE, Levin A. Evaluation and management of chronic kidney disease: synopsis
 of the kidney disease: improving global outcomes 2012 clinical practice guideline. *Annals of internal medicine* 158, 825-830 (2013).
- 31. Hardbower DM, *et al.* Ornithine decarboxylase regulates M1 macrophage activation
 and mucosal inflammation via histone modifications. *Proceedings of the National Academy of Sciences* 114, E751-E760 (2017).
- Fanucchi S, Dominguez-Andres J, Joosten LAB, Netea MG, Mhlanga MM. The
 Intersection of Epigenetics and Metabolism in Trained Immunity. *Immunity* 54, 32-43 (2021).
- 33. Schroeder JC, *et al.* The uremic toxin 3-indoxyl sulfate is a potent endogenous agonist
 for the human aryl hydrocarbon receptor. *Biochemistry* 49, 393-400 (2010).
- Brito JS, Borges NA, Esgalhado M, Magliano DC, Soulage CO, Mafra D. Aryl
 Hydrocarbon Receptor Activation in Chronic Kidney Disease: Role of Uremic Toxins. *Nephron* 137, 1-7 (2017).
- 35. Dou L, *et al.* Aryl hydrocarbon receptor is activated in patients and mice with chronic kidney disease. *Kidney Int* **93**, 986-999 (2018).
- Salina ACG, *et al.* Leukotriene B(4) licenses inflammasome activation to enhance skin
 host defense. *Proc Natl Acad Sci U S A* 117, 30619-30627 (2020).
- 807 37. Rådmark O, Werz O, Steinhilber D, Samuelsson B. 5-Lipoxygenase: regulation of
 808 expression and enzyme activity. *Trends in biochemical sciences* 32, 332-341 (2007).
- 810 38. Pernet E, Downey J, Vinh DC, Powell WS, Divangahi M. Leukotriene B(4)-type I
 811 interferon axis regulates macrophage-mediated disease tolerance to influenza infection.
 812 Nature microbiology 4, 1389-1400 (2019).
- 814 39. Kim HY, *et al.* Indoxyl Sulfate-Mediated Metabolic Alteration of Transcriptome
 815 Signatures in Monocytes of Patients with End-Stage Renal Disease (ESRD). *Toxins* 12,
 816 (2020).
 817
- Kimball AS, *et al.* The Histone Methyltransferase Setdb2 Modulates Macrophage
 Phenotype and Uric Acid Production in Diabetic Wound Repair. *Immunity* 51, 258271.e255 (2019).
- 821

777

781

785

789

793

796

800

803

806

809

822	41.	Zhong Q, Gong FY, Gong Z, Hua SH, Zeng KQ, Gao XM. IgG Immunocomplexes
823		Sensitize Human Monocytes for Inflammatory Hyperactivity via Transcriptomic and
824		Epigenetic Reprogramming in Rheumatoid Arthritis. <i>J Immunol</i> 200 , 3913-3925 (2018).
825		
826	42.	Keating ST, et al. The Set7 Lysine Methyltransferase Regulates Plasticity in Oxidative
827		Phosphorylation Necessary for Trained Immunity Induced by beta-Glucan. Cell Rep 31,
828		107548 (2020).
829	4.0	
830	43.	Bekkering S, Dominguez-Andres J, Joosten LAB, Riksen NP, Netea MG. Trained
831		Immunity: Reprogramming Innate Immunity in Health and Disease. Annu Rev Immunol
832		39 , 667-693 (2021).
833		
834	44.	Netea MG, Schlitzer A, Placek K, Joosten LAB, Schultze JL. Innate and Adaptive
835		Immune Memory: an Evolutionary Continuum in the Host's Response to Pathogens.
836		<i>Cell Host Microbe</i> 25 , 13-26 (2019).
837	4.7	
838	45.	Giamarellos-Bourboulis EJ, et al. Activate: Randomized Clinical Trial of BCG
839		Vaccination against Infection in the Elderly. Cell 183, 315-323.e319 (2020).
840	10	
841	46.	O'Neill LAJ, Netea MG. BCG-induced trained immunity: can it offer protection against
842		COVID-19? <i>Nature reviews Immunology</i> 20 , 335-337 (2020).
843	47	Deffe K at a Arts there exists to DCC is the state in the second state and the
844	47.	Buffen K, <i>et al.</i> Autophagy controls BCG-induced trained immunity and the response
845		to intravesical BCG therapy for bladder cancer. <i>PLoS Pathog</i> 10 , e1004485 (2014).
846	48.	Manan V. Cul A. Samali MI. Condiaviacoular right factors in chronic hidrory diacosa
847 848	48.	Menon V, Gul A, Sarnak MJ. Cardiovascular risk factors in chronic kidney disease.
040 849		<i>Kidney Int</i> 68 , 1413-1418 (2005).
850	49.	Hung SC, Kuo KL, Wu CC, Tarng DC. Indoxyl Sulfate: A Novel Cardiovascular Risk
851	ч).	Factor in Chronic Kidney Disease. Journal of the American Heart Association 6,
852		(2017).
853		(2017).
854	50.	Sarnak MJ, et al. Kidney disease as a risk factor for development of cardiovascular
855	50.	disease: a statement from the American Heart Association Councils on Kidney in
856		Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and
857		Epidemiology and Prevention. <i>Circulation</i> 108 , 2154-2169 (2003).
858		Epidemiology and Prevention. <i>Circulation</i> 100, 215 (2005).
859	51.	Betjes MG. Immune cell dysfunction and inflammation in end-stage renal disease. Nat
860	51.	Rev Nephrol 9, 255-265 (2013).
861		Nev Nephilol 9, 255 265 (2015).
862	52.	Leong SC, Sirich TL. Indoxyl Sulfate—Review of Toxicity and Therapeutic Strategies.
863	52.	<i>Toxins</i> 8 , 358 (2016).
864		
865	53.	Barisione C, et al. Moderate Increase of Indoxyl Sulfate Promotes Monocyte Transition
866		into Profibrotic Macrophages. <i>PLoS One</i> 11 , e0149276 (2016).
867		
868	54.	Rothhammer V, Quintana FJ. The aryl hydrocarbon receptor: an environmental sensor
		36

- integrating immune responses in health and disease. *Nature reviews Immunology* 19, 184-197 (2019).
- Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor:
 multitasking in the immune system. *Annu Rev Immunol* 32, 403-432 (2014).
- 87556.Bock KW. Aryl hydrocarbon receptor (AHR) functions in infectious and sterile876inflammation and NAD(+)-dependent metabolic adaptation. Arch Toxicol 95, 3449-8773458 (2021).
- 57. Duarte-Hospital C, *et al.* Mitochondrial Dysfunction as a Hallmark of Environmental
 Injury. *Cells* 11, (2021).
- 58. Gutierrez-Vazquez C, Quintana FJ. Regulation of the Immune Response by the Aryl
 Hydrocarbon Receptor. *Immunity* 48, 19-33 (2018).
- 59. Nakano T, *et al.* Indoxyl Sulfate Contributes to mTORC1-Induced Renal Fibrosis via
 The OAT/NADPH Oxidase/ROS Pathway. *Toxins* 13, (2021).
- 60. Ihara A, Wada K, Yoneda M, Fujisawa N, Takahashi H, Nakajima A. Blockade of
 leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation
 in colon cancer. *J Pharmacol Sci* 103, 24-32 (2007).
- Tong WG, Ding XZ, Talamonti MS, Bell RH, Adrian TE. LTB4 stimulates growth of human pancreatic cancer cells via MAPK and PI-3 kinase pathways. *Biochem Biophys Res Commun* 335, 949-956 (2005).
- Takeda T, *et al.* Dioxin-induced increase in leukotriene B4 biosynthesis through the aryl hydrocarbon receptor and its relevance to hepatotoxicity owing to neutrophil infiltration. *Journal of Biological Chemistry* 292, 10586-10599 (2017).
- Maccarrone M, *et al.* Arachidonate cascade, apoptosis, and vitamin E in peripheral
 blood mononuclear cells from hemodialysis patients. *Am J Kidney Dis* 40, 600-610
 (2002).
- Maccarrone M, *et al.* Vitamin E suppresses 5-lipoxygenase-mediated oxidative stress
 in peripheral blood mononuclear cells of hemodialysis patients regardless of
 administration route. *Am J Kidney Dis* 37, 964-969 (2001).
- Montford JR, *et al.* Inhibition of 5-lipoxygenase decreases renal fibrosis and progression of chronic kidney disease. *Am J Physiol Renal Physiol* 316, F732-f742 (2019).
- 66. Garcia-Valtanen P, Guzman-Genuino RM, Williams DL, Hayball JD, Diener KR.
 Evaluation of trained immunity by beta-1, 3 (d)-glucan on murine monocytes in vitro and duration of response in vivo. *Immunol Cell Biol* 95, 601-610 (2017).

915

871

874

878

881

884

887

891

895

899

903

907

916	67.	Rapa SF, et al. Pro-Inflammatory Effects of Indoxyl Sulfate in Mice: Impairment of
917		Intestinal Homeostasis and Immune Response. Int J Mol Sci 22, (2021).

- 919 68. Arts RJW, *et al.* Immunometabolic Pathways in BCG-Induced Trained Immunity. *Cell*920 *Rep* 17, 2562-2571 (2016).
- 922 69. Zhou Y, *et al.* Metascape provides a biologist-oriented resource for the analysis of 923 systems-level datasets. *Nat Commun* **10**, 1523 (2019).
- 925 70. Subramanian A, *et al.* Gene set enrichment analysis: a knowledge-based approach for
 926 interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* 102, 15545927 15550 (2005).

928

918

921

924

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.08.503143; this version posted August 11, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

H.Y. Kim et al. Manuscript

929 FIGURE LEGENDS

Figure 1. IS induces trained immunity in human monocytes. A. Schematic of in vitro 930 experimental model for innate trained immunity. **B-C.** Human monocytes were treated with 931 the indicated concentration of IS for 24 hr, followed by a subsequent 5-day culture in human 932 serum. On day 6, the cells were restimulated with the indicated concentrations of LPS for 24 933 hr. TNF- α and IL-6 proteins levels were quantified by ELISA. **D.** After training with 1,000 934 μ M IS, monocytes were restimulated with 10 μ g/ml Pam3cys. TNF- α and IL-6 protein levels 935 936 were quantified by ELISA. E. After training with 1,000 µM IS, monocytes were restimulated with 10 ng/ml LPS for 24 hr. The mRNA expression of IL-1β, IL-10, and MCP-1 was 937 analyzed by RT-qPCR. Bar graphs show the mean \pm SEM. * = p < 0.05, and ** = p < 0.01 by 938 two-tailed paired *t*-test. 939

940 Figure 2. IS-induced trained immunity is accomplished through epigenetic modification.

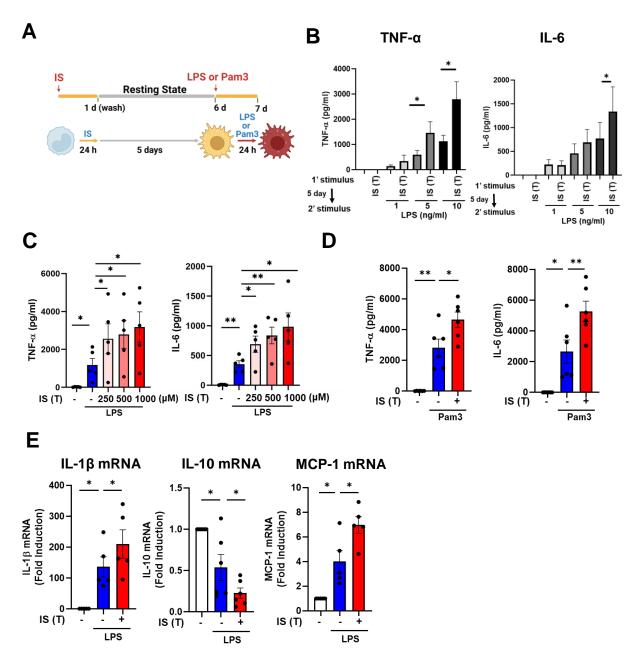
A. Experimental scheme of ChIP-qPCR for IS-trained macrophages. B. On day 6 after IS-941 training, cells were fixed with 1% formaldehyde, lysed, and sonicated. A ChIP assay was 942 performed using anti-H3K4me3 antibody and enrichment of H3K4me3 in the promoter site 943 of TNFA and IL6 loci was quantified by qPCR. 1% input was used as a normalization control. 944 945 C. Monocytes were pre-treated with 5'-methylthioadenosine (MTA, a non-selective methyltransferase inhibitor) and then were trained with IS for 6 days, followed by 946 restimulation with LPS for 24 hrs. TNF- α and IL-6 proteins levels were quantified by ELISA. 947 D. ChIP-Seq analysis was performed with anti-H3K4me3 antibody on chromatin isolated at 948 day 6 from IS-trained and control macrophages. Enriched peaks in ChIP-Seq on H3K4me3 949 950 are shown as a volcano plot. (FC > 1.3, p < 0.05) E. Functional annotation of 59 upregulated Differentially regulated peaks (DRPs) on H3K4me3 in IS-trained macrophages were 951

analyzed by Gene Ontology (Go) analysis with Go biological pathway and Reactome gene sets (FC > 1.3, p < 0.05). F. Screen shots of H3K4me3 modification in the promoter regions of IFI16, XRCC5, PQBP1 PSMA1, PSMA3, and OAZ3. *= p < 0.05, **= p < 0.01, and *** = p < 0.001 by two-tailed paired *t*-test.

Figure 3. IS-induced trained immunity is linked to metabolic rewiring. Glycolysis and 956 mitochondrial stress tests were conducted on IS-trained macrophages (n = 3 - 4) using the 957 Seahorse XF-analyzer. A. ECAR (extracellular acidification rate) levels were measured after 958 sequential treatment with glucose, oligomycin, and 2-DG. B. Cellular glycolysis and 959 glycolytic capacity were analyzed. C. OCR (Oxygen consumption rate) levels were measured 960 961 after sequential treatment with oligomycin, FCCP, and Rotenone/antimycin A (Ro/AA). D. Basal respiration, maximal respiration, and ATP production were analyzed. E. Monocytes 962 were pretreated with 2DG, followed by IS-training for 6 days. Cells were restimulated with 963 LPS for 24 hr and TNF- α and IL-6 in supernatants were quantified by ELISA (n = 5). Bar 964 graphs show the mean \pm SEM. *= p < 0.05, **= p < 0.01, and *** = p < 0.001 by two-tailed 965 paired *t*-test. 966

Figure 4. IS-induced trained immunity is regulated by AhR. Monocytes were pretreated 967 with or without GNF351 (AhR antagonist) followed by IS-training for 6 days. A. On day 6, 968 cell lysates were prepared and immunoblotted for AhR protein. Band intensity in 969 970 immunoblots was quantified by densitometry. β-actin was used as a normalization control. B-**D.** On day 6, IS-trained cells with or without GNF351 were restimulated with LPS for 24 hr. 971 TNF-α and IL-6 in supernatants were quantified by ELISA (B). Expression of TNF-α and IL-972 6 (C) and IL-1β, MCP-1, and IL-10 mRNA (D) was analyzed by RT-qPCR. E. Enrichment of 973 H3K4me3 on promoters of TNFA and IL6 loci was assessed on day 6 after IS-training. 1% 974

975 input was used as a normalization control. Bar graphs show the mean \pm SEM. * = p < 0.05, 976 **= p < 0.01, and *** = p < 0.001 by two-tailed paired *t*-test.


977 Figure 5. AhR-dependent induction of the arachidonic acid pathway contributes to IS-

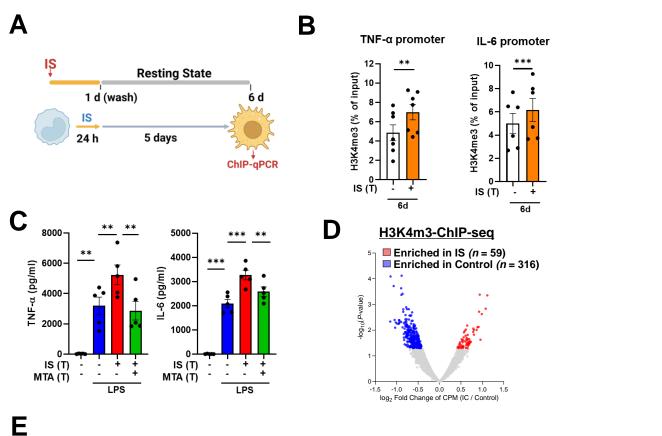

induced trained immunity. A-B. RNA-Seq analysis was performed on IS-trained 978 monocytes. Heatmaps (A) and volcano plots (B) show differentially expressed genes between 979 IS-trained and non-trained macrophages. C. Functional annotation of upregulated or 980 downregulated genes (FC > ± 2 , p < 0.05) in IS-trained macrophages analyzed by Gene 981 Ontology (GO) analysis with the Reactome Gene Set. D-E. GSEA (D) and heatmap (E) of 982 genes related to the AA metabolism in IS-trained macrophages compared to non-trained cells 983 984 or compared to IS-trained macrophages with GNF351 treatment were analyzed. F-G. On day 6 after IS-training with or without GNF351, expression of CYP1B1, ALOX5, ALOX5AP, 985 and LTB4R1 mRNAs were quantitated using RT-qPCR (F) and cell lysates were prepared and 986 immunoblotted for ALOX5 and ALOX5AP proteins (G). Band intensity in immunoblots was 987 quantified by densitometry. β-actin was used as a normalization control. H-I. Monocytes 988 were pretreated with zileuton (ALOX5 inhibitor) or U75302 (BLT1 inhibitor) and trained 989 with IS for 6 days followed by restimulation with LPS for 24 hr. TNF- α and IL-6 in 990 991 supernatants were quantified by ELISA. J. On day 6 after IS-training with or without MTA, expression of ALOX5, ALOX5AP, and LTB4R1 mRNAs were quantified using RT-qPCR. 992 Bar graphs show the mean \pm SEM. * = p < 0.05, **= p < 0.01, ***= p < 0.001 by two-tailed 993 994 paired *t*-test.

Figure 6. *Ex vivo* and *in vivo* validation of IS-induced trained immunity. A-B. The pooled
normal serum (NS) from healthy controls (HCs) or uremic serum (US) from patients with
ESRD were used for treatment of monocytes isolated from HCs for 24 hr at 30% (v/v) followed

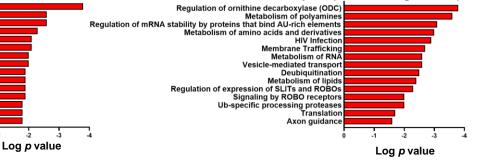
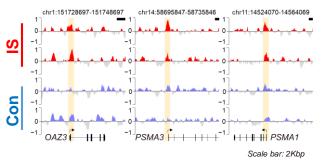

998 by resting for 5 days. After stimulation with LPS for 24 hr, TNF- α and IL-6 production were 999 analyzed using ELISA (A) and RT-qPCR (B). C. Expression of ALOX5, ALOX5AP, and 1000 LTB4R1 mRNAs were quantitated using RT-qPCR in trained macrophages with NS or US for 1001 6 days. D-G. ALOX5 and ALOX5AP protein levels in monocytes (D-E) and HMDM (F-G) of ESRD patients and HC were analyzed by immunoblot analysis. Band intensity in immunoblots 1002 1003 was quantified by densitometry. β -actin was used as a normalization control. H. C57BL/6 mice 1004 were injected daily with 200 mg/kg IS for 5 days and rested for another 5 days prior to LPS 1005 treatment. Mice were sacrificed at 75 min post-LPS injection. I. TNF-α and IL-6 in serum were quantified by ELISA. J. Before LPS injection, IS-trained mice were sacrificed and spleens 1006 1007 were mechanically separated. Isolated splenic myeloid cells were treated ex vivo with 10 ng/ml 1008 LPS for 24 hr and TNF- α and IL-6 in supernatants were quantified by ELISA. K. The level of ALOX5 protein in splenic myeloid cells isolated from IS-trained or control mice was analyzed 1009 by western blot. The right panel shows the band intensity quantified by the densitometry. Bar 1010 graphs show the mean \pm SEM. *= p < 0.05, **= p < 0.01, and *** = p < 0.001 by two-tailed 1011 paired *t*-test (A-C) or unpaired non-parametric *t*-test (E, G, I, J and K). 1012

Figure 7. Proposed mechanism of IS-induced trained immunity. Indoxyl sulfate, a uremic
toxin, induces trained immunity of monocytes/macrophages through the AhR-dependent
arachidonic acid pathway.



GO analysis (Reactome gene set)

Regulation of ornithine decarboxylase (ODC)

activation of the innate immune response

GO analysis (Go biological process)

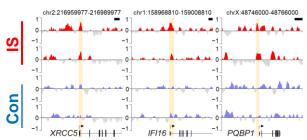
-1

activation of innate immune response positive regulation of innate immune response

response to starvation

cellular response to nutrient levels

cellular response to extracellular stimulus mRNA metabolic process


organic acid catabolic process lipid biosynthetic process

defense response to symbiont defense response to virus

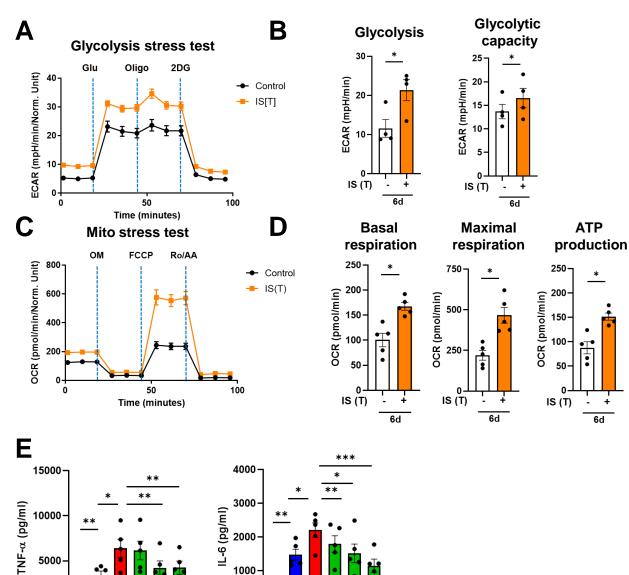
positive regulation of defense response positive regulation of response to biotic stimulus activation of immune response

regulation of innate immune response positive regulation of response to external stimulus

F

5000

0


+ ÷ 0.5

LPS

-

2

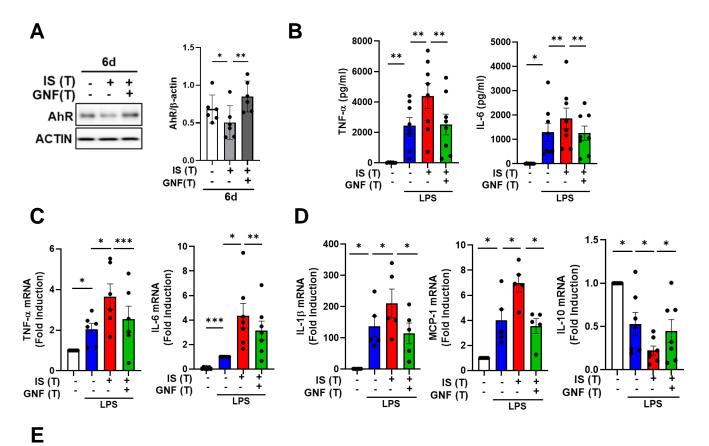
IS (T) 2DG (T)

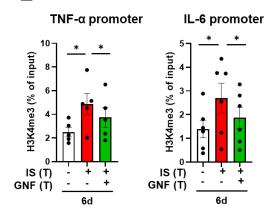
+ 0.5

LPS

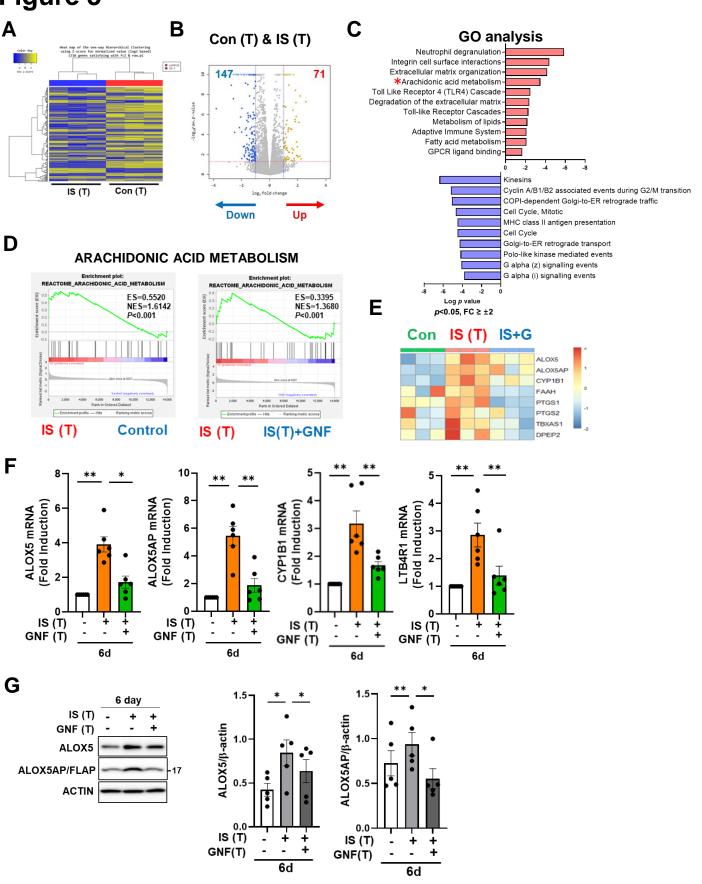
∔ 1

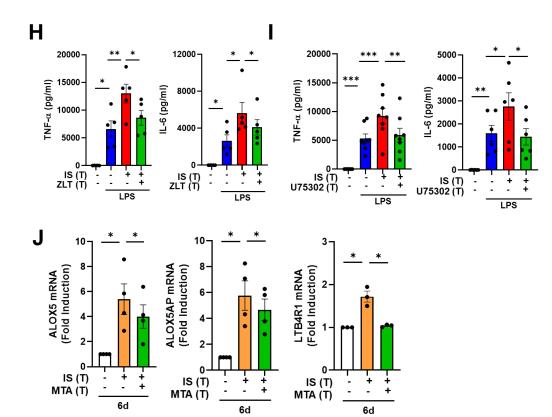
+ 2 (mM)


: + -


1000

0-IS (T) 2DG (T)


+ 2 (mM)


+

