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Abstract 

Genetic colocalisation is an important tool to test for shared genetic aetiology and is commonly used 

to strengthen causal inference in genetic studies of molecular traits and drug targets. However, the 
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single causal variant assumption of the original colocalization method is a considerable limitation in 

genomic regions with multiple causal effects.  

We integrated conditional analyses (GCTA-COJO) and colocalisation analyses (coloc), into a novel 

analysis tool called Pair-Wise Conditional Colocalization (PWCoCo). PWCoCo performs conditional 

analyses to identify independent signals for the two tested traits in a genomic region and then 

conducts colocalisation of each pair of conditionally independent signals for the two traits using 

summary-level data. This allows for the stringent single-variant assumption to hold for each pair of 

colocalisation analysis. 

We found that the computational efficiency of PWCoCo is on average better than colocalisation with 

Sum of Single Effects Regression using Summary Stats (SuSiE-RSS), with greater gains in efficiency for 

high-throughput analysis. In a case study using GWAS data for multiple sclerosis and brain cortex-

derived eQTLs (MetaBrain), we recapitulated all previously identified genes, which showcased the 

robustness of the method. We further found colocalisation evidence for secondary signals in nine 

additional loci, which was not identifiable in conventional GWAS and/or colocalisation.  

PWCoCo offers key improvements over existing methods, including: (1) robust colocalisation when 

the single variant assumption is violated; (2) independent colocalisation of secondary signals, which 

enables identification of novel disease-causing variants; (3) an easy-to-use and computationally 

efficient tool to test for colocalisation of high-dimensional omics data. 

Introduction 

Genome-wide association studies (GWAS) have identified thousands of complex traits associated 

genetic variants that have improved our understanding of disease aetiology, risk and treatment 

strategies 1-3. However, despite the large number of GWAS-derived associations for many complex 

traits, translational benefits have been limited 4. Colocalisation is a statistical technique that can 

leverage GWAS summary statistics to identify shared causal variants between two traits, which is 
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often considered in conjunction with results from Mendelian randomisation (MR) as evidence of a 

causal relationship between two 
5-8

. In particular, the approach has proven valuable in validating MR 

of drug targets (gene expression or protein levels) used for target prioritisation and identification 
9-

12
, where linkage disequilibrium (LD) in the region of the target can confound causal inference. 

Given the importance of colocalisation, many packages and tools have been developed in this area, 

for example, coloc 13, eCAVIAR 14 and HEIDI 15. Each method has its own strengths, but a common 

limitation is the so-called “single variant assumption”, whereby it is assumed that each trait is 

associated with at most only one causal variant in the targeted genomic region. For genomic regions 

with a complex LD structure, the single variant assumption can lead to an increase in type II errors 

due to the acceptance of one of the models which does not show evidence of colocalisation. This has 

been acknowledged by the original authors of the coloc method, who recently integrated the Sum of 

Single Effects Regression using Summary Stats (SuSiE-RSS) framework to allow coloc to consider 

multiple causal variants within the same region 16. Other methods also exist for multiple causal 

variants 8; however, due to their complexity, these methods tend to be computationally intensive, 

require an estimate or assumption of how many signals may exist within a region, and can be 

inefficient when analysing large datasets. For example, eCAVIAR allows for the user to pre-specify 

how many distinct causal variants they think are present in a region; however, potential model 

misspecification can lead to false positives and cherry-picking of results. 

In a previous systematic MR of plasma proteins, we devised a novel pipeline which we described as 

PairWise Conditional and Colocalisation (PWCoCo) analysis 9. This framework integrates approximate 

conditional analyses (as implemented in GCTA-COJO 17), which systematically conditions on each of 

the association signals within a genomic region, and applies pairwise Bayesian colocalisation 

analyses for each pair of independent signals (as implemented in the coloc R package 13). This 

conditional, pairwise approach allows the single variant assumption of the standard colocalisation 

method to hold for most cases (Figure 1). In that study, the PWCoCo pipeline was formed of a main 
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script which ran coloc and GCTA-COJO as separate tools. Now, we have built a standalone tool in C++ 

which closely integrates coloc and GCTA-COJO – without altering the underlying mathematical 

formulation of these methods – to increase efficiency, usability and stability of running such 

analyses. 

Methods 

The original PWCoCo implementation used in our systematic MR of plasma proteins consisted of an 

R script that made use of the coloc R package and invoked system commands to run GCTA-COJO. 

The major bottleneck of this approach was due to file I/O caused by running GCTA-COJO once to 

identify the conditionally independent signals of the target locus and then again each time to isolate 

each of those signals. This required the reference data to be read into memory and cleaned for each 

analysis as each run of GCTA-COJO was independent. Therefore, we sought to improve this by 

porting the colocalisation package from R to C++ and more closely integrating the conditional and 

colocalisation components to improve efficiency.  

Here, we provide a brief overview of the PWCoCo methodology. In the first step, PWCoCo identifies 

all independent signals within a genomic region using a stepwise regression algorithm implemented 

in GCTA-COCJO: the algorithm starts by selecting the SNP with the lowest P value in the test region, 

then conditions all SNPs in the region on that SNP using a joint SNP model, and selects the secondary 

SNP with the lowest conditional P value in the joint model. This continues until the P value of the 

selected SNP no longer reaches the threshold defined by the user (with a default threshold of P < 

5x10-8). As colocalisation aims to identify shared causal variants across two traits, the stepwise 

selection process will be conducted on the two test traits separately, to identify two sets of 

independent signals for the two traits in the pre-specified genomic region (e.g. � signals for trait 1, 

� signals for trait 2; Figure 1). For each of the constructed conditionally independent signals, 

colocalisation analyses are run in a pairwise manner, starting from the marginal statistics of the two 

traits and continuing until each pair of independent signals has been tested. Therefore, suppose the 
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first dataset has � � 1 independent signals and the second dataset has � � 1 independent signals, 

PWCoCo will conduct � � � conditional analyses and �� � 1� 	 �� � 1� colocalisation analyses. 

For input, PWCoCo accepts two summary-level GWAS datasets and a LD reference panel in PLINK18  

1.x format (i.e. .bed, .bim and .fam files). The LD reference panel is first used to clean the data, which 

consists of checking allelic information, including frequencies, against the GWAS data and second, to 

derive the LD structure of the given SNPs. There is no inherent restriction on which populations the 

data have been derived from, so long as the two GWAS datasets and the reference data are derived 

from the same population. 

To demonstrate the efficiency of PWCoCo, we compared how our tool performed against coloc with 

SuSiE-RSS. We simulated summary-level data in R using European samples from the 1000 Genomes 

(1KG) reference panel 
19

 to generate LD-aware effects. Regions of 1Mb were randomly generated 

with a sample size of 10,000, between one and three distinct causal variants and between one and 

three shared causal variants, and the variance explained by the SNPs was set at 0.2, 0.5 or 0.8. These 

data were simulated using the simulateGP R package 

(https://github.com/explodecomputer/simulateGP) and Supplemental Methods contains in-depth 

details about how the comparison tests were conducted.  

Finally, as a case study, we systematically applied PWCoCo to find potentially novel signals which 

colocalise between the cortex expression quantitative trait loci (eQTLs) from the MetaBrain study 

(n=6,601 individuals of European ancestry) 20 and multiple sclerosis (MS), using a GWAS from the 

International Multiple Sclerosis Genetics Consortium (cases = 47,429, controls = 68,374) 21. For each 

eQTL, the cis region around that eQTL was extracted, defined as a 1Mb window around the gene 

coding region. The same 1Mb windows were also extracted from the MS GWAS 
21

. We excluded 

those genes in the major histocompatibility complex (HMC) due to the complex LD structure in this 

region. Genotype data from mothers in the Avon Longitudinal Study of Parents and Children 

(ALSPAC) study (n = 7,927) 
22; 23

 were used as the LD reference panel data for these analyses. We also 
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used these data to estimate the allele frequencies for the SNPs reported in the MS GWAS, which did 

not include this information. Any SNPs which did not contain allele frequencies after linkage were 

dropped from the analysis. We cross referenced our results with those generated by Baird, et al. 
12

, 

who used conventional colocalisation without fine-mapping or conditional analyses to analyse both 

of the same datasets. We also attempted to repeat this analysis using coloc with SuSiE-RSS. 

Results 

We observed that PWCoCo runs substantially faster than the first iteration of PWCoCo described in 

Zheng, et al. 
9
 (roughly 99% faster) and coloc with SuSiE-RSS (between 82-87% faster) (Table 1).  The 

runtime for SuSiE-RSS is substantially reduced if the time taken to calculate the LD matrix is not 

taken into consideration; however, as PWCoCo generates the underlying LD of the region from the 

raw genotype data, a fairer comparison is made by including that time. Separately, we saw a roughly 

36% decrease in time taken to perform 200 analyses when PWCoCo can be allowed to read and 

prepare the reference panel once as opposed to for every analysis (10 seconds per analysis vs on 

average 6 seconds per analysis in the 200 analyses run). 

In the simulation tests comparing PWCoCo’s performance to coloc with SuSiE-RSS, we observed that 

coloc with SuSiE-RSS tended to underestimate, while PWCoCo tended to overestimate, the number 

of signals which colocalised between datasets (Table 2). We also found that coloc with SuSiE-RSS 

showed better performance in identifying shared causal variants (2,699 / 5,000 = 53% to 1,223 / 

5,000 = 24%) than PWCoCo (1,600 / 5,000 = 32% to 879 / 5,000 = 18%). Coloc with SuSiE-RSS also 

showed higher accuracy in identifying the exact shared causal variant (15% to 2% vs 0.8% to 0.3% for 

PWCoCo). We also compared how frequently both methods identified a variant in high LD (r2 > 0.8) 

with the exact shared causal variant(s); in this case, PWCoCo performed similarly to SuSiE-RSS, likely 

due to COJO’s approximate nature. The rate at which both methods found either the true or high LD 

proxy for the shared causal variant decreased as more causal variants were added to the simulated 

data (Supplemental Table 1).  
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In the case study analysis to determine which MetaBrain eQTLs colocalise with MS, we found that 

we reproduced all of the results presented in Baird, et al. 
12

 (Supplemental Table 2). In total, we 

found strong colocalisation evidence (H4 ≥ 80%) for 76 signals and moderate colocalisation evidence 

(80% > H4 ≥ 60%) for a further 82 signals (Figure 2). Of these 158 results, 42 were derived using non-

marginal statistics in the MetaBrain dataset and five in the MS dataset. Just over half (24) of those 

results derived using non-marginal statistics in the MetaBrain study were non-primary signals. Full 

results for these analyses are given in Supplementary Table 3. Our results contained many genes 

which were not analysed in the Baird, et al. paper because the authors assessed colocalisation 

evidence for eQTLs which already had strong MR evidence between the eQTL and MS. We also 

found strong evidence for colocalisation (H4 ≥ 80%) for nine genes that did not show strong 

evidence when using the marginal statistics. These were: MARK3, FCRL1, CHCHD2, ATP1A4, NBEAL2, 

EIF2AK3, STARD10, FCRL3 and RPIA. Of these nine genes, ATP1A4, NBEAL2 and EIF2AK3 had 

strongest evidence for colocalisation using non-primary signals highlighting the importance of 

considering the presence of multiple signals at a locus when conducting colocalisation.  

We attempted to conduct the same analysis using coloc with SuSiE-RSS; however, we found that 

SuSiE-RSS failed to run due to an LD mismatch between the summary data and two reference panels 

(1KG phase 3 and mothers in ALSPAC). We conducted post-hoc diagnostic tests to investigate why 

SuSiE-RSS failed to run and found that the parameter λ, which is used as a measure of the 

inconsistency between the summary statistics and LD matrix, was high for many of the tested loci 

indicating large inconsistencies between the observed and estimated z-scores (smallest λ = 0.19, 

largest λ = 0.91, average λ = 0.59; Supplemental Table 4). This analysis is further detailed in 

Supplemental Methods. 

Discussion 

In this paper, we have presented PWCoCo, a tool which integrates pairwise conditional analyses with 

Bayesian colocalisation to maintain the single variant assumption that otherwise limits such 
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analyses. We compared how PWCoCo performed against coloc with SuSiE-RSS, a similar method to 

PWCoCo, using simulated data. Finally, we applied PWCoCo to ascertain which eQTLs in the 

MetaBrain 
20

 dataset colocalised with MS. 

In the simulation tests, we observed that PWCoCo performed faster than coloc with SuSiE-RSS; 

SuSiE-RSS was only faster when it had access to pre-calculated LD matrices for each of the analyses. 

Furthermore, we made substantial improves to the efficiency of PWCoCo when compared to its first 

iteration presented in Zheng, et al. 
9.  

To test for correctness, we examined the mean of how many signals had high evidence of 

colocalisation (H4 ≥ 80%). Each dataset was simulated with between one and three shared causal 

variants, and we found that while coloc with SuSiE tended to underestimate the number of signals 

which colocalised, PWCoCo overestimated the number of signals. Furthermore, SuSiE appeared to 

be the more accurate of the two methods at identifying the exact causal variant, though both 

methods performed similarly when allowing for finding a variant in high LD (r
2
 > 0.8) with the true 

causal variant. This result was to be expected given the approximate nature of COJO which PWCoCo 

uses and how the simulation tests slightly favoured SuSiE-RSS (discussed further below). However, it 

is not entirely necessary for PWCoCo to accurately tag the true causal variant given the purpose of 

the tool is to perform colocalisation analyses, which assumes the presence of a causal variant and is 

robust given a dense enough region of SNPs 8.  

We used PWCoCo to provide evidence for colocalisation between cortex-derived eQTLs in the 

MetaBrain dataset 20 and MS 21 and compared our results to a previous study by Baird, et al. 12 which 

analysed the same datasets using only conventional colocalisation. PWCoCo found evidence of 

colocalisation for nine genes not found in the original analysis. Three of these genes colocalised with 

non-primary signals which may have gone otherwise un-examined in a typical colocalisation analysis, 

where some studies only use marginal statistics, despite the literature advising that this will bias 

results 
13; 16; 24

. Furthermore, these non-primary signals may be translationally useful, particularly in 
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drug target identification and prioritisation, where robust genetic evidence can increase the success 

rate of targets in early clinical trials 
25

. 

Although coloc with SuSiE-RSS performed well in our simulation study, this method is sensitive to LD 

mismatch in real-data analyses and thus did not provide any meaningful results when applied to the 

same MetaBrain and MS GWAS datasets case study. SuSiE-RSS does not require the reference data 

to be derived from the same sample as the summary data it is recommended as inconsistences 

between z-scores and the derived LD matrix can result in difficulties conducting such analyses 26. We 

showed that among the 132 genes which showed strong colocalisation evidence using PWCoCo, the 

lambda parameter (used to measure inconsistences between the z-scores and LD matrix) ranged 

from 0.19 to 0.91 in the MetaBrain dataset using either the 1KG or mothers in ALSPAC reference 

panels. These number were much higher than the lambda tested in the original SuSiE-RSS 

publication (less than 0.01), and the fine-mapping subsequently failed for 73% the loci tested; the 

remaining genes for which SuSiE-RSS did converge provided spurious results as evidenced by finding 

credible sets consisted of an implausible number of SNPs, or for which consisted of an infinite log10 

Bayes factor. Furthermore, the authors of SuSiE-RSS caution against using meta-analysed datasets, 

where the inclusion of SNPs not measured in all of the constituent datasets might produce spurious 

results which is a considerable limitation of the methodology as meta-analysis is an attractive 

technique to increase sample sizes and thus statistical power 
20; 27-29

. 

While PWCoCo benefits from the computation efficiency of GCTA-COJO for conditional analysis, 

there are also several limitations that comes with the implementation of GCTA-COJO. First, it is 

suggested that GCTA-COJO, and therefore PWCoCo, requires a minimal of 4,000 reference samples 

for LD calculation 17. This is, however, no longer a difficulty with publicly available resources such as 

UK10K, the haplotype reference consortium (HRC) and UK Biobank. Second, an important distinction 

between of PWCoCo and coloc with SuSiE-RSS is that GCTA-COJO is  an approximate conditional 

method, while SuSiE-RSS directly performs fine-mapping on the marginal GWAS summary statistics. 
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Therefore, SuSiE-RSS is expected to perform better at determining the true causal variant or variants 

at a locus. We observed this phenomenon in our simulation study; although, our simulation study is 

biased toward SuSiE-RSS because the data were simulated using an LD matrix derived from the 1KG 

phase 3 reference panel 
19

 and the exact LD matrix was then directly provided to coloc with SuSiE-

RSS, whilst PWCoCo used the raw genotype data for conditional analysis. Furthermore, this 

reference panel has a sample size of only 2,504 which may leads under performance in finding the 

true causal variant for PWCoCo. 

Strengths of PWCoCo include its computational speed and efficiency as evidenced by the simulation 

studies. PWCoCo runs single or few analyses quickly but can slow down when many analyses need to 

be conducted, as may be common for determining genome-wide colocalisation evidence for 

molecular traits. This is due to the bottleneck caused by parsing and cleaning the reference data; 

therefore, we developed a modified method of running PWCoCo which allows for this process to be 

run once, saving the user time in conducting large-scale analyses which rely on the same reference 

data. PWCoCo is also characterised by its flexibility, due to many user-alterable parameters (these 

are documented on the PWCoCo GitHub repository, https://github.com/jwr-git/pwcoco), and ease 

of use, requiring only summary-level data and a reference panel in PLINK 1.x binary format 
18

. 

Furthermore, PWCoCo is also ancestry agnostic so long as the summary data and reference panel are 

derived from the same population. Finally, PWCoCo is robust to the issues we observed when 

attempting to run SuSiE-RSS on the MetaBrain dataset, namely: mismatched z-scores and LD 

matrices and the requirement to remove SNPs in meta-analysed datasets which are not measured in 

all constituent studies. 

Overall, PWCoCo is an efficient, easy-to-use tool that combines conditional and colocalisation 

analyses to both increase robustness of Bayesian coloc results and to allow analysis of non-primary 

signals. We have shown that PWCoCo performs faster than coloc with SuSiE-RSS. In a case study, 

PWCoCo replicated previously published results when applied to GWAS of MS and brain-derived 
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eQTLs 12. Furthermore, PWCoCo found novel colocalisation evidence for additional non-primary 

eQTLs which went unanalysed in the original publication. Investigators should consider integrating 

PWCoCo into their analytical pipelines in place of colocalisation, especially when many large-scale 

analyses need to be conducted or when using meta-analysed datasets. 
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Code Availability 

PWCoCo can be found on GitHub: https://github.com/jwr-git/pwcoco. Instructions for installation 

and operating parameters are also found on the GitHub. The simulateGP R package we used to 

generate the simulated datasets can also be found on GitHub: 

https://github.com/explodecomputer/simulateGP. 

Table 1 

Analyses PWCoCo, 

Zheng, et al. 

PWCoCo, 

Robinson, et al. 

Coloc with SuSiE-RSS 

  Sequential Memory Inc. LD matrix Exc. LD matrix 

1 52.3 minutes 9.5 seconds 9.6 seconds 54.3 seconds 2.4 seconds 

100 4.2 days 15.4 minutes 11.4 minutes 90.5 minutes 4.1 minutes 

200 Did not finish 30.9 minutes 19.9 minutes 3.0 hours 8.2 minutes 

 

Time taken to run between 1 and 200 analyses using PWCoCo presented in Zheng, et al. 9, PWCoCo 

presented in this paper, and coloc with SuSiE-RSS. PWCoCo was conducted with two configurations: 

1) analyses were conducted separately, each reading and cleaning the reference panel and not 

storing the cleaned data in memory. 2) analyses were run as a batch, such that PWCoCo only 

required to operate on the reference data once and stored this in memory. The bottleneck for 

PWCoCo is file operations on large reference data, so storing this data in memory can be expensive 

but will save time if that is a concern. If only a few analyses need to be conducted, then streaming 

the reference panel will not substantially increase runtime. As more analyses are required, then 

loading the reference data into memory will become more attractive due to the time it saves. Coloc 

with SuSiE-RSS was also run with two configurations: 1) the LD matrix was not pre-calculated. Plink 

was used to generate the LD matrix for the SNPs in the region using the whole 1KG phase 3 
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reference panel. The time Plink took to generate the matrix was included in this measure. 2) the LD 

matrix was pre-calculated using Plink and 1KG phase 3 reference panel, such that these runtimes 

measure only the time taken by coloc with SuSiE-RSS to run. Finally, PWCoCo as presented in Zheng, 

et al. did not finish within the given time (seven days).  

Table 2 

 SuSiE PWCoCo 

Shared variant(s) Exact High LD Mean signals 

with H4 > 80%  

Exact High LD Mean signals 

with H4 > 80% 

1 727 1942 0.83 42 1558 2.14 

2 281 1539 1.42 24 1220 2.72 

3 119 1104 1.78 13 866 3.13 

 

Results for simulations to test performance of PWCoCo and SuSiE. Each dataset was simulated with 

between one and three distinct causal variants and between one and three shared causal variants. 

Therefore, each dataset had between two and six causal variants. The “exact” column contains 

number of datasets for which that method found the exact shared causal variant(s) while the “high 

LD” column contains the number of datasets for which that method found a variant which was in 

high LD (r2 > 0.8) with the shared causal variant(s). Also shown is the mean number of signals across 

all datasets which had strong evidence of colocalisation (H4 > 80%). 5,000 datasets were simulated 

for each configuration of shared causal variants. Supplemental Methods contains information on 

how these simulations were conducted. Supplemental Table 1 contains granular results split over 

the amount of distinct and shared causals variants.  
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Figure 1 

 

Schematic of how PWCoCo conducts conditional and colocalisation analyses in a pairwise fashion. 

Consider two datasets, one QTL dataset with two signals and a disease dataset with three signals. 

PWCoCo will conduct conditional analyses on these datasets to produce two and three new 

datasets, respectively, consisting of each conditionally independent signal within the region. Then, 

colocalisation is tested for between each of these datasets (denoted by the arrowhead lines). 

Therefore, in this example, a total of 12 colocalisation analyses (three QTL datasets and four disease 

datasets) will be run, as the unconditioned, marginal statistics are also used. 
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Figure 2 
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Manhattan plot of results from the systematic application of PWCoCo on cortex eQTLs and MS. Each dot represents a colocalisation analysis result. Many of 

the analysed loci had multiple signals in the region, either in the eQTL or MS dataset; therefore, gene names may appear more than once on the graph for 

secondary, tertiary, etc. signals. Only the H4 results are plotted, and genes were plotted using the start location of their gene encoding region. Labelled 

points are those genes with novel colocalisation.  
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