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Abstract 
 

In this study we explored the adaptability and robustness of glycolysis and pyruvate 

metabolism of Mycoplasma pneumoniae (MPN). We used a dual approach, we analysed 

metabolomics data collected for a large number of OE and KO mutants and perturbation 

samples. Furthermore, we trained a dynamic model of central carbon metabolism and tested 
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the model’s capacity to predict these mutants and perturbation samples as well as identify key 

controlling factors in central carbon metabolism. Our analysis of metabolite data as well as 

our model analysis indicate MPN metabolism is inherently robust against perturbations due to 

its network structure. Two key control hubs of central carbon metabolism were identified. 

 

Abbreviation list 

AcCoA = Acetyl coenzyme A 

ACE = Acetate  

ACK = Acetate kinase  

ADP = Adenosine diphosphate  

ATP = Adenosine triphosphate  

ATPase = Adenylpyrophosphatase 

CoA = Coenzyme A dehydrogenase 

DGP = Diacylglycerol phosphate 

ENO = Enolase 

F6P = Fructose 6-phosphate 

FBA = Fructose-bisphosphate aldolase 

FBP = Fructose-1,6-bisphosphatase 

G6P = Glucose 6-phosphate 

GAP = Glyceraldehyde-3-phosphate 

GAPDH = Glyceraldehyde 3-phosphate 

GLC_Ext = Extracellular glucose 

GMP = Glycerate phosphomutase  
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Kcat = Enzyme catalytic rate 

Keq = Equilibrium constant  

Km = Michaelis-Menten constant 

KO = Knock out 

LAC = Lactate 

LDH = Lactate dehydrogenase  

MPN = Mycoplasma pneumonia 

NAD = Nicotinamide adenine dinucleotide 

NADH = Reduced nicotinamide adenine dinucleotide 

OE = Over-expression 

PDH = Pyruvate dehydrogenase 

PEP = Phosphoenolpyruvate 

PFK = Phosphofructokinase 

PGI = Phosphoglucose isomerase 

PGK = Phosphoglycerate kinase 

Pi_Int = Orthophosphate 

PTA = Phosphotransacetylase 

PTS_Glc = Phosphotransferase system 

PYK = Pyruvate kinase  

PYR = Pyruvate  
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Introduction:  
Mycoplasma are gram positive bacteria adapted to an obligatory parasitic lifestyle able to 

infect a broad range of hosts1. It is estimated by the CDC that 2 million infections with M. 

pneumoniae (MPN) occur in the US alone on a yearly basis2. These infections lead to 

conditions ranging from mild to severe respiratory illness including life threatening 

conditions such as auto-immune diseases3. Therefore, it imperative to improve our 

understanding of MPN. 

MPN has been established as a model organism for systems biology and large dataset 

collections are available informing on its genome, transcriptome4, proteome5, metabolome6, 

and transcripcional adaptations7. The metabolism and energetic expenditure of MPN have 

been thoroughly studied by combining a genome-scale constraint based model of metabolism 

with detailed experimental characterizations8. Neither energy production nor uptake of 

protein building blocks appear to limit growth of MPN only protein synthesis was found to be 

growth limiting6,9. Maintenance requirements are high for MPN, so most of the energy is 

devoted to maintenance instead of growth8.  

MPN like other Mycoplasma’s has adopted to its pathogenic lifestyle leading to a severely 

reduced genome. Despite their small genome size and limited number of enzymes and 

relatively low number of regulators10, Mycoplasma’s are still able to adapt to a large number 

of conditions and still genes can be removed, as they have been seen not to be essential11. 

Many essential genes are however only present in some Mycoplasma species, suggesting 

alternatives to a minimal genome exist12. Since there are only few regulatory elements in the 

genome10 we hypothesized that a lot of the adaptability of MPN to adapt to changing growth 

conditions must be due to network structure and to allosteric control of its metabolism.  

In this study we investigated the metabolism of MPN with a focus on central carbon 

metabolism and its allosteric control. Dynamic models were successfully used to investigate 

regulation and adaptation of central carbon metabolism to changing environmental conditions 

in other organism13–20.  

Therefore, in this study we will combine analysis of metabolomics a large number of samples 

taken from varying environmental conditions, OE and KO mutants with a dynamic model of 

glycolysis and pyruvate metabolism, to identify key controlling metabolites and enzymes in 

central carbon metabolism. We tested single or combined addition of 1) an ATPase reaction, 

2) O2 inhibition of Lactate Dehydrogenase and 3) NAD regeneration by NoxE using O2 to 

this model as potential mechanisms for MPN’s adaptability to various conditions. 

We trained and tested the model’s ability to predict a wide range of environmental 
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conditions, single and double overexpression mutants as well as mutants with single gene 

deletions. The model was able to predict these mutants with reasonable accuracy. 

In a recent study, local sensitivity analysis on a dynamic model of E. coli central carbon 

metabolism identified robustness as one of properties of central carbon metabolism of E. coli 

16. This robustness is a system property resulting from the many feed-forward and feed-

backward interactions in metabolism, such as allosteric control of glucose uptake as well as 

lactate and acetate metabolism. Another study in E. coli revealed that only three metabolites 

(FBP, F1P and cAMP) account for about 70% of the expression variability of central carbon 

metabolism enzymes through control of two transcription factors21. Similarly, our model 

predicts the central carbon metabolism of MPN to be inherently robust to changing conditions 

and identifies two main hubs of metabolic control. Clustering of samples of FBA OE and 

LDH KO mutants corroborate assumed allosteric control of LDH FBP. Additionally, the 

analysis of metabolomics data of MPN indicated that glycolipid metabolism might be linked 

to the high energy metabolites needed for growth of MPN. Our findings are in agreement 

with recent findings were some key lipids were identified to be needed for MPN growth on 

serum free medium22. 

Materials and methods 
Bacterial strains and culture conditions  

M. pneumoniae strain M129 (passage 33-34) was grown in modified Hayflick medium and 

transformed by electroporation with the pMT85 transposon as previously described 9. Briefly, 

cells were split 1:10, and washed twice with 10 mL and collected in 300 µl Electroporation 

buffer (8 mM Hepes·HCl, 272 mM sucrose, pH 7.4) three days later. Cells (50 µl) were 

electroporated with 5 µg plasmid in 1 mm gapped cuvettes at 1.25 kV, 100 Ω, 25 µF (Gene 

Pulser Xcel Electroporator, Bio-Rad). Cells were recovered in Hayflick for 2 h at 37 °C, 

diluted 1:5 in Hayflick with 200 µg mL-1 gentamycin, selected for three days and then 

maintained with 80 µg mL-1 gentamycin. The cell lines used are detailed in Error! 

Reference source not found..  

 

Transposon insertion mutants obtained by haystack mutagenesis 

For the isolation of M. pneumoniae mutants, we used a collection of strains carrying 

insertions of transposon Tn400123. The presence of the desired mutant was assayed by PCR 
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using one primer that hybridizes to the transposon (directed outwards), and a second primer 

specific for the gene of interest. Mass spectroscopy is used to verify absence of the 

corresponding protein.  

 

Over Expression mutant construction 

Genes to be overexpressed where cloned in the transposon Tn400124 control of the promoter 

of the EF-tu gene 24. 

 

Growth curves 

To obtain equal amounts of each sample, initial inocula for the growth curves were 

quantified. Briefly, cells were grown for 3 days in 25-cm2 flasks, collected in 1 mL medium 

and 100 µl was used for quantification using the BCA (bicinchoninic acid) protein assay kit 

(Pierce, see below). Same amounts of total protein (1 µg) were aliquoted per well in a 96-

multiwell plate in duplicates. Two hundred µl of Hayflick medium was added per well and 

the cells were incubated in a Tecan Infinite plate reader at 37ºC. The “growth index” 

(absorbance 430/560 nm, settle time at 300 msec and number of flashes equal to 25) was 

obtained every hour for 5 days as published9. To quantify growth, we determined two slopes 

of the growth curve. The first one is based on the time interval from 10 to 30 h (“early slope”) 

and the second one on the whole growth curve (“late”). The early slope was determined by 

considering the maximum median of the slope between two time points (eq. 1) separated by 

three time measurements over successive periods of 30 time points. The late slope was 

determined by considering the maximum median value of the slope between two time points 

separated by four time measurements (eq. 2) over successive periods of 30 time points.  

Early Slope = (value (time [i]) – value (time[i+3)]) / (time[i]-time[i+3] (eq. 1) 

Late Slope = (value (time [i]) – value (time[i+4)]) / (time[i]-time[i+4] (eq. 2) 

The early slope is more representative of growth, while the late slope reflects the metabolic 

activity.  
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On the other hand, biomass was quantified at 48 h (early stationary phase) by inoculating a 

twin 96-well plates, in the same conditions as above. After incubation for two days at 37ºC 

under, medium was sucked out, cells were carefully washed twice with 200 µl PBS and lysed 

with 100 µl lysis buffer (10 mM Tris·HCl, 6 mM MgCl2, 1 mM EDTA, 100 mM NaCl, 0.1% 

Tx-100, pH 8, and 1× Protease Inhibitor Cocktail, Roche) at 4ºC. In the same first 96-well 

plate, cell lysates were kept on ice and extracted protein was quantified by BCA Protein 

Assay Kit (Pierce, see below).  

The protein concentrations at 48 h and early slope are more representatives of growth, while 

the late slope and the value of A430/560 at midpoint reflect the metabolic activity. These four 

parameters of growth and metabolism were analysed for each batch of experiments. Outliers 

(larger than quartile 3, Q3) by at least 1.5 times the interquartile range (IQR), or smaller than 

Q1 by at least 1.5 times the IQR) were removed to calculate the mean and the standard 

deviation of each of the parameters for each batch. Values larger or smaller than the mean by 

at least 2 times the standard deviation of each parameter were considered to determine fast- 

and slow-growing/metabolizing clones, respectively. 

 

Strain cultivation and growth conditions of mutant and perturbation samples 

A 300 cm2 flask was inoculated 1:10 with the lab stock and 100 mL of Hayflick and grown 

for 3-4 days at 37C. Then, medium was removed, and cells were scrapped and resuspended in 

12 mL medium. From this inoculum, 75 cm2 flasks were seeded with 1 mL of inoculum in 20 

mL of Hayflick. After 6 hours of incubation (i.e. when cells reached stationary growth phase) 

the cells were treated as follows, before the standard extraction protocol: 

▪ Glucose starvation: remove medium and add new Hayflick medium without glucose. 

Incubate sample for 5 h at 37C. Long incubation time is required to deplete glucose 

from Hayflick medium. 

▪ Amino acid starvation: take half of the medium, add 200 mg of DL-serine 

hydroxamate (10 mg/mL), mix and add again to the cells; incubate cells with for 15 

min at 37C. 
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▪ Fe2+ depletion: Add directly to the flask the iron chelator 2,2′-Bipyridine at a final 

concentration of 3 mM, incubate for 30 min at 37° C. 

▪ Oxidative stress: Add directly to the flask H2O2, to 0.5%, incubate 15 min at 37C. 

▪ Glycerol: Add directly to the flask glycerol to 1% -v/v, incubate 30 min at 37C. 

 

Sample preparation for metabolomics 

M. pneumoniae cells were grown in 6-well culture dishes as described above until reaching 

80-90% confluency. Culture medium was aspirated, and cells were rapidly washed twice at 

37° C with 1 mL of buffer (75 mM ammonium carbonate at pH 7.4 and 0.1% glucose). After 

aspiration of washing buffer, plates were immersed in liquid nitrogen to quench metabolism 

and stored at -80° C for less than 4 days until further processing. After aspiration of washing 

buffer, plates were immersed in liquid nitrogen to quench metabolism and stored at -80° C 

for less than 4 days until further processing.  

To extract metabolites, plates were placed on a 75° C heating block and 700 µL of extraction 

solution (70%-v/v ethanol in water at 75° C) were added to each well. After incubating for 3 

min, the supernatant was collected and transferred to ice, and the extraction was repeated 

once. Pooled extracts were dried under vacuum and stored at -80° C prior to metabolomics 

analyses.  

 

Nontargeted metabolomics  

All samples were measured in triplicate. Metabolomics samples were analysed by flow-

injection time-of-flight MS with an Agilent 6550 iFunnel QToF instrument (Agilent, Santa 

Clara, CA, U.S.A.) operated in negative ionization mode at 4 GHz high-resolution in a range 

from 50-1,000 m/z using published settings25. The mobile phase was 60:40 isopropanol:water 

(v/v) and 1 mM NH4F at pH 9.0 supplemented with 10 nM hexakis(1H-, 1H-, 3H-

tetrafluoropropoxy)phosphazine and 80 nM taurocholic acid for online mass correction. 

Spectral processing and ion annotation based on accurate mass within 0.001 Da of 

metabolites in the M. pneumoniae MyMPN database26, allowing for [M-H]- and [M+F]- ions 

and [1x12C->1x13C] neutral gain and keeping for each metabolite only the ion with lowest m/z 
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in case of multiple matching ions, was performed using Matlab R2015b (The Mathworks, 

Nattick, MA, U.S.A.) as described previously25. Metabolomics data were normalized to the 

summed abundance of a group of amino acids (Ser, Pro, Ala, Val, Thr, Leu/Ile, Met, Phe, 

Tyr) found to strongly correlate in each sample. In mycoplasma amino acids are not made but 

imported and they are fairly constant. Therefore, we could use the summed values for the less 

variable amino acids to normalize. A similar approach is used in free label quantitative 

proteomics. Subsequently, log2-transformed fold-changes and P-values (two-sided t tests, 

with q-values computed from raw p-values to enable false discovery rate adjustment27) were 

calculated to determine relative metabolite abundances compared to control samples and their 

statistical significance.  

 

Targeted metabolomics 

Samples were injected into a Waters Acquity UPLC with a Waters T3 column (150 mm x 2.1 

mm x 1.8 mm; Waters Corporation, Milford, MA) coupled to a Thermo TSQ Quantum Ultra 

triple quadrupole instrument (Thermo Fisher Scientific, Waltham, MA) with electrospray 

ionization. Compound separation was achieved by a gradient of two mobile phases (i) 10 mM 

tributylamine, 15 mM acetic acid, 5% (v/v) methanol and (ii) 2-propanol. In total, 138 

metabolites covering carbohydrate and energy metabolism, amino acid metabolism, 

nucleotide metabolism and other pathways were targeted. Further details are published 

elsewhere28. 

 

Proteomics 

Cells were grown in a 25-cm2 flask for 3 days as above, washed with PBS and 

lysed/collected in 4% SDS, and 0.1 M Hepes·HCl pH 7.5. Samples were reduced with 

dithiothreitol (15 μM, 30 min, 56°C), alkylated in the dark with iodoacetamide (180 nmols, 

30 min, 25ºC) and digested with 3 μg LysC (Wako) O/N at 37ºC and then with 3 μg of 

trypsin (Promega) for eight hours at 37˚C following FASP procedure (Filter-aided sample 

preparation 48). After digestion, the peptide mix was acidified with formic acid and desalted 

with a MicroSpin C18 column (The Nest Group, Inc) prior to LC-MS/MS analysis. The 

peptide mixes were analysed using a LTQ-Orbitrap Velos Pro mass spectrometer (Thermo 
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Fisher Scientific) coupled to an EasyLC (Thermo Fisher Scientific). Peptides were loaded 

onto the 2-cm Nano Trap column with an inner diameter of 100 μm packed with C18 

particles of 5 μm particle size (Thermo Fisher Scientific) and were separated by reversed-

phase chromatography using a 25-cm column with an inner diameter of 75 μm, packed with 

1.9 μm C18 particles (Nikkyo Technos). Chromatographic gradients started at 93% buffer A 

and 7% buffer B with a flow rate of 250 nl min-1 for 5 minutes and gradually increased 65% 

buffer A and 35% buffer B in 120 min. After each analysis, the column was washed for 15 

min with 10% buffer A and 90% buffer B. Buffer A: 0.1% formic acid in water. Buffer B: 

0.1% formic acid in acetonitrile. 

The mass spectrometer was operated in DDA mode and full MS scans with 1 micro scans at 

resolution of 60.000 were used over a mass range of m/z 350-2,000 with detection in the 

Orbitrap. Auto gain control (AGC) was set to 1 E6, dynamic exclusion (60 seconds) and 

charge state filtering disqualifying singly charged peptides was activated. In each cycle of 

DDA analysis, following each survey scan the top twenty most intense ions with multiple 

charged ions above a threshold ion count of 5,000 were selected for fragmentation at 

normalized collision energy of 35%. Fragment ion spectra produced via collision-induced 

dissociation (CID) were acquired in the Ion Trap, AGC was set to 5e4, isolation window of 2 

m/z, activation time of 0.1 ms and maximum injection time of 100 ms was used. All data 

were acquired with Xcalibur software v2.2. 

Proteome Discoverer software suite (v2.0, Thermo Fisher Scientific) and the Mascot search 

engine (v2.5, Matrix Science were used for peptide identification. Samples were searched 

against a M. pneumoniae database with a list of common contaminants and all the 

corresponding decoy entries (87,059 entries). Trypsin was chosen as enzyme and a maximum 

of three mis-cleavages were allowed. Carbamidomethylation (C) was set as a fixed 

modification, whereas oxidation (M) and acetylation (N-terminal) were used as variable 

modifications. Searches were performed using a peptide tolerance of 7 ppm, a product ion 

tolerance of 0.5 Da. Resulting data files were filtered for FDR < 5 %. Protein Top 3 areas 

were calculated with unique peptides per protein. 
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Data and model management 

All omics data, modelling files as well as a backup of modelling pipeline and simulation 

outputs are available via the Seek data and model management platform for maximum 

reproducibility (http://doi.org/10.15490/FAIRDOMHUB.1.INVESTIGATION.133.3 ) 29,30. 

SBtab31, a tabular exchange format was used to add minimal information compliant with the 

Minimal Information Requirements In the Annotation of Models (MIRIAM)32 compliant 

annotation and to add Systems Biology Ontology (SBO) identifiers33 for metabolites, 

reactions and parameters in the model.  

 

Data analysis 

Relative metabolite measurements were log10-transformed following the recommendation of 

Jauhiainen et al 34. Pearson correlations between metabolites were computed using R v3.4.235. 

To remove batch effects in the metabolites measurement, values were normalized by dividing 

them by the median measured metabolite value per batch36. Fold Change (FC) metabolite 

measurements for the 40 independent samples were analysed through Principal Component 

analysis using the prcomp package. Pearson correlation between samples and metabolites 

were calculated and used to generate heatmaps of sample correlations and metabolite 

correlations. We used the metabolite correlation matrix for [M+F]-ion data and filtered on 

correlations with at least p-value cut-off of 0.001. We calculated the Euclidean distance using 

the complete linkage method and used Hierarchical clustering and cut tree to identify 6 

clusters in the metabolite correlation data. Absolute measurements needed for simulations 

with the model were obtained by multiplying relative metabolite values from [M-H]- 

measurements with quantitative metabolite measurements at 24 h. Similarly, enzyme 

concentrations of samples with overexpression (OE) of enzymes were obtained by 

multiplying relative measurements for these mutants with absolute measurements of the wild 

type at their respective time point. These computations were performed using Python. 

Additionally, we calculated Pearson correlation between metabolite concentration and 

estimated growth of 24 time-series samples (P-value <0.05) applying Benjamin Hocheman 

Multiple testing correction.  
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Model construction and numerical implementation 

A dynamic model was build of glycolysis an pyruvate metabolism. A base model containing 

all reactions in glycolysis, pyruvate metabolism from the MyMPN database26.Different 

additions to this model were tested such as individual and combined additions of 1) an 

ATPase reaction, 2) LDH inhibition by oxygen and 3) a NoxE reaction for NAD regeneration 

using oxygen. The tested models include i) the base model ii) the base model and the ATPase 

reaction iii) base model with NoxE reaction iv) base model with both ATPase and NoxE 

reaction v) based model with NoxE reaction and LDH inibhition by oxygen and vi) the base 

model with all three modifications. In case intermediate metabolites were not measurable, 

reactions were lumped in a single reaction. This was the case for Phosphoglycerate kinase 

(PGK), Glycerate phosphomutase (GMP) and enolase (ENO). These three reactions were 

combined in reaction re07 lumping the enzymatic reactions of PGK&GMP&ENO. Similarly, 

phosphotransacetylase (PTA) and acetate kinase (ACK) were combined in reaction re10 

which lumps the enzymatic reactions of PTA&ACK.  

Allosteric control was assumed to be similar to allosteric control in Lactococcus lactis as 

presented in the model by Costa et al37 due to the lack of MPN specific information on 

allosteric control. Allosteric control includes three activator and five inhibitor effects. 

Reactions were modelled using modular rate laws except for transport reactions for which 

Hill type kinetics were used. Enzyme concentrations were included as reaction parameter to 

allow model predictions at varying protein concentrations. The base model contains 10 

equations and 72 parameters of which 10 represent experimentally determined enzyme 

concentrations, 5 represent equilibrium constants (Keq) and 1 is a Hill coefficient. The 

remaining 56 parameters represent Michaelis-Menten constants, activation constants and 

inhibition constants which are not known for MPN. The model was built using COPASI38.  

 

Initial parameter values 

Proteomics measurements for 6, 24 and 48-hour timepoints were used as estimates for 

enzyme concentrations at respective time points. In case of multi-subunit enzymes, the most 

abundant single copy subunit was chosen to represent the enzyme concentration. Many lower 

abundance subunits are only expressed under specific conditions and as such are not 

representative of the abundance of these glycolysis enzymes. We also tested using the 
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average, but no major differences were found. Equilibrium constants were gathered from 

www.equilibrator.org assuming an ionic strength of 0.1 and a pH of 739. Initial values for 

Monod constants and allosteric control constants were randomly selected between 0.01 and 

100 fold of the observed metabolite concentrations at 24h. An overview of the six models 

reactions and equations can be found in Supplementary file 1 A.  

Model selection and parameter estimation 

The base model has 72 parameters of which 56 are unknown while model that includes 

ATPase, NoxE and O2 inhibition of LDH has 80 parameters of which 63 are unknown. 

Parameter estimation was performed training the models on metabolomics steady state data 

obtained from growth curve samples for 6h, 24h and 48h time points grown on medium 

containing 60 mM of glucose. These samples were selected as training data due to the 

completeness of the data available for these three times points. Only for these three samples, 

measurements for all 17 metabolites present in the model were available. In addition, protein 

copy number, glucose uptake, lactate secretion, and acetate secretion measurements were 

available for these three samples. Steady state concentration for 6h, 24h and 48h grown on a 

lower glucose concentration of 10 mmol were used as internal validation data. Internal 

validation data is used by COPASI to stop the parameter estimation algorithm from 

overfitting parameters to the training data. The large time interval between the samples means 

that metabolite concentrations in each sample can be assumed to be independent from the 

concentrations of the other samples. Therefore, each sample was treated as an independent 

steady state. 

COPASI’s38 build in Genetic programming algorithm was used to estimate parameters using 

a maximum of 1000 generations with a population size of 500 models with normalized sum 

of squares as weights. 100 independent parameter estimations were run per model. Optimal 

parameters were searched within a range of 10-2-102-fold of the observed metabolite 

concentration at 24h for Monod constants and allosteric control constants while maximum 

reaction velocity values were searched within a range of 10-2-103. The performance of the six 

models were compared based on the distribution of the mean square error values for each of 

the 100 parameter estimations. 
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Simulations, local and global sensitivity analysis 

The model was used to predict steady state concentrations for 40 independent samples 

comprised of OE and knock out (KO) mutants, perturbations, and time-series measurements 

in different growth conditions measured in triplicate. In these simulations, the input for the 

model was concentration data of 11 metabolites: acetyl coenzyme A (AcCoA), acetate 

(ACE), adenosine diphosphate (ADP), adenosine triphosphate (ATP), coenzyme A (CoA), 

diacylglycerol phosphate (DGP), fructose 6-phosphate (F6P), fructose-1,6-bisphosphatase 

(FBP), glucose 6-phosphate (G6P), glyceraldehyde-3-phosphate (GAP), lactate (LAC), 

nicotinamide adenine dinucleotide (NAD), reduced nicotinamide adenine dinucleotide 

(NADH), phosphoenolpyruvate (PEP), orthophosphate (Pi_Int), pyruvate (PYR), external 

glucose (GLC_Ext). Measurements for NAD and NADH are approximate. For each sample, 

1000 steady state simulations were performed while sampling from the log normal 

distribution of metabolite measurements. By comparing sampled measurements and sampled 

simulation values, measurement error and its propagation are incorporated in model 

predictions.  

Not all metabolites present in the model were measured for all independent samples. 

Reference values from measurements taken at 6h, 24h and 48h of growth on high glucose 

concentrations used to train the model were used to set the initial concentration of NAD, 

NADH and orthophosphate. Reference values were also used for CoA, Acetyl-CoA, and 

Lactic Acid (LAC) for some of the independent samples (Supplementary Material 2).  

To compare the error between simulated and measured metabolite concentrations in a 

consistent manner, we used the symmetric Mean Absolute Percentage Error (sMAPE). 

sMAPE is a measure of prediction accuracy used for forecasting methods. This method has 

the advantage of providing an equal error to positive and negative errors for log normal 

distributed data such as metabolite measurements and predictions40.  

We performed global sensitivity analysis for all kcat, Monod constants, activation and 

inhibition constants using a 100,000 Latin Hypercube sampling41,42. Samples were 

constructed by sampling from the log linear distribution of each parameter’s respective search 

range.  

The above described operations were performed using Python 3.6.5 with the Tellurium 2.0.18 

and Roadrunner 1.4.24 high performance SBML simulation and analysis libraries43,44. The 
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pyDOE package was used for Latin Hypercube sampling. Conda version 4.3.21 was used for 

package management. 

 

Modelling oxygen diffusion 

Oxygen concentrations were calculated based on the initial oxygen concentration in the 

culture flasks and the acetate production rate which requires NAD to be regenerated from 

NADH by the oxygen dependent reaction catalysed by NoxE. The initial oxygen 

concentration was calculated with the ideal gas law, using the temperature used in cultivation 

(37 degrees Celsius) and atmospheric pressure. Volumes, surface area height of the medium 

were calculated based on the medium and inoculant volume and the specifications of the 

T300 cell culture flask45. 

Diffusion of oxygen from the head space into the medium was calculated using the Wilke and 

Chang correlation46 while Fick’s law47 was used to calculate the diffusion of oxygen to the 

bottom of the flask at 6h, 24h, 48h and 96 hours of growth. The calculated oxygen 

concentrations were added to the metabolomics measurements for the 95 independent 

samples.  

 

 

Results 

Datasets were collected growing MPN in a large number of conditions. 

M. pneumoniae was grown in suspension until sedimenting after 6 h of incubation in rich 

medium in non-aerated, non-stirred conditions mimicking its host environment. At several 

time points during the growth of wild-type MPN, samples were taken for metabolomics, 

biomass, pH and acetate concentration measurements. In addition, relative metabolite 

concentrations were measured by untargeted metabolomics for 40 different samples from 

environmental perturbations, genetic mutations and at 6h, 24h, 48h and 96 hours of growth.  

The metabolomics data and targeted proteomics data for these samples is available in 

Supplementary file 2. 

Among these 40 datasets, there were data corresponding to OE mutants for all glycolysis and 

pyruvate metabolism enzymes except for pyruvate dehydrogenase (PDH) of which the 
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complex is large to clone and OE, as well as for the KO of LDH (Mpn674). The fold change 

in mRNA and or protein concentrations for genes targeted in each mutant were measured. Of 

the 40 datasets, 17 are mutants that target enzymes for which a reaction is present in the 

model. Of these mutants 2 are KO mutants and 14 are OE mutants and 1 is a combined KO 

and OE mutant (Table 1). Additionally, there are 6 mutants targeting enzymes in in the 

pentose phosphate pathway which is connected to the glycolysis via F6P. 

Changes in mRNA and protein concentration of enzymes targeted in over expression (OE) 

and knock out (KO) mutants were also measured. Table 1 gives an overview of these 

conditions and mutants.  

Unless stated otherwise, relative metabolite concentrations were measured at steady state in 

non-aerated conditions. In cases where different conditions were used, or where additional 

omics data were measured, this is indicated in Table 1. Targeted metabolomics were used to 

measure protein concentration for all OE mutants targeting central carbon metabolism 

enzymes. 

 

Experiment Type Enzyme in 

model 

24h_timecourse * Absolute Metabolomics, Proteomics,  

Glucose uptake, acetate lactate secretion rate and lactate secretion 

rate 

NA 

48h_timecourse * Absolute Metabolomics, Proteomics,  

Glucose uptake, acetate lactate secretion rate and lactate secretion 

rate 

NA 

6h_timecourse * Absolute Metabolomics, Proteomics,  

Glucose uptake, acetate lactate secretion rate and lactate secretion 

rate 

NA 

24h_timecourse_4 ** Glucose uptake, acetate lactate secretion rate and lactate secretion 

rate 

NA 

48h_timecourse_4 ** Glucose uptake, acetate lactate secretion rate and lactate secretion 

rate 

NA 

6h_timecourse_4 ** Glucose uptake, acetate and lactate secretion rate NA 

blank_control_7 Control NA 

water_control_7 Control NA 

WT_5 Control NA 

WT_perturbation_7 Control NA 

KO51_mutant_6 mutant, glpD KO  NA 

MPN025-OE_6 mutant, tsr OE FBA 

MPN025-OE_7 mutant, tsr OE FBA 
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MPN051-KO_5 mutant, glpD KO NA 

MPN051-OE_7 mutant, glpD KO NA 

MPN250-OE_5 mutant, pgi OE PGI 

MPN250-OE_7 mutant, pgi OE PGI 

MPN302-OE_6 mutant, pfkA OE PFK 

MPN302-OE_7 mutant, pfkA OE PFK 

MPN303-OE_5 mutant, pyk OE PYK 

MPN303-OE_6 mutant, pyk OE PYK 

MPN303-OE_7 mutant, py OE PYK 

MPN430-OE_6 mutant, gap OE GAP 

MPN606-OE_6 mutant, eno OE ENO 

MPN627-OE_7 mutant, ptsI OE NA 

MPN674-KO, NoxE OE_5 mutant, ldh KO, noxE OE LDH, NOXE 

MPN674-KO_5 mutant, ldh KO LDH 

MPN674-KO_6 mutant, ldh KO LDH 

MPN674-OE_5 mutant, ldh OE LDH 

MPN674-OE_7 mutant, ldh OE LDH 

Tn674_mutant_7 mutant, ldh KO LDH 

Tn051_Gly_perturbation_7 mutant, perturbation glpD KO NA 

AA_perturbation_6 Perturbation NA 

Fe_perturbation_6 Perturbation NA 

Glu_perturbation_6 Perturbation NA 

Glucose_starv_perturbation_7 Perturbation NA 

Gly_ctrl_perturbation_7 Perturbation NA 

Gly_perturbation_6 Perturbation NA 

Ox_perturbation_6 Perturbation NA 

WT_noGluc_perturbation_7 Perturbation NA 

M129_timecourse_24h_3 *** time course, perturbation NA 

M129_timecourse_48h_3 *** time course, perturbation NA 

M129_timecourse_6h_3 *** time course, perturbation NA 

M129_timecourse_96h_3 *** time course, perturbation NA 

* Used to train the model. 

** Used to validate the model. 

*** M. pneumoniae M129 grown in aerated conditions. 

 

We explored the measurements of metabolite concentrations for the various samples shown 

in Table 1. Similar conditions as well as KO of genes in the same pathway cluster together. 
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An example of this is the clustering of all M129 samples which are the only samples grown 

in aerated conditions (Figure 1).  

 

Two clusters exist of OE mutants targeting glycolysis. The first cluster contains an OE 

mutant of FBP, phosphotransferase MPN627 involved in mannitol and mannose uptake8 and 

LDH. This clustering corroborates the assumed allosteric activation of LDH by FBP. The 

second cluster contains OE mutants of ENO, GAP, PYK and PFKA. 

 

Another interesting cluster contains MPN perturbation, growth without oxygen and growth 

without amino acids which cluster together with both an LDH KO and FBA OE. These four 

samples have in common that the conditions are growth inhibiting. The clustering of FBA OE 

which degrades FBP together with LDH KO can be explained by the positive allosteric 

control of FBP on LDH.  

 

Two annotation techniques were used to measure metabolite abundance, [M+F]- ion and [M-

H]- ion detection48. Some differences are present in the correlations between individual 

metabolites in the [M+F] - ion and [M-H] -data, however, clustering of samples for both 

detection techniques is highly similar. A heatmap that compares both [M+F] - ion and [M-H] -

data can be found in the Supplementary files 1B. 
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Figure 1 Heatmap of mutant and perturbation sample clustering based on their metabolite profile 

In addition to clustering of samples based on their relative metabolite concentrations we 

studied the clustering of metabolites of these samples. We use the Pearson correlations 

between metabolites to build a network of metabolite-metabolite interactions (Figure 2).  

We identified a neatly defined cluster structure. The largest cluster contains sn-glycero-3-

phosphocholine, CDP-Choline, folate and methionine cycle metabolites, orthophosphate, all 

nucleotide three phosphates (ATP, CTP, UTP) and pentose phosphate metabolism (PPP) 

metabolites. This cluster suggest a link between sn-glycero-3-phosphocholine catabolism, 

energy production, and nucleobase salvaging by phosphorylation and de-oxidation. Higher 

concentrations of PRRP associated with these metabolites are needed to convert nucleobases 
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into ribonucleotides, while increase in ATP is needed for phosphorylation of 

deoxyribonucleotides: 

𝑁𝑢𝑐𝑙𝑒𝑜𝑏𝑎𝑠𝑒 + 𝑃𝑅𝑃𝑃 < => 𝑁𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑 − 𝑚𝑜𝑛𝑜𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 + 𝑃𝑃𝑖 

In humans, phosphatidylcholine (lecithin) is used as main nutritional source for one carbon 

metabolism (CH3)
49 One carbon metabolism and its relation to nucleotide synthesis in cancer 

cells has been extensively studied48. It has been argued that in human cancer cells, glycolysis 

can produce enough energy for growth by diverting its flux to other metabolic pathways 

including one-carbon metabolism. Indeed, several reactions of one-carbon metabolism 

contribute to ATP and NADPH production. Similarly, it has been argued that phosphatidyl 

choline plays a major role in the nutrition of MPN as it is by far the most abundant available 

carbon source in the lungs and for these reasons is also used as carbon and nitrogen source by 

pathogens like P. aeruginosa50,51 and claimed to be used as carbon source by MPN52.  

 

Figure 2 Metabolite correlation network based the Pearson correlation of metabolite measurements of the 40 

independent samples. The 6 clusters were assigned based on hierarchical clustering of the correlation data. 

The second largest cluster contains alanine, aspartate, glutamate, serine, pyridoxal phosphate 

(vitamin B6), S-adenosyl-L-homocysteine, glycine, lipoamide, pyruvate as well as adenine, 
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guanine, GMP, dATP and dCTP. Pyruvate is positively correlated with dATP and dCTP 

which are needed for DNA synthesis. This cluster is strongly associated to the sub cluster of 

sn-Glycero-3-phosphocholine and tetrahydrofolate metabolites from the first cluster. 

Based on the observed cluster, there are three main lessons to be learned. Firstly, clustering of 

sn-Glycero-3-phosphocholine with ATP, CTP and UTP metabolite correlation profiles 

supports the theory50 that glycerol-3-phosphate derived from sn-Glycero-3-phosphocholine 

functions as a carbon and energy source for MPN. Addition of phosphatidylcholine to a 

defined minimal medium for MPN indeed optimizes growth22. Secondly, sn-Glycero-3-

phosphocholine clusters together with folate and methionine cycle one carbon metabolites 

and as such is likely the main one carbon donor in MPN metabolism. Thirdly, positive 

correlation between CDP-choline, 3-phospho-D-glyceroyl-phosphate and sedoheptulose-7 

phosphate, as well as between sn-Glycero-3-phosphocholine and the cluster containing PRPP 

indicate a link between sn-Glycero-3-phosphocholine and pentose phosphate metabolism. 

 

Over Expression of glycolytic enzymes 

To further study the control of different glycolytic enzymes on central carbon metabolism we, 

analysed the fold change of enzymes in glycolysis and pyruvate metabolism when OE single 

as well as some combinations of glycolytic enzymes (Table 1) 

 

Table 1 Log2 Fold change expression values of OE mutants. I: Mutant PTA ACK did not show any OE of ACK. II: 

OE are significantly different from the wild type. III: OE values are significant, but the changes are noisy. 

   PTA 

ACK
 I

 

PTA  PFK 

 

 PFK 

PTA 

 PFK 

LDH 

LDH 

 
  

MPN428; 

MPN533 

MPN428   MPN302; 
 

  MPN302; 

MPN428 

  MPN302; 

MPN674 

MPN674 

 
  

fold 

change 

fold 

change 

  fold 

change 

  fold 

change 

  fold 

change 

fold 

change 

 PTS MPN207 0.07 0.18 
 

-0.04 
 

-0.18 
 

-0.07 0.10 

 PFK MPN302 -0.08 -0.10 
 

2.73 II 
 

2.66 II 
 

2.71 II -0.20 

 PGI MPN250 -0.12 0.09 
 

-0.16 
 

-0.05 
 

-0.04 0.04 

 FBA MPN025 0.28 0.54 
 

0.04 
 

0.47 
 

0.75 0.62 

 GAPD

H 

MPN430 -0.22 -0.14 
 

-0.27 
 

-0.31 
 

0.19 0.07 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.08.503180doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503180
http://creativecommons.org/licenses/by-nc/4.0/


 PGK MPN429 -0.01 0.04 
 

0.07 
 

0.20 
 

0.05 -0.01 

 PGM MPN628 0.06 0.21 
 

-0.20 
 

0.03 
 

0.51 0.25 

 ENO MPN606 0.24 0.30 
 

0.13 
 

0.32 
 

0.41 0.35 

 PYK MPN303 -0.20 -0.13 
 

-0.11 
 

0.12 
 

0.01 -0.15 

 LDH MPN674 0.37 0.54 
 

0.01 
 

0.34 
 

1.50 II 1.69 II 

 lplA MPN389 0.29 0.18 
 

0.17 
 

0.27 
 

0.35 0.19 

 pdhD MPN390 0.03 -0.04 
 

0.08 
 

0.19 
 

-0.08 -0.11 

 pdhC MPN391 0.24 0.12 
 

0.10 
 

0.23 
 

0.15 0.15 

 pdhB MPN392 0.34 0.19 
 

0.27 
 

0.29 
 

0.37 0.36 

 pdhA MPN393 0.07 -0.01 
 

-0.11 
 

0.06 
 

-0.08 -0.09 

 nox MPN394 0.71 0.50 
 

0.12 
 

0.43 
 

0.80 0.52 

 pta MPN428 2.11 II 2.22 II 
 

0.28 
 

1.93 II 
 

0.26 0.33 

 ack MPN533 0.36 0.34 
 

0.28 
 

0.43 
 

0.40 0.30 

 GlpD MPN051 0.41 0.44 
 

0.19 
 

0.27 
 

0.60 0.49 

 atpC MPN597 -0.16 0.21 
 

-0.21 
 

-0.11 
 

0.27 0.31 

 atpD MPN598 0.15 0.29 
 

0.02 
 

0.34 
 

0.53 0.42 

 atpG MPN599 0.20 0.30 
 

0.20 
 

0.11 
 

0.71 0.32 

 atpA MPN600 0.00 0.16 
 

-0.01 
 

0.09 
 

0.16 0.27 

 atpH MPN601 -0.15 0.18 
 

-0.09 
 

0.05 
 

0.43 0.12 

 atpF MPN602 -0.08 0.06 
 

-0.30 
 

-0.49 
 

0.18 0.23 

 atpE MPN603 -1.53 III -0.52 
 

-0.16 
 

1.23 III 
 

0.30 -1.76 

 atpB MPN604 0.20 -0.15 
 

-0.54 
 

-0.60 
 

-0.10 0.19 

 tkl MPN082 0.02 -0.01 
 

0.03 
 

0.18 
 

0.20 0.26 

 tim MPN629 0.21 0.31 
 

0.13 
 

0.13 
 

0.37 0.47 

 

 

 

 

What we see is that when OE these other enzymes in the pathway don not widely change. 

These results suggests that allosteric regulation and circuit topology might play a great role 

on the control of central carbon metabolism of MPN.  
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Exploration of metabolite’s concentration at steady state: study of associations. 

We build a dynamic model of central carbon metabolism including glycolysis and pyruvate 

metabolism. We trained this model with a limited subset of data and use the model to identify 

key regulatory elements in glycolysis. 

Different additions to this model were tested such as individual and combined additions of 1) 

an ATPase reaction to account for varying ATP demand, 2) LDH inhibition by oxygen and 3) 

a NoxE reaction for NAD regeneration using oxygen. The tested models include i) the base 

model ii) the base model and the ATPase reaction iii) base model with NoxE reaction iv) base 

model with both ATPase and NoxE reaction v) based model with NoxE reaction and LDH 

inhibition by oxygen and vi) the base model with all three modifications.  

We found the model with addition of NoxE to have the best fitting in multiple parameter 

estimations, therefore we kept the addition of the NoxE to the model we used for further 

simulations/ 

In case intermediate metabolites were not measurable, reactions were lumped in a single 

reaction. This was the case for Phosphoglycerate kinase (PGK), Glycerate phosphomutase 

(GMP) and enolase (ENO). These three reactions were combined in reaction re07 lumping 

the enzymatic reactions of PGK&GMP&ENO. Similarly, phosphotransacetylase (PTA) and 

acetate kinase (ACK) were combined in reaction re10 which lumps the enzymatic reactions 

of PTA&ACK.  

Allosteric control was assumed to be similar to allosteric control in Lactococcus lactis as 

presented in the model by Costa et al37 due to the lack of MPN specific information on 

allosteric control. Allosteric control includes three activator and five inhibitor effects. 

Reactions were modelled using modular rate laws except for transport reactions for which 

Hill type kinetics were used. Enzyme concentrations were included as reaction parameter to 

allow model predictions at varying protein concentrations. The base model contains 10 

equations and 72 parameters of which 10represent experimentally determined enzyme 

concentrations, 5 represent equilibrium constants (Keq) and 1 is a Hill coefficient. The 

remaining 56 parameters represent Michaelis-Menten constants, activation constants and 

inhibition constants which are not known for MPN. The model was built using COPASI38. 

An overview of the model’s reactions and equations and the additions tested can be found in 

in Supplementary material 1A.  
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Figure 3: Schema of the model. The diagram meets the Systems Biology Graphical Notation (SBGN) standard53 with 

the exception of the LAC and ACE export arrows which in the model are present as syncs for LAC and ACE: 

Arrowheads represent reactions (black arrowhead end), catalysis (open circle end), activation (green) and inhibition 

(red). Circles indicate metabolites. Half-filled circles are clone makers to indicate the metabolites appears multiple 
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times in the diagram (green=adenine nucleotides, yellow=redox equivalents, red=PEP/PYR). Blue filled rectangles 

describe macromolecules (enzymes, transporters) that catalyse a reaction. In case the reaction stoichiometry is 

different to 1, the reaction stoichiometry is given as text at the reaction arrow. Blue empty rectangles indicate 

reaction identifiers in the model. Metabolite abbreviations: AcCoA = acetyl coenzyme A, ACE = acetate, ADP = 

adenosine diphosphate, ATP = adenosine triphosphate, CoA = coenzyme A, DGP = diacylglycerol phosphate, F6P = 

fructose 6-phosphate, FBP = fructose-1,6-bisphosphatase, G6P = glucose 6-phosphate, GAP = glyceraldehyde-3-

phosphate, LAC = lactate, NAD = nicotinamide adenine dinucleotide, NADH = reduced nicotinamide adenine 

dinucleotide, PEP = phosphoenolpyruvate, Pi_Int = orthophosphate, PYR = pyruvate (PYR), GLC_Ext = external 

glucose. 

We compared the mean square error, for all parameter sets (Figure 4). Models that include 

ATPase (models 2, 4 and 6) have on average the largest error and took the most iterations to 

reach a stable solution. The addition of NoxE was shown to reduce the error in model 

predictions (see Figure 4). A zoomed in version of Figure 4 as well as correlation analysis of 

parameter sets is available in Supplementary file 1B. Since the model with addition of NoxE 

performed best, further analyses were continued using this model. This model loaded with the 

best performing parameter set was deposited in BioModels54 and assigned the identifier 

MODEL1911200003. 
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Figure 4 Violin plot comparing the mean square error, for all 100 parameter sets for six models. The red dot 

indicates the median value. 

 

Simulating perturbations, KO and OE mutants 
We used the trained model to predict steady state metabolite concentrations for 40 

independent samples. Sample’s metabolite concentration mean and standard deviation values 

were determined by measuring samples in triplicate. In addition to being measured in 

triplicates, biological replicates were available for all OE targeting glycolysis and pyruvate 

metabolism.  

For each of the 40 samples, 1000 independent simulations were performed with slightly 

different initial concentrations to explore the impact of biological variability and uncertainty 

associated to measurement error rates. On average the model predicted these samples with 

reasonable accuracy (Figure 4). 
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Figure 5 Symmetric Mean Absolute Percentage Error between simulated and measured values using a 1000x times 

sampling. sMAPE for all metabolites per sample are combined.  

 

The largest error in predicted metabolite concentrations occur for the samples of MPN129 

growth in aerated conditions. These results were to be expected as these samples are clearly 

forming an outlier since the growth conditions are so vastly different from the other samples. 

From samples corresponding to perturbations in growth condition, the oxidative stress 

perturbation (0.15% H2O2) had the largest prediction error. 

The relatively simple model here presented reproduces the states attained under a broad range 

of perturbations such as glucose concentrations up to a factor 10 lower as compared to the 

training data. The use of proteomics data is most likely one of the main reasons the model 

simulates OE and KO mutants of enzymes in glycolysis relatively well. The calculated 

metabolite concentrations are, on average within a factor 3 of measured values for all mutants 

and perturbation samples, which is comparable to the accuracy of the training set. An 

example of measured and simulated values of sampled simulations can be seen in Figure 6. 
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Figure 6 Measured and simulated steady state concentrations at a) 6h of growth, b) 24h of growth and c) 48h of 

growth on low glucose concentration. Measurement for DGP, NAD and NADH are reference values from samples 

grown on high glucose concentration. 

Additionally, concentrations of for most metabolites are predicted within the 95% confidence 

interval of the in-vitro data (Supplementary material 1C). Exceptions to this rule are PYR and 

ATP and NADH. Simulated concentrations for ATP and NADH are systematically lower 

than measured values while PYR is systematically predicted to have a higher than measured 

concentration. Pyruvate is hard to quantify since it easily is degraded causing variation in its 

measurement due to for example different times between measurement and sampling. As 

such we cannot quantify the accuracy of the predictions for pyruvate. For the metabolites 

such as DGP, NAD and NADH, reference values from high glucose conditions were used to 

set initial concentrations. As such deviation from these reference values in the simulations in 

steady state was to be expected.  

 

Metabolic control 
We used two types of metabolic control analysis to understand which enzymes and 

metabolites effort the greatest control on glycolysis: Local Sensitivity analysis and Global 

Sensitivity analysis. Control coefficients are unit less measures of the relative steady state 

change in a system variable, in our case the flux through PFK, in response to a relative 

change in a parameters value. Global sensitivity provides information on parameters that 

exert control independent of a specific parameter value. We achieved this by sampling 

parameter sets uniformly from the parameter search space. These parameters sets are not 

specific for MPN since they are not fitted to any MPN data. Local sensitivity analysis on the 

other hand is based on control coefficients derived at the steady state using parameter sets 
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fitted to MPN specific data. As such the approaches are fundamentally different and 

complementary in the information they provide. For our local sensitivity analysis, we use the 

best performing10 parameter sets to calculate metabolic control coefficients (Error! 

Reference source not found.). Since these parameter sets are independent of one another, if 

metabolic control is higher for certain parameters based on multiple parameter sets, we can 

conclude the control to be relevant since it is a result of the fitting to MPN data. Additionally, 

we also performed local sensitivity analysis while sampling from the measurement 

distribution of metabolites to investigate the effect of measurement error on control 

coefficients. The steady state changes for each sampled simulation, as such we can see how 

the uncertainty in metabolite concentrations propagates and creates uncertainty in the control 

coefficients calculated at these steady states. An overview of our metabolic control analyses 

can be found in Supplementary file 1D. We found two main control hubs PTS_Glc + PFK 

and LDH+PDH+PYK. The first control hub consists of parameters associated to PTS_Glc 

and PFK and represents metabolism in the upper part of glycolysis, the second hub consists 

of parameter associated to LDH, PDH and PYK and part of pyruvate metabolism.  

Simulating combined OE and KO mutants 
We used the model to simulate the combined effect of genetic perturbations targeting 

glycolysis enzymes (OE, KO) combined with a second perturbation, either genetic or 

environmental. This analysis can identify bottlenecks in central carbon metabolism consisting 

of combinations of enzymes. Such bottlenecks cannot be identified through local sensitivity 

analysis or when simulating single over expressions. The expected variations in the flux 

through glycolysis is shown in Figure 7. For most of these combined perturbations, only 

minor changes were observed. However, simulations of OE of PFK show greatly increased 

flux through glycolysis while oxygen stress, iron limitation and growth of MPN129 in aerated 

conditions lead to greatly reduced flux.  

However, combination of PFK OE with OE of lactate dehydrogenase (LDH) or 

phosphotransacetylase (PTA) with acetate kinase (ACK), increase the flux nearly as much 

and is realistic to obtain in vivo since OE mutants for each of these enzymes individually are 

available.  

Based on these simulations, combined OE mutants were suggested for lab validation: 

PFK+LDH, PFK+NOXE. Growth curves, protein and metabolite concentrations were 

measured for the PFK+LDH OE mutant but not for combined PFK+NOXE OE. Combined 

PFK+PDH OE did not increase flux through glycolysis. However, some positive epistasis on 
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the growth for the combined OE of PFK+LDH was observed, with higher biomass and higher 

acidification than the individual mutants. None of the combined OE mutants increased the 

growth rate of MPN with respect to the wild type as could eb expected since energy 

metabolism is not growth limiting in MPN9.  

The simulation results of the double OE mutants show that glycolysis in robust. Meaning that 

the network structure that includes feed forward and feed backward allosteric control, makes 

the glycolysis of MPN inherently robust. 

 

 

Figure 7 Fold change flux through PFK for combinatorial mutants and perturbations in steady state, relative to the 

wild type at 24h. The primary sample, of which only the protein OE values are used, are shown on the y-axis while 

the secondary sample, of which both changes to parameters and metabolite concentrations are used, are shown on the 

x-axis. The colour represents the fold change in flux through glycolysis compared to the wild type.  

Discussion:  

Metabolomics data for a large number of perturbations, OE and KO mutants were collected. 

We observe that metabolite concentration of samples in general do not vary that much and 

that samples of similar conditions as well samples of enzymes OE and KO mutants of 

enzymes close to other in the metabolic network cluster together. In glycolysis we observed 

no clear clustering between metabolites. We also see that there is relatively little difference in 

the expression of glycolytic enzymes when OE enzymes in glycolysis and pyruvate 

metabolism. These results suggest that central carbon metabolism of MPN is robust against 
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perturbation. Literature research revealed that glycolysis and pyruvate metabolism in many 

species is observed to be robust against perturbations 16,55,56. Arguably robustness is an even 

more important property for a minimal organism such as MPN where biological noise can be 

expected to have much larger effect than for many organisms with a larger cell volume. 

The property of robustness agrees with model results that show only minor changes occur 

even when OE multiples glycolysis enzymes in silico. We tested the effect of adding a 

reaction for additions of 1) ATPase, 2) O2 inhibition by LDH and 3) a NoxE reaction. Only 

the the addition of addition of a NoxE reaction resulted in a much better fit to the training 

data. Arguably, addition of NoxE improves parameter identifiability since the models without 

this reaction use a fixed reference values for NAD and NADH. The models that include 

NoxE allow NAD and NADH concentrations to change, this added flexibility and improves 

parameter identifiability since NAD and NADH associated parameter can now be used to 

account for differences in metabolite concentration opposed to being fixed values based on 

reference values. Additionally, NAD/NADH are known to have control over central carbon 

metabolism in other organisms such as L. lactis 57,58 therefore we argue it is likely they also 

have control over central carbon metabolism in MPN. 

Steady state simulations showed the model to be flexible since it can predict metabolite 

concentrations well for all mutant samples. Part of this flexibility is the result of including 

parameters representing the enzyme concentration, therefore genetic perturbations are 

accounted for in simulations. Similarly, by using measurements of cofactors from these 

conditions, the model can approximate the effects of these simulations on central carbon 

metabolism. Additionally, we argue the flexibility of the model might partly be the result of 

the inherent robustness of central carbon metabolism in MPN. 

 

Conclusion 

In this study we integrated experimental data and model simulations and analysis to explore 

the robustness of central carbon metabolism of MPN in steady state. 

Firstly, we analyzed metabolomics data. We observed that samples from similar conditions as 

well as samples of OE and KO mutants of enzymes close to each other in the metabolic 

network cluster together. Samples from vastly varying conditions, such as aerated conditions, 

do not cluster with the other samples. Secondly, we build a model to simulate samples of 

various single or combined perturbations. The simple model presented in this study can 

predict metabolite concentration with reasonable accuracy for a wide range of conditions and 
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OE and KO mutants. 

Two control hubs were identified using our dynamic model a) upper glycolysis (PTS_Glc + 

PFK) and b) lower pyruvate metabolism (LDH+PDH+PYK). No single or combined OE 

mutant of glycolysis and pyruvate metabolism enzymes resulted in a higher growth rate 

although OE of PFK and LDH resulted in somewhat higher acidification indicating there 

might be higher flux through glycolysis. These results are in in agreement with studies that 

show that glycolysis and pyruvate metabolism in MPN is not growth limiting. Both the 

results from the analysis of our samples as well as the model results, suggest robustness to be 

a central property of MPN glycolysis and pyruvate metabolism. 
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