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Can Artificial Intelligence Detect Monkeypox from
Digital Skin Images?

Towhidul Islam, Mohammad Arafat Hussain, Forhad Uddin Hasan Chowdhury, and B.M. Riazul Islam,

Abstract—An outbreak of Monkeypox has been reported in 75
countries so far, and it is spreading in fast pace around the world.
The clinical attributes of Monkeypox resemble those of Smallpox,
while skin lesions and rashes of Monkeypox often resemble those
of other poxes, for example, Chickenpox and Cowpox. These
similarities make Monkeypox detection challenging for healthcare
professionals by examining the visual appearance of lesions and
rashes. Additionally, there is a knowledge gap among healthcare
professionals due to the rarity of Monkeypox before the current
outbreak. Motivated by the success of artificial intelligence (AI)
in COVID-19 detection, the scientific community has shown an
increasing interest in using AI in Monkeypox detection from
digital skin images. However, the lack of Monkeypox skin image
data has been the bottleneck of using AI in Monkeypox detection.
Therefore, recently, we introduced the Monkeypox Skin Image
Dataset 2022, the largest of its kind so far. In addition, in this
paper, we utilize this dataset to study the feasibility of using
state-of-the-art AI deep models on skin images for Monkeypox
detection. Our study found that deep AI models have great
potential in the detection of Monkeypox from digital skin images
(precision of 85%). However, achieving a more robust detection
power requires larger training samples to train those deep
models.

Index Terms—Monkeypox, skin image data, deep learning,
CNN, artificial intelligence.

I. INTRODUCTION

MONKEYPOX virus has been spreading throughout the
world at a rapid rate, while the world is still recover-

ing from the aftermath of Coronavirus disease (COVID-19).
Monkeypox is an infectious disease and its recent outbreak
has been reported in at least 75 countries to date. The first
human infection by the Monkeypox virus was reported in the
Democratic Republic of Congo (formerly Zaire) in 1970 [1].
The Monkeypox virus belongs to the genus Orthopoxvirus of
the family Poxviridae [2], which was first transmitted from
animals to humans. Typically, Monkeypox infection shows
symptoms similar to those of Smallpox infection [1]. Small-
pox was largely eradicated in 1970, leading to the cessation
of Smallpox vaccination. Since the 1970s, Monkeypox has
been considered the most dangerous Orthopoxvirus for human
health. In the past, Monkeypox was most frequent in the
African continent, however, it has often been reported in urban
areas outside the African continent now a days [1]. Scientists
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believe that the current Monkeypox outbreak in humans on a
global scale is due to changes in biological attributes of the
Monkeypox virus, changes in human lifestyle, or both [3].

The clinical attributes of Monkeypox are similar to that of
Smallpox, however less severe [4]. On the other hand, skin
lesions and rashes, caused by Monkeypox infection, often
resemble those of Chickenpox and Cowpox. This clinical and
visual similarity among different pox infections makes the
early diagnosis of Monkeypox challenging for the healthcare
professional. In addition, the rarity of Monkeypox infection in
humans before the current outbreak [5] created a knowledge
gap among healthcare professionals around the world. For
the diagnosis of Monkeypox infection, the polymerase chain
reaction (PCR) test is generally considered the most accurate
tool [6], although healthcare professionals are often used to
diagnosing pox infections by visual observation of skin rashes
and lesions. Monkeypox infection has a low mortality rate
(i.e., 1%-10%) [7], however, early detection of Monkeypox
may help in patient isolation and contact tracing for effective
containment of community spread of Monkeypox.

Different artificial intelligence (AI) tools, especially deep
learning approaches, have been widely used in different medi-
cal image analysis tasks (e.g., organ localization [8], [9], organ
abnormality detection [9], [10], gene mutation detection [11],
cancer grading [12], [13] and staging [14]) in the last decade.
Notably, AI methods have recently played a significant role in
COVID-19 diagnosis and severity ranking from multimodal
medical images (e.g., computed tomography (CT), chest X-
ray, and chest ultrasound) [15]–[17]. This success motivates
the scientific community in utilizing AI approaches for Mon-
keypox diagnosis from the digital skin images of patients.
It is well-known that supervised or semi-supervised AI ap-
proaches are data-driven, which require a large number of
data for developing AI methods effectively. However, there
is no publicly available and reliable digital image database
of Monkeypox skin lesions or rashes. To urgently tackle this
situation, we recently used the web scraping (i.e., extracting
data from websites) [18] approach to collect digital skin lesion
images of Monkeypox, Chickenpox, Smallpox, Cowpox, and
Measles [19] to facilitate the development of AI-based Mon-
keypox infection detection algorithms. We made this dataset
(namely, Monkeypox Skin Image Dataset 2022) public and
freely accessible in Kaggle.1 However, the immediate question
follows if we can utilize state-of-the-art AI techniques on
digital skin images of rashes and lesions to accurately identify

1https://www.kaggle.com/datasets/arafathussain/monkeypox-skin-image-
dataset-2022
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Monkeypox and distinguish it from infections by other types
of poxes and diseases (e.g., Chickenpox, Smallpox, Cowpox,
Measles, etc.). To our knowledge, only two AI-based Monkey-
pox detection studies have been conducted to date that appear
as preprints [20], [21]. However, these studies have several
limitations. First, these studies included only three cases of
disease (i.e., Monkeypox, Chickenpox, and Measles). Second,
these studies are conducted on very small datasets. Third, these
studies tested one [20] or a few [21] AI deep models in pox
classification tasks.

In this paper, we test the feasibility of using state-of-the-art
AI techniques to classify different types of pox from digital
skin images of pox lesions and rashes. The novelties of this
work are the following.

1) We utilize a database that contains skin lesion/rash
images of 5 different diseases (compared to 3 diseases
in [20], [21], i.e., Monkeypox, Chickenpox, Smallpox,
Cowpox, and Measles, as well as contains healthy skin
images.

2) Our database contains more data for pox, measles and
healthy images scraped on the Web (i.e., 804 im-
ages), before augmentation, compared to other similar
databases used in [20], [21] (204 and 228 images,
respectively).

3) We tested the disease classification power of seven
state-of-the-art deep models (compared to one and
three deep models in [20] and [21], respectively) from
digital skin images. We tested the disease classifica-
tion performance of ResNet50 [22], DenseNet121 [23],
Inception-V3 [24], SqueezeNet [25], MnasNet-A1 [26],
MobileNet-V2 [27], and ShuffleNet-V2 [28].

4) We performed 5-fold cross-validation tests for each of
the AI deep models to more comprehensively analyze
our findings, which is not done in previous studies [20],
[21], although their dataset is smaller than ours.

II. METHODOLOGY

In this section, we describe our approach to data collection,
data augmentation, and experimental setup.

A. Data Collection

1) Web-scraping for Image Collection: We use web scrap-
ing to collect skin infected with Monkeypox, Chickenpox,
Smallpox, Cowpox and Measles, as well as healthy skin
images from various sources, such as websites, news portals,
blogs, and image portals using the Google search engine. We
show the pipeline of our database development in Fig. 1. We
searched to collect images that fall under “Creative Commons
licenses.” However, for several pox classes, we hardly find
images. Therefore, we also collect images that fall under
“Commercial & other licenses.” Therefore, we include sup-
plementary material that includes the uniform resource locator
(URL) of the source, the access date, and the photo credit (if
any) for all our collected images. In Fig. 2, we show some
example images from our database.

Fig. 1. The pipeline of our database development.

Fig. 2. Example skin images of Monkeypox, Chickenpox, Smallpox, Cowpox,
Measles, and healthy cases (first to sixth rows, respectively) from our database.

2) Expert Screening: Two expert physicians, who were
experts in infectious diseases, screened all images collected
to validate the supposed infection. In Fig. 3, we show a pie
chart of the percentage of original web-scraped images per
class in our dataset (after expert screening).

3) Data Preprocessing: We cropped images to remove
unwanted background regions and blocked the eye region
with black boxes to make patients nonidentifiable from their
corresponding images. We also did the same to hide revealed
private parts. Since typical AI deep models take square-shaped
images as inputs in terms of pixel counts (often 224×224×3
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Fig. 3. A pie chart showing the percentage of original web-scraped images
per class in our dataset.

pixels), we added extra blank pixels in the periphery of many
images to avoid excessive stretching of the actual skin lesions
during image resizing. Finally, we cropped and resized all the
images to 224×224×3 pixels using bilinear interpolation.

4) Augmentation: We performed 19 augmentation oper-
ations on the web-scrapped images using Python Imaging
Library (PIL) version 9.2.0, and scikit-image library version
0.19.3. to increase the number of images and introduce
variability in the data. Our augmentation operations include
(1) brightness modification with a randomly generated factor
(range [0.5, 2]), (2) color modification with a randomly
generated factor (range [0.5, 1.5]), (3) sharpness modification
with a randomly generated factor (range [0.5, 2]), (4) image
translation along height and width with a randomly generated
distance between -25 and 25 pixels, (5) image shearing along
height and width with randomly generated parameters, (6)
adding Gaussian noise of zero mean and randomly generated
variance (range [0.005, 0.02]) to images, (7) adding zero-
mean speckle noise and randomly generated variance (range
[0.005, 0.02]) to images, (8) adding salt noise to randomly
generated number of image pixels (range [2%, 8%]), (9)
adding pepper noise to the randomly generated number of
image pixels (range [2%, 8%]), (10) adding salt & pepper
noise to randomly generated number of image pixels (range
[2%, 8%]), (11) modifying the values of the image pixels based
on the local variance, (12) blurring an image with a Gaussian
kernel with a randomly generated radius (range [1, 3] pixels),
(13) contrast modification with a randomly generated factor
(range [1, 1.5]), (14) rotating all images by 90◦, (15) rotating
images at random angle (range [-45◦, 45◦]), (16) zooming
in an image by about 9%, (17) zooming in an image by
about 18%, (18) flipping images along the height, and (19)
flipping images along the width. In Table I, we show the
number of original and augmented images per class in our
database. We also show example images after augmentation in
Fig. 4. We used these 19 augmentation operations in different
combinations that increased the data by 49×. We made this

dataset publicly available in Kaggle [19].2

TABLE I
DISTRIBUTION OF IMAGE CLASSES IN OUR MONKEYPOX SKIN IMAGE

DATASET 2022.

Class # Original Images # Augmented Images
Monkeypox 117 5,733
Chickenpox 178 8,722
Smallpox 358 17,542
Cowpox 54 2,646
Measles 47 2,303
Healthy 50 2,450
Total 804 39,396

Fig. 4. Illustration of (a) an original image and corresponding augmented
images by (b) brightness modification, (c) color modification, (d) sharpness
modification, (e) translation (f) shear, (g) adding Gaussian noise, (h) random
rotation, (i) adding speckle Noise, (j) adding local variance noise, (k) contrast
modification (l) adding salt noise, (m) adding pepper noise, (n) adding salt &
pepper noise, (o) 9% zooming in, (p) 18% zooming in, (q) Gaussian blurring,
(r) flipping along the height, (s) rotation by 90◦, and (t) flip along the width.

B. Experimental Setup

1) Deep Models: We implement seven deep AI models,
namely ResNet50 [22], DenseNet121 [23], Inception-V3 [24],
SqueezeNet [25], MnasNet-A1 [26], MobileNet-V2 [27], and
ShuffleNet-V2-1× [28], to check their feasibility in pox clas-
sification task. These models varies in terms of the number of
trainable parameters as shown in Table II. Since our dataset is
small, we choose deep models of different size ranges (number
of trainable parameters ranges 1-26 Millions) to check the
effect of training sample size.

2) Fine-tuning of Deep Models in Cross-validation: Since
our digital skin image dataset is small, we use ImageNet-
based pretrained weights to initialize our deep models and fine-
tune on our digital skin image data in 5-fold cross-validation
settings. We split our preprocessed original images (shown in
Table I second column) in 5 equal folds per class. Since there
is a class imbalance among our original data, we use different

2https://www.kaggle.com/datasets/arafathussain/monkeypox-skin-image-
dataset-2022
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TABLE II
APPROXIMATE NUMBER OF TRAINABLE PARAMETERS IN MILLIONS (M)

OF THE SEVEN DEEP AI MODELS USED IN THIS STUDY.

Model # Parameters (M)
ResNet50 [22] 25.6
Inception-V3 [24] 23.8
DenseNet121 [23] 7.2
MnasNet-A1 [26] 3.9
MobileNet-V2 [27] 3.4
ShuffleNet-V2-1× [28] 2.3
SqueezeNet [25] 1.2

number of augmented images per class during training to make
the training data balanced, i.e., all the classes have about same
number of training image samples (∼1,700 images per class).
We also make sure that augmented images of an original image
do not get split into different folds during cross-validation
training. In Table III, we show the distribution of the number
of images used in validation per class and the number of
augmented images used in training per class in each fold.

TABLE III
NUMBER OF IMAGES PER CLASS IN EACH FOLD IN A 5-FOLD

CROSS-VALIDATION SETUP.

Class # Validation # Training # Augmented
Images Images Images

(Validated on) (Trained on)
Monkeypox 23 92 1,748 (=92×19)
Chickenpox 35 140 1,680 (=140×12)
Smallpox 71 284 1,704 (=284×6)
Cowpox 10 40 1,760 (=40×44)
Measles 9 36 1,764 (=36×49)
Healthy 10 40 1,760 (=40×44)

C. Computation Setup

We schedule fine-tuning each deep model for 100
epochs/fold, and the whole 5-fold cross-validation was sup-
posed to take about 1 day/model. We picked the best validation
performance in each fold. We chose Adam optimizer with
a learning rate of 0.001. We also chose a batch size of
16 images. We implemented our models in PyTorch version
1.6.0 and Python version 3.8.10. Training was performed on
a workstation with Intel E5-2650 v4 Broadwell 2.2 GHz
processor, an Nvidia P100 Pascal GPU with 16 GB of VRAM,
and 64 GB of RAM.

III. RESULTS

In this section, we present the comparative classification
performance of our seven state-of-the-art deep AI models as
summarized in Table II. In Figs. 5, 6, 7, 8, 9, 10, and 11, we
show the confusion matrices for 5-fold cross-validation predic-
tions by ResNet50, Inception-V3, DenseNet121, MnasNet-A1,
MobileNet-V2, ShuffleNet-V2-1×, and SqueezeNet, respec-
tively. We see many miss-classifications for disease classes in
these figures for all the deep models, except for the healthy
skin class. The least number of missclassifications for all 5
folds is seen for ShuffleNet-V2 (see Fig. 10).

We also present the quantitative comparison of mean preci-
sion, mean recall, mean F1 score and mean accuracy, estimated
over the 5-fold cross-validation, for all classes by all deep
AI models in Table IV. Here, we see that the best accuracy
is achieved by the ShuffleNet-V2 (79%). ShuffleNet-V2 has
fewer trainable parameters (i.e., 2.3 M) than ResNet50 (25.6
M), Inception-V3 (23.8 M), DenseNet121 (7.2 M), MnasNet-
A1 (3.9 M) and MobileNet-V2 (3.4 M) (see Table II). From
our observation on the prediction performance by different
deep models, as summarized in Table IV, we hypothesize that
models with a larger number of trainable parameters may be
underfitted due to the small training sample size. On the other
hand, although the SqueezeNet has fewer number of trainable
parameters (i.e., 1.2 M) than the ShuffleNet-V2 (2.3 M), it
is overfitted on the small number of training samples, thus
resulted in worse prediction performance on the validation
data.

TABLE IV
QUANTITATIVE COMPARISON OF MEAN PRECISION, MEAN RECALL, MEAN
F1 SCORE AND MEAN ACCURACY OVER THE 5-FOLD CROSS-VALIDATION.

Methods Class Mean Mean Mean Mean
Precision Recall F1 Score Accuracy

ResNet50

Chickenpox 0.80 0.58 0.68

0.72
Cowpox 0.58 0.70 0.64
Healthy 0.88 0.98 0.92
Measles 0.38 0.44 0.41
Monkeypox 0.59 0.51 0.55
Smallpox 0.77 0.86 0.81

Inception-V3

Chickenpox 0.73 0.70 0.71

0.71
Cowpox 0.70 0.70 0.70
Healthy 0.93 1.00 0.96
Measles 0.45 0.51 0.48
Monkeypox 0.71 0.53 0.61
Smallpox 0.77 0.83 0.80

DenseNet121

Chickenpox 0.76 0.74 0.75

0.78
Cowpox 0.64 0.72 0.68
Healthy 0.94 0.98 0.96
Measles 0.50 0.60 0.55
Monkeypox 0.71 0.53 0.61
Smallpox 0.83 0.87 0.85

MnasNet-A1

Chickenpox 0.70 0.61 0.65

0.72
Cowpox 0.58 0.72 0.64
Healthy 1.00 0.92 0.96
Measles 0.44 0.47 0.45
Monkeypox 0.63 0.41 0.50
Smallpox 0.77 0.88 0.82

MobileNet-V2

Chickenpox 0.77 0.72 0.74

0.77
Cowpox 0.57 0.78 0.66
Healthy 0.94 1.00 0.97
Measles 0.44 0.47 0.45
Monkeypox 0.73 0.62 0.67
Smallpox 0.85 0.86 0.85

ShuffleNet-V2

Chickenpox 0.79 0.67 0.72

0.79
Cowpox 0.58 0.78 0.67
Healthy 1.00 0.98 0.99
Measles 0.54 0.71 0.62
Monkeypox 0.79 0.58 0.67
Smallpox 0.83 0.89 0.86

SqueezeNet

Chickenpox 0.67 0.54 0.60

0.65
Cowpox 0.45 0.60 0.52
Healthy 0.94 0.92 0.93
Measles 0.20 0.40 0.27
Monkeypox 0.55 0.44 0.49
Smallpox 0.79 0.78 0.78

We also present classification performance by an ensemble
of our implemented and fine-tuned seven deep models, where
we use majority voting to make the prediction decision. In
Fig. 12, we show the confusion matrices for 5-fold cross-
validation predictions by the ensemble of ResNet50, Inception-
V3, DenseNet121, MnasNet-A1, MobileNet-V2, ShuffleNet-
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Fig. 5. Confusion matrices of prediction by ResNet50 in 5-fold cross-validation.

Fig. 6. Confusion matrices of prediction by Inception-V3 in 5-fold cross-validation.

Fig. 7. Confusion matrices of prediction by DenseNet121 in 5-fold cross-validation.

V2-1× and SqueezeNet. We see in these confusion matrices
that the ensemble approach reduces the missclassifications
significantly, compared to those seen in Figs. 5, 6, 7, 8, 9, 10
and 11 for individual deep models. Furthermore, we present
the quantitative comparison of mean precision, mean recall,
mean F1 score, and mean accuracy, estimated over the 5-fold
cross-validation, for all classes using the ensemble approach
in Table V. We see in this table that the ensemble approach
shows the best performance in terms of all the metrics, notably
in terms of accuracy (83%), compared to those by individual
deep models as summarized in Table IV.

IV. CONCLUSION

In this paper, we tested the feasibility of using seven state-
of-the-art AI deep models in classifying different pox types
and Measles from the digital skin images of lesions and
rashes. We built and utilized a digital skin database containing
skin lesion/rash images of five different diseases, namely,
Monkeypox, Chickenpox, Smallpox, Cowpox, and Measles.
We also chose seven state-of-the-art deep models that vary in

TABLE V
QUANTITATIVE PERFORMANCE BY THE ENSEMBLE METHOD IN TERMS OF

MEAN PRECISION, MEAN RECALL, MEAN F1 SCORE, AND MEAN
ACCURACY OVER THE 5-FOLD CROSS-VALIDATION.

Methods Class Mean Mean Mean Mean
Precision Recall F1 Score Accuracy

Majority

Chickenpox 0.81 0.75 0.78

0.83
Cowpox 0.74 0.84 0.79
Healthy 0.98 1.00 0.99

Voting Measles 0.58 0.58 0.58
Monkeypox 0.85 0.61 0.71
Smallpox 0.85 0.94 0.89

terms of the number of trainable parameters, ranging from 1
to 26 million. Our 5-fold cross-validation experiments showed
that AI deep models have the ability to distinguish among
different pox types using digital skin images of pox/Measles
lesions and rashes. We also observed that deep models tend
to overfit or underfit, perhaps due to the trade-off between the
training sample size and the number of trainable parameters
in a model. Thus, to achieve better classification accuracy
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Fig. 8. Confusion matrices of prediction by MnasNet-A1 in 5-fold cross-validation.

Fig. 9. Confusion matrices of prediction by MobileNet-V2 in 5-fold cross-validation.

Fig. 10. Confusion matrices of prediction by ShuffleNet-V2-1× in 5-fold cross-validation.

and harness the full strength of state-of-the-art deep models,
we must ensure a larger sample size for model training. We
also observed that lighter deep models, having fewer trainable
parameters, also have potential in pox classification, which
could be used on smartphones for Monkeypox diagnosis in
the latest outbreak. Furthermore, Monkeypox detection based
on digital skin images can facilitate remote diagnosis by
healthcare professionals, leading to early isolation of patients
and effective containment of community spread.

V. SUPPLEMENTARY MATERIAL

We share a spread sheet that contains the list of sources of
all images in our dataset. This spreadsheet can be found at
this link.3
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