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Fig. S3. Intracellular signaling evoked by remdesivir-mediated UTS2R activation. (A) 

Serum-starved HEK293 cells overexpressing UTS2R were stimulated with the indicated 

concentrations of remdesivir for 72 h with or without urantide, a UTS2R antagonist, and 

the lysates subjected to western blotting analysis. ERK1 and ERK2 activation ratio 

(pERK1/ERK1 and pERK2/ERK2) were calculated with data normalized to the vehicle. * 

p <0.05, ** p <0.01, *** p <0.001 by Tukey’s multiple comparisons test. (B) Serum-

starved HEK293 cells overexpressing UTS2R were stimulated with the indicated 

concentrations of UT2 for 5 min with or without urantide, a UTS2R antagonist, and the 

lysates subjected to western blotting analysis. ERK1 and ERK2 activation ratio were 

calculated with data normalized to the vehicle. * p <0.05, ** p <0.01 by Tukey’s multiple 

comparisons test. (C) Relative expression levels of UTS2R in normal human tissues were 

assessed by qPCR using the Human Multiple Tissue cDNA (MTC) panel. (D) Relative 

expression levels of Uts2r in adult mouse tissues as assessed by qPCR. (E) Comparison of 

relative gene expression levels of UTS2R between human heart (using MTC panel) and 

human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). (F) 

Representative western blot for phosphorylation of (left) ERK1/2 and (right) protein kinase 

B (AKT). Serum-starved HEK293 cells overexpressing UTS2R were stimulated with the 

indicated concentrations of remdesivir for 48 h. For Gi/o protein inhibition, cells were 

incubated with pertussis toxin (PTX) for at least 18 h at 150 ng/mL. ERK1, ERK2, and 

AKT activation ratio were calculated with data normalized to the vehicle. * p <0.05, ** p 

<0.01, *** p <0.001 by Tukey’s multiple comparisons test. (G) Expression levels of 

mitochondrial respiratory complex proteins in cells treated with remdesivir or GS-441524. 

HEK293 cells overexpressing UTS2R were stimulated with the indicated concentrations 
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of remdesivir or GS-4415424 for 48 h. Mitochondrial respiratory complex proteins were 

normalized on VDAC and calculated with data normalized to the vehicle by Tukey’s 

multiple comparisons test 

 

Fig. S4. Effects of SNV on remdesivir-mediated UTS2R activation. (A) Scatter plot of ⊿pEC50 

of remdesivir vs. ⊿pEC50 of UT2 for 110 missense human SNVs. Light blue bands 

represent the range of -0.3< ⊿pEC50 <0.3, which corresponds to the range of >0.5-fold and 

<2-fold change in EC50 compared to the WT receptor. Mutations that increase the receptor 

sensitivity toward remdesivir (⊿pEC50 >0.3) but not toward the UT2 (⊿pEC50 <0) are 

marked in red. Mutations that increase the receptor sensitivity toward both remdesivir and 

UT2 (⊿pEC50 >0.3 for remdesivir, 0< ⊿pEC50 <0.3 for UT2) are marked in green. (B) 

Allele frequencies of the four gain-of-function mutations (G681.49C, D1303.32G, 

V15934.54M, and A249ICL3G). Data are modified from the 14KJPN Genome Reference 

Panel (https://jmorp.megabank.tohoku.ac.jp/202112/). 

Data file S1. TGF-α shedding assay screening data 

Data file S2. Effects of missense SNVs in UTS2R gene on receptor activation 

Data file S3. Detailed sample information of pooled human cDNA 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2022. ; https://doi.org/10.1101/2022.08.08.503256doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503256
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data file S4. Sequences of primers used for quantitative PCR 
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