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Abstract

Enormous progress continues in the field of cancer biology, yet much remains to be unveiled regarding
the mechanisms of cancer invasion. In particular, complex biophysical mechanisms enable a tumor to
remodel the surrounding extracellular matrix (ECM), thus allowing cells to escape and invade alone or
as multicellular collectives. Tumor spheroids cultured in collagen represent a simplified, reproducible 3D
model system, which is sufficiently complex to recapitulate the evolving internal organization of cells and
external interaction with the ECM that occur during invasion. Recent experimental approaches enable high
resolution imaging and quantification of the internal structure of invading tumor spheroids. Concurrently,
computational modeling enables simulations of complex multicellular aggregates based on first principles.
The comparison between real and simulated spheroids represents a way to fully exploit both data sources,
but remains a challenging task. We hypothesize that comparing any two spheroids requires first the
extraction of basic features from the raw data, and second the definition of key metrics to match such
features. Here, we present a novel data-agnostic method to compare spatial features of spheroids in 3D.
To do so, we define and extract features from spheroid point cloud data, which we simulated using Cells in
Silico (CiS), a high-performance framework for large-scale tissue modeling previously developed by our
group. We then define metrics to compare features between individual spheroids, and combine all metrics
into an overall deviation score. Finally, we use our features to compare experimental data on invading
spheroids in increasing collagen densities. We propose that our approach represents the basis for defining
improved metrics to compare large 3D data sets. Moving forward, this approach will enable informing in
silico spheroids based on their in vitro counterparts, and vice versa, thus enabling both basic and applied
researchers to close the loop between modeling and experiments in cancer research.

Author summary

Cells within a tumor use various methods to escape and thereby invade into healthy parts of the body.
These methods are studied experimentally by examining tumor spheroids, spherical aggregates of hundreds
to thousands of individual cells. Such spheroids can also be simulated, and the comparison of simulation
and experiment is desirable. Here, we present an analysis strategy for the comparison of tumor spheroids,
a widely used workhorse of cancer research. Using this strategy, we aim to improve the collaborative
potential between experimentalists and theorists.

Keywords: Cancer, tumor spheroids, tumor simulations

1 Introduction
The worldwide challenge of fighting cancer is as urgent as ever [1, 2]. When trying to understand the
mechanisms driving the disease, one is faced with a complex and wildly inhomogeneous landscape of
cellular properties and interactions, which vary both within and between cancer types [3–5]. Furthermore,
cancer is not one single disease, but rather refers to a large number of diseases with shared characteristics,
those characteristics are captured in the hallmarks of cancer [2,6]. The processes underlying these diseases,
such as the rise of malignancy via loss of adhesion and subsequent increased motility [7], span a wide
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range of scales, both in space and in time [8]. To further the understanding of cancer, it is crucial to
decipher how these processes interact and lead to the formation of macroscopic invasive tumors. Thus,
combating cancer requires input from many different domains of science, such as biology, medicine, and
pharmacology, but also physics, computer science, and mathematics [8,9]. Unfortunately, time-resolved
analysis of in vivo tumor tissue is challenging, as due to low spatial or temporal resolution of imaging
methods, single-cell resolution 4D trajectories are not yet widely applicable. To increase accessibility
for analysis, the system has to be divided into smaller subsystems. Thus, in vitro and in silico models
are created, allowing the study of individual aspects of the system. An in vitro example is the study of
tumor spheroids, which represent a useful model system for studying tumor growth and cell dynamics [10].
Tumor spheroids are spherical arrangements of hundreds to thousands of cells, which can be placed within
a structural extracellular matrix (ECM), e.g. a collagen scaffold. They are widely used for studying e.g.
drug response, tissue fluidity and tumor invasion [11–13]. On the in silico side, tumor growth models of
varying degree of coarse-graining are being developed [14–16], some of which are also applied to simulate
tumor spheroids [17,18]. Thus, both experimentalists and theorists generate data for the same systems,
but these studies are usually not compared quantitatively. Quantitative comparison is an important step
towards fully leveraging the results of both groups and requires an adaptive and robust comparison strategy
for spheroid data, regardless of its origin. To our knowledge however, there is currently no data-agnostic
strategy for systematically comparing two spheroids (see also figure 1). Hence, in this study, we want to
provide a toolbox of features which may be extracted from a given 3D structure of a spheroid, and metrics
to compare these extracted features between different spheroids. These features and metrics can be used on
their own, or in combination, to obtain an overall deviation score. Our strategy utilizes point cloud data, in
which each point denotes the position of a cell. Importantly, this enables the comparison of both simulated
and experimental spheroids. To demonstrate this, we applied our toolbox to previously published data
that captured structural differences in triple-negative breast cancer spheroids invading into a collagenous
ECM of varying density [13] (see Fig 2 a). Such experimental data were used as a motivation to simulate
a variety of spheroid behaviors in silico (see Fig 2 b). Simulations were performed using our previously
developed platform "Cells in Silico" (CiS) [19]. CiS is a highly scalable general-purpose framework for
tissue simulation at subcellular resolution. It extends a cellular Potts model with an agent-based layer,
and allows the description of various properties such as cell-cell adhesion, cell compressibility and cell
motility, and phenomena such as cell divison, cell mutation and ECM interactions, among others (see also
Section 4.1). We performed a large set of simulations of 3D tumor spheroids in ECM, spanning a wide
range of parameters (see Section 4.2 for details). For this study, we want to highlight a representative
subset of four spheroid phenotypes, that we found in the simulated data: "Spherical", "Spherical with
far gaslikes", "Deformed", and "Disordered". These phenotypes emerged from various combinations of
parameters, including ECM density, ECM degradation, cell motility, and cell-cell adhesion (see Section
4.3). They will be used as examples throughout.

In the following, we will first describe the spatial features that we extracted from individual experimental
and simulated spheroids. Next, we will discuss our strategy for comparing these features between multiple
spheroids, including the derivation of an overall deviation score, and how it can be tuned for a specific
use-case. After validating our strategy via a transformation study, we will show comparisons between
exclusively simulated spheroids, exclusively experimental spheroids, and comparisons between simulated
and experimental spheroids. We will conclude by evaluating the success of our method, and providing an
outlook for its further use.
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Figure 1: Scientific context. Tumor spheroids are one of the main workhorses of tumor tissue analysis. Both
experimentalists and theorists generate data from such spheroids, but to our knowledge there is currently no
unified comparison strategy. This study deals with defining data features and comparison metrics, which can
be combined into an overall deviation score Di,j between individual spheroids i and j. (*) Spheroid images
provided by Kang et al. [13].

2 Results

2.1 Individual features
Our study focused on the analysis of spatial properties of tumor spheroids. We utilized data containing
the three-dimensional positions of all individual cell centers at one given point in time. For the analysis of
these data we considered various features which could be used individually or as an overall deviation score
(see Section 2.3). These features and their applicability are highlighted in the following.

Cell density distribution Analyzing the distribution of cell density is useful for determining the
extent of the bulk of the spheroid, as well as its geometry. For our studies we focused on the so-called
central local density, which we defined as the fraction of cells found within spherical layers of constant
thickness and increasing radii around the spheroid center. For a uniform spherical distribution of cells,
this density is non-zero only within the spheroid bulk (see Fig 3 a). Disordered spheroids, on the other
hand, exhibit a distribution over a larger domain.

Gaslike cell distribution The detachment of single "gaslike" cells from a spheroid has been a
recent focus [13] and can be used to distinguish between ordered and disordered spheroids. However, the
assignment strategy of the "gaslike" status needs to be well defined. Kang et al. were able to experimentally
measure the spheroid boundary [13], and defined cells outside of this boundary as "gaslike". Since the
spheroid boundary is not tracked in our simulations, we used a definition based on nearest-neighbor
distances and distance from the center of the spheroid. The set of gaslike cells G as a subset of all cells C
is thus defined as follows:

G =
{
ci ∈ C : d(ci, O) > Dcrit ∧min(Ni) > dcrit

}
, (1)

where Dcrit is the threshold distance from the spheroid center O, Ni = {d(ci, cj) | cj ∈ C, cj 6= ci} is the
set of Euclidean distances between cell ci and all other cells, and dcrit is the threshold neighbor distance.
The first constraint in equation 1 provides the context of a bulk structure, and its parameter Dcrit can be
selected considering the inflection point of the central local density. The second constraint ensures that
only detached cells are defined as gaslikes, and its parameter dcrit was chosen by considering the mean
distance between all cells. Fur our purposes we selected the data by Kang et al. [13] as basis for deriving
these parameters: Dcrit = 125 µm, dcrit = 16 µm. This set G can be used to compute various properties,
such as the fraction of gaslikes and their average distance from the spheroid center. We combined these
two properties in this feature, defining it as a point p within the space spanned by them. The first property
px describes the fraction of all cells in the spheroid that are detached. The second property py describes
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Figure 2: a) 2D cross-sections of 3D multiphoton microscopy image stacks depicting the spatio-temporal
evolution of MDA-MB-231 spheroids in increasing collagen concentrations [13]. Spheroids were imaged at
zero, one, two or three days after embedding in collagen, and were then fixed and imaged (see Section 4.4).
b) Time evolution of simulated spheroids displaying four different phenotypes (the order is unrelated to a)): :
"spherical", "spherical with far gaslikes", "deformed", "disordered". Each phenotype resulted from different
combinations of parameters connected to the cell motility, the cell-cell adhesion, the interaction with the
ECM, and the ECM density (see Section 4.3). Each simulation lasted 250 000 Monte-Carlo (MC) steps, and
shown are five snapshots for each simulation. Throughout this study, we focused on the final configuration
(orange rectangle), and used replicates from each phenotype.

the mean distance of the detached cells from the spheroid center.

p =
(
px, py

)
=
( |G|
|C|

,
1

|G|
∑
i

d(ci, O)

p95(G∗)

)
(2)

where p95(G∗) is the 95th percentile of distances of the non-gaslike cells G∗ = C \G from the spheroid
center, which serves as a normalization factor. We included only the non-gaslike cells for this normalization
factor, because our aim was to define the distance relative to the spheroid bulk. As shown in Fig 3 b, the
"disordered" and "spherical with far gaslikes" phenotypes can be distinguished from the others using this
feature, but it is suited less well for comparing "spherical" and "deformed" spheroids.

Voronoi cell volume distribution The distribution of Voronoi cell volumes within the spheroid
serves as a measure of cell deformation, as well as their confinement. To obtain these volumes, we performed
a Voronoi tessellation [20] on the cell center point cloud, during which the system was divided into Ncells
regions according to the distances between adjacent cells. It is important to note, that the voronoi cell
volumes are not the same as the biological cell volumes, but represent a proxy where detached cells occupy
a significantly larger volume. We generated a histogram of the voronoi cell volumes, as shown in Fig 3
c). Here we observe that the first three phenotypes are distributed sharply around a volume of roughly
4000µm3 with a tail, while the volumes of the "disordered" phenotype are evenly distributed over a much
wider range. The tail of the first three distributions is a useful artefact of the Voronoi tesselation, as it
allows to extract additional information about the bulk spheroid surface.

Spheroid surface and surface deformation While the cell density distribution provides a mea-
sure of the spheroid size, its information about the spheroid shape is limited. To study this in more
detail, we need to approximate the spheroid surface, as we want to distinguish deformed spheroid bulk
from spherical bulk. We did this via surface triangulation using the marching cubes algorithm [21]. To
apply this algorithm we performed some preprocessing of the point cloud data: first, we extracted the
set of non-gaslikes G∗, as we were only interested in the shape of the spheroid bulk. Next, we voxelized

4

USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.08.503266doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503266


our data to obtain a continuous spheroid volume. From this, the surface could be triangulated via the
marching-cubes algorithm. Finally, we extracted two features from this: first, we calculated the surface
area from the triangle mesh (see Fig 4 a)), and second, we analyzed the surface deformation by investigating
the orientations of the mesh vertices. This was done by calculating, for each vertex, the scalar product
between its normal vector and its origin vector, with the spheroid center at the origin. Then these scalar
products were combined in a histogram. The vertex orientations serve as a measure of deformation, since
for a perfect sphere all scalar products are equal to 1, and a deformed sphere results in a more widely
spread distribution (see Fig 4 b).

By using these features we were able to measure and quantitatively describe different aspects of
individual tumor spheroids. This provided a basis on which we could compare two spheroids with each
other. Such a comparison required the definition of distance metrics for each feature, which are highlighted
in the following.

2.2 Individual metrics
To accomodate the different types of output data between features, we required suitable metrics. For
the spheroid surface area, which provided a scalar value per spheroid, we used the mean squared error
(MSE). For the gaslike cell distribution, which provided a tuple of two coordinates per spheroid, we used
the Euclidean distance. Finally, for the distribution-based features, i.e. cell density distribution, Voronoi
cell volume distribution and spheroid surface deformation, we used the 1-Wasserstein distance (WSD). The
Wasserstein distance is a metric between probability distributions, and is a common sight in mathematics,
especially statistics and computer science. The p-Wasserstein distance between two probability measures
µ and ν on Rd is defined as:

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
Rd×Rd

d(x, y)p dγ(x, y)

)1/p

(3)

where Γ denotes the collection of all joint probability measures γ with marginals µ and ν [22].
An intuitive illustration of the Wasserstein distance can be given by viewing each distribution as a pile

of earth of different shape, and considering the amount of work that has to be done to transform one pile
into the other. Assuming this work to be equal to the product between the amount of earth that has to be
moved and the distance it needs to be moved, the Wasserstein distance is the minimum amount of work
that has to be done. Due to this illustration, the WSD is often referred to as "earth mover’s distance" [23].

2.3 Combination of multiple metrics
At this point, the individual features described in the previous sections could be reliably compared between
two spheroids using our defined metrics. Next, one of our main goals was to combine these features
and metrics into a single scalar value, which could then serve as an overall deviation score between two
spheroids. Many different questions regarding the comparison of tumor spheroids require such a singular
scalar. From an experimentalist’s view, this could be the comparison of spheroids cultivated in different
conditions, with the goal of quantitatively determining how the change of one experimental variable
influences the spheroid growth and invasion pattern. A problem faced by theorists running simulations is
how to optimize the model parameters to reproduce experimental results. Both problems require one scalar
distance measure like the one we aimed to derive here. Before doing so, we need to address the fact that
it is unlikely for such a distance measure to be generally applicable to all types of tumor spheroids and
experimental settings. This is due to the high dimensionality of even a single spheroid dataset at a single
point in time. To illustrate this, we consider the case of comparing two spheroids, each containing 1000
cells. The desired distance is a function f : R3000 × R3000 → R. Such a function will, by design, project
many different pairs of spheroids onto the same point in R. This property can hardly be circumvented,
and is desired in a distance measure. On the other hand, this also means that the measure has to be
carefully selected depending on the use case. Therefore, in addition to defining the overall deviation score
here, we will also propose a method to adapt the score to different use cases.

Standardization. We first ensured that all metrics were on a similar scale. For this standardization,
we used five replicates from each of the four phenotypes from our simulations, and compared each feature,
resulting in Nspheroids = 20 spheroids and Ndistances = 400 metric distances per feature f . These distances
di,j,f between spheroid i and spheroid j were then transformed according to equation 4:

di,j,f,std =
di,j,f − µd,f

σd,f
(4)
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Figure 3: Visualization of cell based features. a) Cell density distribution. Shown is, for each phenotype,
the average fraction of cells within spherical layers around the spheroid center versus the radii of these
layers. The "spherical" phenotype shows a steep drop, while the "deformed spheres" and "spheres with
gaslikes" phenotypes show a long-tailed distribution. b) Gaslike cell distribution. Shown are the average
fractions of gaslike cells according to equation 1 versus their normalized average distance to the spheroid
center. The fraction of gaslikes exhibited by the "spherical", "spherical with far gaslikes" and "deformed"
phenotypes is similar, but the distance from the spheroid center is far greater for the "sphericals with far
gaslikes" phenotype. The "disordered" phenotype on the other hand contains many cells classified as gaslikes
across the entire spheroid volume. Their normalized average distance from the center evens out to a value
slightly below 1. c) Voronoi cell volume distribution. Shown are histograms of the average Voronoi cell
volumes found in the four phenotypes.The "spherical" phenotype shows a sharp peak around a volume of
4000 µm3. The "spherical with far gaslikes" and "deformed" phenotypes show a similar behavior, with a more
pronounced tail towards larger volumes. Finally, the "disordered" phenotype shows volumes distributed over
a wide range. Values between 7500 µm3 and 20000 µm3 were cut in order to highlight the differences between
phenotypes in the peak around 4000 µm3.
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Figure 4: Visualization of spheroid bulk based features extracted from simulation data for four different
phenotypes. Surface information was extracted via the marching cubes algorithm [21]. a) Spheroid surface
area. Shown is the average surface area found for each phenotype. The "spherical with far gaslikes" phenotype
has the smallest average surface area, due to the spherical bulk containing less cells than that of the "spherical"
phenotype. The larger average surfaces of the other two phenotypes are due to the more irregular shape of
the bulk. b) Spheroid surface deformation. Shown are histograms of the scalar products between vertex
normal vectors and vertex origin vectors, with the origin denoting the center of the spheroid. The vertices
were obtained from surface triangulation of the spheroid point cloud. The two spherical phenotypes exhibit a
sharp peak at scalar products of 1, while the deformed phenotypes are spread more widely.

where µd,f and σd,f respectively denote the mean and standard deviation across the Ndistances values
for each feature f . Since this standardization may lead to values of di,j,f,std below zero, and we aimed to
define a positive distance for each feature, we further shifted each value by the minimum across all di,j,f,std,
finally arriving at d∗i,j,f as defined in equation 5:

d∗i,j,f = di,j,f,std + |min([d1,1,f,std, d1,2,f,std, (...), dNspheroids,Nspheroids,f,std])| (5)

Overall deviation score and use case adaptation. Next, we defined the overall deviation score
Di,j. This definition entailed merging the previously standardized d∗i,j,f via the following linear combination
:

Di,j :=

Nfeatures∑
f=1

λf · d∗i,j,f, (6)

where λf denote the weight factors for each feature, i.e. how much it contributes to the final deviation
score Di,j. In order to optimize these values, we once again turned to our simulated phenotypes and their
five respective replicates. We required values of λf that minimized the intra-phenotype deviations and
maximized the inter-phenotype deviations. This can be formulated as a maximization problem for the
following relation:

max
{λf}

Nfeatures∑
f=1

λf

Nphenotypes∑
k=1


∑
i∈Pk

∑
j 6∈Pk

d∗i,j,f︸ ︷︷ ︸
inter-phenotype

−
∑
i∈Pk

∑
j∈Pk

d∗i,j,f︸ ︷︷ ︸
intra-phenotype

 , (7)

where Pk is the set of all spheroids of phenotype k. This optimization procedure can be interpreted as
an inverse clustering. During clustering, the property described in equation 7 is maximized by assigning
individuals to a cluster. In contrast to this, our method uses prior clustering information to optimize
the metric space itself. This shows resemblance to methods of contrastive learning, with the notable
difference that we use a linear model in our approach [24]. Assuming that phenotypes are correctly grouped,
maximizing Equation 7 already ensures that each λf > 0. Additionally, we decided on the following
constraint:
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Feature Cell density dis-
tribution

Gaslike cell dis-
tribution

Voronoi cell volume
distribution

Spheroid
surface area

Spheroid
surface defor-
mation

λf 0.41 0.60 0.39 0.28 0.49

Table 1: Fitted weight factors for each feature contributing to the overall deviation score between two spheroids
(see equation 6). The values were obtained by maximizing equation 7, with the simulated phenotypes serving
as a calibration set (see Section 4.3).

Nfeatures∑
f=1

λ2
f = 1 (8)

This constraint is important to prevent the optimization procedure from collapsing towards the trivial
solution of setting λf →∞. It also fixes each λf to the domain [0, 1]. Furthermore, using the square of
each λf minimizes the influence of outliers across features. The contribution of each feature to the overall
deviation score resulting from the optimization of the λf is shown in Table 1.

2.4 Validation: transformation study
Validating a metric, such as the one derived in this work, requires a set of data examples with known
relation. For this purpose, we designed a transformation study, in which we generated multiple point
clouds from a reference spheroid using transformation functions. These functions were selected in such
a way, that for a useful metric we expected higher distances between reference and transformed point
cloud for higher transformation strengths. On the other hand, the metric has to remain invariant under
transformations related to the frame of reference, e.g. rotation or translation of the point cloud. Therefore,
we also included these transformations. Hence, we tested for the following properties:

1. invariance under rotation and translation,
2. monotony within the domain of interest: a small deviation from an original spheroid shall result in a

lower distance than a large deviation.

We investigated these properties for the five described features and the overall deviation score by appling
four transformations to a spheroid S = {~P} | ~P ∈ R3 of the "spherical" phenotype. The transformations
were represented by functions in the space of point clouds T : S×α→ S. With this approach, we aimed to
verify both of the above properties. Invariance is shown, when the distance does not depend on the strength
of the transformation. Similarly, monotony is shown, when the distance metric grows monotonously with
the transformation strength. The four transformations that we used were the following:

Rotation Rotating each cell of the spheroid by a given angle α around an arbitrary axis i:

TR(S, α) = {Ri(α)~P | ~P ∈ S}, (9)

where Ri(α) is the rotational matrix.

Noise Adding a random vector drawn from a normal distribution to the position of each cell:

TN (S, α) = {~P + α · ~X | ~P ∈ S, ~X ∼ N3(~µ,Σ)}, (10)

Deformation Translating each cell along the radial vector of the spheroid, modulated by the spherical
angles of the cell’s position:

TD,ω(S, α) = {~P + α · êr · (cosωϕ+ sinωθ) | ~P ∈ S} (11)

This deformation can be interpreted as adding ripples with frequency ω and amplitude α to the spheroid
surface.

Scaling Multiplying the position of each cell by its distance to the center of the spheroid:

TS(S, α) = {α · ‖~P‖ · ~P | ~P ∈ S} (12)

This transformation affects cells with a larger distance to the spheroid center more strongly than those
close to the it. The spheroid density is therefore not conserved.
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A visual example for each transformation is provided in Fig 5. Translational invariance was ensured,
since all features depend only on relative and not absolute distances. Rotational invariance was expected
due to the rotational symmetry of the underlying features. Nonetheless, we wanted to test whether artifacts,
produced by the voxelization for features related to the spheroid surface (see Section 2.1), had any notable
effect. For this reason, we included the rotation transformation. The remaining transformations were
chosen to validate the monotony of the deviation score.

We applied each transformation at increasing strength and compared the resulting spheroid with the
untransformed version. The results of this are shown in Fig 5. Starting with the rotation transformation
in subfigure a), we observed no change in the feature distances at increasing rotation angle, except for
negligible changes in the spheroid surface derformation. This underlines the rotational invariance of our
features. For the other three transformations, we observed monotony in all cases. Those features related
to the spheroid surface could not be meaningfully extracted when the spheroid bulk was disrupted, i.e. at
high degrees of the noise and deformation transformations (subfigures b) and c)). Similarly, the gaslike
distribution feature was undefined for small values of the scaling transformation (subfigure d)), since no
cells were classified as gaslike here. Aside from these edge-cases, our features behaved robustly. It is
interesting to note that the overall deviation score scaled approximately linearly with the transformation
strength, excluding the aforementioned extreme cases. This property can be viewed as a stronger version
of the monotony property. Importantly, this was not used as a constraint when optimizing the weights,
but emerged from the procedure itself.

2.5 Validation: comparing simulated spheroid phenotypes
As a second way to validate our methods, we now moved to the comparison of simulated spheroids. We chose
the final simulation state, after 250 000 MC steps, of five new replicates from each phenotype. Importantly,
these were not the same replicates which we used earlier for the calibration of the weight factors. We
calculated the overall deviation score for each pair. As shown in Fig 6 a), we compared individual replicates
(upper triangle), and we also combined replicate comparisons into an average phenotype deviation score
(lower triangle). Importantly, the "disordered" phenotype is not a biologically occuring configuration, but
occasionally arose during our exploration of the simulation parameter space. It was thus crucial for us to
include this phenotype explicitly. Since it deviates strongly from the others, we have stretched the color
bar for deviation score values below 1.5 for illustrative purposes. The deviation score was lowest when a
phenotype was compared with itself, and highest, when any phenotype was compared with the "disordered"
one. The "spherical", "spherical with far gaslikes" and "deformed" phenotypes showed a smaller deviation
score between each other, but were nonetheless distinguishable. This is underlined in subfigure b), in
which we show box plots of the overall deviation scores between the "spherical" phenotype and the others.
Here, each phenotype comparison was clearly distinct from the comparison of the "spherical" phenotype
with itself.
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Figure 5: Feature comparison for spheroid point clouds resulting from four different transformation functions.
Shown are the standardized metric distances between the un-transformed reference spheroid and an increasingly
transformed version for each data feature. In addition, the combined deviation score is depicted in gray
crosses for each transformation (see Section 2.3). Below each subfigure, we provide a top-down view snapshot
of the spheroid at three levels of transformation. Blue cells are classified as non-gaslike, and red cells are
classified as gaslike. a) Rotation. Except for negligible changes in the spheroid surface deformation feature,
we observe no change at increasing rotation angle. This supports rotational invariance of our features. b)
Noise. For each feature, the distance increases at increasing noise level, most rapidly for the spheroid surface
area. Due to the loss of a solid core at high noise levels, the spheroid surface area and deformation features
are no longer sensible, and were therefore cut. The deviation score increases approximately linearly up to a
noise level of 120, at which point the quadratically increasing spheroid surface area becomes dominant. c)
Deformation. Similar behavior to b) is observed here. Above a deformation amplitude of 100 the spheroid
again loses its solid core, and surface values were therefore cut. The deviation score increases approximately
linearly up to a deformation amplitude of 120. d) Scaling. We observe increased distances both for scale
factors below and above 1. Due to the fixed values of Dcrit and dcrit (see equation 1), the gaslike distribution
feature is scale-dependent, and strongly varies here. For scale factors below 0.6, no gaslikes were found, and
therefore the values of this feature were cut. The deviation score increases approximately linearly both for
scale factors smaller and larger than 1.
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Figure 6: Deviation score comparison for four simulated spheroid phenotypes. a) Shown are the deviation
scores for five replicates of each phenotype on the upper triangle, and the average deviation score over all
replicates of each phenotype on the lower triangle. We observe the highest deviation between the "disordered"
phenotype and the others, with the maximum deviation between the "spherical" and the "disordered"
phenotypes. The "spherical", "spherical with far gaslikes" and "deformed" phenotypes, which are more
similar from a visual perspective, show a smaller deviation score using our analysis, but are nonetheless
distinguishable. For illustrative purposes we have stretched the color bar for deviation score values below 1.5.
b) Box plots of the deviation score values between the "spherical" phenotype and each other phenotype. The
values used here correspond to those used for the lowest row of subfigure a). We observe that the deviation
scores for the "spherical" phenotype compared with the other phenotypes consistently lie above the maximum
deviation score of the "spherical" phenotype compared with itself.
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2.6 Validation: comparing experimental spheroids
To demonstrate the fact that our deviation score can also be used for experimental data, we again turned
to the dataset on which we based our initial simulations. Kang et al. previously investigated the invasive
behavior of tumor spheroids cultured in graded collagen concentrations [13]. Their data set contained
cell-resolved 3D snapshots of spheroids in four different collagen concentrations (1-2-3-4 mg/ml) at different
times (days 0-1-2-3) during invasion. For each collagen concentration and day of culture, data from three
individual spheroids were acquired using a combination of optical clearing and multiphoton microscopy.
Since the optical clearing procedure requires fixation, data from successive days of culture share the same
initial conditions but do not originate from the same spheroid (for more details, see Section 4.4).

In order to keep the scale consistent throughout this study, we used the same standardization and
weight factors as for our simulated spheroids. We compared the spheroids grown for one day, two days,
and three days, and visualized them in Fig 7. Similar to Fig 6, in subfigure a) we show, for each growth
duration, the deviation scores for individual replicates on the upper triangle, and the average deviation
score over a set of replicates on the lower triangle. For illustrative purposes and consistency, we have
again stretched the color bar for deviation score values below 1.5. In subfigure b), we show box plots
of the deviation score values between collagen 1 and each other concentration. As expected, we observe
relatively low devation between the day 1 spheroids, both in subfigure a) and b). This changes at day 2,
where the difference between collagen concentrations becomes clearer. However, while the difference is
visible in the average deviation score, there is still strong overlap between the values across concentrations,
as seen in subfigure b). Finally, on day 3 we see the highest difference between collagen 2 versus the
other concentrations, while spheroids of collagen density 3 and 4 are most similar to each other. This
is consistent with qualitative observations from Fig 2 a) and from prior quantifications by Kang et al.
(cf., Figure 4c in [13]) who observed a sudden transition in single cells individualization during invasion
between collagen cncentrations of 2 and 3 mg/ml.
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Figure 7: Deviation score comparison for in vitro spheroids cultured in four collagen concentrations c (data
provided by Kang et al [13]). a) Comparison of spheroids invading for one, two and three days respectively.
For each day, the deviation scores for three replicates of each collagen concentration are shown on the upper
triangle, and the average deviation score for each collagen concentration is shown on the lower triangle. Due
to matching initial conditions, we observe low deviation scores between spheroids grown for one day. These
differences increase at day 2, where we observe an approximately linear increase of the average deviation score
from c = 1 mg/ml to c = 4 mg/ml. Finally, at day 3, we observe the lowest deviation between c = 3 mg/ml
and c = 4 mg/ml. This underlines the findings by Kang et al., who observed a transition in invasion behavior
between 2mg/ml and 3mg/ml. b) Deviation score box plots from spheroids grown for one, two and three
days respectively. The box plots for each day show the deviation score values between c = 1 mg/ml and each
other concentration. These values correspond to those used for the lowest rows in a). We observe that for
spheroids grown for one and two days, the deviation score values of c = 1 mg/ml compared with itself are
similar to the deviation score values of c = 1 mg/ml compared with the other concentrations. Therefore the
differences are not sufficient to clearly distinguish between them. This changes at day three, where each
concentration shows a higher deviation score to c = 1 mg/ml than c = 1 mg/ml compared with itself.
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2.7 Comparing simulated and experimental spheroids
Finally, as a precursor to our future work, we applied our analysis method to the comparison between
simulated and experimental spheroids. For this, we used both the test cases from our simulated phenotypes
(see Section 2.5), and the experimental data from spheroids grown for three days (see Section 2.6). Since the
simulation parameters used here were not fitted to the data, but represented default parameter sets, we did
not expect a high degree of similarity. On the other hand, this provided an opportunity to investigate both
the overall deviation score and the underlying feature distances, and to demonstrate how the differences
in spheroid morphology manifested themselves within the features. In subfigure a) of figure 8, we show
the comparison between each experimental replicate (horizontal) and each simulated replicate (vertical)
on the left side. On the right side we show the average within replicates. Here, we observed the highest
deviation scores between collagen density 2 and "spherical with far gaslikes" (SFG) spheroids. Visually,
this is sensible when comparing the 2D images of the replicates; the shape of the SFG spheroids differs
strongly from that of spheroids in 2 mg/ml collagen, as does the number and location of cells classified
as gaslike. Furthermore, we observed the lowest deviation scores between spheroids in 4 mg/ml collagen
and "deformed" spheroids. Here, the spheroid shape visually matched much better between the replicate
images. These visual differences and similarities are reflected in our features, as seen within subfigure b).
Here we decomposed the overall deviation score back into its components, and thereby show the influence
of each feature on it. We see that the distance between the collagen density 2 spheroids and the "spherical
with far gaslikes" spheroids is noticable for all features except for the cell volume distribution. Of these,
the gaslike cell distribution and the spheroid surface area exhibit especially high distances. On the other
hand, collagen density 4 spheroids and "deformed" spheroids match comparatively well for each feature,
and the spheroid surface deformation distance between them is the lowest of all.

2.8 Nastjapy
During our derivation of the overall deviation score and its application to various data, we developed the
Python package nastjapy. Through this, we wanted to facilitate the use of our procedure by others. The
package can be found at http://www.gitlab.com/nastja/nastjapy. Nastjapy allows the investigation of
spheroids and other single-cell resolved data from different origins. It thereby unifies the analysis pipeline
for simulated data and data from multiple experimental sources. See Section 4.5 for more details.
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Figure 8: Deviation score comparison between in vitro spheroids grown in media at four different collagen
concentrations c (data provided by Kang et al [13]), and in silico spheroids exhibiting four different phenotypes,
simulated by us. a) Shown are the deviation scores between three replicates of each collagen concentration,
grown for three days, and five replicates of each simulated phenotype, simulated for 250 000 MC steps. Each
individual deviation score is shown on the left, and the average within a pairing of collagen concentration and
phenotype is shown on the right. We observe the highest average deviation score between c = 2 mg/ml and
the "spherical with far gaslikes" phenotype. The lowest average deviation score is found between c = 4 mg/ml
and the "deformed" phenotype b) Individual metric distances for each of the features constituting the overall
deviation score. Shown are the standardized metric distances between three replicates of each collagen
concentration, grown for three days, and five replicates of each simulated phenotype, simulated for 250 000
MC steps. The highest deviation score observed in a) is a combination of high metric distances in all features,
especially the spheroid surface and gaslike cell distribution. On the other hand, the lowest deviation score
observed in a) stems from overall low values, especially in the spheroid surface deformation.
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3 Discussion and conclusions
Both experimentalists and theorists produce data concerning tumor spheroids. However, both the quanti-
tative comparison between different experiments or simulations, and the process of fitting simulations to
experimental data, are hindered by the lack of an adaptable distance measure that captures the similarity
of the spatial features of two spheroids. We aimed to solve this issue via the following steps. First, we
proposed a set of five relevant spatial features, which could be extracted from spheroid point clouds. Next,
we devised metrics to compare each feature, and combined all metrics into an overall deviation score. We
also provided an optimization scheme which could be used to adapt the deviation score to the specific use
case. For this, we turned to four in silico spheroid phenotypes which emerged from our simulations, and
used them to standardize and combine the metrics into the overall deviation score Di,j . We did this by
weighing individual metrics differently while maximizing a phenotype separation property (see equation 7).
We characterized the behavior of our features by applying four different transformations to a point cloud
obtained from a spherical simulated spheroid. We were able to confirm rotational invariance by analyzing
the "rotation" transformation, and monotony for the others. While the features related to the spheroid
surface showed some instabilities for higher transformation strengths in the "noise" and "deformation"
transformations, this only occured when the point cloud was so disordered that a solid core could no longer
be defined. This represents a non-biological simulation scenario which lies outside of our domain of interest.
Overall, the behavior of the features was therefore considerered suitable to quantitatively compare the
structure of spheroids. Interestingly, the overall deviation score did not only scale monotonously with the
strength of the studied transformations, but did so approximately linearly within the reasonable domains.
This is a useful property for a distance measure, which was not used as a constraint, but instead emerged
as a result of our optimization scheme.

During the investigation of our simulated spheroid phenotypes, we found that our deviation score
distinguished well between dissimilar spheroid phenotypes, as all phenotypes showed the highest deviation
score towards the "disordered" phenotype. This large distance was a value that was desired, as this
phenotype is a non biological edge-case. Since we also observed non-negligible deviation between the
other three phenotypes, we were able to confirm that our strategy is also applicable to more similar
spheroids. We therefore consider Di,j to represent a useful metric for the systematic quantification of
spheroid similarity. This was further confirmed by our analysis of experimentally measured spheroids
generated by Kang et al. [13].

One of our main goals in defining the deviation score was to have a reliable objective function for
fitting simulated spheroids to experimental data. Therefore, as an outlook for our future work we included
a comparison between simulations with unfitted, default parameters, and the aforementioned experimental
spheroid data. Here, we were able to highlight, which features contributed most towards each deviation
score, and to show that the quantities matched well with a visual comparison.

The features we have defined here admitedly have some limitations. They cannot, for example, measure
the dynamics of cell movement over time. Furthermore, spheroids or other tissues we might want to apply
this method to, may be composed of multiple different types of cells, and we currently do not distinguish
between these. However, our strategy is meant to serve as a base to build upon, and since we implemented
it in our freely available nastjapy framework (see Section 4.5), it can easily be extended. We aim to further
develop this in the future, via incorporating more features. Points of interest would be generating features
spanning multiple timesteps, e.g. cell velocity correlation and autocorrelation. Furthermore, we envision
features which will enable the application of the analysis scheme to non-spheroid tissue models as well, e.g.
cell composition analysis, cell cluster analysis, etc.

Our ultimate aim in working with Cells in Silico is building a cellular digital twin of a macroscopic
tumor. The feature analysis which we developed here represents a promising step towards reaching this
goal, because we will use it to fit parameters of CiS related to cell-cell adhesion, motility and ECM invasion,
which will be done by iteratively comparing simulated and experimental spheroids. Thereby, we want to
restrict these parameters before moving towards the simulation of larger tissues.

4 Methods

4.1 Model description
Cells in Silico is a framework for simulating the dynamics of cells and tissues at subcellular resolution,
which was previously developed by our group [19]. It combines a Cellular Potts Model (CPM) at the
microscale with nutrient and signal exchange at the mesoscale and an agent-based layer at the macroscale.
This enables detailed capture of individual cell dynamics. Furthermore, as an extension of the NAStJA
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framework [25] its efficiency scales excellently with increasing system size and CPU core number. Hence,
CiS has already been used for simulating tissues composing millions of cells [19]. Here, we briefly outline
the main properties of the microscale, mesoscale and macroscale layers, and a more detailed description
can be found in [19].

Microscale The CPM was developed by Graner and Glazier in 1992 [26], as an extension of the Potts
model. In it, a system of lattice points on a regular grid is propagated according to its overall energy.
Cells are defined as aggregates of points of the same type, and the overall energy of the system is built of
multiple components Ei, which dictate the morphology of and interaction between the cells. Weighted by
coupling factors λi, they are combined into the following Hamiltonian:

HCPM =
∑
i

λiEi

= λV
∑
c∈C

(
v(c)− V (τ(c))

)2

Cell volumes

+ λS
∑
c∈C

(
s(c)− S(τ(c))

)2

Cell surfaces

+
∑
i∈ω

∑
j∈N(i)

Aτ(ci),τ(cj)

(
1− δ(ci, cj)

)
Cell-cell adhesion

+ ...,

(13)

where c is a cell from the set of all cells C, τ(c) is the type of cell c, s(c) and v(c) are the current
surface and volume of cell c, S(τ) and V (τ) are the target surface and volumes of cells of type τ , A is the
adhesion coefficient matrix for all cell types, N(i) are all lattice points neighboring point i, and δ is the
Kronecker delta. Equation 13 can be extended to include further effects, such as cell motility [27] (see also
Section 4.2.

Mesoscale. CiS includes the capability of introducing signals or nutrients to the system. These can
be exchanged between cells via the cell-cell interface. As this functionality is outside of the scope of this
study, we only briefly mention it here.

Macroscale. While using the CPM layer allows for excellent reproduction of cell shape and deformation,
there are other important cellular functions which are not intrinsically captured. For example, the CPM
Hamiltonian does not in itself include the effect of cell division. Furthermore, while self-propelled cell
motility can be added to equation 13 [27], the direction of the motility vector must be periodically updated
for each cell, to ensure realistic movement, e.g. via random walk (see also Section 4.2). This requires infor-
mation on the cell center location, which must be extracted from the CPM. A third aspect, which is very
important for simulating realistic tumors, is the capability of in silico cell mutation. Here, cell parameters
such as division rate, motility magnitude, cell-cell adhesion etc. must be adjusted at the time of division.
All the aforementioned aspects are treated in the macroscale layer. It combines information gathered
from the lower layers with higher-level parameters, which results in an agent-based system. Here, the con-
ditions for cell division are checked, the division process is carried out, the motility direction is updated, etc.

By combining micro-, meso- and macroscale, we gain a versatile tool, which can then be parameterized.

4.2 Model parameters
Using CiS, we simulated a multitude of spheroids. We based our simulations on experimental spheroid
data provided by our collaborators [13]. Hence, each simulated spheroid had an initial diameter of 200µm,
contained roughly 2000 cells, and was placed in the center of a volume spanning 800 x 800 x 800µm3.
Using CiS, we propagated this system at a range of different simulation parameter combinations, which
are highlighted below.

Extracellular matrix The extracellular matrix (ECM) is a scaffold within tissues, which connects
cells and serves both as a structural component and cell maintenance network [28]. It is composed of
overlapping fibrous polymers, such as collagens, proteoglycans and glycoproteins [29]. Tumor spheroids
are often placed into a collagen matrix, which serves as a proxy for an in vivo ECM [13,30]. To capture
this in our simulations, we modeled the ECM as overlapping, randomly oriented fibers, which were placed
within the system volume surrounding the spheroid (see supplementary Fig 1). These fibers represented
rigid obstacles for the cells, to which they could adhere, but which could not be displaced. Since in reality
the ECM is not a solid structure, but can be modified and degraded by cells [31], this alone was an overly
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simplified description. We therefore added a degradation effect, by which cells removed ECM lattice points
with which they were in direct contact on the CPM lattice. This occured after a set number of MC steps,
as described by the ECM degradation period parameter. During each degradation event, a lattice point in
contact with a cell was removed with a probability of 50%. For our simulations, we varied both the ECM
density and the ECM degradation period. The ECM density was varied between volume fractions of 0%
and 90%. The ECM degradation was either disabled, or its period was varied between 1 000 and 10 000
MC steps.

Cell-cell adhesion Changes in the adhesion strength between cells are a well known factor which
facilitates invasion [7]. We therefore varied the adhesion strength parameter within our simulations, by
changing the adhesion coefficient matrix in the third component of equation 13. This matrix describes the
strength of adhesion between different cell types, as well as the strength of adhesion between cells and the
ECM.

Cell motility magnitude and persistence Similar to cell-cell adhesion, the cell motility is strongly
connected to the invasion properties of cells [32]. To include it, we modified the CPM Hamiltonian by
adding a directional potential to each cell with the following contribution [27]:

HCPM, mot = HCPM + λmot ·
∑
c∈C

~mc · ~Rc, Cell motility

~mc = p ·
(
~Rc(t)− ~Rc(t−∆t)

)
+ (1− p) · ~η

(14)

where ~mc is the potential and direction a cell c experiences, Rc is the center of mass of cell c, and ~η is
a random vector obtained by a Wiener process [33]. The motility is implemented as a modified persistent
random walk of each cell. The energy contribution of each cell is the dot product of ~Rc and ~mc, which
in turn is determined by the cell’s previous movement and ~η. The mixture of persistent and random
movement can be chosen by the persistence parameter p ∈ [0, 1]. Cells with p = 0 perform purely random
walks, and cells with p = 1 perform purely persistent walks. The coupling strength of this energy term to
the CPM is given by λmot.

4.3 Emerging phenotypes
We observed four spheroid phenotypes which emerged from various parameter combinations. These were
the following:

Spherical. Cell-cell adhesion dominated, and the cells remained in a spherical arrangement, with a
relatively smooth surface of the spheroid bulk throughout the simulation.

Spherical with far gaslikes. Due to a low value of the motility magnitude parameter, cells did not
move far on their own. However, through a combination of high ECM degradation rate and cell-ECM
adhesion, cells in the outermost layer of the spheroid were pulled into the ECM. This occured at high
ECM densities. The spheroid bulk remained intact.

Deformed. The cell-ECM and cell-cell adhesion parameters were at similar strength. Therefore, the
spheroid retained a bulk structure, but lost its spherical shape at high ECM-density.

Disordered. The cells dissociated from each other due to high self-propelled motility, low cell-cell
adhesion and low ECM density. Subsequently, the spheroid integrity was lost.

4.4 Experimental spheroid preparation and analysis
All experimental methods were previously reported by Kang et al. [13] and are briefly summarized here.
Multicellular tumor spheroids were formed by seeding highly invasive, triple-negative MDA-MB-231 breast
cancer cells [34] in low-attachment 96 well plates (Corning, No. 07201680) in the presence of 2.5% v/v
Matrigel (Corning, No. 354234) [35]. Using this approach, ∼1000 cancer cells coalesced into a spherical
aggregate (i.e., a tumor spheroid) of 300-to-400µm in diameter over the course of 48 hours. Once formed,
individual spheroids were fully embedded into a 3D fibrous gel prepared using rat-tail collagen I (Corning,
No. 354249) [36]. As shown in Kang et al. [13], by varying the collagen concentration between 1 and 4
mg/ml, one can tune the fiber density and overall mechanical properties of the collagen network surrounding
each tumor spheroids. MDA-MB-231 spheroids were then cultured in such 3D micro-environments for
either 1 hour (Day 0), 24 hours (Day 1), 48 hours (Day 2), or 72 hours (Day 3). While at Day 0 all
cells remained within the main spheroid (solid-like phase), over the course of 3 days tumor spheroids
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progressively developed strikingly different patterns of invasion as a function of collagen concentration,
including single cell invasion in 1-2 mg/ml collagen (gas-like phase) and collective invasion in 3-4 mg/ml
collagen (liquid-like invasion) [13]. For each time point, spheroids were fixed, optically cleared [37], stained
with DAPI (Fisher Scientific, No. D1306), and imaged using a Bruker Ultima Investigator multiphoton
microscope equipped with a long working distance 16x water-immersion objective (Nikon, 0.8 N.A., 3mm
working distance) to enable whole-spheroid imaging [13]. The 3D positions of DAPI-stained cell nuclei
were finally identified using a custom Matlab code developed by Kang et al. [13] and used herein as point
cloud data to extract features from experimental spheroids. In this work we used point cloud data from
spheroids imaged at days 0-1-2-3 in collagen concentrations of 1-2-3-4 mg/ml, n = 3 per group, except for
day 0 in 1 mg/ml (n = 2), and day 2 in 2 mg/ml (n = 9).

4.5 Nastjapy
To facilitate the use of the analysis pipeline presented in this study, we developed the Python package
nastjapy, which can be found at http://www.gitlab.com/nastja/nastjapy. For this study, nastjapy
served three functions:

1. providing a unified interface for processing data from multiple different sources

2. performing efficient and parallel feature extraction and analysis

3. adaptating and computing the deviation score for specific applications.

Nastjapy allows treating spheroids and other single-cell resolved data from different sources, thereby
unifying the analysis pipeline for simulated data and data from multiple experimental sources. Data
from different experiments may come in different file types, i.e. CSV, HDF5, SQLite and matlab. Even
files of the same filetype do not necessarily have to share their formatting between different experiments.
Nastjapy provides a common interface between those sources and is written to be easily extendable for new
file types or formats. Extracting all features for many different spheroids, possibly at multiple points in
time, as well as the comparison between a large number of spheroids, can quickly become computationally
expensive. Nastjapy therefore provides efficient implementations of all compute-intense functions, as well
as the option to parallelize the computation on multiple cores via MPI. Lastly, Nastjapy offers all functions
neccessary to use the methods described in this study to adapt and compute the the deviation score for a
given application. Some further analysis tools and visualization capabilities area also provided.
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Supplementary Figure 1: Visualization of initial conditions of spheroid simulations. Each spheroid was placed
in the center of an 800 x 800 x 800 µm3. volume, and surrounded by an ECM of varying density (see Section
4.2). For illustrative purposes, the ECM density was set to a low value here, such that the spheroid is still
visible.

Supplementary Figure 2: Deviation score box plots for simulated phenotypes.a) Each phenotype compared to
the "spherical with far gaslikes" phenotype. b) Each phenotype compared to the "deformed" phenotype. c)
Each phenotype compared to the "disordered" phenotype.
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Supplementary Figure 3: Deviation score box plots of in vitro spheroids grown in media at four different
collagen concentrations (data provided by Kang et al [13]).
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