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Abstract

Deep learning has shown potential in domains where large-scale annotated datasets are

available. However, manual annotation is expensive, time-consuming, and tedious. Pixel-level

annotations are particularly costly for semantic segmentation in images with dense irregular

patterns of object instances, such as in plant images. In this work, we propose a method for

developing high-performing deep learning models for semantic segmentation of wheat heads

utilizing little manual annotation. We simulate a computationally-annotated dataset using a

few annotated images, a short unannotated video clip of a wheat field, and several video clips

from fields with no wheat. This dataset is then used to train a customized U-Net model for

wheat head segmentation. Considering the distribution shift between the simulated and real

data, we apply three domain adaptation steps to gradually bridge the domain gap. Only using

two annotated images, we achieved a Dice score of 0.89 on the internal test set, i.e., images

extracted from the wheat field video. The model trained using only two annotated images was

evaluated on a diverse external dataset collected from 18 different domains across five countries

and achieved a Dice score of 0.73. To further expose the model to images from different growth

stages and environmental conditions, we incorporated two annotated images from each of the

18 domains and further fine-tuned the model. This resulted in improving the Dice score to

0.91. These promising results highlight the utility of the proposed approach in the absence of

large-annotated datasets. Although the utility of the proposed method is shown on a wheat

head dataset, it can be extended to other segmentation tasks with similar characteristics of

irregularly repeating patterns of object instances.
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1 Introduction

Deep learning models have shown promising results in various computer vision tasks, including object

recognition [1], object detection [2], instance segmentation [3], and semantic segmentation [4]. Deep

learning has shown the potential to be widely utilized in precision agriculture, which focuses on

computational methods to sustainably improve the quality and quantity of crop production [5–12].

The availability of a large-scale and diverse dataset like the Global Wheat Head Detection (GWHD)

dataset [13] has enabled researchers to develop novel supervised deep learning-based methods for

detecting and counting wheat heads from field images [11, 14, 15]. However, the assessment of many

important plant traits, such as organ size, organ health, biotic and abiotic stress, requires fine-grain

semantic segmentation of plant organs. Semantic segmentation in plant images remains a significant

challenge because creating pixel-level annotations for plant images is costly, due to the dense, partly

occluding, and repeating pattern of plants and plant organs in field images.

For object detection in plant images, several recent studies have focused on developing fully

supervised deep learning approaches for wheat head detection using the GWHD dataset [13]. Gong

et al.[16] customised a YOLO [17, 18] model by introducing a dual spatial pyramid polling [19] and

CSPNet [20] to enhance the detection speed and accuracy. Liu et al. [21] studied the importance of a

linear dynamic color transformer in developing deep convolutional models for wheat head detection

and reported that it could alleviate false negative predictions. Khaki et al. [14], utilized point-level

annotation to develop a computationally lightweight deep model for wheat head detection based on

a truncated version of MobileNetV2 [22].

In addition to object detection in agricultural applications, plant and leaf segmentation using

deep convolutional neural networks have also gained considerable attention for feature extraction and

pixel-level classification. Rawat et al. [23] studied the utility of active learning approaches—including

pool-based active learning and four methods based on least confidence, margin, entropy, and deep

Bayesian—for plant organ segmentation. Evaluating these approaches using three datasets for apple,

rice, and wheat, they reported that random sampling outperformed active learning in two datasets.

For wheat head segmentation, they manually segmented images from the UTokyo Wheat 2020

dataset, which is a subset of the GWHD dataset containing high-quality images captured under

good lighting conditions. Their model achieved an IoU of about 0.70 when evaluated on the data

from the the UTokyo Wheat 2020 dataset.

Hussein et al. [24] developed a deep learning-based segmentation pipeline for leaf segmentation in

herbarium specimen images. They used DeepLabv3+ [25] with a pre-trained ResNet101 backbone [8].

Utilizing the connected components algorithm, they split the contour masks into individual leaves.

Focusing on the segmentation of individual intact herbarium leaves for trait extraction, they used a

single-leaf binary classifier based on a VGG16 network [26]. Their work showed that deep learning

could be used for leaf segmentation and trait data extraction from herbarium specimen images.

Alkhudaydi et al. [27] utilized a Fully Convolutional Network [28] for wheat spike region segmen-

tation. Using a small dataset of 90 side view images, they achieved an intersection over union (IoU)

of 0.40 for wheat spike segmentation. The challenge with side view images is that the wheat heads

in the middle of a plot often are not visible, making the utility of such a model very limited.
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In the absence of large-scale annotated datasets for wheat head segmentation, several works

have converted the wheat head segmentation or counting problem to a superpixel classification

problem [29–32]. The main idea behind these works is to group pixels into homogeneous superpixels

using the simple linear iterative clustering [33]. These superpixels then are classified to determine

regions belonging to wheat heads. The superpixel generation is often sensitive to background clutter

and illumination condition. Consequently, some superpixels partially cover spikes and non-spikes

regions. This results in coarse segmentation masks.

Despite the success of supervised semantic segmentation models, the lack of availability of an-

notated datasets is still an obstacle to developing high-performing deep learning models for many

domains. Therefore, methodologies that benefit from advances in supervised deep learning and also

require a smaller amount of data annotation are of great value and could substantially expand the

utility of deep learning models.

Unsupervised, self-supervised, and semi-supervised learning methods have been developed to

alleviate the need for large-scale annotated datasets [34]. In unsupervised learning, the goal is to

learn a compact data representation using unannotated data. Semi-supervised learning [35] aims

at utilizing both annotated and unannotated data for model development. Self-supervised learning

refers to techniques that, instead of relying on manual annotation, utilize supervisory signals that

are computationally generated from the data [36].

In self-supervised learning methods, a pretext task—which is often different from the primary

task—is first defined. Image rotation [37], Image inpainting [38], and Jigsaw puzzle [39–41] are

examples of pretext tasks. The pretext task is designed to generate a computationally-annotated

dataset. Then a supervised approach is used to develop a model using the computationally-annotated

dataset. The rationale behind self-supervised learning is that a model while learning the pretext

task learns low-level features that can be shared across tasks. This model can then be fine-tuned to

learn the primary task using a smaller amount of annotated data.

Self-supervised and semi-supervised learning approaches have also been used for wheat head de-

tection. Fourati et al. [42] developed a wheat head detection method based on Faster R-CNN [9], and

EfficientDet [43] models. They used the GWHD dataset as the training dataset. They also utilized

pseudo-labeling, which is considered a semi-supervised approach, alongside test time augmentation,

multi-scale ensemble, and bootstrap aggregating to further increase the model performance, achiev-

ing a mean average precision of 0.74. Najafian et al. [44] proposed a deep learning-based approach,

utilizing semi-supervised and self-supervised concepts, for wheat head detection. Developing a sim-

ulated dataset, they trained a YOLO architecture for wheat head detection using the simulated

dataset. Their final model trained on the GWHD dataset achieved a mean average precision of 0.82,

where a predicted bounding box with more than 50% overlap with the ground truth was considered

an accurate detection.

Most segmentation tasks in precision agriculture share characteristics that makes them different

from general segmentation tasks such as those developed using Pascal VOC [45] and MS COCO [46]

datasets. Unlike general object segmentation, in precision agriculture most often, we are interested

in segmenting densely packed and overlapping instances that are highly self-similar. In these appli-

cations, images often contain many repeated irregular patterns such as plant spikes, fruits, flowers,

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2022. ; https://doi.org/10.1101/2022.08.09.503251doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.09.503251
http://creativecommons.org/licenses/by-nc-nd/4.0/


or leaves. Figure 1 illustrates a few examples of such images. These differences pose challenges

and opportunities that should be considered when developing segmentation models in agricultural

domains.

Considering these characteristics, in this paper, we develop a semi-self-supervised method that

utilizes a short video clip of a wheat field, a few annotated images, and several short video clips

of background scenes—i.e., fields with no wheat—–to develop a wheat head semantic segmen-

tation model. The proposed method utilizes a few annotated images to simulate a large-scale

computationally-annotated dataset. Then, using this dataset, a customized U-Net model for wheat

head segmentation is trained in a supervised manner. Finally, to address the domain gap between

simulated and real images, three domain adaptation steps are applied. We evaluate the proposed

method using the GWHD dataset, which is a diverse collection of wheat field images. The proposed

method is a self-supervised approach because it relies on developing computationally-annotated

data for model development. It is also a semi-supervised learning approach because it utilizes a few

manually annotated images as well as pseudo-labeling for model training. The proposed approach

alleviates the need for creating a costly, large-scale annotated dataset and facilitates the accelerated

development of deep learning models for precision agriculture.

Figure 1: In agricultural images, we are often interested in densely packed, overlapping, and highly
self-similar instances. In these applications, images often contain irregular patterns such as plant
spikes, fruits, flowers, or leaves.
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2 Materials and Methods

In this section, we present the methodology for developing wheat head segmentation models utilizing

a small amount of annotated images. We first simulate a large-scale computationally-annotated

dataset using a few annotated images. The synthesized images are then used to train a customized

U-Net model for wheat head segmentation. Due to the difference between the synthesized and real

images, also known as distribution shift, we expect the performance of the model trained on synthetic

images to degrade when applied to real images. To address this domain gap, we apply three domain

adaptation steps. We evaluate the proposed method using a diverse collection of wheat field images.

In the following, we provide a detailed description of each step of the proposed method.

2.1 Data

We utilize a short video clip of a wheat field and 11 short video clips of background scenes to

simulate annotated images. These video clips were obtained using Samsung cameras with 12 and

48 Megapixels resolution. Figure 2 illustrates snapshots of these video clips. We also perform an

external evaluation using the Global Wheat Head Detection (GWHD) dataset [13] which includes

images of wheat fields from five countries and 18 different domains from various stages of growth.

Since there is no annotation for the GWHD dataset, we randomly select 10% of images (365 samples)

from the GWHD dataset and manually segment them for model evaluation. Figure 3 illustrates

examples of the images from the GWHD dataset with their segmentation masks overlaid. From the

remaining images in the GWHD dataset, we randomly select 36 images (2 images from each of the

18 domains) and manually segment them. These images are then used for the final step of domain

adaptation.

2.2 Model

In this study, we use a customized U-Net [47] model architecture with the EfficientNet B4 [48]

encoder pretrained on the ImageNet dataset [49, 50]. For all experiments in this paper, we employ

the following loss function in Equation 1, which is the summation of binary cross-entropy and Dice

loss functions.

Loss =
1

∥Ω∥
∑
Ωi∈Ω

(
1−

(
2
∑

x∈Ωi
p(x)g(x)

)
+ ϵ(∑

x∈Ωi
p(x) +

∑
x∈Ωi

g(x)

)
+ ϵ

− (1)

1

N
×
∑
x∈Ωi

(
g(x) log(p(x)) + (1− g(x)) log(1− p(x))

))
,

where p(x) is the probability of the pixel x being part of a wheat head on an image. p(x) is calculated

by applying the sigmoid function to the output of the final convolution layer of the model. The

function g(x) ∈ {0, 1} represents the ground truth class for pixel x, that is 1 if x is part of a wheat

head and 0 otherwise. Ω is a batch of images in the training set, and Ωi is an image in Ω undergoing
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Figure 2: The top two rows show extracted image frames from the background video clips—i.e.,
video clips of fields with no wheat head. The third row shows examples of image frames extracted
from the video clip of a wheat field.

Figure 3: Examples of the GWHD dataset images manually annotated as the external test set. The
segmentation masks are overlaid on the images.
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a sequence of image transformations with computationally inferable labeling functions.Also, ϵ is a

smoothing constant to prevent division by zero. We used ϵ = 1E − 05 for all experiments.

Assume that for a data point x in a domain X, there is a labeling function ψ that assigns a

label y to x, that is, ψ(x) = y. Also, assume that T : X → X̃ is a transformation function that

maps each data point x from domain X to a data point x̃ from domain X̃. The labeling function

ψ for a transformation T is computationally inferable if for any x ∈ X, there is a deterministic

algorithm that outputs ψ(T (x)), which is the label for x̃ = T (x). Note that we differentiate a

sequence of image augmentations from a sequence of image transformations with computationally

inferable labeling functions, as the former does not always lead to an image where labels can be

inferred. For example, through the image augmentations, an image might get so distorted that even

for an expert, manual labeling is not possible. We use the Albumentations package [51] for all image

augmentations in this study.

In this study, we utilize the commonly used Dice score and intersection over union (IoU) as

our performance measures [52, 53]. Given an observed segmentation mask O and the expected

segmentation mask E, the Dice score is defined as:

Dice(A,B) =
2∥O ∩ E∥
∥O∥+ ∥E∥

(2)

where ∥ ∥ and ∩ represent set cardinality and intersection operators, respectively. IoU is defined as

follows:

IoU (O,E) =
∥O ∩ E∥
∥O ∪ E∥

(3)

where ∪ represents the union operator.

In all experiments, we use the smallest loss value on the validation sets as the criterion for model

selection. We also use the SGD optimizer [54] with a learning rate of 1e−2.

2.3 Data synthesization

We simulate a dataset of wheat field images using video clips of wheat fields and background scenes.

We extract image frames from the video clips of the background fields to generate a set of m

background images B = {b1, b2, . . . , bm}. We also extract image frames from the wheat field video

clip to generate a set of n wheat field images W = {w1, . . . , wn}. We selected two different images,

wt and wv, from the set W which are then used for simulating the training and validation subsets

of the simulated dataset, respectively.

Figure 4 illustrates the process of simulating images using wt, wv, and background images. The

procedure for simulating dataset St is as follows. First, we manually segment the wheat heads in wt.

This results in a set of wheat heads Ht. We select a background image bi from B. This image serves

as a canvas where we overlay: (1) a set of fake wheat heads, which only have the geometry of real

wheat heads but are extracted from the background area of wt and (2) a set of real wheat heads from

Ht selected based on random sampling with replacement approach. The number of fake and real

wheat heads to be randomly placed on bi is chosen as uniformly distributed random numbers between

10 and 100. We first overlay fake wheat heads and then real wheat heads. Also, prior to placement on
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bi, both real and fake wheat heads undergo a sequence of image augmentations including horizontal

and vertical flips, rotation, resizing, and elastic transformation [55]. The locations of the real wheat

heads are recorded to generate the segmentation mask for the simulated image. The resulting image

undergoes a sequence of color augmentations [51].

We repeat this process 10,000 times to form St with 10,000 simulated images. A simulated

dataset Sv of size 1000 is generated analogously. St is used for model training, and Sv is used for

model evaluation. In the rest of the paper, a set with subscript t represents a training set, and a

set with subscript v represents a validation set. We refer to the model trained with these datasets

as model S. We train and evaluate the model for 10 epochs. Note that instead of developing a

small dataset and using a larger number of epochs, we simulate a larger dataset and use a smaller

number of epochs to avoid model overfitting. The rest of the models, which are developed for the

domain adaptation purposes, are trained for 20 epochs (see below). Also, all models are trained

using images of size 1024× 1024 pixels.

We also use a test time augmentation (TTA) approach to improve the predictions made by the

model. During this process, for each image, we generate two augmented versions using Gaussian

noise and sepia image augmentations [51]. Then the predictions made by the model for the original

image and its two augmented versions are aggregated using a pixel-level majority vote to compute

the final prediction.

2.4 Domain adaptation

Since there is a domain shift between the images in the simulated datasets St and Sv and real images

(as illustrated in Figure 6), a domain adaptation step is required to improve the model performance.

In this paper, we apply three domain adaptation steps. As the first domain adaptation step, we

develop datasets Dt and Dv that are semantically more similar to real images in comparison to

the simulated images in St and Sv (see Figure 5) and use these datasets to fine-tune the model S.

Figure 5 illustrates the process for generating images in datasets Dt and Dv. These datasets are

generated by utilizing all 360 rotations (from 0 to 359 degrees) of wt and wv, respectively. These

rotated images undergo a comprehensive set of image augmentations, which will be applied in an

online manner—i.e., each time we access an image, a different sequence of image augmentations is

applied to the image. These augmentations are applied to increase the data variability and avoid

overfitting. Appendix A provides the list of image augmentations applied to images in Dt and Dv.

We refer to the model trained with these datasets as model D.

Even though datasets Dt and Dv better represent the real images of wheat fields, there is still

a domain gap between the images in these datasets and real images. Therefore, we apply pseudo

labeling as the second domain adaptation step. Using model D, we predict the segmentation mask

for the images from the set W , excluding wt, wv, and all the test set image frames within 1 second

from these images. We refer to these images as pseudo-labeled images since their masks might be

noisy due to the model error. The resulting pseudo-labeled dataset is used to fine-tune model D.

We refer to the model fine-tuned on the pseudo-labeled dataset as model P .

In the third domain adaptation step, we generate two sets Gt and Gv. We randomly select two
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Figure 4: The procedure for simulating the computationally-annotated datasets—i.e., St and Sv.

Figure 5: The images generated during the first domain adaptation step.
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Figure 6: The top row illustrates examples of simulated images, and the bottom row shows examples
of strongly augmented images generated in the first domain adaptation step.

images from each domain of the GWHD dataset, of which one is added to Gt and the other is added

to Gv. Using model P , we predict a segmentation map for each image. If required, the predicted

segmentation maps are then manually corrected. We also add wt to Gt and wv to Gv. We further

expand Gt by adding its 359 rotations of each image in Gt. Gv is also expanded analogously. These

images are used to fine-tune model P . We refer to the fine-tuned model as model G.

To summarize the model development process, first, we use the datasets St (for training) and Sv

(for validation) to develop model S. This model is then fine-tuned using datasets Dt (for training)

and Dv (for validation) to develop model D. Next, we fine-tune model D using datasets Pt (for

training) and Pv (for validation) to develop model P . Finally, we fine-tune model P using datasets

Gt (for training) and Gv (for validation) to develop model G as the final model.

3 Results

Table 1 highlights the performance measures for the models on our internal test set, i.e., randomly

chosen images from the wheat field video clip’s frames. The model developed utilizing two annotated

images from a wheat field and short unannotated video clips of the wheat field and background fields

achieved a high Dice score of 0.89 for segmenting the images from the same wheat field.

When utilizing such a model as a general-purpose model for segmenting images in the GWHD

dataset, the Dice score dropped to 0.73. This highlights the need to address the substantial domain

shift caused by high variations in factors such as wheat growth stages, illumination, and imaging

hardware and techniques. Table 2 shows the performance measures for the models evaluated using

the GWHD dataset.

The GWHD dataset includes images from 18 different domains from various growth stages and
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Figure 7: Examples of images from the GWHD dataset predicted by different models. The predicted
masks are overlaid on the images. The images in each row shows the prediction made by a model.
Model S is the model trained on the simulated dataset. Model D, P , and G are the results for the
first, second, and third domain adaptation steps.
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Table 1: The IoU and Dice score for the model S, which is trained on the simulated datasets, as
well as models D, P , and G which are the models resulting from the first, second, and third domain
adaptation steps. All models were evaluated using the internal test set, i.e., images extracted from
the video clip of the wheat field. These performance measures are calculated for these models with
and without test time augmentation (TTA). ImageNet refers to the initial model pretrained on the
ImageNet dataset.

Experiment Initial Model Dice IoU TTA Dice TTA IoU

model S ImageNet 0.7090 0.5658 0.7804 0.6463
model D model S 0.8860 0.7974 0.8822 0.7910
model P model D 0.8984 0.8167 0.8864 0.7975
model G model P 0.8902 0.8038 0.8871 0.7986

Table 2: The IoU and Dice score for the model S, which is trained on the simulated datasets, as
well as models D, P , and G, which are the models resulting from the first, second, and third domain
adaptation steps. All models were evaluated using the images from the GWHD dataset. These
images have not been used for model development. The performance measures were calculated for
these models with and without test time augmentation (TTA). ImageNet refers to the initial model
pretrained on the ImageNet dataset.

Experiment Initial Model Dice IoU TTA Dice TTA IoU

model S ImageNet 0.3678 0.2742 0.4845 0.3745
model D model S 0.6528 0.5272 0.7416 0.6225
model P model D 0.6748 0.5606 0.7289 0.6165
model G model P 0.9144 0.8583 0.9084 0.8489

imaging characteristics. Tables 3 and 4 show the performance measures for the trained models after

applying the test time augmentation on each domain separately. As shown, the model performance

varies across domains.

4 Discussion

In this study, we proposed a semi-self-supervised learning approach to tackle the wheat head seman-

tic segmentation problem. Our approach, based on simulating computationally-annotated datasets

followed by domain adaptation steps, makes it possible to develop a high-performing semantic seg-

mentation model for wheat head segmentation using only two manually annotated images per do-

main. This allows for the adoption of deep learning technology in similar applications where a

large-scale annotated dataset is unavailable due to the costly, tedious, and time-consuming nature

of manual annotation. Our final model achieved the state-of-the-art performance for wheat head

segmentation as it reached a Dice score of 0.91 on the GWHD dataset, which is a diverse set of

images from five countries and 18 different domains. Also, the proposed approach is model agnostic

and can be further improved by using different deep learning model architectures.

The model trained only using the simulated datasets achieved a dice score of 0.78 on the internal

single domain dataset. However, its performance dropped to 0.48 when evaluated on our external and

diverse test set. This underscores the effect of domain shift between simulated and real images. The
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Table 3: The performance of the models after applying the test time augmentation on each of the 18
domains of the GWHD dataset. Model S is the model trained using the simulated dataset. Models
D and P are the models resulting from the first and second domain adaptation steps.

Domain Model Pretrained Dice Score

Model S ImageNet 0.7312

Model D Model S 0.9014

Model P Model D 0.9114

Model S ImageNet 0.8480

Model D Model S 0.9213

Model P Model D 0.9297

Model S ImageNet 0.3099

Model D Model S 0.7896

Model P Model D 0.7971

Model S ImageNet 0.2400

Model D Model S 0.7012

Model P Model D 0.6428

Model S ImageNet 0.7949

Model D Model S 0.8854

Model P Model D 0.8886

Model S ImageNet 0.3896

Model D Model S 0.6637

Model P Model D 0.6143

Model S ImageNet 0.5097

Model D Model S 0.7864

Model P Model D 0.8078

Model S ImageNet 0.8592

Model D Model S 0.8733

Model P Model D 0.9148

Model S ImageNet 0.5391

Model D Model S 0.7637

Model P Model D 0.7772

Domain Model Pretrained Dice Score

Model S ImageNet 0.7118

Model D Model S 0.8739

Model P Model D 0.8685

Model S ImageNet 0.2902

Model D Model S 0.4046

Model P Model D 0.3098

Model S ImageNet 0.6012

Model D Model S 0.8268

Model P Model D 0.8045

Model S ImageNet 0.5839

Model D Model S 0.8120

Model P Model D 0.7725

Model S ImageNet 0.1569

Model D Model S 0.4745

Model P Model D 0.4292

Model S ImageNet 0.5824

Model D Model S 0.8088

Model P Model D 0.8262

Model S ImageNet 0.8843

Model D Model S 0.8664

Model P Model D 0.8365

Model S ImageNet 0.5015

Model D Model S 0.7682

Model P Model D 0.7645

Model S ImageNet 0.6296

Model D Model S 0.7935

Model P Model D 0.7155
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Table 4: The performance of the models after applying the test time augmentation on each of the 18
domains of the GWHD dataset. Model G is the resulting model after the third domain adaptation
step, i.e., the model pretrained on model P , and fine-tuned on the 18 images selected from GWHD
(one per domain).

Domain Dice Score

0.9455

0.9507

0.9599

0.8785

0.9662

0.8960

Domain Dice Score

0.9165

0.9558

0.8574

0.9591

0.7498

0.9518

Domain Dice Score

0.9308

0.8170

0.9197

0.9309

0.9140

0.9233
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substantial improvement in the performance measures after applying the first and second domain

adaptation steps further highlights the utility of these domain adaptation steps in filling the gap

between simulated and real images.

Even after applying the second domain adaptation step, we observed a drop in performance

measures when we applied the resulting model to our external test set. This gap can be attributed

to the domain shift between the images from the single wheat field used for model training and

images from other domains, e.g., different growth stages or environmental conditions. This suggests

that models trained on data from a single domain might not generalize to external data. Further,

internal evaluation using a test set that comes from the same distribution as the training set often

does not provide a reliable estimate of generalization error. Using multi-domain and diverse datasets

for model evaluation should be considered the best practice.

In this study, we only utilized a short video clip of a wheat field to develop a deep semantic

segmentation model. However, utilizing a larger number of video clips of wheat fields from various

growth stages of the wheat could potentially further improve the performance of the model trained

only using computationally-annotated datasets.

In addition to the single wheat field video, we used a group of 11 background scene videos in

which there is no frame capturing wheat heads. In the data simulation step, we overlaid wheat heads

onto image frames extracted from these background videos. By utilizing various background videos,

we primarily intended to increase data variation reducing the chance of overfitting. We suggest a

comprehensive study of the effect of various background videos on the model performance as future

research.

We showed that the proposed approach could lead to developing high-performing models for

semantic segmentation of wheat heads. However, the application of the proposed method is not lim-

ited to the wheat head segmentation, and it could be used for other applications such as segmenting

other crops where the aim is to segment a highly self-similar patterns such as leaves, spikes, flowers,

or fruits. Note that while a single image could provide a good representation of a wheat field, it does

not offer a good representation of typical pictures such as those in the ImageNet dataset. Therefore,

one should not expect to use one sample from the ImageNet dataset to provide a segmentation model

for images in ImageNet.

In this paper, we only used a single video clip of wheat field in the final growth stage. This

led to a high-performing model for segmenting images from the same field and the same growth

stage. However, when the model was applied to the Global Wheat Head Detection dataset—a

highly diverse dataset of wheat field images from five countries and 18 domains representing various

growth stages and imaging conditions—the model performance slightly decreased. This highlights

that developing a general model that can optimally work for different imaging conditions and growth

stages requires images representing such conditions. The proposed approach could facilitate creating

such a dataset by utilizing video clips instead of large datasets of images taken individually and then

only annotating a single image from each video clip. We suggest using a set of video clips representing

various growth stages of the wheat for future research.

Also, in this paper, we used a modified U-Net model architecture for all experiments. However,

the proposed approach is independent of the model architecture and can benefit from different model
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architectures. We suggest utilizing different model architectures for future research.

5 Conclusions

In this work, we introduced a semi-self-supervised approach for the wheat head semantic segmenta-

tion task by simulating a computationally-annotated large-scale dataset and applying three domain

adaptation steps for addressing domain shift. Utilizing a few short video clips of a wheat field and

background vegetation, the proposed method facilitates data collection for model building. Fur-

ther, since the proposed model only uses a few manually annotated images, it avoids the manual

annotation of a large dataset, facilitating model development. While we showed the utility of the

proposed method for wheat head segmentation, it could be applied to other applications that have

similar dense repeating patterns of objects, such as segmenting plant organ is other crop species, or

segmenting molecular components in microscopy images.

Appendix A

In this study, we benefit from a variety of image augmentations, including pixel-level and spatial-

level transformations from the Albumentations package [51]. To simulate St and Sv, real and fake

wheat heads undergo a sequence of transformations including HorizontalFlip, VerticalFlip, Rotate,

and ElasticTransform. After overlapping both real and fake wheat heads on the background images,

we augment the resulting images using a long list of pixel-level transformations such as ColorJit-

ter, ChannelShuffle, RGBShift, ChannelDropout, HueSaturationValue, Emboss, Solarize, InvertImg,

ToGray, ToSepia, FancyPCA, Posterize, Sharpen, RandomGamma, Equalize, RandomBrightness-

Contrast, CLAHE, GaussianBlur, MotionBlur, RandomRain, RandomFog, RandomSnow, Random-

SunFlare, GaussNoise, MultiplicativeNoise, ISONoise, and Normalize.

When generating Dt, Dv, in addition to the color transformations applied to the simulated

dataset, we included the following image augmentations: Flip, Rotation, ElasticTransform, Grid-

Distortion, as well as a long list of RandomCrop functions with different squared crop sizes ranging

from 400× 400 to 1000× 1000. These images then were resized to 1024× 1024.

In the pseudo-labeling step, we tried all of the augmentation methods used when generating Dt

and Dv (i.e., the first domain adaptation step) but excluded those that drastically changed the color,

like ColorJitter, Channel Shuffle, and RGB Shift. In the last training step, we also utilized the same

list applied in the first domain adaptation step to augment the chosen training samples from the

GWHD dataset. During model evaluation, only the Resize, and Normalize transformations were

applied to images.
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