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Abstract

Background With up to 256 channels, high-density electroencephalography (hd-EEG) has become
essential to the sleep research field. The vast amount of data resulting from this magnitude of channels
in overnight EEG recordings complicates the removal of artifacts.

New Method We present a new, semi-automatic artifact removal routine specifically designed for
sleep hd-EEG recordings. By employing a graphical user interface (GUI), the user assesses epochs in
regard to four sleep quality markers (SQMs). Based on their topography and underlying EEG signal,
the user eventually removes artifactual values. To identify artifacts, the user is required to have basic
knowledge of the typical (patho-)physiological EEG they are interested in, as well as artifactual EEG. The
final output consists of a binary matrix (channels x epochs). Channels affected by artifacts can be restored
in afflicted epochs using epoch-wise interpolation, a function included in the online repository.

Results The routine was applied in 54 overnight sleep hd-EEG recordings. The proportion of bad
epochs highly depends on the number of channels required to be artifact-free. Between 95% and 100%
of bad epochs could be restored using epoch-wise interpolation. We furthermore present a detailed ex-
amination of two extreme cases (with few and many artifacts). For both nights, the topography and cyclic
pattern of delta power look as expected after artifact removal.

Comparison with Existing Methods Numerous artifact removal methods exist, yet their scope of
application usually targets short wake EEG recordings. The proposed routine provides a transparent,
practical, and efficient approach to identify artifacts in overnight sleep hd-EEG recordings.

Conclusions This method reliably identifies artifacts simultaneously in all channels and epochs.

Keywords: artifact removal, high-density electroencephalography, sleep, graphical user

interface, outlier detection

1. Introduction

Electroencephalography (EEG), a commonly used technique to measure electrical brain ac-

tivity, has long been, and still is, the gold-standard method to differentiate vigilance states. Thus

far, standard criteria for sleep staging by the American Academy of Sleep Medicine (AASM) are

based on EEG characteristics (Berry et al., 2017). In the last decades, the emergence of sleep as5
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a local and use-dependent phenomenon has met wide consensus and, thus, established the im-

portance of high-density (hd-) EEG measurements. While alternative imaging techniques, such

as magnetic resonance imaging (MRI) offer higher spatial resolution, their costs, sensitivity to

movements, and noise make them impractical for sleep studies. The complementary increased

temporal resolution of hd-EEG renders it an optimal technology for current and future applica-10

tions. Ranging from 64 to 256 channels, both basic science and clinical applications have ben-

efited from the high resolution of EEG recordings (Pisarenco et al., 2014). For example, sleep

hd-EEG enables the observation of local increases of slow-wave activity (SWA; EEG spectral

power in the delta frequency range, 0.5 – 4.5 Hz) in areas explicitly involved during pre-sleep

learning (Huber et al., 2004). Furthermore, the vast amount of spatio-temporal characteristics15

that can be extracted from sleep hd-EEG, such as slow waves, sleep spindles, as well as cross-

freq coupling, facilitates the study of brain function and development in healthy (Gorgoni et al.,

2020) as well as in clinical populations. Therefore, hd-EEG has become especially important in

the growing field of clinical diagnostics and therapeutics, especially for neuropsychiatric dis-

orders such as depression and attention deficit disorder, as well as for stroke, traumatic brain20

injury, epilepsy, and specific applications in intensive care units (Popa et al., 2020; Freismuth

& TaheriNejad, 2022). In epilepsy, for instance, hd-EEG is used to locate the epileptic focus

of sleep-related epilepsy syndromes, usually in the context of pre-surgical screening (Avigdor

et al., 2021). However, a great challenge accompanying the increased number of electrodes is

the large amount of data. A critical processing step inherent to the majority of EEG analyses25

is the identification and removal of artifacts (i.e., unwanted components embedded within the

EEG signal). This is a challenge in itself, as artifacts in the EEG may originate from various

sources.

Typically, EEG artifacts can be classified into two broad categories: physiological (or in-

ternal, intrinsic) and non-physiological (or external, extrinsic). Intrinsic artifacts in sleep EEG30

originate from physiological functions such as eye and body movements, muscle tension, car-

diac activity, or respiration. On the other hand, non-physiological artifacts are related to hard-

ware and environmental conditions and may originate from external sources such as power line

noise (50/60 Hz), electrode malfunction, electromagnetic interference, or environmental noise

(Mumtaz et al., 2021).35

In general, there are two approaches to handle artifacts in sleep hd-EEG. Whole-time seg-

ments (i.e., epochs of 20 s or 30 s) can be discarded and not taken into account for further anal-

ysis, a suitable approach for overnight sleep EEG as it comprises several hours of data. In this

approach, epochs containing artifacts can be manually identified, allowing full control of the

data. Artifactual epochs are commonly identified during sleep staging, yet only in channels used40

for sleep staging. Consecutive channel-wise manual artifact identification is impractical due to

the large number of channels and does not allow for a global topographical comparison among

them. Automated, unsupervised procedures have also been suggested (Coppieters’t Wallant

et al., 2016; Saifutdinova et al., 2019), however, while convenient, they lack transparency in

the process.45

Alternatively, artifacts that occur at the same time as neuronal signals can be computation-
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ally distinguished from brain activity and removed such that clean underlying neuronal signals

are preserved. Common procedures include adaptive filtering, regression-based methods, fre-

quency decomposition methods (wavelet transform decomposition, empirical mode decompo-

sition), and hybrid approaches. Especially blind source separation techniques are frequently50

applied, including independent component analysis (ICA), canonical correlation analysis (CCA),

and principal component analysis (PCA) (Jiang et al., 2019; Bisht et al., 2020; Kotte & Dab-

bakuti, 2020).

For wake EEG, the most widely used technique is ICA as it performs well on prominent,

physiological artifacts, such as eye movements, cardiac or muscular activity. While some stud-55

ies have used ICA in overnight sleep EEG (e.g., Siclari et al., 2018), its application in sleep EEG

is infrequent and thus no systematic assessment is possible at this time.

Consequently, a reliable approach that gives the user full control of the data while being

practical and time-efficient is currently lacking for sleep hd-EEG recordings. We aimed to ad-

dress this gap by introducing a new MATLAB-based, semi-automatic artifact removal routine60

freely available in an online GitHub repository (Hd-SleepCleaner). It works with epoched data

and provides a graphical user interface (GUI) specifically designed for sleep hd-EEG record-

ings. The GUI allows for the simultaneous screening of all channels and epochs at once. The

data is screened based on four different sleep-related signal quality markers (SQMs), reducing

the workload significantly. It provides the functionality to visualize the EEG signal and topog-65

raphy of each SQM, offering full transparency of underlying EEG traces that can potentially be

classified as artifacts. Taking all together, the proposed artifact removal routine constitutes an

approach highly suitable for the cleaning of sleep hd-EEG recordings, by allowing the user full

control over the removal process and new insights into their data.

2. Methods70

2.1 Example data

The artifact removal routine (v1.0.0) was applied in 54 overnight sleep hd-EEG recordings

(EGI Net Station v5.4; Electrical Geodesics Sensor Net for long-term monitoring, 128 channels,

Net Amps 400 series, Electrical Geodesics Inc., EGI, Eugene, OR, USA). All channels were

referenced to Cz during recording and sampled at a rate of 500 or 1000 Hz. EEG data was75

exported with a software specific 0.1 Hz high-pass filter (EGI Net Station v5.4) to remove slow

drifts and voltage jumps.

EEG recordings came from 27 young and healthy good sleepers of average chronotype

(6 male, 21 female, all right-handed, aged between 18.38 – 26.69 y, mean±sd = 22.68±2.23 y).

Participants spent two nights in the laboratory, each offering an ∼8 h sleep opportunity. Nei-80

ther they nor any family member had a history of neurological or psychiatric disease, including

any sleep disorder. We demonstrate the functionality of the proposed artifact removal routine

using two example recordings (20.23 y and 24.82 y, both female and right-handed). The data

was collected within a study which investigated the effect of phase-targeted auditory stimula-

tion on electroencephalographic parameters and cognition (Kantonale Ethikkommission Zürich,85
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KEK-ZH, BASEC 2019-02134). The study was conducted in accordance with the declaration of

Helsinki and written informed consent was obtained prior to participation.

2.2 Artifact removal routine

Fig. 1. A flowchart depicting the artifact removal routine. After importing the EEG and sleep staging
(optional), the EEG data is low-pass filtered, down-sampled, and high-pass filtered (optional) to correctly compute
signal quality marker (SQM). To better compare SQM values among channels, the amplitude scale of each channel
is normalized by robustly z-standardizing the EEG signal (channel-wise). For each epoch — usually of the same
length as during sleep scoring — four SQMs are computed, three based on spectral power and one on the maximum
squared deviation in amplitude from the channel average signal. Based on each of them, the user identifies
conspicuous values, evaluates their EEG and topography, and, thereupon, removes values contaminated with
artifacts. The EEG segments corresponding to rejected epochs for a given channel are set to NaN. Thereafter,
the EEG is average referenced (epoch-wise), SQMs are computed once again, and values containing artifacts are
removed. The final output matrix (channels x epochs) consists of 0s and 1s, where 0 denotes the presence of
artifacts and 1 indicates clean EEG data.

Each value in the summary plot corresponds to one epoch for a given channel. Consequently,

outlier values correspond to an artifactual EEG signal from one channel in a given epoch.90

Outlier values are identified based on four sleep-related SQMs in the following order: 1) delta

power (from robustly z-standardized EEG data), 2) beta power (from robustly z-standardized

EEG data), 3) the maximum squared deviation in amplitude from the average EEG signal (from
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raw, not robustly z-standardized EEG data), and, 4) delta power (from raw, not robustly z-

standardized EEG data). All four SQMs are computed from EEG data with original reference95

(EEG signal referenced as during recording), as well as from average referenced EEG data.

Fig. 2. The graphical user interface (GUI). A) Each black dot represents a signal quality marker (SQM) value
in one epoch for a given channel. SQMs include delta power (0.5 – 4.5 Hz), beta power (20 – 30 Hz) and the
maximum squared deviation in amplitude from the channel average. Using the brush functionality (activated by
clicking on Matlab’s specific brush icon), values can be selected and thereafter removed, visualized or restored.
Removed data points are indicated by red circles. When pressing [DONE], each black dot is considered clean, each
red circle artifact-contaminated. The red arrow in (A) indicates from which epoch the EEG in (C) and topography
of SQM values in (D) is shown. B) Displaying corresponding sleep stages can help to assess the time course of
SQM values. In case no sleep scoring is imported, no hypnogram is shown. C) The corresponding EEG signal of a
selected SQM value (red arrow in (A) pointing to black dot). Evaluating the EEG signal is essential to determine
the presence of artifacts. Artifactual EEG traces can be selected and removed. D) The topography of selected
epochs can help to determine whether the source of SQM values is physiological or artifactual. Black dots in the
topoplot indicate the corresponding channels of selected SQM values. E) Average overnight spectral power up to
30 Hz in steps of 0.25 Hz provides useful information about general channel quality. During NREM sleep, a peak
in the delta and sigma band (12 – 16 Hz) are typically visible in all channels. The power spectrum automatically
updates once SQM values are removed. F) The proportion of epochs which have survived the outlier detection
routine for a given channel. Large amounts of removed epochs can indicate poor signal quality. G) Buttons allow
interacting with the GUI. Letters in squared brackets correspond to keyboard shortcuts. The functionality of
buttons is described in table 1.

Hence, the artifact removal routine is repeated eight times. The first four times, the user it-

erates through all four SQMs from EEG data with original reference, thereafter through all four

SQMs from average referenced EEG data. During each iteration, outlier values are identified

and possible artifacts detected. As a final result, the artifact removal routine provides a matrix100

(channels x epochs) containing 0s and 1s, where 0 denotes that a certain channel contained

artifacts or did not belong to the sleep stage of interest, and 1 indicates that a certain channel

is artifact-free and within the sleep stage of interest. Thus, in total, each night is screened

eight times for artifacts, each time based on a different SQM. The screening of one night takes
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approximately 10 to 60 minutes, depending on the length and quality of the data, as well as the105

experience of the user.

2.3 Requirements

2.3.1. EEG requirements

For the artifact removal routine, the input EEG has to fulfill certain requirements. SQMs

include spectral power in the delta (0.5 – 4.5 Hz) and beta (20 – 30 Hz) frequency range. In110

case the signal within those bands is not present or has been attenuated, those SQMs may not

be sensitive towards outliers in the EEG. This is why the sampling rate, any filter, as well as

the chosen epoch length need to meet certain criteria. The sampling rate needs to be high

enough to reliably estimate beta power (minimum sampling rate of 60 Hz, Nyquist’s theorem).

Any online (during recording) or offline (during analysis) filter should leave the delta and beta115

frequency band as unaffected as possible. The minimum epoch length is 4 s, as the routine

computes spectral power in 4 s Hanning windows. Lastly, the artifact removal routine has only

been tested in healthy sleep EEG. EEG from clinical populations, such as patients with epilepsy,

may show a distinct pattern in chosen SQMs.

The artifact removal routine is specifically designed to screen sleep hd-EEG data consisting120

of 64 or more channels. While the routine still works with fewer and even one channel, the

comparison of SQM values between channels will be more informative, the more channels are

recorded. Note that the difference in amplitude from the channel average is meaningless when

the data provided consists of only one channel.

The routine takes advantage of the naturally occurring time course of delta and beta power125

during sleep. In case EEG recordings of shorter length than one sleep cycle (e.g. naps) are

screened for artifacts, special care is needed to investigate the EEG signal itself. The user

needs to have a rather good understanding of artifactual and (patho-)physiological EEG data to

be capable of distinguishing the two.

2.3.2. Data format130

Currently, the EEG needs to be stored in a .mat file, storing a common EEGLAB struc-

ture with EEG.srate and EEG.data as fields that contain the sampling rate and EEG data, re-

spectively. The latter stores the EEG signal as a matrix (channels x samples). The function

makeEEG() converges EEG data into an EEGLAB structure and is included in the online repos-

itory. Sleep stages need to be stored in a vector of numbers or letters, where a distinct number135

or letter corresponds to a certain sleep stage. Supported data formats currently include .mat,

.txt and .vis files. A short example dataset (64 channels, one sleep cycle) is included in the

online repository.

2.3.3. System requirements

The artifact removal routine, as well as the GUI, were programmed using Matlab (R2021b,140

The Mathworks, Inc., Natick, Massachusetts) leveraging functions from EEGLAB (v2021.1; De-

lorme & Makeig, 2004). It is highly recommended using the same or a newer Matlab and
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EEGLAB version. Hardware requirements, e.g., RAM size, mainly depend on the size of EEG

data that is processed.

2.4 Epoch selection145

The artifact removal routine can selectively be performed only on epochs that belong to

certain sleep stages (e.g. only NREM or REM sleep). This can be useful when only certain

sleep stages are considered for analyses, as it lowers the number of epochs to be screened.

Additionally, the hypnogram is displayed aligned to SQM values, providing useful information

about their course in time. Epochs not belonging to the selected sleep stages of interest are150

treated as if they contained artifacts in the final output matrix.

2.5 Epoch-wise average referencing

Average referenced EEG data is only computed following the initial identification and re-

moval of artifacts in the originally referenced EEG data. This is important as the average is

susceptible to outliers. More specifically, amplitude values of artifactual channels are set to155

NaN in respective epochs. Then, the channel average used for average referencing is com-

puted individually for each epoch. Note that for each epoch a different amount of channels may

contribute to the average, as different channels can be artifactual in each epoch.

2.6 EEG preprocessing

The artifact removal routine comes with a simple EEG preprocessing pipeline, preparing the160

EEG data to correctly compute all SQMs. The EEG is low-pass filtered (−6 dB cut-off = 39.86 Hz,

filter order = 92 at 500 Hz), down-sampled to 125 Hz (adjustable), and high-pass filtered (−6 dB

cut-off = 0.37 Hz, filter order = 1494 at 125 Hz), primarily for the visualization of EEG traces

and the computation of the maximum squared deviation from the average EEG signal. Spectral

power in the delta and beta range should stay unaffected by the applied filters, as their pass-165

bands include the complete delta (from 0.5 Hz) and beta range (up to 30 Hz). When low-

frequency, high-amplitude sweat artifacts contaminate the signal, stricter high-pass filtering

(−6 dB cut-off = 0.75 Hz, filter order = 1246 at 125 Hz) is recommended for their removal.

Sweat artifacts are high-amplitude, low-frequency waves which can lead to the exclusion of

a significant amount of epochs during the artifact removal procedure. All filters are Kaiser-170

window-based FIR filters and are applied one-way with zero-phase shift. The stated filter order

(in samples) is bound to the sampling rate of the EEG, so that doubling the sampling rate

of the EEG would require doubling the filter order. The user has the option to directly load

distinctively preprocessed EEG data into the routine and to skip the preprocessing step — a

reasonable adjustment, as different filters introduce different filter artifacts (de Cheveigné &175

Nelken, 2019).

2.7 Normalization of EEG signals

The EEG measures the voltage difference between an active and a reference electrode. This

is why the distance of the active to the reference electrode can impact the amplitude of the
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recorded signal considerably, much more than underlying brain activity. This is a problem when180

comparing amplitude-based SQM values among channels, as electrodes close to the reference

will naturally have smaller amplitude values than electrodes further away (Fig. 3). Concomi-

tantly, artifacts in electrodes close to the reference may be smaller than the physiological signal

of electrodes further away from the reference electrode, encumbering their detection.

This is why it is essential to adjust the amplitude scale across channels when comparing185

channels altogether. Robust z-standardization over samples adjusts the amplitude scale of each

channel individually (EEGCh−Median(EEGCh)
Q3(EEGCh)−Q1(EEGCh)

, where EEGCh represents the whole-time signal of

one channel). It uses the median and interquartile range (IQR) of the whole-time signal instead

of the mean and standard deviation and is therefore robust towards extreme values which are

naturally present in EEG data. A traditional z-score is the number of standard deviations by190

which the value of a raw score is above or below the mean value. A robust z-score can be

interpreted analogously as the number of IQR by which the value of a raw score is above or

below the median.

2.8 Spectral power computation

Three out of four SQMs are based on spectral power. For two of them, the EEG is robustly z-195

standardized over samples (separately for each channel). Spectral power is then computed for

the delta (0.5 – 4.5 Hz) and beta (20 – 30 Hz) frequency range, a procedure used before (Huber

et al., 2000) to capture artifacts well known to be present in sleep EEG, such as muscle tension,

as well as eye or body movements. Delta power is computed both from robustly z-standardized

and raw EEG data, the latter preserving the typical topography of delta power with a fronto-200

central hotspot during NREM sleep. Power spectral density (PSD) values, from which spectral

power is calculated, are computed in each epoch with the Welch method using the pwelch()

function in Matlab (4 s Hanning windows, 50% overlap, frequency resolution 0.25 Hz).

2.9 Maximum squared deviation in amplitude

The fourth SQM is computed in each epoch by deriving the maximum squared deviation205

in amplitude of one channel from the average EEG signal over channels (max(|EEGCh −
Mean(EEG)|2), where EEGCh represents the signal of one channel for a given epoch and EEG

is a data matrix (channels x samples) containing the EEG signal for a given epoch). Comput-

ing the squared amplitude amplifies differences and as such helps to detect smaller deviations.

This measure is independent of the underlying frequency of artifacts, but instead detects devia-210

tions in amplitude of each channel from the channel average for a given epoch. Importantly, the

attenuation of epoch edges, a necessary step for spectral power computations, is not required,

making this SQM sensitive towards artifacts within an epoch just as well as at the edges.

2.10 Manual identification of artifacts

Eventually, SQM values are removed at each iteration whenever the user determines that215

their EEG signal is contaminated with artifacts. To confirm the presence of artifacts, it is

crucial that the EEG and topography of outlier values can be visualized and examined, a feature
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the GUI provides. SQM values are indicative of artifactual sources when, 1) within the same

epoch, a channel deviates from other channels, 2) within one channel, an epoch deviates from

its neighboring epochs, 3) channels show a flat line (zero values), or, 4) the course in time of220

values over a night of sleep is not reasonable (e.g., higher delta power in the end than in the

beginning of the night).

2.11 Visualizing the EEG

When selecting a conspicuous SQM value, the user has the option to 1) plot the correspond-

ing EEG, or 2) plot the EEG of all channels from the same epoch. Alternatively, the user can225

select more than one SQM value and plot their corresponding EEG altogether. Visualizing the

EEG is an essential attribute of the GUI. It contributes to confidently determine the presence

of artifacts and makes the user aware of the specific types of artifacts present in their data.

2.12 Visualizing the topography of signal quality markers

The user can, furthermore, examine the topography of SQM values in a certain epoch, facil-230

itating the identification of big deviations from neighboring channels specifically. When several

epochs are selected at once, the maximum topography (maximum value over selected epochs)

is displayed. Alternatively, the user can visualize several epochs successively in a movie format.

2.13 Automatic identification of artifacts

In the background and at the beginning of every iteration, two automatic outlier detection235

procedures support the artifact removal routine. More specifically, outliers are automatically

detected 1) channel-wise, when values deviate more than X standard deviations from a moving

average of 40 neighboring epochs and 2) epoch-wise, when values deviate more than X standard

deviations from the average of all channels. Thresholds are adaptable within the GUI. In the

presented data (128 channels, 8 h duration), they were situated between 6 and 12 standard240

deviations.

2.14 Additional GUI features

2.14.1. Online filters

In some applications, it may be useful to assess whether artifacts could be removed by ap-

plying a filter. Slow waves, a high-amplitude, low-frequency signal, may be perfectly preserved245

even when high-frequency noise is present. The GUI therefore offers the option to individually

low- and high-pass filter the plotted EEG signal. We implemented a minimum order Cheby-

shev Type II IIR filter, a steep and fast filter favorable for online applications, with adaptable

pass- and stop-band frequencies. The user can select the stop-band frequency, the frequency

from which (low-pass) or until which (high-pass) the signal is attenuated by at least 60 dB.250

The pass-band frequency, the frequency until which (low-pass) or from which (high-pass) the

signal remains "unaffected", is automatically set to 1.25 (high-pass) or 0.9 (low-pass) times the

user-defined stop-band frequency. This approach helps to easily evaluate the EEG signal in the

frequency range of interest.

9
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2.14.2. Average spectral power255

The GUI shows the average log-transformed spectral power of all remaining epochs for

frequencies between 0 and 30 Hz (0.25 Hz resolution) for all channels. Power spectra that

deviate from other channels can be a hint of abnormal behavior in one channel. Normally,

frontal channels show higher total spectral power compared to posterior channels. To remove

this offset in power, the power spectrum is computed from robustly z-standardized EEG so that260

the power spectrum of all channels can be fairly compared. The user can select the power

spectrum of one channel and then has the option to 1) highlight SQM values of that channel

or 2) remove that channel completely. Whenever abnormal values are removed, the power

spectrum updates automatically and is computed only from remaining epochs.

2.14.3. Proportion of artifact-free epochs265

The GUI provides the proportion of epochs (in %) that is labeled as artifact-free separately

for each channel. This helps to assess to what extent a channel is affected by artifacts. Large

amounts of removed epochs can indicate poor signal quality.

2.14.4. Highlighting conspicuous channels

The user has the option to highlight one or more channels by providing the channel number.270

This is helpful to see the behavior of one specific channel in the course of the night. Abnormal

SQM values in affected epochs can then be selected, visualized and, if necessary, removed as

usual.

2.14.5. Evaluation

The topography of SQM values before and after the removal of artifactual SQM values can275

be compared within each iteration. When doing so, the average topography of all (artifactual

& artifact-free) SQM values is plotted next to the average topography of all artifact-free SQM

values. Additionally, upon completion of the entire artifact removal procedure, a final output

figure displays the time course of delta power, its average topography across the night, as well

as the percentage of epochs which survived the artifact removal routine.280

2.15 Further analyses

Eventually, the final output is a binary matrix (channels x epochs) with 0s (artifact) and 1s

(clean), which can be independently used for further analyses. The four following options could

be considered. A rather conservative approach is to only include epochs into the analysis in

which all channels are artifact-free. This can lead, however, to the loss of a substantial amount285

of data, depending on its quality, which is usually tolerable for overnight EEG recordings, yet

not always.

Alternatively, channels close to the neck can be ignored so that they do not contribute to the

assessment of artifact-free epochs. This can save a good amount of epochs, as those channels

usually contain more artifacts. Another option is to interpolate the complete signal of bad290

channels, which contain artifacts in over 3% (arbitrary number) of all epochs in sleep stages of
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interest. A combination of the two is also possible. Both lead, however, to the loss of clean data

and do not help in case several channels across the scalp are responsible for the exclusion of

epochs.

The option that restores the largest amount of epochs is epoch-wise interpolation. It in-295

terpolates channels and restores their data only in those epochs in which they were labeled

as "bad". In case more than two (arbitrary number) neighboring channels contain artifacts

as well, the entire epoch is rejected, as interpolation is more meaningful when surrounding

channels contain clean EEG. With this method, epochs in which only certain channels show

artifacts can be included in the analysis. The online repository comes with the external func-300

tion Call_EpowiseInterp() that performs epoch-wise interpolation when enough neighboring

channels are artifact-free.

2.16 Application of the artifact removal routine in 54 overnight sleep hd-EEG record-

ings

The routine was applied in 54 overnight sleep hd-EEG recordings (128 channels). To assess305

the efficacy of the routine, the number of "bad" and "poor" channels, as well as "bad" NREM

(N1 + N2 + N3) epochs was assessed.

2.16.1. Classification of bad and poor channels

Channels were classified as "bad" when all corresponding NREM epochs contained unphys-

iological data. Consequently, bad channels do not exhibit a single artifact-free NREM epoch.310

Channels were classified as "poor" when less than 97% of all NREM epochs were artifact-free.

2.16.2. Classification of bad epochs

The presence of a single artifact-contaminated channel within an epoch is sufficient to clas-

sify the epoch as "bad". As a result, the proportion of bad epochs generally depends on the

number of channels required to be artifact-free. The fewer channels required to be artifact-315

free, the higher the chances the epoch can survive.

Thus, for a holistic evaluation, bad epochs were classified based on two common subsets of

channels, each requiring a different number of channels to be artifact-free. The stricter subset

comprised 124 out of 128 channels and only excluded chin and cheek electrodes (excluded

electrodes: E107, E113, E126, and E127, see Supplementary Fig. 4). A common procedure320

to increase the number of artifact-free epochs is to exclude channels located in the outer ring

of the hd-EEG net from further analyses. Channels of the outer ring are placed under the ear

close to neck muscles and are therefore prone to artifacts. The more liberal subset included

111 channels and excluded channels located in the outer ring (excluded electrodes: E43, E48,

E63, E68, E73, E81, E88, E94, E99, E107, E113, E119, E120, E125, E126, E127, and E128).325

In addition, bad epochs were also classified when bad and poor channels were excluded

from the respective subset. Poor channels can result in many, and a single bad channel in all

NREM epochs to be classified as bad. The number of bad epochs is reported with and without

poor and bad channels.
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Bad epochs could result from a single, a few, or many bad channels present in the respective330

epoch. Therefore, for a given epoch, the amount of bad channels is quantified. Reported

numbers are based on the stricter subset of channels (including bad and poor channels).

Eventually, bad epochs were interpolated using epoch-wise interpolation. The number of

successfully interpolated epochs, as well as the final amount of artifact-free epochs, is reported.

Bad epochs were classified based on the stricter subset of channels (including bad and poor335

channels).

2.16.3. Survival rate of screened epochs

For a given channel, the survival rate of screened NREM epochs was computed. The survival

rate was defined by the number of artifact-free NREM epochs over the number of all NREM

epochs. The average survival rate of the stricter and more liberal subset of channels, as well340

as of channels located in the outer ring exclusively, is reported.

2.16.4. Total number of artifacts

Eventually, the total number of detected artifacts was estimated. To this end, for all chan-

nels, the number of bad epochs was added up. Epochs in which all channels were classified as

bad were not taken into account.345

2.17 Epoch-wise interpolation in two example nights

Bad epochs were classified in a night with many and few artifacts, based on 124 out of

128 channels. Chin and cheek electrodes were excluded (E107, E113, E126, and E127). Bad

and poor channels were included for the classification of bad epochs. For a given epoch, a

single bad channel is sufficient to classify the epoch as bad. 120 out of 124 channels were350

allowed to be interpolated, excluding earlobe and mastoid electrodes (E49, E56, E57, and

E100), as they intentionally capture less brain activity. Bad epochs were candidates for epoch-

wise interpolation. Epochs with more than two neighboring bad channels were rejected. The

number of artifact-free epochs before and after epoch-wise interpolation, as well as the number

of rejected epochs, is reported.355

3. Results

3.1 Robust z-standardization facilitates the comparison of signal quality marker val-

ues among channels

Signal amplitude was normalized by performing channel-wise, robust z-standardization on

the EEG signal of each channel. The time course of the EEG signal stays unaffected by this360

procedure, as all values are multiplied and shifted by the same value. What changes instead is

the amplitude scale. Before normalization, the amplitude of a channel close to the reference is

close to zero, leading to minimal delta power values compared to other channels (Fig. 3). After

normalization, the typical time course of delta power during a night of sleep is visible for all

channels, independent of their distance to the reference electrode.365
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Fig. 3. Robust z-standardization of each channel normalizes the EEG signal. A) (Left) Raw EEG signal
(20 s) of all channels (gray). Channel 55 is highlighted in black. This channel is located next to the reference
electrode and therefore exhibits relatively small amplitude values. (Right) After robust z-standardization of each
channel, the amplitude of channel 55 during the same 20 s of EEG becomes larger relative to other channels.
B) (Left) Delta power (0.5 – 4.5 Hz) of all channels (gray) during the first two sleep cycles. Channel 55 is high-
lighted in black and continuously shows one of the lowest delta power values compared to other channels. Smaller
outliers are difficult to spot. (Right) After robust z-standardization of each channel, delta power of channel 55 is
low in some and high in other epochs. This is due to the adjusted amplitude scale. Hence, robust z-standardization
accounts for lower amplitude values for channels that are closer to the reference electrode during recording. The
time course of delta power during the night (high in the beginning, low at the end of the night) does not change
(not shown).

Even though robust z-standardization is vigorous towards outliers as it uses the median

and IQR over the mean and standard deviation, very noisy channels may result in normalized

values that can clearly deviate from other channels (usually smaller values). In other words,

in case one electrode loses contact so that a substantial amount of data, e.g., 60% of the night

is contaminated with high-amplitude noise, those high-amplitude values will lead to a higher370

median and IQR than usual. As larger median or IQR lead to smaller normalized values, normal-

amplitude values will be smaller than intended (Supplementary Fig. 1). To account for this

scenario, the artifact removal routine additionally computes delta power based on raw (not

robustly z-standardized) EEG.

Electrodes next to the reference electrode can also exhibit normalized values which deviate375

from other channels without artifacts being present. Because of the proximity to the reference

electrode, very close electrodes record neuronal signals with low amplitude values. Hence,

they are more vulnerable to technical and environmental changes, e.g., changes in impedance.

Sometimes, this can lead to higher amplitude values after, e.g., the first sleep cycle, mimicking

electrode malfunctioning after this point in time (Supplementary Fig. 1). In this case, however,380

the electrode showed a physiological time course after average referencing (Supplementary

Fig. 2). As the signal is close to zero, average referencing technically overwrites the signal

with the channel average, which represented a physiological time course. This highlights the

importance of screening channels with different reference set-ups.
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3.2 Conspicuous signal quality marker385

The decision over which SQM values to remove is eventually made by the user. To this

end, it is important to know which SQM values may result from artifacts. Generally, there are

four possible scenarios of SQM values indicating artifactual EEG data (Fig. 4). (1) Artifacts

that affect several channels, such as body movements, result in a pattern where SQM values

from several channels deviate from their neighbors in one epoch (bad epoch). In case the390

artifact lasts longer than the duration of the epoch, more than one successive epoch can behave

accordingly. (2) Artifacts that affect a single channel, such as electrode malfunction, result in

SQM values from one channel which continuously deviate from all or most other channels

over several epochs (temporarily bad channel). (3) In case one channel shows a flat line, e.g.,

due to loose contact or high impedance, the SQM value is zero (temporarily flat channel).395

(4) Many times, a single or a few channels contain artifacts in one or another epoch, e.g. due

to temporary failures in the contact between the EEG sensor and the scalp. Those artifacts can

be detected by spotting single outlier values (single outliers).

Fig. 4. How to identify signal quality marker values with potential artifacts. A) (Left) Delta power (0.5 –
4.5 Hz) from robustly z-standardized EEG of all channel during all NREM (N1 + N2 + N3) epochs (20 s). One black
dot represents the value in one epoch for a given channel. Red circles indicate values which were automatically
removed by either of the two automatic detection algorithms, each worked with the default threshold of 8. (Right)
Zoom into the first sleep cycle. Other conspicuous signal quality marker (SQM) values are now visible. B) Typical
examples of SQM values which likely contain artifacts. Highlighted in blue, from left to right: 1) Compared to
neighboring epochs, this epoch shows larger values in several channels, 2) one channel deviates from all other
channels in several epochs, 3) one channel shows zero values in several epochs, 4) single values deviate from most
other channels.

3.3 Example artifacts

To confidently determine the presence of artifacts, the user eventually evaluates the under-400

lying EEG and topography of SQM values. We present five examples of common artifactual
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waveforms, as well as the corresponding topography of SQMs (Fig. 5). Even though the to-

pography helps to localize and interpret the source of artifacts, we deliberately focus on the

description of the waveform of the EEG, as the waveform is more relevant to determining the

mere presence of artifacts. Low-frequency waves, including eye artifacts, are detected by devi-405

ations in delta power; high-amplitude noise of any frequency can be detected by the maximum

squared deviation in amplitude from the channel average; high-frequency noise, as well as

sharp waves, are detected by deviations in beta power. As the maximum squared deviation in

amplitude from the channel average is independent of frequency, it can be sensitive to artifacts

detected by delta and beta power, as well.410

In some scenarios, however, the decision of whether the EEG signal is artifactual or physio-

logical can be challenging. In sleep, a common scenario is when one or several channels show

elevated beta activity for an extended period of time (Supplementary Fig. 3). One possible rea-

son is that participants lay on a specific electrode and thus apply pressure on the electrode.

While the signal looks noisier than usual, frequencies of interest may be perfectly preserved415

(such as delta waves). Depending on further analyses, it may or may not make sense to label

this data as artifactual, a decision that could lead to an increased number of excluded epochs.

To give the user the possibility to assess how their frequencies of interest are affected, the GUI

includes the functionality to filter the data in the desired frequency band of interest.

3.4 Evaluation of the artifact removal routine420

To evaluate the success of the artifact removal procedure, we examined delta power, as well

as log-transformed power spectral density (PSD) before and after the artifact removal routine.

A hd-EEG sleep recording with many (bad night) or few artifacts (good night) was evaluated

(Fig. 6). The bad night shows an unphysiological topography of delta power before artifact

removal and immense outliers when looking at the time course. After the rejection of artifacts,425

both the topography and time course of delta power look as expected and physiological, with

a fronto-central hotspot typical for young adults during NREM sleep after average referencing

the EEG. After artifact rejection, delta power shows a common cyclic pattern which decreases

over the course of the night, typical for sleep cycles during NREM sleep.

The same night shows several epochs with excessively high PSD (channel-average) for all430

frequencies between 0 and 40 Hz. After artifact removal, those epochs were removed and the

variance between epochs reduced significantly. Moreover, a clear peak in the delta and sigma

(12 – 16 Hz) range is visible. When comparing PSD among channels, some channels show

excessively high PSD values (epoch-average). After artifact removal, all channels show similar

PSD values with a physiological peak in the delta and sigma range.435

In the good night, the topography and time course of delta power, as well as PSD look

physiological and show very few outliers already before the artifact removal procedure. Only a

few artifacts were removed, which is why delta power and PSD are similar before and after the

artifact removal routine.
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Fig. 5. Example artifacts detected during the artifact rejection routine. A) (Left) Two prefrontal channels
show high delta power (0.5 – 4.5 Hz) in one epoch (20 s). The topography points to eye artifacts. (Right) A single
high-amplitude wave resembling an eye blink. B) (Left) A central channel shows high delta power in one epoch.
(Right) The corresponding EEG shows slow, high-amplitude waves. C) (Left) Several posterior channels show high
maximum squared deviation in amplitude from the channel average. (Right). The corresponding EEG shows high-
amplitude noise. D) (Left) A posterior channel shows high beta power (20 – 30 Hz) in one epoch. (Right). The
corresponding EEG shows a sharp, high-amplitude wave. E) (Left) A posterior channel shows high beta power in
one epoch. (Right). The corresponding EEG shows high-frequency noise.

3.5 Application in 54 overnight sleep hd-EEG recordings440

The proportion of bad epochs generally depends on the number of channels required to be

artifact-free. Bad epochs were classified based on both a subset of channels that included, and
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Fig. 6. Spectral power before and after the artifact rejection routine. The figure shows spectral power of a
sleep hd-EEG recording with many (top) and few artifacts (bottom). A) Spectral power before the artifact rejection
routine. EEG data contains artifacts and is CZ referenced (as during recording). From left to right: 1) topography
of average whole-night delta power (0.5 – 4.5 Hz), 2) time course of delta power during all NREM (N1 + N2 +
N3) epochs. Each black dot represents the value of one channel in one epoch (20 s), 3) log-transformed power
spectral density (averaged over channels, then log-transformed) of all NREM epochs between 0 and 40 Hz. One
gray line represents one epoch, the black line the average of all epochs, 4) log-transformed power spectral density
(averaged over epochs, then log-transformed) of all channels between 0 and 40 Hz. One gray line represents one
channel, the black line the average of all channels. B) Same as (A) after the artifact rejection routine. EEG data is
average referenced.

a subset of channels that excluded the outer ring of the hd-EEG net. The subset including the

outer ring resulted in more bad epochs (mean±sd = 46.77±35.07%, see Fig. 7A) than the subset

excluding the outer ring (mean±sd = 31.91±26.86%). When bad channels were excluded,445

both the subset with (mean±sd = 25.79±16.15%) and without the outer ring (mean±sd =

23.93±15.86%) show approximately the same number of bad epochs. This indicates that bad

channels are primarily located in the outer ring of the hd-EEG net. Indeed, more nights suffered

from at least one bad channel when including the outer ring (N = 14 nights) than when the

outer ring was excluded (N = 5 nights). Further excluding poor channels from both subsets450

of channels led to the lowest number of bad epochs, both for the subset with (mean±sd =

10.68±6.77%) and without the outer ring (mean±sd = 9.82±6.78%)

Classified bad epochs differed in the amount of bad channels they exhibited (Fig. 7B),

with either 1 – 2 bad channels (mean±sd = 88.83±9.15%), 3 – 4 bad channels (mean±sd =

6.73±5.84%), 5 – 8 bad channels (mean±sd = 2.31±4.62%), or ≥9 bad channels (mean±sd =455

2.13±2.00%). As most bad epochs contained only few bad channels, the majority of bad epochs
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Fig. 7. Proportion of bad epochs in 54 overnight sleep hd-EEG recordings. The artifact removal routine
was applied in 54 overnight sleep hd-EEG recordings (128 channels). A) The proportion of classified bad epochs
depends on the number of channels required to be artifact-free. A subset of 124 channels included for the clas-
sification of bad epochs leads to more classified bad epochs than a subset of 111 channels. Once bad channels
are excluded, both subsets result in approximately the same proportion of bad epochs. The additional exclusion
of poor channels further decreases the proportion of bad epochs in both subsets of channels. B) Most bad epochs
only contain 1 – 2 bad channels. Bad epochs were classified with bad and poor channels included in both subsets
of channels. Boxplots: The horizontal line indicates the median, the x the mean, the whiskers the scores within
1.5 times the interquartile range, and the box the middle 50% of scores.

could be recovered using epoch-wise interpolation (mean±sd = 96.44±3.06%, range: 95% –

100%), resulting in almost all NREM epochs to be artifact free (mean±sd = 98.89±0.90%).

In total, a minimal amount of channels was classified as bad (mean±sd = 0.28±0.49 chan-

nels), and a moderate amount as poor (mean±sd = 5.52±16.68 channels). Most nights had460

no bad channel (N = 40 nights). The rest exhibited one (N = 13 nights) or two bad channels

(N = 1 night). Poor channels were present in most nights (N = 48 nights), with 1 – 2 poor chan-

nels (N = 21 nights), 3 – 5 poor channels (N = 18 nights), 6 – 9 poor channels (N = 6 nights), or

≥10 poor channels (N = 3 nights). The average survival rate of epochs within a single channel

was high (mean±sd = 98.92±0.88%) and comparable between channels located in the inner465

(mean±sd = 99.05±0.89%) and outer ring (mean±sd = 97.84±2.96%).

Using the routine in 54 nights, a total of ∼23,269 artifacts were detected.

3.6 Epoch-wise interpolation can recover nights with many artifacts

Artifactual EEG signals of respective channels can be interpolated in respective epochs. In

a bad night, 0 epochs (0.00%) were artifact-free in a subset of 124 channels (Fig. 8). After470

epoch-wise interpolation, 893 epochs (95.00%) were restored. 47 epochs (5.00%) had to be

rejected due to clusters of bad channels (more than two neighboring electrodes), potentially

impairing the effectiveness of interpolation. In a good night, many more, namely 800 epochs

(86.21%) were artifact-free, and a further 122 epochs (13.15%) were recovered using epoch-

wise interpolation. 6 epochs (0.65%) had to be rejected.475
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Fig. 8. Proportion of rejected, recovered and clean epochs after epoch-wise interpolation. In an example
night with many artifacts (bad night), no NREM (N1 + N2 + N3) epoch (20 s) was artifact-free in a subset of 124
channels. After epoch-wise interpolation, however, 95.00% of all NREM epochs could be recovered and used for
further analyses. Without epoch-wise interpolation, those epochs had at least one channel containing artifacts.
The other 5.00% of epochs were rejected. In an example night with few artifacts (good night), 86.21% of all NREM
epochs were artifact-free in all channels and further 13.15% could be recovered using epoch-wise interpolation. A
minimal proportion was rejected.

4. Discussion

Hd-EEG has become essential to the sleep research field and has started to enter sleep

medicine, as well. This method has provided both basic and clinical science with the necessary

tools to study local aspects of sleep, a large emerging area. Thus far, the resulting amount of

data produced by recording several hours of sleep EEG with up to 256 channels still requests480

a practical and efficient approach to remove artifacts. In this work, we present a new, semi-

automatic artifact removal routine specifically designed for sleep hd-EEG recordings, which

allows the user full control of the data while being practical and time-efficient at the same time.

Inside a GUI, the user assesses epochs based on four SQMs, evaluates their topography and

underlying EEG signal, and, eventually, removes artifactual values. The possibility to visualize485

the actual EEG signal additionally familiarizes the user effortlessly with their data. The final

output consists of a binary output matrix (channels x epochs) indicating artifactual and clean

epochs with 0s and 1s, respectively. This output matrix can be used independently for further

analyses of the data.

This artifact removal routine can be understood as a substantially advanced version of an490

established routine (first introduced in Huber et al., 2000) that has already been widely used

in various sleep studies (e.g., Krugliakova et al., 2020; Sousouri et al., 2022; Lustenberger

et al., 2015). The old routine screened channels and epochs based on delta and beta power

(successively for each channel), an intuitive approach as artifacts typical for NREM sleep are

in the delta (body movements, sweat artifacts, eye movements) or beta range (muscle activity,495

arousal). Artifactual epochs were removed by adjusting two thresholds, one defining an abso-

lute power limit over which epochs were excluded, the other excluding epochs once absolute

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.09.503268doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.09.503268
http://creativecommons.org/licenses/by/4.0/


power exceeded a multiple of a sliding mean of an adjustable number of epochs. While this

approach has proven efficient for the detection of evident outliers, it remains quite simplistic

and less informative as compared to our multifaceted proposed method.500

The presented routine also screens channels and epochs based on delta and beta power,

yet additionally evaluates them based on the deviation in signal amplitude from the channel

average, capturing artifacts independent of frequency, especially those present in single elec-

trodes (i.e., loose contacts and other electrode malfunctions). As this SQM does not require

the attenuation of epoch edges, it is sensitive towards artifacts at all locations within an epoch.505

Other major advances include the functionality to screen all channels at once, to manually

remove artifactual values (without setting thresholds), to visualize underlying EEG traces, to

evaluate the topography of SQMs, and to screen EEG data that is both Cz (original reference

during recording) and average referenced. All these improvements aim to identify and remove

as many artifacts as possible, while leaving physiological signal untouched. We successfully510

demonstrate that, when applying this artifact removal routine to both a night with many and a

night with few artifacts, resulting average overnight delta power shows a physiological topog-

raphy, epochs with artifactual delta activity are removed, and broadband spectral power shows

a clear peak in the delta and spindle frequency range, typical for NREM sleep.

In total, the artifact removal routine was applied in 54 nights with varying data quality. An515

estimated 23,269 artifacts were found in 128 channels x 432 h of data. A minimal amount of

channels was classified as bad by not containing a single artifact-free NREM epoch (0.28%).

The few existing bad channels were usually located in the outer ring of the hd-EEG net. The

survival rate of screened NREM epochs was high for single channels (98.92%). Yet, a single

artifact-contaminated channel present within an epoch is sufficient to classify the epoch as bad.520

Accordingly, 9.82% to 46.77% of NREM epochs were classified as bad, depending on the subset

of channels required to be artifact-free. The fewer channels were required to be artifact-free,

the more epochs survived. Of those bad epochs, most exhibited only a minimal amount of bad

channels. Hence, after epoch-wise interpolation, 98.89% of NREM epochs were clean, stressing

the utility of this approach.525

The wide range of classified bad epochs indicates that comparing the number of rejected

NREM epochs to other artifact-removal techniques proves difficult. Not only does the number

highly depend on the applied criteria (i.e., which channels are required to be artifact-free), but

it also depends on the study population, number of recording electrodes, analyzed sleep stages,

as well as data quality. It is important to note, however, that the routine encourages the user530

to keep as much physiological data as possible. Consequently, channels that exhibit artifacts

for a considerable proportion of time are only excluded during artifactual time-windows. As a

result, more epochs may be classified as bad at first, yet more physiological data can ultimately

be recovered. This notably reduces the amount of data that needs to be interpolated. Other

artifact removal approaches might reject the whole channel whenever a critical proportion535

of epochs is artifactual. While this may improve the number of artifact-free epochs as this

channel will not be taken into account for the classification of bad epochs, it results in the loss

of physiological data and is therefore less favorable.
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This rigorous screening of artifacts demands the user to screen each night eight times

(4 SQMs x 2 references). This is because some artifacts are only captured by one SQM specif-540

ically. Excluding one SQM from the routine would certainly lower the number of screening

iterations, yet may also result in missed artifacts.

The artifact removal routine was designed to be as user-friendly as possible. To achieve this,

two automatic outlier detectors shoulder the removal of extreme outliers. Moreover, the rou-

tine is completely modular with adjustable epoch length, optional sleep staging input, flexible545

sampling rate, and an optional preprocessing step included. Normalizing the EEG using robust

z-standardization facilitates the evaluation of all channels altogether, which reduces the work-

load immensely while providing valuable insights for the detection of artifacts. Compared to

powerful yet untransparent “black-box” machine learning approaches, which require training,

this routine is completely transparent and only relies on optional thresholds.550

Beyond the removal of artifacts, we provide a function that uses the final output matrix

to interpolate artifactual channels in respective epochs. We show that this can save a great

number of epochs, especially in recordings that suffer from bad data quality. By restricting the

number of neighboring channels that can be interpolated, the function prevents the resulting

loss of signal information to occur in a larger cluster of channels. It is important to note,555

however, that interpolation reduces the rank of the data (i.e., the number of independent signal

sources). As a different number of channels is interpolated in each epoch, the rank of the

data changes epoch by epoch, an important consideration for any further processing step that

further relies on the number of independent signal sources. Furthermore, it is important to

first remove voltage drifts by, e.g., high-pass filtering or detrending the data, before performing560

epoch-wise interpolation, as those voltage drifts might otherwise cause large edge artifacts.

4.1 Future directions

The online repository is constantly updated and improved. This includes the implementa-

tion of faster algorithms, novel functionalities, feature requests, and bug fixes. This process

is expected to accelerate once more researchers use this routine for their own data. They565

may request additional features, raise issues, or even contribute their own code in the form

of pull requests. The most current version is always accessible via the GitHub repository

(Hd-SleepCleaner). This artifact removal routine is open-source and accessible to everyone.

Mid- and long-term plans for future directions include the exploration of a possible expan-

sion to wake and REM hd-EEG recordings, as well as a possible integration of blind source570

separation techniques, such as ICA. ICA performs well at identifying and minimizing muscle

(Crespo-Garcia et al., 2008) or ocular artifacts (Vigário, 1997), a type of artifact frequently

present in REM and wake EEG recordings. Consequently, reducing muscle and ocular artifacts

before performing the presented artifact removal routine could recover additional epochs.

4.2 Limitations575

We have presented a simple, efficient, and effective artifact removal routine. Neverthe-

less, certain limitations are important to consider for each individual use case. This routine
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is semi-automatic and, therefore, provides full control over the removal process. However, it

simultaneously requires the user to have at least some expertise in (patho-)physiological and

artifactual EEG. As such, the final output matrix may vary depending on the user. The routine580

was specifically designed to screen all channels of hd-EEG recordings with at least 64 channels

simultaneously. In turn, this routine may perform inferior with recordings including fewer chan-

nels for mainly three reasons: 1) the SQM which describes the maximum squared deviation in

amplitude from the channel average is only meaningful when enough channels contribute to

the channel average, 2) comparing SQM values of several channels within one epoch is more585

relevant when enough channels can be compared, and 3) the topography of SQM values is

more informative the more channels contribute to the topography. Nevertheless, the function-

ality to visualize the underlying EEG of channels in respective epochs can prove valuable for

recordings with fewer channels.

4.3 Availability590

The artifact removal routine is open source and freely available on GitHub. The most current

version is accessible via the online repository (github.com/HuberSleepLab/Hd-SleepCleaner)

and website (HuberSleepLab.github.io/Hd-SleepCleaner). Please cite and refer to this paper

whenever the artifact removal routine or parts of the online repository are used. The version

used for analyses of this paper (v1.0.0) can always be traced back via the doi: 10.5281/zen-595

odo.6883837. This work, as well as the online repository, run under the attribution license

CC-BY. This license allows others to distribute, remix, adapt, and build upon the presented

work, even commercially, as long as they credit this paper for the original creation.

4.4 Conclusion

The presented artifact removal routine allows the user to practically identify artifacts in600

overnight sleep hd-EEG recordings in a time-efficient manner for all channels simultaneously.

After artifact removal, recordings show a topography and cyclic pattern of delta power as ex-

pected for NREM sleep. Up to 100% of epochs can be recovered using epoch-wise interpolation.

The user is required to have basic knowledge of artifactual and (patho-)physiological EEG to

differentiate the two.605
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Tables

Buttons Explanations

Remove data points Removes all selected values (black dots) within the main plot.

Restore data point Restores one selected value (red circle) within the main plot.

Restore selected/all epochs Restores all removed values (red circles) within the main

plot. In case values (black dots) were selected, only restores

those values that belong to the same epoch as the selected

values.

Restore Y-Axis Zooms out to restore Y-Axis.

Remove chans (Spectrum) Removes all values (black dots) within the main plot from

those channels whose "average overnight spectral power"

was selected.

Show chans (Spectrum) Highlights all values (black dots) within the main plot from

those channels whose "average overnight spectral power"

was selected.

Remove chans (EEG) Removes all values (black dots) within the main plot from

those channels whose EEG signal was selected.

Topo (video) Displays the topography of values of all epochs subsequently,

one after another, in a video-like format. In case values

(black dots) were selected within the main plot, it only it-

erates through the corresponding epochs.

Topo (night) Displays the topography (average over epochs) before (using

all values) and after artifact rejection (using only artifact-free

values).

Topo (epoch) Displays the topography of the epoch a selected value be-

longs to. When several epochs are selected at once, the

maximum topography (maximum value over selected epochs)

is displayed. Black dots within the topoplot indicate which

channels were selected.

EEG Draws the EEG signal of selected values (black dots) within

the main plot.

EEG all channels Draws the EEG signal of all channels a selected value (black

dot) belongs to.
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Buttons Explanations

Automatic outlier detection Thresholds used for automatic outlier detection. Outliers are

automatically detected 1) channel-wise, when values deviate

more than X standard deviations from a moving average of

40 neighboring epochs and 2) epoch-wise, when values devi-

ate more than X standard deviations from the average of all

channels.

Exclude/include channels Indicate channels. Removes all values (black dots) from indi-

cated channels within the main plot. When all values of the

indicated channels are already removed, it instead restores

all values from those channels. In case one or more values

(black dots) within the main plot are selected, it removes (or

restores) only values of the same epoch the selected values

belong to.

Plot EEG (of selected

epochs)

Indicate channel indices and select values (black dots) within

the main plot. Draws the EEG signal of indicated channels for

those epochs the selected values belong to.

Highlight channels (in main

plot)

Indicate channel indices. Highlights all values (black dots) of

indicated channels within the main plot.

Filter currently plotted EEG Applies a filter to the currently plotted EEG signal.

Autofilter ON (OFF) Toggle button to automatically filter the plotted EEG signal.

Can be turned ON or OFF.

DONE Closes the GUI and continues the routine.

Table 1: Button functionalities. Several buttons are located on the left side of the graphical user interface (GUI),
providing functionalities for the user to remove or restore signal quality marker (SQM) values, plot the EEG signal or
topography of SQMs, adjust thresholds to automatically detect outlier values, highlight or remove whole channels, or
to filter the plotted EEG signal in specified frequency ranges.
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Additional material

Graphical abstract

Highlights

• Efficient semi-automatic artifact removal routine for sleep hd-EEG.

• Artifacts are identified in all channels and epochs inside a comprehensible GUI.

• The routine was applied in 54 recordings. Two example nights are assessed in detail.

• Clean epochs show a topography and time course of delta power typical for NREM sleep.

• Epoch-wise interpolation restores many epochs, especially when data quality is poor.
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