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1 Abstract 24 

The microbiome is a collection of microbes that exist in symbiosis with a host. 25 

Whole genome sequencing produces off-target, non-specific reads, to the 26 

host in question, which can be used for metagenomic inference of a 27 

microbiome. This data is advantageous over barcoding methods since 28 

higher taxonomic resolution and functional predictions of microbes are 29 

possible. With the growing number of genomic sequencing data publicly 30 

available, comes opportunity to elucidate reads pertaining to the microbiome. 31 

However, characterization of these reads can be complex, with many steps 32 
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required to perform a robust analysis. To address this, we developed 33 

MINUUR (Microbial INsights Using Unmapped Reads); a snakemake 34 

pipeline to characterize non-host reads from existing genomic data. We 35 

apply this pipeline to ten, publicly available, high coverage Aedes aegypti 36 

(Ae. aegypti) genomic samples. Using MINUUR, we describe species level 37 

microbial classifications; predict microbe associated genes and pathways 38 

and find bacterial metagenome assembled genomes (MAGs) associated to 39 

the Ae. aegypti microbiome. Of these MAGS, 19 are high-quality 40 

representatives with over 90% completeness and under 5% contamination. 41 

In summary, we present an in-depth analysis of non-host reads from Ae. 42 

aegypti whole genome sequencing data within a reproducible and open-43 

access pipeline. 44 

2 Introduction  45 

A microbiome refers to the collection of microbes and their genomic content 46 

that exist in symbiosis with a host (1). To identify taxa within a microbiome, 47 

culture independent approaches are commonly used (2,3) such as amplicon-48 

based sequencing with taxonomic barcodes (3) or metagenomic shotgun 49 

sequencing (4). The later approach is advantageous because higher 50 

taxonomic resolution and functional predictions are possible, either from the 51 
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sequenced reads directly or using contiguous assemblies. Sequencing the 52 

DNA of a whole organism to obtain its genomic information yields data from 53 

the primary organism of interest (referred throughout the manuscript as 54 

“host” for simplicity), but potentially also reads corresponding to 55 

endo/ectosymbionts, pathogens or environmental contamination that is not 56 

readily removed from the host during sample preparation. Indeed, studies in 57 

Drosophila, bumble bees, killer whales, moths and nematodes have shown 58 

existing whole genome sequencing (WGS) data is a rich source to 59 

characterize their associated symbionts (5–10). These studies employ 60 

approaches including specific enrichment of non-host with bait sequences 61 

targeting a specific taxon of interest (5,8); or steps following the sequencing 62 

experiment without prior enrichment, such as de novo metagenome 63 

assemblies (9–11); prediction of microbial genes and pathways (5) or 64 

classification-based methods using predefined taxonomic libraries (6).  65 

 Mosquitoes are important vectors for human pathogens. A prominent 66 

example of this is Aedes aegypti (Ae. aegypti) which transmits pathogens 67 

including dengue virus, yellow fever virus, chikungunya virus and Zika virus. 68 

Dengue cases alone are estimated to cause 10,000 deaths and 100 million 69 

infections per year, contributing to significant burden of human morbidity and 70 

mortality worldwide (12). Studies show the mosquito microbiome influences 71 
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vectorial capacity (13), blood feeding propensity (14) and life history traits 72 

(15–17). Mosquito microbiomes are understood to be highly variable, 73 

dependent on a suite of deterministic processes such as the environment 74 

(18–21), host factors (22,23), microbial interactions (14,24,25) and 75 

mosquito-microbe interactions (26,27). These important findings have been 76 

aided by amplicon based 16S rRNA sequencing approaches to characterize 77 

the microbiome. Complementary to this, we believe a metagenomic 78 

approach would add further insight of the mosquito microbiome by adding 79 

the genomic context of key symbionts. Whole genome shotgun sequencing 80 

is commonly used to study mosquito genomics (28,29), population genomics 81 

(30) and insecticide resistance (31); meaning non-mosquito sequence data 82 

(we refer to these as unmapped reads for the remainder of the manuscript) 83 

are a source to identify mosquito microbiome members using 84 

metagenomics. Genomic surveillance programs such as the Anopheles 85 

gambiae 1000 Genomes Project contain a large number of genomic samples 86 

with each release (32) and, at time of writing, currently 100,514 Ae. aegypti 87 

whole-genome sequencing runs are deposited on the European Nucleotide 88 

Archive. As such, there is great potential to leverage existing mosquito WGS 89 

data to explore mosquito-microbiomes from their unmapped sequences.  90 
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To make use of this large resource of already-available data we developed 91 

MINUUR, a user configurable Snakemake pipeline to provide Microbial 92 

INsight Using Unmapped Reads from WGS data. MINUUR uses short read, 93 

whole genome sequencing data as input and performs a robust analysis of 94 

unmapped reads associated to a host in question. We used MINNUR on an 95 

existing Ae. aegypti study (30) and describe the associated microbes based 96 

on taxonomic read classifications; predicted genes and metabolic pathways; 97 

and reconstruct quality checked metagenome assembled genomes (MAGs) 98 

pertaining to mosquito-associated bacteria using de novo metagenome 99 

assemblies. The application of MINUUR can provide additional insights of 100 

existing WGS data to investigate microbes associated with their host of 101 

interest.  102 

3 Materials and Methods  103 

3.1 Specifications  104 

The MINUUR pipeline (Figure 1) is implemented in Snakemake (33) and 105 

available from github at https://github.com/aidanfoo96/MINUUR. Details of 106 

the pipeline are discussed in the following section.  107 

3.2 Database Setup  108 
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MINUUR requires several databases. This includes a high quality bowtie2-109 

indexed reference genome (34) to separate host and non-host reads; a 110 

KRAKEN2 (35), BRACKEN (36) and MetaPhlAn3 (37) database for 111 

taxonomic read classification; and ChocoPhlAn (38) and UniRef (39) 112 

databases for functional read profiling with HUMAnN3 (38). All databases 113 

are available in their respective GitHub repositories. The databases used in 114 

this study include the default MetaPhlAn3 marker gene database, default 115 

ChocoPhlAn and UniRef90 databases, and KRAKEN2 (35) and BRACKEN 116 

(36) indexes from the Ben Langmead repository located here: 117 

https://benlangmead.github.io/aws-indexes/k2. For our study, we 118 

downloaded and compiled these default databases.  119 
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 120 

Figure 1: Microbial Insight Using Unmapped Reads (MINUUR). Workflow describing the 121 
pipeline’s main steps. Top to bottom describes the workflow of the pipeline. Left panels describe 122 
MINUUR’s key steps and tools, right panels describe our application of MINUUR on Ae. aegypti 123 
samples used in this study. Initial steps highlighted by the red arrows indicate pre-processing steps, 124 
including database preparation, quality control, read trimming, host-alignment and host-125 
separation. Blue arrows indicate the characterization of unmapped reads. The three main outputs 126 
of MINUUR, indicated in the bottom panel, are microbial classifications, functional profiles and 127 
assembly of metagenome assembled genomes.  128 

 129 
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3.3 Data Preparation  132 

MINUUR accepts either BAM or paired FASTQ inputs. For FASTQ inputs, 133 

MINUUR performs quality control (QC) using FASTQC (v0.11.9) (40), 134 

providing a QC report per sample. MINUUR does not use the FASTQC report 135 

in subsequent steps, but only as a quality assurance metric for the user and 136 

to estimate if read trimming is required. Read trimming can be performed 137 

within MINUUR using Cutadapt (v1.5) (41) with user defined parameters for 138 

minimum read length, base quality and adapter content (default: minimum 139 

base length = 50, average base quality = 30). To separate host and non-host 140 

reads, reads are aligned using Bowtie2 (v2.4.4) (34) against a user defined 141 

indexed reference genome (the relevant host genome). Alignment sensitivity 142 

and type (global or local) can be adjusted within the pipeline at the user’s 143 

discretion. A high quality, chromosome level assembled, reference genome 144 

is recommended if available. In situations where this is not possible, users 145 

should be aware that read alignment will likely result in mismatches between 146 

the reference and target sequence and produce alignments with poor 147 

coverage (42). As a result, unmapped reads used in subsequent steps are 148 

likely to contain a substantial number of host data. In this instance, we 149 

suggest users extract KRAKEN2 classified reads pertaining to known 150 

microbes to improve functional read profiling and metagenome assembly 151 
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(see later section). Unmapped reads within the coordinate sorted binary 152 

alignment (BAM) file are extracted using Samtools (v.1.14) (43) (”samtools -153 

view -f 4”) and converted to FASTQ format using bedtools (v2.3.0) (44) (”–154 

bamToFastq”). Since a large number of existing data is available in BAM 155 

format, the user may also define a BAM input, from which the pipeline will 156 

begin at the BAM separation stage.  157 

MINUUR performs best when the initial number of reads from the host is high 158 

and library preparation stages minimize loss of prokaryotic DNA. For our 159 

study, we used an example dataset (30) which described genetic variation in 160 

Ae. aegypti infected with Wolbachia from high and low dengue virus blocking 161 

populations (30). The published sequencing data was retrieved from the 162 

European Nucleotide Archive (ENA) under the project accession number 163 

PRJEB33044 (30). We retrieved ten FASTQ files representing 90 pooled 164 

mosquitoes, sequenced with an Illumina HiSeq 3000 with 150bp paired-end 165 

reads to high coverage (>400,000,000 reads per pair) in the original study 166 

(30). 167 

3.4 Read Classification  168 

MINUUR uses two read classification approaches to infer taxonomy. 169 

KRAKEN2 (v2.1.2) (35) uses a k-mer based approach to map read 170 
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fragments of k-length against a taxonomic genome library of k-mer 171 

sequences, whereas MetaPhlAn3 (v3.0.13) (37) aligns reads against a 172 

library of marker genes using Bowtie2 (34). Both strategies are employed to 173 

provide a wide classification range to the user, with the results subsequently 174 

used in downstream analysis steps. Specifically, MINUUR provides the 175 

option to use KRAKEN2 classified reads, parsed from KrakenTools (v1.2), 176 

to select a specific set of reads (for example bacterial) for metagenome 177 

assembly. MetaPhlAn3 taxonomic classifications are used in conjunction 178 

with the ChocoPhlAn database to identify microbe associated genes and 179 

pathways. The output of MetaPhlAn3 is the relative abundance of microbes 180 

within a sample, whereas KRAKEN2 reports the number of reads associated 181 

to a specific taxonomic ID. To estimate the relative taxonomic abundance 182 

from KRAKEN2 classifications, MINUUR will parse KRAKEN2 read 183 

classifications to BRACKEN (v2.6.2) (36) which uses a Bayesian probability 184 

approach to redistribute reads assigned at higher taxonomic levels to lower 185 

(species) taxonomic levels.  186 

MINUUR outputs classified and unclassified reads to paired FASTQ files and 187 

generates BRACKEN estimated taxonomic abundance profiles for further 188 

analysis. Furthermore, the user can specify KrakenTools to extract a specific 189 

taxon or group of taxa from KRAKEN2 - these can be used in later stages of 190 
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the pipeline to reduce non-specific reads for metagenome assemblies or 191 

further statistical analysis at the user’s discretion.  192 

3.5 Functional Read Profiling  193 

Functional profiling aims to infer microbial function directly from read 194 

sequences without metagenome assembly. MINUUR implements 195 

HUMAnN3 (v3.0.0) (the HMP Unified Metabolic Analysis Network) (38) to 196 

functionally classify read sequences. Taxonomic classifications from 197 

MetaPhlAn3 (37) are identified using the ChocoPhlAn pan-genome database 198 

(37) annotated with UniRef90 (39) cluster annotations. In addition, non-199 

classified reads are searched against UniRef90 clusters to identity 200 

unclassified taxonomic genes. HUMAnN3 produces taxonomic 201 

classifications using MetaPhlAn3 and associated gene family abundance in 202 

RPK (reads per kilobase) with UniRef90 annotations and metabolic pathway 203 

abundances (RPK) and coverage.  204 

3.6 Metagenome Assembly, Binning and Quality Assurance (QA)  205 

MINUUR will perform de novo metagenome assembly to produce contiguous 206 

sequences (contigs) from either all unmapped reads or KRAKEN2 classified 207 

reads. MEGAHIT (v1.2.9) (45), a rapid and memory efficient metagenome 208 
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assembler, is used for de novo metagenome assembly. Assembled contigs 209 

are quality checked using QUAST (v5.0.2) (46) to assess contig N50 and 210 

L50 scores. The resultant contigs, which are ultimately fasta files with 211 

sequences pertaining to genomic regions of a microbe, need to be placed 212 

within defined taxonomic groups - referred to as a bin. For this, contigs are 213 

indexed using the Burrows Wheeler Aligner (BWA) (v0.7.17) (47), and the 214 

original unmapped or KRAKEN2 classified reads are aligned to the indexed 215 

contigs using ”–bwa-mem”. The subsequent coordinate sorted BAM file is 216 

parsed to the “jgi_summarize_bam_contig_depth” script from MetaBAT2 217 

(v2.12.1) (48) to produce a depth file of contig coverage. The depth file and 218 

assembled contigs are input to the metagenome binner MetaBAT2 (v2.12.1) 219 

(48), to group contigs in defined genomic bins. Each bin is a predicted 220 

metagenome assembled genome (MAG). CheckM (v1.1.3) (49) is used for 221 

quality assurance of each bin by identifying single copy core genes. 222 

Specifically, bin contamination is assessed by looking for one single copy 223 

core gene within each bin, and completeness by calculating a required set 224 

of single copy core genes.  225 

 226 

 227 
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3.7 Pipeline Configuration  228 

Ten paired Illumina HiSeq 3000 raw FASTQ reads were used as input in the 229 

’data’ directory of MINUUR, with names of each sample listed in the 230 

’samples.tsv’ file within the configuration directory. To implement the 231 

pipeline, the configuration file was set to the following parameters: FASTQ = 232 

True, QC = True, CutadaptParams = ”–minimum-length 50 -q 30”, 233 

RemoveHostFromFastqGz = True, AlignmentSensitivity = ”–sensitive-local”, 234 

ProcessBam = True, From- Fastq = True, KrakenClassification = True, 235 

ConfidenceScore = 0, KrakenSummaries = True, GenusReadThreshold = 236 

1000, SpeciesReadThreshold = 30000, ExtractKrakenTaxa = True, taxon 237 

choice = ”2” (bacteria), BrackenReestimation = True, ClassificationLvl = ’S’ 238 

(species) and ’G’ (genus), DistributionThresh = 10, MetaphlanClassification 239 

= True, HumannAnalysis = True, GetBiologicalProcess = True, Process = 240 

’siderophore’, MetagenomeAssm = True, MetagenomeBinning = True 241 

(UseKrakenExtracted was set to True and False in separate pipeline runs), 242 

MinimumContigLength = 1500, CheckmBinQA = True. All databases were 243 

installed from their respective repositories from Github into the `resources` 244 

directory of MINUUR. The pipeline was run on an Ubuntu Linux system with 245 

660gb of available memory and 128 CPUs. For our analysis, with the above 246 

settings and 10 cores available, MINUUR took 72 hours to complete; the 247 
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maximum Resident Set Size (RSS) of an individual sample during this run 248 

was 9771 RSS (occurring during metagenome assembly); and total storage 249 

used (including temporary files) was 4.1Tb (terabytes) across all 10 samples 250 

used in this study.  251 

 252 

3.8 Taxonomic Classification of MAGs with GTDB-Tk  253 

Separate from MINUUR, all bins produced from MetaBAT2 were 254 

taxonomically classified with GTDB-Tk (50) (v1.5.0) using ”–classify-wf” 255 

against the Genome Taxonomy Database (GTDB) (release 06-RS202, 256 

27/04/21). GTDB-Tk assigns genes to MAGs using Prodigal (v2.6.3) (51); 257 

ranks the taxonomic domain of each MAG using 120 bacteria and 122 258 

archaea marker genes with HMMER (52) using a published database (53). 259 

With this information, MAGs are placed into domain specific reference trees 260 

with pplacer (v1.1) (54). Taxonomic classification with GTDB-Tk is based on 261 

placement within the GTDB reference tree, relative evolutionary divergence 262 

and average nucleotide identity (ANI) scores. The relative evolutionary 263 

divergence score is used to refine ambiguous taxonomic rank assignments 264 

and ANI scores used to define species classifications. Using this approach, 265 
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strain variants are defined when average nucleotide identity is greater than 266 

95% - below this threshold a MAG is classified as a novel species.  267 

4 Results 268 

4.1 MINUUR Application  269 

MINUUR is a Snakemake pipeline that separates and characterizes non-270 

host, unmapped reads from WGS data using a series of metagenomic tools. 271 

The pipeline is broadly split into three paths; i) read classification with k-mers 272 

(KRAKEN2) or marker genes (MetaPhlAn3); ii) functional read profiling with 273 

HUMAnN3 and iii) de novo metagenome assembly with MEGAHIT followed 274 

by binning (MetaBAT2) and MAG quality assurance (QUAST and CheckM) 275 

(Figure 1). Taxonomic classifications and functional profiles are produced as 276 

‘tidy data’ formats to easily parse for further analysis. MINUUR is open 277 

source and available on Github: https://github.com/aidanfoo96/MINUUR, 278 

with an accompanying WIKI page available here: 279 

https://github.com/aidanfoo96/MINUUR/wiki.  280 

4.2 MINUUR Extracts Unmapped Reads from Host-aligned WGS Data  281 

The initial number of reads were counted per sample. The mean number of 282 

paired reads per sample was 548,373,996, ranging between 466,236,232 to 283 
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603,970,014 reads (Figure 2A). After alignment to the Ae. aegypti reference 284 

genome (AaegL5.3 GCA_002204515.1) with bowtie2, the proportion of 285 

mapped and unmapped reads was calculated. On average, 497,688,151 286 

reads (range: 418,353,293 to 563,050,257) aligned to the AaegL5.3 287 

reference genome, averaging 90.8% read alignment (Figure 2A). To 288 

estimate the number of reads associated to the microbiome, we calculated 289 

the overall number of KRAKEN2 classifications from all unmapped reads 290 

(Figure 2B). On average, MINUUR classified 81.3% of reads that did not map 291 

to the Ae. aegypti genome (Figure 2B). The mean number of classified reads 292 

using KRAKEN2 was 19,910,928, ranging between 4,887,498 to 48,298,960 293 

reads, and the number of unclassified reads was 3,331,246 on average, 294 

ranging between 2,702,596 and 4,614,580 reads (Figure 2C).  295 

 296 

 297 

 298 

 299 

 300 

 301 

 302 

 303 

 304 
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 305 

Figure 2: Read Alignment and Classification Statistics. A Grouped bar graphs depicting total reads 306 
(light blue), aligned reads (dark blue) and unaligned reads (green) from 10 pooled Ae. aegypti 307 
samples after alignment to the AaegL5.3 reference genome using Bowtie2 (v2.4.4) (33) within 308 
MINUUR. B Stacked bar graphs showing KRAKEN2 classified read proportions from unmapped 309 
read sequences. Classified reads = light blue, unclassified reads = gold. C Table showing (left to 310 
right) the original sequencing run, experimental treatment, sample number, unclassified read 311 
count, classified read count and percentage of classified reads.  312 
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4.3 MINUUR produces Genus and Species Classifications from 317 

Unmapped Reads  318 

41 different genera were classified with KRAKEN2 and relative abundance 319 

estimated with BRACKEN (Figure 3). Genera present across all samples 320 

include Wolbachia, Staphylococcus, Salmonella, Pseudomonas, 321 

Phytobacter, Klebsiella, Escherichia, Enterobacter, Elizabethkingia, 322 

Clostridium, Citrobacter, Chryseobacterium, Bacillus and Acinetobacter 323 

(Figure 3A). Several genera, summed across all samples in this study, 324 

contained high read numbers including Wolbachia (73,746,796 reads), 325 

Elizabethkingia (92,471,561), Pseudomonas (24,455,843), Acinetobacter 326 

(1,524,766), Stenotrophomonas (1,823,242), Delftia (346,944), 327 

Chryseobacterium (665,791) and Klebsiella (345,966 reads) (Figure 3C).  328 

Each sample represents a pool of Ae. aegypti mosquitoes with different 329 

dengue blocking phenotypes (high = H, low = L, random = R) as described 330 

in the original publication (30). We were interested to see if certain bacteria 331 

were uniquely present in a given experimental group. Within the high dengue 332 

blocking populations (H1, H2, H3), Bacteroides, Lactobacillus, Lactococcus 333 

and Pedobacter were uniquely present (Figure 3D). Conversely, 334 

Achromobacter, Acidovorax, Aeromonas, Bradyrhizobium, Comamonas, 335 
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Cronobacter, Delftia, Kosakonia, Paraburkholderia, Rhizobium and Vibrio 336 

were only present in low dengue blocking (L1, L2, L3) populations (Figure 337 

3D). 338 

Of reads that were classified with KRAKEN2, 81 different species were 339 

classified above a 30,000 read threshold (Figure 4A). Species present in all 340 

samples include Wolbachia pipientis, W. endosymbionts of Aedes aegypti, 341 

Drosophila simulans, D. melanogaster, D. ananassae, D. ceratosolen and 342 

Elizabethkingia anophelis (Figure 4A). Pseudomonas was a highly abundant 343 

genus classification (Figure 4A). Here, 43 different Pseudomonas species 344 

were identified, with P. protegens, P. frederiksbergensis and P. koreensis 345 

the most abundant Pseudomonas species identified across samples (Figure 346 

4A). We identify species with high read associations totaled across samples, 347 

notably E. anophelis (58,372,887 reads), P. protegens (4,742,920 reads), P. 348 

flourescens (5,384,368 reads), P. koreensis (1,968,181 reads), W. pipientis 349 

(1,774,201 reads), Acinetobacter seifertii (1,062,679 reads) and 350 

Stentrophomonas maltophilia (1,459,193 reads) (Figure 4C).  351 

For this analysis, we set a read cutoff-threshold of 30,000 reads (filtering for 352 

high abundant classifications). However, species of low abundance are 353 

important to consider when interrogating a microbiome. MINUUR produces 354 
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trellis plots (facets) of each genus with the distribution of species relative 355 

abundance (Supplementary Fig 1), estimated with BRACKEN. To exemplify, 356 

we describe the classification of the commonly identified symbiont Serratia 357 

in Ae. aegypti (50; 26; 56). We find Serratia contains 14 classified species, 358 

with S. marcescens present at the highest abundance compared to other 359 

species and across all samples (Supplementary Fig 1). Other notable 360 

classifications include S. fonticola and S. symbiotica.  361 

High sequence similarity among microbes of the same genus and species is 362 

common. With KRAKEN2, reads with a classification that overlap with two or 363 

more taxa will be assigned to the highest taxonomic level where a delineation 364 

is detected. To this end, genus or species level taxonomic classifications, 365 

interpreted as relative abundance, could lead to underestimation since reads 366 

may be assigned at higher taxonomic levels. MINUUR implements 367 

BRACKEN to infer relative abundance from KRAKEN2 classified reads at 368 

lower taxonomic levels (genus or species). Of the original KRAKEN2 369 

classified reads (197,240,903), 1,821,131 reads were redistributed to genus 370 

level (Figure 3B). On average, 182,113 reads were added per sample (range 371 

= 80,503 to 188,441 reads). Genera with the most added reads include 372 

Elizabethkingia (368,564 reads), Salmonella (340,228 reads), Escherichia 373 

(217,985 reads), Enterobacter (184,844) and Pseudomonas (159,493) 374 
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(Figure 3B). From the original KRAKEN2 classified reads at species level, 375 

109,895,493 reads were redistributed with BRACKEN. On average, 376 

10,989,659 reads were added per sample (range = 3,316,449 to 21,706,942 377 

reads) (Figure 4B). Species with the most added reads include the 378 

Wolbachia endosymbiont of Ae. aegypti (59,708,135 reads), E. anophelis 379 

(32,166,299 reads), P. fluorescens (1,364,494 reads) and Pseudomonas sp. 380 

S150 (1,017,521 reads) (Figure 4B).  381 
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 382 

Figure 3: KRAKEN2 (v1.2) Genus Classifications and BRACKEN (v2.6.2) Abundance 383 
Estimation. A. Heatmap depicting genus level classifications and read abundance per sample. 384 
Genera shown are those with >1,000 assigned reads. Orange = low relative taxonomic abundance. 385 
Blue = high relative taxonomic abundance. B. Bar chart depicting total number of reads associated 386 
to each genus. Light blue = BRACKEN added reads, dark blue = KRAKEN2 classified reads. C. 387 
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Spatial chart depicting BRACKEN estimated read abundance within KRAKEN2 classified genera. 388 
Each block size is proportional to the total reads classified to each genus. D. Proportional 389 
taxonomic assignments within each experimental group. Each colour denotes the experimental 390 
group each taxon originated from.     391 
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 392 

Figure 4: KRAKEN2 (v1.2) species classification and BRACKEN (v2.6.2) abundance estimation. 393 
A. Heatmap depicting species level classifications and total assigned read number . Species shown 394 
are those with >30,000 assigned reads. Orange = low taxonomic abundance. Blue = high 395 
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taxonomic abundance. B. Bar chart depicting total number of reads associated to each species. 396 
Light blue = BRACKEN added reads, dark blue = KRAKEN2 classified reads C. Spatial chart 397 
depicting BRACKEN estimated read number within KRAKEN2 classified species. Each block 398 
size is proportional to the total reads classified to each species.	 399 

 400 

4.4 MINUUR Predicts Microbial Function of Mosquito Associated 401 

Bacteria Using Unmapped Read Sequences  402 

MINUUR uses HUMAaN3 to infer taxonomic functional profiles from read 403 

sequences directly. HUMAaN3 intakes classified taxa (which have been 404 

classified using MetaPhlAn3 against a library of clade-specific marker genes) 405 

and identifies gene profiles and metabolic pathways using UniRef90 406 

annotations. In total, 107,196 genes with an ANI score of 90.5% (range = 407 

72.5% to 100%) were identified across ten taxa classified with MetaPhlAn3 408 

(Supplementary Figure 2A). On average, 10,720 genes (range = 4069 to 32, 409 

359) and 214 pathways (range = 84 to 719) were identified per sample 410 

(Supplementary Figure 2B). The ten identified taxa with associated genes 411 

and metabolic pathways consisted of E. anophelis (40,243 genes, 850 412 

metabolic profiles), Stenotrophomonas maltophilia (11,099 genes, 182 413 

metabolic profiles), Chryseobacterium sp ISE14 (10,948 genes, 840 414 

metabolic profiles), P. moraviensis (10,045 genes, 246 metabolic profiles), 415 

Klebsiella oxytoca (8105 genes, 149 metabolic profiles), K. michiganensis 416 
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(7706 genes, 175 metabolic profiles), Kluyvera intestini (6133 genes, 206 417 

metabolic pathways), Acinetobacter seifertii (6112 genes, 129 metabolic 418 

profiles), Delftia acidovorans (5803 genes, 83 metabolic profiles) and 419 

Wolbachia endosymbiont of Brugia malayi (1002 genes, 27 metabolic 420 

pathways) (Supplementary Figure 2B).  421 

Users can search specific genes and metabolic profiles of interest from 422 

HUMAaN3’s output within MINUUR. For gene profiles, we show an example 423 

using the search term ”siderophore” which are of interest given their previous 424 

functional characterization in Anopheles gambiae associated bacteria (55). 425 

Here, 17 siderophore related genes associated to nine MetaPhlAn3 426 

classified taxa were identified (Figure 5B). The TonB dependent siderophore 427 

receptor is present in seven bacteria. While both K. michiganensis and K. 428 

oxytoca contain the catecholate siderophore receptor fiu and the OMR family 429 

siderophore receptor (Figure 5B), suggesting an alternative mechanism for 430 

siderophore acquisition. Furthermore, we chose to examine metabolic 431 

pathways relating to ‘heme’. We identify four pathways present in 5/8 432 

associated taxa, with these identified bacteria containing the pathways for 433 

heme b biosynthesis II. However, all identified pathways are incomplete with 434 

respect to the genes used to reconstruct the pathway (Figure 5A).  435 
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 436 

Figure 5: HUMAaN3 (v3.0.0) functional profile of MetaPhlAn3 (v3.0.13) classified taxa. A. 437 
Faceted plot showing ‘heme’ related pathway coverages stratified across species. X-Axis shows 438 
pathway coverage, denoted by the number of genes present that have reconstructed the pathway 439 
(0 = no coverage, 1 = complete pathway coverage), Y axis shows pathway. B. Faceted plot of log 440 
reads per kilobase (RPK) on the X axis, identified relating to ‘Siderophores’ on the Y axis. Gene 441 
number is stratified across MetaPhlAn3 classified bacterial species. 442 
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4.5 Bacterial Metagenome-assembled Genomes from Ae. aegypti  443 

De novo metagenome assembly aims to reconstruct contiguous sequences 444 

or MAGs for further analysis. Here, we used two different approaches for 445 

metagenome assembly; i) using KRAKEN2 classified reads and ii) using all 446 

unmapped Ae. aegypti reads (composed of both taxonomically classified and 447 

unclassified reads). We used CheckM to assess MAG completeness and 448 

contamination based on the presence and copy number of single copy core 449 

genes. Assembly with KRAKEN2 classified reads produced MAGs with less 450 

contamination (Figure 6A, Figure 6C), while assembly with all unmapped 451 

reads produced a higher number of MAGs, but with higher contamination 452 

and lower completeness (<90% completeness) (Figure 6B, Figure 6D).  453 

In total, we report the assembly of 43 Ae. aegypti associated MAGs using 454 

KRAKEN2 classified reads and 57 Ae. aegypti associated bacterial MAGs 455 

from all unmapped (classified and non-classified) reads (Figure 6A, Figure 456 

6B). Community accepted standards of MAG quality are defined by the 457 

genome standards consortium (GSC) (56). The GSC define high-quality draft 458 

MAGs as >90% complete and <5% contamination - from our study, 19 MAGs 459 

assembled using KRAKEN2 classified reads and 18 MAGs from all 460 

unmapped reads met the GSC defined high-quality threshold (Figure 6A, 461 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.09.503283doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.09.503283
http://creativecommons.org/licenses/by/4.0/


Figure 6B) (56). Medium quality draft MAGs are defined by the GSC as >50% 462 

complete and <10% contamination; in which 30 MAGs from classified reads 463 

and 31 MAGs from all unmapped reads were identified in our study. Finally, 464 

low quality draft MAGs are defined by the GSC as <50% complete and <10% 465 

contamination, in which 12 MAGs from classified reads and 26 MAGs from 466 

all unmapped reads were identified.  467 

Of MAGs with completeness >90%, the average genome size obtained from 468 

KRAKEN2 classified reads was 2.94Mb (megabases), ranging between 469 

1.06Mb and 5.70Mb (Figure 6F). The average genome size of MAGs 470 

obtained from all unmapped reads was 3.03Mb, ranging between 1.13Mb 471 

and 6.14Mb (Figure 6H). The mean N50 (the minimum contig length of an 472 

assembled contig that covers 50% of the genome) of MAGs from KRAKEN2 473 

classified reads was 97.5Kb (kilobases), ranging between 15.8Kb to 338Kb 474 

(Figure 6G). The mean N50 of MAGs from all unmapped reads was 126Kb, 475 

ranging between 5.78Kb to 591Kb (Figure 6I).  476 

Outside of MINUUR, we used the taxonomic classifier GTDB-Tk to classify 477 

MAGs against the Genome Taxonomy Database (GTDB). 41 MAGs were 478 

classified with a mean FastANI score of 98.5%, ranging between 95.6% to 479 

100% (Figure 7C). No MAGs were identified with FastANI scores <95%, 480 
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meaning no novel Ae. aegypti associated bacterial species were found, 481 

however, MAGs with FastANI scores <99% are strain or subspecies variants. 482 

Species classified from all assembled MAGs include E. anophelis, 483 

Wolbachia pipientis, Pseudomonas. E koreensis B, P. E protegens, 484 

Stenotrophomonas sp002192255, Acinetobacter seifertii, Comamonas 485 

acidovorans, Enterobacter cloacae M and Klebsiella. A michiganensis 486 

(Figure 7C). We also compared genome sizes of each MAG to its closest 487 

reference genome (Figure 7A). 16 MAGs were smaller to their reference 488 

genome by mean = 284kb, and two MAGs were larger by mean = 82.8kb 489 

(Figure 7A). Congruent with the pairwise size differences between MAG and 490 

reference genome, we found the overall distribution of MAG vs reference 491 

genome size to be similar (Figure 7B). Two genomes skew this distribution 492 

(references pertaining to MAGs ERR3376859.4 and ERR3376862.4), which 493 

is consistent with the pairwise comparisons (Figure 7A).  494 

 495 
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 496 

Figure 6: Ae. aegypti associated bacterial MAG statistics. (A). MAGs assembled from KRAKEN2 497 
classified reads or (B). unmapped reads using MEGAHIT (v1.2.9) and binned with MetaBAT2 498 
(v2.12.1). Colours denote each sample shown in the legend. 50% and 90% MAG completeness is 499 
specified by the orange and green dotted line. x-axis = CheckM completeness, y-axis = CheckM 500 
contamination. (C, D) Bar graph depicting completeness and contamination scores of each MAG, 501 
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light blue = completeness, dark blue = contamination, left = MAGs assembled using KRAKEN2 502 
associated reads, right = MAGs assembled using unmapped reads. Red dotted line indicates 5% 503 
contamination threshold (E, F) N50 and MAG size (base pairs) of MAGs assembled using 504 
KRAKEN2 classified reads, with completeness over 90%. (G, H) N50 and MAG size (base pairs) 505 
of MAGs assembled using unmapped reads, with completeness over 90%.  506 

 507 

Figure 7: Ae. aegypti associated bacterial MAG GTDB-Tk (v1.5.0) classifications A. Genome 508 
size (base pairs) of Ae aegyti associated MAGs (orange) with CheckM completeness >90% and 509 
<5% contamination compared to genomes size of its closest GTDB-Tk reference genome (blue). 510 
Each bar denotes the sample originated and the bin number (sample.bin) B. Violin plot showing 511 

Genome Size (BP) MAG Genome Size GTDB Reference Genome Size
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the distribution of Ae. aegypti MAG genome size (orange) compared to their GTDB-Tk classified 512 
reference genome. Each point denotes a MAG with completeness >90% and <5% contamination. 513 
C. Taxonomic classifications from the Genome Taxonomy Database (GTDB) of MAGs obtained 514 
from unmapped Ae. aegypti reads. X-Axis = GTDB-Tk species classification, Y-Axis = FastANI 515 
(%) score to the closest related reference genome in the GTDB. 516 

 517 

5 Discussion  518 

The analysis of non-host reads from existing WGS data has previously been 519 

applied in other organisms (5,8,9,11). We developed MINUUR to facilitate a 520 

reproducible and robust metagenomic analysis of non-host sequences from 521 

whole genome sequencing data, which can be applied to other hosts at the 522 

user’s discretion. For this study, we used MINUUR to characterize the 523 

microbiome of an existing WGS dataset of Ae. aegypti mosquitoes (30).  524 

Read classifications reveal the high abundance of Elizabethkingia, 525 

Pseudomonas, Acinetobacter, Stenotrophomonas and Wolbachia. The 526 

presence of Wolbachia in these Ae. aegypti samples at high titers is 527 

expected as this line was transinfected with this bacterium (30). Our species 528 

level classifications support previous amplicon sequencing studies that show 529 

the adult Ae. aegypti microbiome is dominated by phyla from Proteobacteria 530 

(Pseudomonas, Acinetobacter, Stentophomonas, Enterobacter, Klebsiella) 531 

and Bacteroides (Elizabethkingia, Chryseobacterium) (18,19,21,25,57). E. 532 
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anophelis is an abundant bacterial species identified in this study. This 533 

bacterium has previously been implicated in response to iron fluxes in An. 534 

gambiae (58), and blood meals in Ae. albopictus (59) and Ae. aegypti (60). 535 

The high abundance of this symbiont across these samples could be that 536 

DNA was extracted from mosquitoes shortly after blood-feeding, which 537 

would support the previous studies above. Furthermore, studies of mosquito 538 

bacterial interactions show a strain of E. anophelis, E. anophelis Ag1, 539 

interacts with Pseudomonas Ag1 by up-regulating expression of the hemS 540 

gene in E. anophelis, promoting heme breakdown into biliverdin catabolites 541 

(24). Interestingly, Pseudomonas sp Ag1 is closely related to P. flourescens 542 

(61), identified as an abundant species in our study. Further work should 543 

elucidate if a similar bipartite interaction is present in Ae. aegypti.  544 

The samples used here originate from a study looking at genetic variation of 545 

artificially selected Ae. aegypti for Wolbachia-mediated dengue blocking. As 546 

such, we were interested in patterns between microbiome members and low 547 

/ high dengue blocking mosquito samples (Figure 3D). We found several 548 

bacteria uniquely identified in high dengue resistant populations. Most 549 

notably, our results support a previous study showing Pedobacter 550 

significantly associated with a dengue virus refractory Ae. aegypti strain, 551 

MAYO-R (62). Pedobacter identified in our study is uniquely present in high 552 
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dengue blocking mosquito populations, suggesting an association with low 553 

dengue virus titers in Ae. aegypti. The mechanism of this association is 554 

unknown but could be due to a specific interaction with dengue virus or 555 

immune priming of Ae. aegypti to elicit an anti-viral response (15).  556 

HUMANn3 was used to annotate MetaPhlAn3 classified bacteria using the 557 

pan-genome ChocoPhlAn database and UniRef90 annotations. We show 558 

the example of searching for “siderophore” related genes, which resulted in 559 

the identification of 16 genes across 9 bacterial species. The TonB 560 

dependent siderophore receptor was identified across seven / nine bacteria, 561 

suggesting involvement of siderophore mediated iron uptake in Ae. aegypti 562 

associated bacteria. However, while the TonB-dependent receptor has high 563 

affinity for siderophores, it is also specific to other substrates including 564 

vitamin B12s, carbohydrates and nickel chelates (63). The “siderophore” 565 

gene profiles reported in this study also suggest different siderophore 566 

acquisition mechanisms across Ae. aegypti bacteria (64). For example, 567 

Klebsiella identified in this study does not contain the TonB dependent 568 

siderophore receptor, but instead contains a catecholate siderophore 569 

specific receptor fiu. A similar observation is noted for Acinetobacter which 570 

uniquely contains the Catechol synthase DhbF.    571 
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We assembled 19 high quality MAGs with CheckM completeness scores 572 

>90% and <5% contamination, which were subsequently classified, outside 573 

of MINUUR, against the Genome Taxonomy Database. High-quality MAG 574 

reconstructions are applied in large scale metagenomic studies from 575 

chickens (65), humans (66) to cows (67–69), with these studies yielding 576 

between 400 to 92,000 MAGs per study. We apply a similar approach with 577 

unmapped Ae. aegypti sequencing reads to reconstruct high-quality 578 

community accepted standard MAGs. Our study expands the genomic 579 

representation of known mosquito-associated bacterial symbionts, 580 

specifically to Ae. aegypti, adding these newly assembled MAGs to the 33-581 

mosquito associated bacterial genomes currently stored on the NCBI. 582 

Overall, these provide a valuable resource for researchers in the field and 583 

can be used in further work such as facilitating biosynthetic gene cluster 584 

discovery (69) or to identify genetic targets for symbiont pathogen blocking 585 

approaches (13).  586 

In summary, we developed a pipeline to facilitate analysis of unmapped 587 

reads from host-associated WGS data, with application in the pathogen 588 

vector Ae. aegypti. Future considerations and prospects of mosquito 589 

microbiome research were recently established by the Mosquito Microbiome 590 

Consortium (70). A key point highlighted in this statement is the need for 591 
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(meta)genomics approaches with solid reproducibility for data analysis within 592 

the field. Our pipeline provides a robust set of analyses to assess non-host 593 

reads from existing genome sequence data. Within Ae. aegypti, we show the 594 

reads that do not map to its reference genome can be taxonomically 595 

classified to its microbiome members at genus and species level; associated 596 

microbial genes and pathways predicted and high-quality mosquito-597 

associated MAGs reconstructed. We hope this pipeline and approach will 598 

facilitate further analysis of existing WGS data within Ae. aegypti and other 599 

organisms. 600 
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