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Abstract

The accurate and rapid prediction of generic nanoscale interactions is a challenging problem
with broad applications. Much of biology functions at the nanoscale, and our ability to manip-
ulate materials and engage biological machinery in a purposeful manner requires knowledge of
nano-bio interfaces. While several protein-protein interaction models are available, they lever-
age protein-specific information, limiting their abstraction to other structures. Here, we present
NECLAS, a general, and rapid machine learning pipeline that predicts the location of nanoscale
interactions, providing human-intelligible predictions. Two key aspects distinguish NECLAS: coarse-
grained representations, and the use of environmental features to encode the chemical neigh-
borhood. We showcase NECLAS with challenges for protein-protein, protein-nanoparticle and
nanoparticle-nanoparticle systems, demonstrating that NECLAS replicates computationally- and
experimentally-observed interactions. NECLAS outperforms current nanoscale prediction models
and it shows cross-domain validity. We anticipate that our framework will contribute to both
basic research and rapid prototyping and design of diverse nanostructures in nanobiotechnology.
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Many technological, biological, and natural phe-
nomena are governed by molecular and nanoscale
interactions and the processes that occur at
their interfaces [1-4]. Protein-protein interactions
(PPIs) play a crucial role in cellular functions
and biological processes in all organisms, from
mediating selectivity along signaling pathways to
understanding of infection mechanisms, to devel-
opment of treatments and therapies. Similarly,

protein-nanoparticle interactions provide knowl-
edge about the bio-reactivity of nanoparticles and
their applications in nanodiagnostics, nanother-
apy, and nanomedicine. However, to tailor these
interactions, a comprehensive knowledge of how
nanomaterials interact with biological systems is
critical.

In recent years, data-driven machine learning
(ML) methods have emerged as powerful tools to
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2 NeCLAS

provide insight into the mechanisms and chem-
istry of nanoscale interactions, overcoming the
cost and complexity of experiments [5-7] and
simulations [8-12], without the need of a pri-
ori knowledge of physics- and template-based
methods [13-15].

Partner-independent ML methods predict
interaction sites for a target structure, regardless
of the complementary nanostructure, and can suc-
cessfully predict protein-ligand [16] and protein-
protein [17-19] interactions. These methods iden-
tify features that correlate with the tendency
of the target protein to interact with arbitrary
nanostructures, but do not consider the proper-
ties of the second molecule (partner) directly. This
approach is data-efficient, but pairwise informa-
tion from interacting partners is often highly rele-
vant for specific molecules and results in improved
predictions [20, 21]. To address this limitation,
partner-specific methods were developed to pre-
dict whether a subunit (e.g., protein residue) of
one structure interacts with a specific subunit
of another complex [20, 22, 23]. Crucially, by
using curated datasets [20, 24] that include diverse
structures and account for homology, partner-
specific methods were shown to successfully pre-
dict the local pairwise residue interactions that
control global protein-protein aggregation.

Despite this progress, most of the current
approaches are specifically designed for proteins
and are not immediately generalizable. As these
methods use properties of the individual amino
acids or rely on protein-specific characteristics
(i.e., properties derived from sequence and residue
conservation), they cannot be straightforwardly
extended to molecules that lack these motifs, even
when they share other physical and chemical fea-
tures [1, 25-27]. Similarly, current ML methods for
predicting nanoparticle-protein interactions use
application-specific properties and are limited by
small training datasets [28-30], which limits the
cross-domain validity of the resulting ML models,
and requires a new model for every application.

To relax this specificity, we introduce
NECLAS, Neural Coarse-graining with Location
Agnostic Sets, a flexible and generalized machine
learning approach for predicting partner-specific
nanoscale interactions. NECLAS has two main
features. The first is a generalized, atomistically-
derived coarse-graining method to generate a
rototranslational equivariant representation of

nanoparticles and macromolecules. The second
is a permutation invariant deep neural network
that predicts pairwise interactions between the
coarse-grained sites of two different molecules.
We showcase NECLAS with 3 increasingly
complex prediction challenges: (1) binding
site for protein-nanoparticle interactions; (2)
dynamic characteristics of nanoparticle-protein
interactions, and (3) nanoparticle-nanoparticle
interactions and their tendency to self-assemble.

Without any protein-specific descriptors, test-
ing on curated datasets shows that NECLAS
outperforms state-of-the-art protein-nanoparticle
prediction methods, is competitive with the best
protein-specific methods, and shows potential in
predicting nanoparticle-nanoparticle interactions.
Overall, NECLAS demonstrates a versatile frame-
work for interaction predictions across multiple
domains with a reduced computational footprint.
Our conceptual framework finds applications in
various fields, from biologists who search for
interactions between proteins, to materials scien-
tists who can design and engineer nanoparticles
for targeted applications, to the broad range of
nanobiotechnology.

Results

NeCLAS: a domain-agnostic pipeline

ML model development can often be abstracted
into two main steps: creating a learnable repre-
sentation of real-world data, and using this rep-
resentation to train a predictive model (Fig. la).
In NECLAS, the first step is accomplished
by converting atomistic information to lower-
dimensional coarse-grained (CG) structures and
then computing properties for each CG site,
accounting for both local characteristics and
chemical neighborhood. The second step is accom-
plished by training a permutation invariant deep
neural network to predict pairwise interactions of
these CG sites.

To obtain the CG sites (Fig. 1b), a prede-
termined number of sites is randomly initialized
and iteratively optimized to match the atomic
distribution of a given molecular property (e.g.,
mass) [31]. The resulting representation can be
easily tailored to capture structural symmetries,
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Fig. 1 Methods and data. a, NECLAS schematic. Reduced dimensionality representation (CG sites) and properties are
derived from atomic structures (e.g., nanoparticles, top row, and proteins, bottom row); a set of the combined local (80) and
environmental (400) features is then generated for each pairwise interactions and used for training and testing the Neural
Network. b, Schematic of the coarse-graining procedure applied on p-sulfocalix[6]arene (p-SCLXg). CG subunits centers are
randomly placed within the coordinate space of a starting molecule, then iteratively shifted to match a target property
spatial distribution. ¢, First two principal components of the feature set obtained for p-ScLxg. Colors correspond to CG
sites shown on the CG molecule in left panel of c. d, Distribution of RMSD between unbound and bound proteins in the
protein-protein (PP) dataset (DBD version 5). One structure (PDB: 1IRA) was omitted for clarity (RMSD = 8.36). e-f,
Distribution of RMSD between unbound and bound proteins and nanoparticles for the protein-nanoparticle (PN) dataset.

especially when interpretability is a primary con-
cern. For example, p-ScLxg (Fig. 1b) is a para-
sulfonate calixarene, composed of six repeating
units with a positively-changed outer region and
negatively-charged inner region [32]. By using 12
CG sites, the procedure consistently allocates two
sets of sites that match the symmetry of the
molecule. Indeed, p-SCLX¢ has a hydrophobic core
and anionic rim that facilitates protein recogni-
tion via entrapment of arginine or lysine side
chains. These CG sites capture the underlying
molecular properties, as shown by the two dis-
tinct clusters of the CG sites in the principal
component analysis (Fig. 1c) of their local chem-
ical features. While useful for interpretability, the
specific choice of number of sites has a minimal
impact on the accuracy of NECLAS, as long as

the extreme choices (e.g., one site per nanopar-
ticle) are avoided (Supplementary Information,
section 1).

Once the lower dimensionality representation
is obtained, local and environmental features are
computed for each site. We selected 80 CG-site
properties (local) that are generally important
for chemical and biological interactions, such as
charge, shape, size, hydrogen bonding, depth, and
surface exposure [33-38]. To capture the effect of
the surrounding atoms, which are known to play
an important role [20, 22, 39], we considered 400
properties weighted by spatial functions that pro-
vide a description of the molecular environment
that is (globally) equivariant under translations
and rotations [40, 41].

To evaluate our model, we specifically tailored
our data and workflow to avoid common causes
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4 NeCLAS

of artificially inflated estimates of the model per-
formance. First, to ensure model generalization,
NECLAS utilizes a neural network that is invari-
ant to the ordering of input sites by design. This
structure provides a more stable prediction com-
pared to permutation variant methods (Supple-
mentary Information, section 4). As per standard
ML practice, we kept a strict separation between
train, validation (used to halt the neural network
learning process), and test sets (used to evalu-
ate model performance). We chose our datasets
to avoid data redundancy, and assessed the per-
formance of our model with increasingly stricter
criteria to test the possibility of information leak-
age from the training set to the validation or test
sets. Lastly, since proteins and nanoparticles may
change conformations as they interact, we trained
NECLAS only on unbound structures, as the ulti-
mate goal is to predict interactions for species
with an unknown bound conformation [42]. For
our datasets, these structural changes were quanti-
fied as the root mean squared deviations (RMSD)
of the atomic positions of bound and unbound
species. The distributions (Fig. 1d-f), show that
during binding, conformational changes can be
significant.

Following these guiding principles, for protein-
protein interactions, we choose the Docking
Benchmark Dataset (DBD) version 5, a curated
set of 230 experimental structures of non-
redundant protein complexes in both bound
and unbound form [24]. However, for protein-
nanoparticles interactions no such dataset exists,
and therefore we created a dataset from an
existing set of data provided by Costanzo et
al. [43], which contains organic nanoparticles (e.g.,
fullerenes, macrocages, calixarenes, cyclodextrins,
cucurbiturils, and molecular tweezers). From this
data, we generated both bound and unbound
structures. Since this dataset is relatively small
and structural redundancy cannot be avoided, we
used it only for testing, preventing information
leakage from similar substructures.

Performance.

Below we assess the performance of (NECLAS)
to predict nanoparticle-protein interactions in
comparison with five different techniques: the
very recently published generalized method (Uni-
fied [44]), and four binding residue prediction

methods that are not partner specific, namely
SPPIDER [39] (designed for protein-protein inter-
actions), P2Rank [17] and COACH [45] (for
protein-ligand binding), and Fpocket [46] (which
identifies pockets in the protein geometry). The
last four methods were not originally designed to
predict protein-nanoparticle interactions, but they
can be used as they are not partner-specific.

To evaluate each technique, we generated
the receiver operating characteristic curve, which
computes the fraction of true-positive to false-
positive interaction predictions at various discrim-
ination thresholds. The area under this curve
(Auc) quantifies the quality of a binary model’s
predictions, and it is a commonly used evaluation
metric in similar problems [18, 20, 22, 23]. In the
typical formulation, AUC is computed using the
entire testing dataset (AUC,)); however, because
nanoscale complexes can have different sizes, here
we also use the median of values computed for each
individual complex, AUCcomp. AUCcomp reweights
pairwise interactions to ensure equal contribu-
tion of each complex regardless of its size, which
produces a more realistic metric for model perfor-
mance on a new species. As NECLAS and Unified
do not predict interaction interfaces directly, we
converted pairwise predictions to interface predic-
tions using a scoring function [20], which considers
interface membership using all the possible inter-
actions with different weights (AUCINSL ).

Finally, to test the importance of coarse-
grained pairwise information on the outcome
of predictions, we also included a non-partner-
specific version of NECLAS (labeled NoPair),
which comprises the same chemical features, but
omits any nanoparticle information (Supplemen-
tary Information, section 4).

Performances for protein-nanoparticle predic-
tions are shown in Fig. 2. Since the training of
machine learning methods will be influenced by
its training set and initial state, for NECLAS and
NoPuair we show a distribution obtained from 250
different conditions, namely 25 different training
and validation sets, each with 10 different initial
sets of model weights.

NECLAS outperforms all competing meth-

ods, with a median AUCIN of 0.671, and
the highest median AUCINS among all the 250

NECLAS training conditions of 0.765. The clos-

est existing method has a median AuClEe of
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Fig. 2 Predictive performances of different methods. a, Distribution of the prediction performance for protein-
nanoparticle interface interactions. Median is marked as a white circle and reported as a number near the method name.
The thick black bar shows the 1st-3rd interquartile range. NECLAS and NoPair distributions are obtained by computing
the median of each pair over 250 independent predictions. b, Performances of different methods for protein-protein pairwise
interactions. Black lines indicate the standard deviation of complex-wise predictions.

0.574. NoPair performs slightly worse (median
AUCIET = 0.620), still surpassing the benchmark
methods, which suggests that there is a perfor-
mance benefit in including the representation of
the partner molecules. It is important to note that
the dataset is challenging for all the methods, and
given the small number of nanoparticle-protein
pairs it is not surprising to find that NECLAS’s
long tail is only due to two complexes. These
results suggest that adding structural information
to the validation set from similar nanoparticles
may help generalize the stopping criteria of the
neural network and improve NECLAS perfor-
mance.

As previously discussed, the structural homol-
ogy between the training and testing datasets is
a persistent issue in protein interaction predic-
tions, leading to overly optimistic error estimates.
Garcia et al. [20] considered this problem in the
context of protein-protein interactions. They eval-
uated pairwise interactions by removing pairs of
proteins that share both SCOP (Structural Clas-
sification of Proteins) families or a single SCOP
family [47, 48]. Here, these criteria are already
met, since the chosen nanoparticles are not struc-
turally homologous to any proteins. However, we
investigated the effect of an even stricter criterion
by removing all proteins from the training and val-
idation sets that share a single SCOP family with
any of the proteins in our protein-nanoparticle
test set. This test causes a negligible change in

performance (median AUCIS = 0.678, see Sup-
plementary Information, section 4), showing no
general effect due to the ablation.

Finally, we show that, despite its high
degree of generality, NECLAS achieves protein-
protein pairwise prediction performance that is
competitive to state-of-the-art protein-specific
methods (Fig. 2b). Our model is comparable
(AucP™ = 0.811 and median AUCRAT = = 0.841)

comp

with PIPGCN [23] (auc?¥" = 0.862 and median
AUCP2I = (0.890 in its optimal configuration),

comp
and falls just below BIPSPT [20] (AUCPE™ = 0.919
and median AUCEAE = 0.937), the currently
leading methods in protein pairwise interaction
predictions. Unlike competing methods, however,
NECLAS achieves these results while maintain-
ing generality and omitting protein-specific (e.g.,
sequence features) information from the feature
set. In addition, NECLAS has minimal computa-
tional requirements, with a preprocessing time for
DBD of approximately two hours on a consumer
CPU (two orders of magnitude faster than Uni-
fied) and 1/10th the training time of PIPGCN on
identical hardware.

To illustrate the specific potential of
NECLAS, we analyze in detail its performance on
three system: nanoparticle tweezer and 14-3-3c¢
protein, carbon-based nanoparticle with amyloid
fibrils, and organic quantum dots in water.
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Mbolecular Tweezers.

Supramolecular ligands, such as molecular tweez-
ers, represent a promising way to modulate protein
functions. They can be artificially synthesized
with unique properties and recognition profile
towards amino acids and peptides, with ability to
bind to specific sites. Specifically, the interactions
between a 14-3-30 protein and the lysine-specific
molecular tweezers shown in Fig. 3 have been
characterized in detail both experimentally and
computationally [49]. Therefore, they serve as an
ideal test case for pairwise interaction prediction
models.

NECLAS predictions (Fig. 3a,b) match the
findings reported by Bier et al., indicating the crit-
ical role played by Lys214, as well as LEU218,
TyYR213, and THR217, which form a hydrophobic
binding pocket, and GLU210 and GLN221, which
provide hydrogen bond stabilization. Bier et al.
also derived a few general principles character-
izing the active binding site (Lys214) leveraging
the fact that the protein has four other energet-
ically possible, but non-binding, lysine residues,
(Lys* in the following) and that several properties
differentiate Lys214 from the other residues.

First, they determined that Lys214 and Lys*
residues are more energetically likely to bind due
to their protruding carbon side chains, a charac-
teristic that is matched by the higher value of the
protrusion index [36] and elongated structure we
observe in our model for Lys* residues compared
to other residues (Fig. 3c). Additionally, Bier et al.
suggested that the difference between Liys214 and
the other Lys* residues is caused by the nearby
hydrophobic binding pocket and small number of
close positively charged functional groups, which
destabilize the nanoparticle by forming exter-
nal ion pairs between the nanoparticle phosphate
groups and surrounding cations. These charac-
teristics are matched in our model by several
environmental features of Lys214 that capture
the effect of neighboring atoms. The hydrophobic
pocket for Lys214, depicted by the total sur-
face area of surrounding hydrophobic groups [33]
and total surface area of surrounding hydrogen
bonding groups [34], shows higher values than all
other residues. Additionally, the environmentally
weighed charge, shows that Lys214 is surrounded
by significantly more negatively charged atoms
than other Lys* residues.

Beside displaying the predictive capabilities of
NECLAS, this comparison highlights the impor-
tance of spatially weighted physicochemical prop-
erties to fully describe nanoscale interactions. For
proteins, we have shown that the same infor-
mation can be encoded using only spatial fea-
tures [50]. However, the much larger chemical
and physical variety of nanoparticles properties
requires a more nuanced approach, like the one
used here, as nanoparticles with identical, or
very similar, structures, but different properties
are possible. As an additional benefit, these fea-
tures provide a modicum of interpretability of the
model’s predictions, which is harder to obtained
when using more abstract properties.

Bacterial Amyloid Fibrils.

Interactions between nanoscale structures can
exhibit extremely complex, high-dimensional free
energy surfaces, which are the product of dynamic
molecular constraints and entropic factors. Molec-
ular dynamics (MD) simulations can be used
to model these high dynamic processes evolving
across relatively short time scales.

Characterization of these interactions via ML
is challenging and the comparison between the
results obtained with these two approaches is
complex, especially since MD generates ensem-
ble distributions of conformations. While datasets,
like DBD version 5 used here, do not contain
all the information that play a role in shap-
ing the free energy landscape and the dynamics
of a nanoscale system, ultimately, ML and MD
are both (different) representations of the same
physical system.

In order to further assess NECLAS’s ability to
predict nanoscale interactions, we chose to analyze
the interactions between phenol-soluble modulin
(PSMal) peptides and graphene quantum dots
(GQDs) [51]. We have previously shown that GQD
nanoparticles act as biofilm dissolving agents due
to their interactions with PSMal, a key con-
stituent of Staphylococcus aureus biofilm matrix,
that assemble into amyloid fibers (Fig. 4a).

To evaluate the ability of our model to predict
the interactions between PSMal and GQDs, we
compared the interaction probabilities obtained
from NECLAS with the contact times (i.e., the
time two CG sites spent within a 1nm-distance)
during molecular dynamics (MD) simulations of
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Fig. 3 Interactions between molecular tweezers and the 14-3-30 protein. a, Visual representation of the interac-
tion location based on NECLAS prediction; cutout highlights the lysine residue (Lys214) and the surrounding hydrophobic
pocket. b, Top 10 interacting residues according to NECLAS predictions. Black lines indicate standard deviation. All atoms
in a single CG site share the same prediction. ¢, Comparison of selected features for binding lysine Lys214), probable but
non-binding lysines (Lys*, as defined by Bier et al.), and all the other residues. Protrusion and aspect ratio are features of
the individual amino acid sites (deterministic), while the last three histograms refer to environmentally weighted features.

the system composed of GQDs and PSMal as
reported in Fig. 4b. The figure shows that the con-
fidence of the predicted interactions is generally
correlated with contact times (Spearman coeffi-

cient, rt" = 0.906). This trend is not simply due to

S
strong interactions with the hydrophilic charged
groups at the edges of the GQD, but rather due to
a complex interplay of different chemical proper-
ties. To support this point, we chose to represent
the GQD with 12 sites, which the CG procedure
consistently separated in two distinct classes of
nearly identical internal and external sites. The
former contains only matrix carbon atoms while
the latter includes the edge carbons and outer
functional groups, thus allowing to separate the
contributions of the two regions. The predictions

for these subsets still show a high correlation
(re®t = 0.917, r’"* = 0.903) with the contact time,
despite the different properties of these two types
of sites. While internal hydrophobic sites gener-
ally have marginally lower predictions and shorter
contact times, there is no separation between the
two groups.

Finally, by analyzing the predictions for indi-
vidual amino acids (Fig. 4c), we also confirm
the importance of the N-terminal residues (which
have the highest interaction probability), likely
due to the GQD’s negative charge (dissociated
carboxylic groups), in agreement with the previ-
ous observations by Wang et al. [51]. Of note,
these conclusions are not dependent overall on the
specific definition of contact time, and hold even
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Fig. 4 Interactions of PSMal 1 and graphene quantum dot. a, All-atom and CG representation of the GQD
(circumcoronene with alternating hydroxyl and carboxyl groups at the edges) and the PSMal 1 peptide (5KHB). b, Relation
between MD contact time and predicted pairwise interactions between the PSMal residues and the GQD sites. Spearman
correlation (rf°t) for all, interior only (ri"?), and exterior only (r¢®t) sites is reported. c, Average interaction prediction
between residues from PSMal 1 and GQD interior (green) and exterior (red) units, along with a snapshot of interactions
observed during simulation. Standard deviation shown as black line.

when different definitions are used (Supplemen-
tary Information, section 5).

Organic quantum dots.

As a last example of NECLAS potential, we
discuss the ability to use pairwise interaction pre-
dictions to inform atomistic models, for example,
to generate realistic conformation distributions or
to evaluate the aggregation of multiple nanopar-
ticles. In doing so, we further test the potential
applications of our code. In these cases, a vari-
ety of factors (e.g., thermal energy, solvent effects,
entropic contributions), need to be taken into
account, which requires additional assumptions
and data.

Furthermore, the scalar predictions of binary
classification models cannot be directly inter-
preted as a measure of interaction strength, and
they are more readily conceptualized as model
confidence. However, here, we consider the prob-
ability of interaction as being proportional to
the strength of interaction, as we expect a
well-informed model to classify weakly interact-
ing pairs as less likely to interact. Under this

assumption, we use NECLAS predictions to tune
the intensity of intermolecular forces of different
GQDs in water to study their propensity to form
aggregates. Previously, using all-atom molecular
dynamics, we have reported on the effect of the
composition of edge groups present on GQDs and
their tendency to aggregate in water [52].

Here, we study three types of GQDs: one
terminated with hydroxyl (g30H), another with
formyl (g3cHO) groups, and the last one with
an alternating 2:1 ratio of hydroxyl and cysteine
groups (6C-g30H). These nanoparticles, with sizes
between 1.5 and 2 nm, were chosen as hydrophobic
and hydrophilic forces are generally compara-
ble, whereas for bigger structures, hydrophobic
forces and water entropic exclusion increasingly
dominate their interactions. Pairwise NECLAS
predictions (AUCP#T) were converted to an inter-
molecular potential by using a tunable repulsive-
core potential that uses identical parameters for
all the sites of the GQDs, except for the single
value (NECLAS prediction) that varies between
0 and 1. This step allows converting NECLAS
predictions into a physically-meaningful potential
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Fig. 5 Predicted and simulated interactions of graphene quantum dots. a, pairwise interaction potential from
NECLAS mean predictions (in parentheses) for g30H CG sites. b, Snapshot of g30H from CG simulations modeled using
NECLAS predictions. ¢, Snapshot of all-atom g30H simulations. d, pairwise interaction potential from NECLAS mean
predictions (in parentheses) for g3cHO CG sites. e, Snapshot of g3cHO from CG simulations modeled using NECLAS

predictions. f, Snapshot of all-atom g3CHO simulations.

while reducing instabilities for weak interactions
(Fig. 5a,d).

Using these potentials, we simulated the
dynamics of a small number of GQDs randomly
placed in a periodic system, using coarse-grained
MD. For g30H and g3CHO we observed the
rapid formation of aggregates with structures
that closely resemble the ones observed in all-
atom molecular dynamics [52] (Fig. 5). Indeed,
we detect both close and parallel stacking of
the structures (see [52] for definition), and a
similar lateral shift between consecutive stack-
ing planes. 6C-g30H, however, did not aggregate,
again in agreement with AA simulations and the
experimental high solubility at pH 7 [53]. The
overall match between CG and all-atom simu-
lations, albeit qualitative, was obtained without
fine-tuning of the other parameters of the CG
potential, as such optimizations would obscure
the contributions of NECLAS. Better agreements
can be expected if additional optimizations are
performed.

Discussion

The previous results show that NECLAS can
predict protein-protein and protein-nanoparticle
pairwise interactions, and can be extended to
predict nanoparticle-nanoparticle systems, while
using properties that are general to all molecules.
The quality of NECLAS predictions hinges on
two main aspects: the simplification operated
through the CG representation and the use of
environmental features that capture the chemical
neighborhood information.

The CG representation reduces physical (e.g.,
thermal vibration), observational (e.g., experi-
mental and numerical error), and statistical (e.g.,
sampling size) uncertainties in the data, allow-
ing an efficient and robust model training. This
approach is not needed for all types of problems,
but it is critical for data-limited applications,
which often occur in chemistry. Furthermore,
coarse-graining lowers the computational require-
ments, with the potential for applications to larger
systems, while allowing to reconstruct atomistic
information if needed [54].
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However, a CG representation causes the loss
of local atomistic properties, which are not ade-
quately captured through averaging. Here, we
express the local spatial distribution of each
property using various statistics (e.g., standard
deviation), which provides a more nuanced char-
acterization of the target distribution. Yet, this
approach does not solve the problem of long-
range nanoscale interactions, which tend to decay
quickly in solvents with high relative permittiv-
ity, but can still play a critical role in long-range
organization (e.g., tertiary structures in proteins).
To capture these interactions, we computed prop-
erties by weighting atomic characteristic of neigh-
boring atoms (part of different CG sites) by their
distance from a given site, which simultaneously
embeds information about both properties and
positions of the individual atoms.

The local atomic arrangement is critical to
capture interactions at this scale, and we have
shown that, for proteins, it is an equivalent
surrogate for describing physicochemical proper-
ties [50]. Differently from previous works, we did
not find that structural information alone can
provide a general enough description for both par-
ticles and nanoparticles. Even if structural infor-
mation is sufficient for some classes of molecules
(e.g., proteins), in which the limited chemical vari-
ety results in a correlation between atomic species
and spatial organization, they become insufficient
to distinguish wider classes of systems. One such
examples, are fullerenes, which can gain differ-
ent amounts of charge while in water without a
relevant change in structure [55]. NECLAS pre-
dicts a marked difference (71% increase) in the
interactions between a fullerene organizing protein
(PDB: 5ET3) [56] and a neutral C60 fullerene (as
it is commonly modelled) or a negatively charged
one (average experimental charge of -2 elementary
charges).

NECLAS also addresses the effect of data
symmetries on model performance and relia-
bility. Many interaction-prediction methods use
ensemble-based models (e.g., XGBoost) [20, 22]
or dense neural networks [44] to predict interac-
tion interfaces or pairwise interactions. However,
both of these methods are permutation variant,
adding artificial ordering to a problem that is
inherently unordered. In doing so, these methods
violate the guiding principle that subjective order-
ing has no bearing on the behavior of a physical

system. Further, these models produce unstable
prediction results, as the hypothesis space of an
over-parameterized model may contain many per-
mutation variant functions that fit the training
data (Supporting Section 4). NECLAS avoids this
problem by using a permutation invariant neural
network inspired by the DeepSets [57] architec-
ture. Thanks to a combination of weight sharing
and maxpooling, our model is agnostic to residue
ordering, and empirically outperforms compara-
ble permutation variant methods while utilizing
significantly fewer weights.

Despite the positive results of NECLAS, there
are still some aspects that deserve further work.
To operate on an unconstrained chemical space
of nanoparticles, NECLAS will require a more
diverse sample of atom types and solvents. For
example, NECLAS (and other methods) tacitly
assume that most species of interest are largely
soluble in water. Under these conditions, many of
the forces that govern protein complexes are also
present in interactions between the proteins and
nanoparticles [43], as water solubility strongly lim-
its the chemical properties of exposed nanoparticle
surfaces. Different solvent (e.g., polymeric host-
guest systems) not only have different ability to
stabilize ionic groups or form hydrogen bonds,
but also a different propensity than water to sol-
vate species based on their size. A more varied
dataset can also potentially highlight the need
for a more accurate or diverse representation of
chemical variety or large scale structures.

All the above limitations, however, can only
be addressed by the availability of curated data
that go beyond protein-protein interactions. As
more structural information and databases for
nanoscale species emerge, we expect that this
approach will prove to be a valuable technique for
operating across new molecule types and biologi-
cal interaction problems.
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Methods

Coarse-Grained representation. Coarse-
grained representations of nanoparticles and
proteins were created using the neural gas algo-
rithm [31], which uses a Hebbian network to
match the mass target distribution. Details about
convergence, hyperparameters choice and robust-
ness are discussed in the Supporting Information,
section 1.

Physicochemical Features. We used 80 fea-
tures to describe the local chemistry (local descrip-
tors) of each CG site and 400 features to
describe the chemical neighborhood (environmen-
tal descriptors). The local chemistry was captured
by using mass, charge, relative accessible sur-
face area [38], depth [35], protrusion [36], CPSA
descriptors [33], CPSA hydrogen bonding descrip-
tors [34], pocket propensity, and mass-weighted
WHIM [37]. Depth and protrusion values were
computed for each atom in the residue and for
depth protrusion, charge, and mass a feature set
was generated by taking the minimum, maxi-
mum, mean, sum, and standard deviation of the
values. Charges were computed by processing
proteins with the PDB2PQR package [58] using
the AMBER force field [59], and computed for
nanoparticles with the Gasteiger method [60].

Environmental descriptors were computed
using five different sets of environmental [41] func-
tions for each feature to compute 400 properties.
See section 2 in the Supporting Information for
additional details.

Protein-Protein Dataset. For protein-protein
pairwise predictions, we used the DBD (version
5) [24]. Unbound proteins were used for fea-
ture generation, and bound proteins were used to
compute the ground-truth pairwise interactions.
For each complex, we consider all combinations
of residues between the two proteins. Due to
the severe class imbalance (positive sample rate
of 0.136%), we downsampled our training data
so that there is one positive example for every
three negative examples, providing approximately
83,000 pairwise interactions (different validation
splits cause the exact value to change). We did not
alter the imbalance from the testing set to avoid
biasing our data.

Nanoparticle-Protein Dataset. For the
protein-nanoparticle interactions, we used the
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recent collection of crystallographic data by
Costanzod et al. [43]. This collection contains
approximately 40 unique structures; however,
we removed files containing duplicate inter-
actions or incomplete information, leaving 21
unique protein-nanoparticle pairs (see section
3 in the Supporting Information). Unbound
proteins structures were taken from the RCSB
database [61], while unbound nanoparticle struc-
tures were generated by relaxing the bounded
configuration with the MMFF94 force field [62]
in the absence of the protein.

ML procedure. We implemented a custom,
alternating structure of permutation variant net-
works and maxpool to derive a generalized,
non-linear, permutation-invariant network. For
protein-protein pairwise prediction, we performed
a leave-one-out cross validation. For protein-
nanoparticle pairwise predictions, we trained on
the entire protein-protein dataset (downsam-
pled as described above), and used the protein-
nanoparticle dataset for testing. Interface inter-
action predictions were obtained from pairwise
predictions using a scoring function [20]. All pre-
dictions were smoothed [20, 22].

For each pair of CG sites, the local and envi-
ronmental residue features of both sites were
concatenated to create a single input feature to the
model. Two sites A, B are considered to be inter-
acting if and only if a heavy atom from site A falls
within 0.6nm of a heavy atom of site B. When
conversion between CG predictions and protein
residues was needed, we assigned each heavy atom
a prediction score equal to that of its correspond-
ing CG site and computed the residue prediction
as the mean of all its constituent atoms (exclud-
ing hydrogen). Additional details can be found in
the Supplementary information, section 4.

Molecular Dynamics In the CG simulations,
8 particles were randomly placed in a box, and
after an energy minimization, the system was run
for 5ns in a canonical ensemble at 300 K. Snap-
shots were taken from the last 500 ps of each run.
All-atom simulation parameters, protocol, and
force filed are described in detail elsewhere [52].
Additional details can be found in Supporting
Information, section 5.

Data processing and visualization Data were
processed with custom Python code using the
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NumPy library [63]. Molecular images were gen-
erated using the Visual molecular dynamics
code [64] and Pymol [65]. Plots were created using
Matplotlib [66].

Additional Information

Data availability. Additional
data  will be available at  DeepBlue
(https://deepblue.lib.umich.edu/TBD), an open
and permanent data repository maintained by
the University of Michigan.

Code availability. The code used in this
work together with the relative documen-
tation will be available on Code Ocean
(https://codeocean.com/TBD).
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