
Cellular profiling of a recently-evolved social behavior 1 

Zachary V. Johnson1,2,*, Brianna E. Hegarty1,2,*, George W. Gruenhagen1,2,*, Tucker J. Lancaster1,2, Patrick T. 2 
McGrath1,2,┼, Jeffrey T. Streelman1,2,┼ 3 
 4 
1School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332 5 
2Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332 6 
* these authors contributed equally to this work 7 
┼ corresponding authors  8 
 9 
Correspondence: todd.streelman@biology.gatech.edu, patrick.mcgrath@biology.gatech.edu 10 
 11 
ABSTRACT 12 
 13 
Social behaviors are essential for survival and reproduction and vary within and among species. We integrate 14 
single nucleus RNA-sequencing (snRNA-seq), comparative genomics, and automated behavior analysis to 15 
investigate a recently-evolved social “bower building” behavior in Lake Malawi cichlid fishes. We functionally 16 
profile telencephalic nuclei matched to 38 paired behaving/control individuals. Our data suggest bower behavior 17 
has evolved in part through divergence in a gene module selectively expressed in a subpopulation of glia lining 18 
the pallium. Downregulation of the module is associated with glial departure from quiescence and rebalancing 19 
of neuronal subpopulation proportions in the putative homologue of the hippocampus. We show further 20 
evidence that behavior-associated excitation of neuronal populations that project to the putative hippocampus 21 
mediate glial function and rebalancing. Our work suggests that bower behavior has evolved through changes 22 
in glia and region-specific neurogenesis, and more broadly shows how snRNA-seq can generate insight into 23 
uncharted behaviors and species.  24 
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INTRODUCTION 25 

Social behaviors vary tremendously within and among species, and they are disrupted in heritable human brain 26 
diseases (Johnson and Young 2017; Kennedy and Adolphs 2012). Many social behaviors are not expressed 27 
in standard laboratory models, and much progress in understanding the biological mechanisms of social 28 
behaviors has been made through work in diverse and non-traditional species systems (S. Juntti 2019; Gallant 29 
and O’Connell 2020; Laurent 2020; Keifer and Summers 2016; Brenowitz and Zakon 2015; Jourjine and 30 
Hoekstra 2021; Johnson and Young 2018). Different experimental traditions spanning genomics (C. R. Smith 31 
et al. 2008; Küpper et al. 2016; Lamichhaney et al. 2016; Bendesky et al. 2017; York et al. 2018; Pfenning et 32 
al. 2014; Dias and Walsh 2020; Stein et al. 2017), endocrinology (S. A. Juntti et al. 2016; Boender and Young 33 
2020; Adkins-Regan 2013; O’Connell, Matthews, and Hofmann 2012; S. Ogawa et al. 2000; Heinrichs and 34 
Gaab 2007; Schiller, Meltzer-Brody, and Rubinow 2015), and circuit neuroscience (Gutzeit et al. 2020; Hung 35 
et al. 2017; Amadei et al. 2017; Anderson 2016; Gangopadhyay et al. 2021; Kohl et al. 2018; S. B. Nelson and 36 
Valakh 2015; Bachevalier and Loveland 2006) have contributed to our understanding of social behavior.  37 
However, we still have a poor understanding of the genetic and cellular pathways through which social 38 
behaviors vary and evolve. Discovering these gene-brain-behavior links is necessary to understand how neural 39 
circuit functions vary during social contexts. 40 

Single cell omics technologies enable simultaneous profiling of many heterogeneous cell populations in any 41 
species with a reference genome, eroding important historical barriers that have faced investigation of new 42 
social behaviors and species systems. These technologies have already advanced our understanding of the 43 
brain (Tosches et al. 2018; Jerber et al. 2021; Raj et al. 2018; M. Zhang et al. 2021), however, to our knowledge 44 
only one study has used single cell omics to functionally profile the brain during behavior (Moffitt et al. 2018). 45 
Here we integrate single nucleus RNA-sequencing (snRNA-seq) with automated behavior analysis and 46 
comparative genomics to investigate the neurobiological substrates of a recently-evolved (<1 Mya) social bower 47 
construction behavior in Lake Malawi cichlid (Cichlidae) fishes. Cichlids are teleost (Teleostei) fishes, a group 48 
representing ~40% of all living vertebrate species (Salzburger 2018). As teleosts, cichlids possess predicted 49 
homologues for ~80% of human disease-associated genes (Howe et al. 2013). In the brain, teleosts and 50 
mammals share conserved neuronal and non-neuronal cell populations with conserved molecular, 51 
electrophysiological, morphological, transcriptional, and behavioral properties (O’Connell and Hofmann 2011b; 52 
Xie and Dorsky 2017; Elliott et al. 2017; Jurisch-Yaksi, Yaksi, and Kizil 2020). For example, the teleost 53 
telencephalon contains conserved cell populations that are thought to regulate social behaviors across diverse 54 
vertebrate lineages (O’Connell and Hofmann 2011b).  55 

Lake Malawi is home to ~800 cichlid species are behaviorally diverse (York et al. 2015; Baran and Streelman 56 
2020; Ribbink et al. 1983; Johnson, Moore, et al. 2020; York et al. 2018) but genetically similar (Loh et al. 2008; 57 
Malinsky et al. 2018), thus representing a powerful system for investigating the neurogenetic basis of behavioral 58 
variation. In ~200 species, males express bower construction behaviors during the breeding season, during 59 
which they repetitively spatially manipulate sand into species-specific structures for courtship and mating (York 60 
et al. 2015; Johnson, Arrojwala, et al. 2020; Long et al. 2020). Many species dig crater-like “pit” depressions 61 
while others build volcano-like “castle” elevations, and these behavioral differences are associated with 62 
genomic divergence in a ~19 Mbp chromosomal region enriched for human disease-associated genes and 63 
genes that exhibit cis-regulated behavior-associated expression in the cichlid brain (York et al. 2018).  64 

In this paper we investigate castle-building behavior in Mchenga conophoros, a Lake Malawi cichlid and an 65 
uncharted species in behavioral neuroscience. We use natural genetic differences among individuals to link 66 
single nuclei back to 38 paired behaving/control test subjects, enabling measurement of building-associated 67 
signals and simultaneous control for two additional biological variables that may influence brain gene 68 
expression: quivering, a courtship “dance” behavior, and relative gonadal mass. We first map the cellular 69 
diversity of the telencephalon and then investigate cell type-specific signatures of active castle-building 70 
behavior as well as genomic divergence associated with behavioral evolution. Our work shows how snRNA-71 
seq profiling can generate converging lines of evidence for candidate genes, molecular signaling systems, cell 72 
populations, and brain regions underlying social behaviors in uncharted species systems. 73 

RESULTS 74 

Castle-building is associated with increased quivering behavior and gonadal physiology 75 
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We used an automated behavior analysis system (Johnson, Arrojwala, et al. 2020; Long et al. 2020) to monitor 76 
reproductive adult Mchenga conophoros males as they freely interacted with four reproductive adult females 77 
and sand (Fig. 1A). This system uses depth sensing to measure structural changes across the sand surface 78 
and action recognition to predict building and quivering (a stereotyped courtship “dance” behavior) from video 79 
data. We sampled pairs of males at the same time in which one male was actively castle-building within the 80 
past two hours (n=19) and the other was not (“control”, n=19; Fig. 1B-C). For each subject, we also recorded 81 
the gonadal somatic index (GSI), a measure of relative gonadal mass that is correlated with gonadal steroid 82 
hormone levels and social behaviors in cichlids (Maruska and Fernald 2010; Ramallo et al. 2015; Alward et al. 83 
2019) (Table S1). The volume of sand displaced by males was positively correlated with the number of building 84 
events predicted from video data by action recognition (Fig. 1D). For simplicity, we combined depth and action 85 
recognition data into a single “Bower Activity Index” (BAI). Building males had greater BAIs, quivered more, 86 
and had greater GSIs (Fig. 1E-I) compared to controls. Taken together, these results are consistent with castle-87 
building, like many social behaviors in nature, being embedded within a suite of behavioral and physiological 88 
changes tied to reproduction. 89 
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 90 

Figure 1. Castle-building is associated with increased quivering and relative gonadal mass. (A) 91 
Schematic of behavioral assay, 19 pairs of building (right) and control (left) males were sampled. Action 92 
recognition (B, yellow=building, blue=quivering, each trial is represented by a row, with pairs matched by row 93 
between left and right panels) and depth sensing (C, yellow=elevations, blue=depressions, each square 94 
represents total depth change for one trial, with pairs matched by row and column between left and right panels) 95 
revealed behavioral differences between building and control males. (D) Structural change measured through 96 
depth sensing (adjusted for body size) was strongly and positively correlated with building behaviors predicted 97 
through action recognition (p=8.15x10-13), and these measures were combined into a single Bower Activity 98 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.08.09.503380doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.09.503380
http://creativecommons.org/licenses/by-nc-nd/4.0/


Index (BAI, x-axis in E and F). BAI was positively correlated with quivering behaviors (E, p=3.35x10-5), and 99 
trended toward a positive correlation with GSI (F, p=0.07). Compared to controls, building males exhibited 100 
greater BAIs (G, 4.24x10-8), quivering (H, p=9.18x10-6), and GSIs (I, p=0.0142). Gray lines in panels D-I link 101 
paired building and control males.  102 

Telencephalic nuclei reflect major neuronal and non-neuronal cell classes 103 

Telencephala (n=38) were combined into ten pools (n=5 behave, n=5 control, 3-4 telencephala/pool) for 104 
snRNA-seq (Fig. 2A). >3 billion RNA reads were sequenced and mapped to the Lake Malawi cichlid Maylandia 105 
zebra reference genome (Conte et al. 2019). 33,674 nuclei (~900 nuclei/subject) passed quality control filters 106 
and were linked back to test subjects using genomic DNA. Coarse-grained clustering grouped nuclei into 15 107 
“primary” (1°) clusters and finer-grained clustering grouped nuclei into 53 “secondary” (2°) clusters (ranging 108 
from 57-1,905 nuclei, Fig. 2B). Established marker genes revealed known neuronal and non-neuronal cell types 109 
(Fig. 2C), including excitatory (slc17a6+) and inhibitory (gad2+) neurons, oligodendrocytes and oligodendrocyte 110 
precursor cells (OPCs, olig2+), radial glial cells (RG, fabp7+), microglia, pericytes, and hematopoietic stem 111 
cells (Table S2). Unbiased analysis identified genes exhibiting nearly cluster-exclusive expression (Fig. 2D, top 112 
rows). Different clusters also exhibited preferential expression of genes encoding transcription factors (TFs; 113 
Fig. 2E-F) and neuromodulatory signaling molecules (Fig. 2G-H) that exhibit conserved neuroanatomical 114 
expression patterns in teleosts (Table S2). (Fig. 2I, Table S3). Cluster composition was relatively consistent 115 
across individuals. For clarity, we assigned each 1° cluster a numeric identifier (1-15) followed by a label 116 
indicating one or more of these cell classes (e.g. for radial glia, “_RG”). 2° cluster labels were rooted in these 117 
1° labels, but with a second numeric identifier indicating the relative size within the corresponding “parent” 1° 118 
cluster (e.g. “4_GABA” is a 1° cluster expressing inhibitory neuronal markers, and “4.3_GABA” is the third 119 
largest 2° cluster within 4_GABA). Marker genes for every individual 1° and 2° clusters were independently 120 
enriched (q<0.05) for eight GO categories related to cell morphology, connectivity, conductance, and signal 121 
transduction (Table S4), supporting these as additional axes distinguishing clusters in this study. Cluster marker 122 
genes were also more strongly enriched for genes encoding conserved brain region-specific 123 
neurodevelopment/neuroanatomy-associated TFs (nTFs, n=43) and ligands (“ligands”, n=35) compared to 124 
neuromodulatory receptors (“receptors”, n=108, Table S5; receptors versus nTFs, p≤8.33x10-4 for both 1° and 125 
2° clusters, FET; receptors versus ligands, p≤0.0068 for both; nTFs versus ligands, p≥0.75 for both, Fig. 2J), 126 
consistent with recent single cell RNA-seq (scRNA-seq) analyses of the mouse hypothalamus (Moffitt et al. 127 
2018). Notably, several nTFs involved in dorsal-ventral patterning in early neural development exhibited striking 128 
polarity in expression across clusters (Fig. 2F). For example, dlx genes and isl1 mark the ventral telencephalon 129 
while emx genes mark the dorsal telencephalon during the neurula stage (Sylvester et al. 2013), suggesting 130 
that transcriptional signatures of developmental patterning are present in adult neurons. Together these data 131 
may reflect organizing principles whereby transcriptional programs related to neurodevelopment and ligand 132 
synthesis are less labile, while neuromodulatory receptors are expressed more promiscuously across cell 133 
populations.  134 

 135 

 136 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.08.09.503380doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.09.503380
http://creativecommons.org/licenses/by-nc-nd/4.0/


 137 

Figure 2. Molecular and cellular diversity of the cichlid telencephalon. (A) Schematic of experimental 138 
pipeline for snRNA-seq. (B) Nuclei cluster into 1° (n=15) and 2° (n=53) clusters. (C) Known marker genes 139 
reveal distinct clusters of excitatory neurons (slc17a6+), inhibitory neurons (gad2+), oligodendrocytes and 140 
oligodendrocyte precursor cells (olig2+), radial glia (fabp7+), as well as other less abundant cell types (not 141 
shown, see Table S2). (D) Clusters are distinguished by genes that exhibit near cluster-exclusive expression 142 
(top rows) as well as established cell type marker genes (bottom rows). Conserved nTFs (E, F) and ligands 143 
(and related genes; G, H) exhibit conserved neuroanatomical expression profiles in teleost fishes (E, G show 144 
schematic representations of conserved expression patterns), and show distinct expression in specific clusters. 145 
(I) Cluster proportions are consistent across 38 males (yellow and turquoise coded columns in top stacked bar 146 
chart represent building and control subjects, respectively). (J) nTF and ligand genes are differentially 147 
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overrepresented among 1° and 2° cluster markers compared to receptor genes. Anatomical figures adapted 148 
with permission from Dr. Karen Maruska (Maruska et al. 2017).  149 

Building, quivering, and gonadal physiology are associated with signatures of neuronal excitation in 150 
distinct cell populations 151 

To identify candidate cell populations that may regulate castle-building behavior, we first investigated 152 
transcriptional signatures of neuronal excitation. Neuronal excitation triggers intracellular molecular cascades 153 
that induce transcription of conserved immediate early genes (IEGs) (Lyons and West 2011), and mapping IEG 154 
expression is a strategy for identifying neuronal populations that are excited by specific stimuli or behavioral 155 
contexts (Guzowski et al. 2005). IEG transcripts tend to be recovered at lower levels compared to other genes 156 
in sc/snRNA-seq data (Y. E. Wu et al. 2017; Lacar et al. 2016; Moffitt et al. 2018). To better track these signals, 157 
we identified genes that were selectively co-transcribed with three established IEGs (c-fos, egr1, npas4) 158 
independently across 2° clusters. In total, we identified 25 “IEG-like” genes (Table S6), most (17/25, 68%) of 159 
which had previously been identified as IEGs, but eight of which have not (predicted homologues of human 160 
DNAJB5, ADGRB1, GPR12, ITM2C, IRS2, RTN4RL2, RRAD; Fig. 3A). These genes may include new markers 161 
of neuronal excitation.  162 

We assigned each nucleus an “IEG score,” equal to the number of unique IEG-like genes expressed. To 163 
disentangle building-, quivering-, and GSI-associated signals, we tested a sequence of models in which these 164 
variables competed in different combinations to explain variance in IEG score. Effects were considered 165 
significant if the raw p-value was significant (p<0.05) in every model and if the FDR-adjusted harmonic mean 166 
p-value (hmpadj) was significant across models (hmpadj<0.05) (Wilson 2019). Building was associated with 167 
increased IEG expression in 9_Glut (hmpadj=0.0016; Fig. 3B), a cluster with gene expression patterns reflective 168 
of Dd and Dc, two pallial brain regions (Martinelli et al. 2016). We also reasoned that some behaviorally-relevant 169 
populations may not align with clusters. For example, neuropeptides can diffuse to modulate distributed cell 170 
populations expressing their target receptors (Johnson and Young 2017), and other behaviorally relevant 171 
populations may represent a small proportion of one cluster. We therefore analyzed populations defined by 172 
nTF, ligand, and receptor genes, as well as a small set of additional genes of interest (n=17, “Other”, Table 173 
S5), both within clusters and regardless of cluster. IEG score was associated with building, quivering, and GSI 174 
in distinct cell populations (Fig. 3B; Table S6). Building was associated with IEG score in three populations 175 
defined regardless of cluster (elavl4+, cckbr+, ntrk2+), and in 4_GABA htr1d+, 4_GABA vipr2+, 15_GABA/Glut 176 
tacr2+, 11_Glut cckbr+, and 11.1_Glut npr2+ nuclei (Fig. 3C), consistent with a role for these molecular systems 177 
in the neural coordination of building. Quivering was associated with IEG score in 5.2_GABA etv1+ nuclei, a 178 
subpopulation strongly expressing a suite of dopamine (e.g. etv1, th, dat, vmat) and progenitor (e.g. etv1, pax6) 179 
neuron marker genes that are known to be expressed in the olfactory bulb granule cell layer, a region in which 180 
new dopaminergic neurons are born in adult teleosts. These data are consistent with previous work showing 181 
activation of olfactory and dopaminergic circuitry during courtship in diverse systems (Keleman et al. 2012; van 182 
Furth, Wolterink, and van Ree 1995; Ishii and Touhara 2019; Louilot et al. 1991; Johnson and Young 2015). 183 
Building- and quivering-associated IEG signals were most strongly associated with behavior expressed 184 
approximately 60 minutes prior to sample collection, consistent with previously reported IEG nuclear RNA time 185 
courses (Lacar et al. 2016) and further reinforcing their behavioral significance (Fig. 3D).  186 
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 187 

Figure 3. Distinct cell populations exhibit building-, quivering-, and gonadal-associated IEG expression. 188 
(A) 25 genes were selectively co-expressed with c-fos, egr1, and npas4 across cell populations. (B) Building-, 189 
quivering-, and gonadal-associated IEG expression was observed in distinct clusters and (C) gene-defined 190 
populations (filled squares indicate significant effects, q<0.05). (D) IEG expression was most strongly 191 
associated with the amount of building (top) and quivering (bottom) behavior performed approximately 60 192 
minutes prior to tissue freezing.  193 

A minority of neuronal populations account for the majority of building-associated gene expression 194 

Social behaviors have been linked to large changes in brain gene expression in diverse lineages (Robinson, 195 
Fernald, and Clayton 2008; Baran and Streelman 2020; Patil et al. 2021; York et al. 2018), but the underlying 196 
cell populations driving these effects are not well understood. We performed an unsupervised analysis to 197 
identify differentially expressed genes (DEGs) in specific clusters. A relatively small subset of neuronal clusters 198 
accounted for a disproportionate number of building-associated DEGs (bDEGs), a pattern that was also true of 199 
quivering-associated DEGs (qDEGs) and gonadal-associated DEGs (gDEGs; Fig. 4A; Table S7). bDEGs were 200 
overrepresented in three excitatory neuronal clusters (8_Glut, 9_Glut, 10_Glut; q≤1.83x10-4 for all), qDEGs 201 
were overrepresented in two neuronal clusters (15_GABA/Glut, 11_Glut, q≤0.036 for both), and gDEGs were 202 
overrepresented in one inhibitory neuronal cluster (5_GABA, q=1.30x10-5). bDEGs were overrepresented in a 203 
suite of aligned 2° clusters (q≤6.69x10-4 for all), qDEGs were overrepresented in 15.2_GABA, 8.1_Glut, and 204 
8.6_Glut (q≤0.0074 for all), and gDEGs were overrepresented in 8.3_Glut and 8.4_Glut (q≤0.039 for both). 205 
Thus, distinct clusters were overrepresented for bDEGs, qDEGs, and gDEGs. Interestingly, despite these non-206 
overlapping signals across clusters, a substantial set of bDEGs, gDEGs, and qDEGs were the same individual 207 
genes (n=81), consistent with behavior and gonadal hormones recruiting common transcriptional programs in 208 
distinct populations (Fig. 4B). These results highlight a small set of 1° and 2° neuronal clusters as candidate 209 
regulators of castle-building behavior.  210 

Behavior-associated DEGs exhibited a strong direction bias, and were predominantly upregulated in both 1° 211 
and 2° clusters (p≤1.39x10-12 for all, Fig. 4C). In contrast, gDEGs tended more modestly toward upregulation 212 
in 1° clusters (1° gDEG effects, p=2.09x10-5) and were not directionally biased in 2° clusters (2° gDEG effects, 213 
p=0.92). Upregulated bDEGs, qDEGs, and gDEGs were each independently enriched for a large number of 214 
the same GO terms (q<0.05 for 499 GO Biological Processes, 147 GO Cellular Components, and 111 GO 215 
Molecular Functions), the strongest of which were related to synaptic transmission and plasticity (e.g. “synaptic 216 
signaling,” q≤3.54x10-50 for all; “regulation of synaptic plasticity,” q≤1.83x10-18 for all) or cell differentiation and 217 
neurogenesis (e.g. “nervous system development,” q≤6.93x10-47 for all; “neurogenesis,” q≤4.49x10-35 for all; 218 
“cell morphogenesis involved in neuron differentiation,” q<6.96x10-29 for all; Fig. 4D), suggesting behavior- and 219 
gonadal-associated regulation of synaptic function and cell morphogenesis.  220 
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Estrogen response elements are enriched in behavior- and gonadal-associated differentially expressed 221 
genes  222 

Estrogen regulates social behavior in diverse species and has been linked to both neuronal excitability and 223 
neurogenesis (Diotel et al. 2013; Duarte-Guterman et al. 2015; Kelly and Rønnekleiv 2009; Sarkar et al. 2008). 224 
Estrogen can also regulate gene expression by binding to estrogen receptors (ERs), forming a complex that 225 
translocates into the nucleus and acts as a TF by binding to Estrogen Response Elements (EREs) in DNA 226 
(Klinge 2001; Amenyogbe et al. 2020). bDEGs, gDEGs, and qDEGs were independently enriched for EREs, 227 
consistent with a role for estrogen in modulating behavior- and gonadal-associated gene expression 228 
(p≤2.92x10-4 for all; Fig. 4E; ERE-containing gene list in Table S8). ERE-containing bDEGs (n=22 unique 229 
genes) were most strongly enriched for GO terms including “modulation of chemical synaptic transmission” (top 230 
GO Biological Process, q=2.30x10-4) and “Schaffer collateral - CA1 synapse” (top Cellular Component, 231 
q=2.22x10-5), consistent with building-associated estrogenic regulation of synaptic function. These data support 232 
a role for estrogen in castle-building behavior.   233 

 234 

Figure 4. Building, quivering, and GSI are associated with distinct patterns of cell type-specific gene 235 
expression. (A) Distinct 1° and 2° clusters show a disproportionate number of bDEGs, qDEGs, and gDEGs. 236 
(B) A set of 81 genes exhibits building-, quivering, and gonadal-associated expression in largely non-237 
overlapping clusters. (C) Behavior-associated gene expression is driven by upregulation, whereas gonadal-238 
associated gene expression is driven by a balance of up- and downregulation. (D) bDEGs, qDEGs, and gDEGs 239 
are enriched for GO terms related to synaptic structure, function, and plasticity; neurotransmission; and 240 
neurogenesis. (E) bDEGs, qDEGs, and gDEGs are enriched for EREs. Violin plots show cluster-specific ERE-241 
containing bDEG effects and feature plots below show the clusters (blue) in which each effect was observed. 242 
GO terms followed by asterisks are abbreviated.  243 

Castle-building is associated with neuronal rebalancing in the putative fish hippocampus 244 

The enrichment of neurogenesis-related GO terms among bDEGs motivated us to further investigate building-245 
associated neurogenesis. During neurogenesis, new neurons differentiate into specific neuronal populations 246 
(Mira and Morante 2020; Götz and Huttner 2005), and we therefore reasoned that building-associated 247 
neurogenesis may result in build-associated changes in the relative proportions of specific neuronal 248 
populations. Analysis of cluster-specific proportions revealed building-associated increases in the relative 249 
proportion of 8.4_Glut (q=0.013; Fig. 5A,B) and decreases in the relative  proportion of 8.1_Glut (q=7.67x10-4; 250 
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Fig. 5A,C). The relative proportions of 8.4_Glut and 8.1_Glut were negatively correlated across subjects, such 251 
that greater proportions of 8.4_Glut predicted lesser proportions of 8.1_Glut (R=-0.50, p=0.0012; Fig. 5D). 252 
Notably, 8_Glut was distinguished by markers of the lateral region of the dorsal telencephalon (Dl; Table S2), 253 
a brain region that is important for spatial learning, memory, and behavior in other fish species. Dl is the putative 254 
fish homologue of the mammalian hippocampus, a region in which adult neurogenesis regulates spatial 255 
learning and memory (Clark et al. 2008; Clelland et al. 2009).  256 

Castle-building is associated with increased expression of genes that positively regulate neurogenesis 257 

To further investigate building-associated neurogenesis, we identified 87 genes with the GO annotation 258 
“positive regulation of neurogenesis” in both zebrafish and mice (“proneurogenic” genes, pNGs, Table S9) and 259 
analyzed their expression across clusters and gene-defined populations. Building was associated with 260 
increased pNG expression in six 1° clusters (8_Glut, 9_Glut, 10_Glut, 11_Glut, 15_GABA/Glut, 4_GABA) and 261 
ten aligned 2° clusters (including 8.4_Glut; hmpadj≤0.020 for all; Fig. 5E). The most significant building-262 
associated pNG expression was observed in 8_Glut (Fig. 5F, hmpadj=1.23x10-17), and pNG expression in 263 
8.4_Glut specifically was positively associated with its relative proportion (R=0.33, p=0.041). In contrast to 264 
building, gonadal-associated pNG expression was increased in 10.2_Glut (hmpadj=0.010) and decreased in 265 
4.8_GABA (hmpadj=0.0048), and quivering was not associated with pNG expression in any 1° or 2° clusters 266 
(Fig. 5E). Notably, the magnitude of effect (β) estimates for building-associated pNG expression in 2° clusters 267 
were always greater than in their “parent” 1° clusters, and many gene-defined subpopulations within clusters 268 
exhibited stronger building-associated pNG expression than their parent 1° or 2° clusters. For example, within 269 
15_GABA/Glut, building-associated pNG estimates were >3x greater in subpopulations defined by expression 270 
of adra2b (βcond==0.188) and esr2 (βcond=0.154) compared to 15_GABA/Glut as a whole (βcond=0.048). Among 271 
2° clusters, the most extreme cases of this pattern included 8.2_Glut drd4+, 8.4_Glut htr4+, 9.1_Glut sstr5+, 272 
9.6_Glut htr4+, 10.1_Glut ntrk2+ nuclei, and 11.1_Glut ntrk2+ nuclei (hmpadj≤0.018 for all). Among populations 273 
defined regardless of cluster, those exhibiting building-associated pNG expression were disproportionately 274 
defined by neuromodulatory receptor and ligand genes versus nTFs (receptors versus nTFs, q=0.011; ligands 275 
versus nTFs, q=0.017; FET; Fig. 5G), and those exhibiting the strongest building-associated pNG expression 276 
(β) effects were disproportionately defined by neuromodulatory receptor genes (q=0.011; Fig. 5H), and by ERs 277 
in particular (q=0.034; Fig. 5I), consistent with a large body of literature supporting relationships between 278 
estrogen and neurogenesis (Diotel et al. 2013; Duarte-Guterman et al. 2015). These results highlight specific 279 
molecular signaling systems (e.g. estrogen, serotonin, TrkB) that may be involved in building-associated 280 
neurogenic changes.  281 

Building is associated with changes in glial cell biology 282 

Radial glia (RG) are the primary source of new neurons in adult teleosts (Ganz and Brand 2016), and we 283 
therefore reasoned that signatures of neurogenesis may be downstream effects of changes in RG function. We 284 
first investigated building-associated gene expression within radial glia (1.1_RG and 1.2_RG pooled). We 285 
identified 25 bDEGs that were collectively enriched for "neuron development” (top GO Biological Process, 286 
q=8.18x10-4) as well as “astrocytic glutamate-glutamine uptake and metabolism” (top Pathway, q=0.0010) and 287 
"synapse" (top GO Cellular Component, q=0.0015). RG bDEGs included cyp19a1 (upregulated; Fig. 5J), the 288 
gene encoding aromatase, an enzyme that converts testosterone to brain-derived estrogen and has been 289 
previously linked to RG function and neurogenesis (Pellegrini et al. 2016). 290 

RG can occupy distinct functional states including quiescence, cycling, and neuronal differentiation (Jurisch-291 
Yaksi, Yaksi, and Kizil 2020; Adolf et al. 2006; Labusch et al. 2020). We re-clustered RG (independently of 292 
non-RG nuclei) into 11 subclusters (RG0-RG10; Fig. 5K) and assigned each nucleus a quiescence, cycling, and 293 
neuronal differentiation score based on established marker genes (Table S10), and analyzed building-294 
associated differences in these scores across subclusters. Building was associated with decreased quiescence 295 
score in RG2 (hmpadj=0.010; Fig. 5L), but was not associated with quiescent, cycling, or neuronal differentiation 296 
score in any other subcluster. Analysis of building-associated gene expression across subclusters further 297 
revealed that 19/61 subcluster bDEGs were in RG2, and 18/19 effects reflected building-associated 298 
downregulation. The strongest enrichment hit for RG2 bDEGs was GO Cellular Component “postsynaptic Golgi 299 
apparatus” (q=0.0011). cyp19a1 was excluded from analysis in several subclusters because it was not detected 300 
in all build-control pairs; however, a targeted analysis revealed that building-associated increases in cyp19a1 301 
were driven by RG3 (hmpadj=0.018; Fig. 5M), a subpopulation distinguished by lhx5 and gli3, both nTFs that 302 
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regulate neurogenesis in mammals (Y. Zhao et al. 1999; Hasenpusch-Theil et al. 2018). Lastly, because RG 303 
subclusters strongly aligned with functional states, we reasoned that building-associated transitions in RG 304 
function may also manifest as building-associated changes in subcluster proportions. Indeed, building was 305 
associated with an increase in the relative proportion of RG4 (q=0.0017; Fig. 5N), a subcluster positioned in 306 
UMAP space between nuclei expressing markers of quiescence and nuclei expressing markers of cycling. 307 
These data support building-associated changes in radial glial cell biology, and highlight RG2, RG3, and RG4 308 
as candidate RG subpopulations involved in building-associated and RG-mediated neurogenesis.  309 

 310 

Figure 5. Behavior is associated with signatures of neurogenesis in neurons and glia. (A-C) Building is 311 
associated with a shift in the relative proportions in 8.4_Glut and 8.1_Glut, and (D) the relative proportions of 312 
these two clusters is strongly correlated across individuals. (E) Building, but not quivering, is associated with 313 
increased pNG expression in a large set of 1° and 2° clusters, whereas GSI is associated with increased and 314 
decreased pNG expression in just three 2° clusters. (F) The most significant building-associated pNG 315 
expression is observed in 8_Glut. (G) Gene-defined populations that exhibit building-associated pNG 316 
expression are disproportionately defined by genes encoding receptors and ligands. (H) The strongest building-317 
associated pNG expression tends to occur in populations defined by neuromodulatory receptors, (I) particularly 318 
in ER-expressing populations. (J) RG exhibit building-associated cyp19a1 expression. (K) Reclustered RG 319 
subpopulations show building-associated (L) signatures of decreased quiescence (RG2), (M) cyp19a1 320 
expression (RG3), and (N) increases in proportion (RG4).  321 

Genes that have diverged in castle-building lineages are upregulated in reproductive contexts 322 

Castle-building behavior has previously been linked to a ~19 Mbp region on Linkage Group 11 (LG11), within 323 
which genetic variants have diverged between closely-related castle-building and pit-digging lineages (York et 324 
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al. 2018; Patil et al. 2021). Our follow up comparative genomics analyses identified 165/756 genes in this region 325 
that also showed signatures of divergence between castle-building lineages and more distantly-related “mbuna” 326 
species that do not build bowers (“castle-divergent” genes, CDGs; Fig. 6A; Table S11). Thus, CDGs represent 327 
a subset of genes bearing strong genomic signatures of castle-building evolution across Lake Malawi species. 328 
CDGs were expressed at higher levels in the telencephalon compared to neighboring genes in the same 19Mbp 329 
region (~2.9x greater expression, permutation test, p=1.42x10-5) and compared to other genes throughout the 330 
genome (~2.6x greater expression, p=1.77x10-6). CDGs were also overrepresented among 1° and 2° cluster 331 
markers (versus neighboring LG11 genes, p≤1.66x10-9 for both; versus all other genes, p≤1.43x10-11 for both, 332 
FET), and among upregulated bDEGs, qDEGs, and gDEGs (versus neighboring LG11 genes, p≤0.0044 for all; 333 
versus all other genes, p≤0.0066 for all, FET; Fig. 6B). These data support the behavioral significance of CDGs 334 
in the telencephalon, and suggest that castle-building evolution has targeted genes that are selectively 335 
upregulated during reproductive contexts. 336 

Castle-divergent genes are enriched in quiescent radial glial subpopulations 337 

CDGs were most strongly enriched in non-neuronal (2.1_OPC, 1.1_RG, and 1.2_RG), followed by neuronal 338 
(4.3_GABA and 4.4_GABA) clusters and gene-defined populations (5.2_GABA th+, and 9_Glut hrh3+; Fig. 6C; 339 
Table S12). We hypothesized that co-upregulation of subsets of CDGs in the same nuclei may drive cluster-340 
specific enrichment patterns. A WGCNA (Langfelder and Horvath 2008) based analysis revealed a module of 341 
12 CDGs that were more strongly co-expressed than other CDGs (stronger correlation coefficients, Welch t-342 
test, p=8.83x10-14; stronger silhouette widths, Welch t-test, p=0.016; Fig. 6D). Across clusters, this module was 343 
most strongly enriched in 1.2_RG (pperm=0, Cohen’s d=4.22), and was less strongly enriched in 1.1_RG 344 
(Cohen’s d=2.86; Fig. 6E), suggesting differences in expression among RG subpopulations (Table S13). Within 345 
RG, CDG module expression was positively associated with quiescent score (Fig. 6F-H; R=0.34, p=3.21x10-346 
52; pperm=0); and was negatively associated with cycling score (R=-0.089, p=9.90x10-5; pperm=0) and neuronal 347 
differentiation score (R=-0.065, p=0.0048; pperm=0). Analysis of co-expression between the module and known 348 
TFs (n=999) identified npas3 as an outlier that was most strongly co-expressed TF with the CDG module (Fig. 349 
6I; Table S14; R=0.47, q=3.19x10-100). npas3 suppresses proliferation in human glioma, is strongly expressed 350 
in quiescent neural stem cells, and is downregulated during hippocampal neurogenesis in mice (Moreira et al. 351 
2011; Shin et al. 2015). Among RG subclusters, the module was selectively enriched in RG1 (pperm=0.0196) 352 
and RG2 (pperm=0.046; Fig. 6J; Table S13), both of which selectively expressed genetic markers of RG 353 
quiescence. Together these data support that CDG module expression is positively related to RG quiescence.  354 

A subpopulation of glia links genome evolution to hippocampal-like neuronal rebalancing 355 

Building was associated with a decrease in CDG module score in RG2 (hmpadj=0.027; Fig. 6K), and an increase 356 
in CDG module score in RG8 (hmpadj=0.010). The only individual CDG module gene for which we detected 357 
building-associated expression was wdr73, which showed building-associated downregulation in RG1 and RG2 358 
(hmpadj≤4.54x10-89 for both; RG2 effect in Fig. 6L). These data raise the possibility of a building-associated 359 
downregulation of the CDG module and an exit from quiescence in RG2. We hypothesized that a building-360 
associated exit from quiescence in RG2 may contribute to building-associated neuronal rebalancing between 361 
8.4_Glut and 8.1_Glut. Consistent with this, the 8.4_Glut:8.1_Glut ratio was predicted by RG2 CDG module 362 
score (R=-0.52, p=6.91x10-4), wdr73 expression (R=-0.62, p=3.31x10-5), quiescent score (R=-0.42, p=0.0094), 363 
and npas3 expression (R=-0.52, p=8.20x10-4). All of these relationships were evident within building males only 364 
(8.4_Glut:8.1_Glut ratio versus RG2 CDG module score, R=-0.51, p=0.024; quiescent score, R=-0.42, p=0.059; 365 
versus RG2 wdr73 expression, R=-0.59, p=0.0074; npas3 expression R=-0.65, p=0.0027) but not within 366 
controls (p≥0.14 for all). In contrast, none of these relationships were evident in RG1, regardless of whether the 367 
analysis was conducted across all subjects (p≥0.13 for all) or restricted to building males (p≥0.074 for all). 368 
Together these data are consistent with a role for RG2 in neuronal rebalancing. 369 

In teleost fishes, anatomically distinct RG subpopulations vary in function and supply new neurons to distinct 370 
brain regions (Fig. 7A). We hypothesized that if RG2 was involved in 8.4_Glut:8.1_Glut neuronal rebalancing, 371 
then its anatomical distribution should be consistent with supplying new neurons to brain regions within which 372 
8.4_Glut nuclei reside. Spatial profiling revealed that 8.4_Glut and 8.1_Glut respectively mapped to ventral and 373 
dorsal Dl-v, a pallial subregion within Dl, the putatitve hippocampal homologue in fish (Fig. 7B-E). Thus, 374 
8.4_Glut and 8.1_Glut both mapped to dorsolateral pallial regions that receive new neurons from RG lining the 375 
pallial ventricular zone. RG2 was anatomically positioned along the pallial but not subpallial ventricular zone 376 
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(Fig. 7B-E), consistent with a potential to supply new neurons to Dl and other pallial regions. Together these 377 
data were consistent with a relationship between building-associated expression of the CDG module in RG2 378 
and neuronal rebalancing in 8.4_Glut and 8.1_Glut.379 

 380 

Figure 6. Genomic signatures of castle-building evolution link behavior, radial glial function, and 381 
hippocampal-like neuronal rebalancing. (A) Comparative genomics identifies 165 CDGs (CDG module 382 
genes labeled in orange). (B) CDGs are enriched in the telencephalon, among 1° and 2° cluster marker genes, 383 
and among bDEGs, qDEGs, and gDEGs. (C) CDGs are most strongly enriched in non-neuronal populations 384 
(y-axis shows the percentage of genes expressed that were CDGs). (D) A “CDG module” (orange) contains 12 385 
CDGs that are strongly co-expressed across nuclei. (E) The CDG module is most strongly enriched in radial 386 
glia. (F,G) CDG module expression across radial glial subclusters mirrors expression of quiescent markers. (H) 387 
Expression of the CDG module is positively correlated with expression of radial glial quiescence markers. (I) 388 
npas3 shows strong, positive, outlier co-expression with the CDG module. (J) RG1 and RG2 are enriched for 389 
the CDG module. (K) RG2 exhibits building-associated decreases in expression of the CDG module and wdr73 390 
in particular (L).  391 

Populations excited during building may project to the putative fish hippocampus 392 

In the mammalian hippocampus, the activity of local circuits and incoming projections regulate differentiation 393 
of glial cells into new neurons (Pardal and López Barneo 2016; Song et al. 2016). We reasoned that neural 394 
activity may similarly regulate building-associated mobilization of RG2 and neuronal rebalancing. We used 395 
CellChat (Jin et al. 2021) to investigate possible connections among 1° clusters, 2° clusters, RG subclusters, 396 
and nine gene-defined populations that, in addition to 9_Glut, showed signatures of building-associated 397 
excitation (“build-IEG+”; Table S15). Briefly, this tool estimates the molecular potential for connection (“weight”) 398 
between cell populations using known cell-cell adhesion and ligand-receptor binding proteins. Unlike most other 399 
tools, CellChat increases robustness by additionally accounting for heteromeric complexes and interaction 400 
mediator proteins (Dimitrov et al. 2022). As added control, we compared connections between pairs of 401 
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populations to connections between randomly permuted cell populations of the same size, enabling us to 402 
identify connection weights that were greater than 100% of permuted results (Fig. 7F). Weights among neuronal 403 
populations of interest (8.1_Glut, 8.4_Glut, and build-IEG+ populations) were greater than weights among other 404 
neuronal populations (Fig. 7G; p=0.03, Welch two-sample t-test) and among permuted populations (all >100% 405 
of permuted connections). Neuronal populations of interest differed in “sending” (p=0.0016, Kruskal-Wallis rank 406 
sum test) and “receiving” (1.48x10-14) weights, and 8.4_Glut (receiver) had the greatest weights of any sender 407 
or receiver (Fig. 7H-I). Compared to other neuronal populations, build-IEG+ populations had greater sending 408 
weights to 8.4_Glut (p=0.027, Welch two-sample t-test), but not to 8.1_Glut (p=0.25; Fig. 7H). These data 409 
support a model whereby neuronal populations that fire during building project preferentially to 8.4_Glut 410 
neurons.  411 

Neuronal firing can increase the strength of synaptic connections. ~2% (64/3,136) of neuronal-neuronal 412 
connections exhibited building-associated changes in weight, with building males exhibiting stronger weights 413 
in every case. These connections were enriched for build-IEG+ senders (22/64, p=0.0014, FET) and 8.4_Glut 414 
as a receiver (7/64, p=1.11x10-4), but not for build-IEG+ receivers, 8.4_Glut as a sender, or 8.1_Glut as a 415 
sender or receiver (p≥0.50 for all; Fig. 7J). Build-IEG+ sender connections that showed building-associated 416 
change were enriched for 8.4_Glut as a receiver (4/22, p=3.24x10-4), and 8.4_Glut receiver connections that 417 
showed building-associated changes were enriched for build-IEG+ populations as senders (4/7, p=0.015). 418 
These patterns were driven by senders 9_Glut (Fig. 7K; hmpadj=0.0028), 4_GABA htr1d+ (Fig. 7L; 419 
hmpadj=0.0081), 4_GABA vipr2+ (Fig. 7M; hmpadj=0.0027), ntrk2+ (hmpadj=0.011) and 8.4_Glut (receiver). 420 
These data highlight specific populations that may project to Dl-v and fire during building. 421 

A behavioral circuit model for activity- and glial-dependent neurogenesis in the putative hippocampus 422 

To investigate relationships among building-associated neural activity, changes in RG biology, and 423 
8.4_Glut:8.1_Glut neuronal rebalancing, we used a regularized (LASSO) multiple mediation approach. Briefly, 424 
this tested if the relationship between building and 8.4_Glut:8.1_Glut ratio was influenced by any of the following 425 
variables: GSI, quivering, all significant RG subcluster and CDG module-related effects (RG1 wdr73, RG2 426 
wdr73, RG2 CDG module score, RG8 CDG module score, RG3 cyp19a1, RG4 proportion), IEG score in all ten 427 
build-IEG+ populations, and IEG score in 8.1_Glut and 8.4_Glut (Fig. 7N). This analysis revealed RG2 wdr73 428 
expression and 4_GABA htr1d+ IEG score as the only predicted mediators of building-associated neuronal 429 
rebalancing (Fig. 7N). To investigate candidate signals that may drive building-associated decreases in RG2 430 
wdr73 expression, we performed a similar analysis with RG2 wdr73 as the outcome. This analysis revealed 431 
IEG score in 9_Glut and 4_GABA vipr2+ as the only predicted mediators of RG2 wdr73 expression (Fig. 7N). 432 
These data support a model whereby building-associated neural activity in 9_Glut and subpopulations of 433 
4_GABA, together with RG2, coordinate neuronal rebalancing in Dl-v. Consistent with this model, spatial 434 
integration mapped 9_Glut to the dorsal region of the dorsal telencephalon (Dd) and 4_GABA to 435 
dorsal/supracommissural regions of the ventral telencephalon (Vd/Vs; Fig. 7C-E),  both of which are 436 
reciprocally connected with Dl-v in other teleosts (O’Connell and Hofmann 2011b; Giassi, Ellis, and Maler 437 
2012).  438 

Among populations of interest, connection weights were weakest for RG2 as a receiver (Fig. 7I), consistent with 439 
a lack of direct connections between build IEG+ populations and RG2. In the mammalian hippocampus, neural 440 
activity can regulate glial differentiation into new neurons through “spillover”, or ligand release, diffusion, and 441 
binding to target receptors in the absence of direct synaptic connections. We reasoned that a spillover model 442 
may be sufficient to explain the data: excitation of 9_Glut, 4_GABA vipr2+, and 4_GABA htr1d+ during building 443 
causes secretion of ligands that diffuse and bind to target receptors expressed on nearby RG2 lining the 444 
ventricular zone of Dl-v, causing RG2 to differentiate into new 8.4_Glut neurons. Consistent with this model, 445 
examination of ligands expressed in 9_Glut, 4_GABA vipr2+, and 4_GABA htr1d+ and their paired target 446 
receptors in RG2 revealed NRG2-ERBB4 as the top pair (Fig. 7O). nrg2 was one of 81 bDEGs identified in 447 
9_Glut (Fig. 7P), and erbb4 was preferentially expressed in RG2 compared to other RG, and in 8.4_Glut 448 
compared to 8.1_Glut and compared to other 8_Glut neurons (Fig. 7Q). NRG2-ERBB4 binding promotes both 449 
glial cell and neuronal differentiation and, in humans, migration of glioma cells (Ghashghaei et al. 2006; 450 
Louhivuori et al. 2018; W.-J. Zhao et al. 2021). Together our data identify a plausible circuit model whereby 451 
building-associated neural activity, together with an evolutionarily divergent gene module in glia, coordinate a 452 
cellular reorganization of Dl-v during building (Fig. 7R). 453 
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 454 

Figure 7. A circuit model for behavior-associated cellular reorganization in hippocampal-like Dl-v. (A) 455 
RG differ in morphology, function, and anatomical distribution (e.g. pallial versus subpallial ventricular zones). 456 
(B) Spatial profiling enables neuroanatomical mapping of RG2, 8.1_Glut, 8.4_Glut, and additional neuronal 457 
populations of interest, as illustrated in three individuals (C-E). RG2 (orange) aligns with the pallial but not 458 
subpallial ventricular zone, and 8.1_Glut versus 8.4_Glut aligns with dorsal versus ventral Dl-v, respectively. 459 
(F) Cell-cell communication analysis of randomly permuted populations separates bi-modally distributed 460 
connections among real populations. (G) Connection weights among populations of interest are stronger than 461 
among other populations. (H) Connection weights among build-IEG+ populations are greater than among other 462 
neuronal populations, and connection weights and between build-IEG+ populations (senders) and 8.4_Glut 463 
(receiver) are greater compared to other neuronal populations (senders) and 8.4_Glut (receiver). (I) 464 
Connections to 8.4_Glut (receiver) were greater than any other type of connection among populations of 465 
interest. (J) Connections exhibiting building-associated increases in strength were enriched for build-IEG+ 466 
senders and for 8.4_Glut as a receiver. (K-M) Connections from 9_Glut, 4_GABA htr1d+, and 4_GABA vipr2+ 467 
to 8.4_Glut all exhibit building-associated increases in weight. (N) Regularized multiple mediation analysis 468 
supports RG2 wdr73 expression and 4_GABA htr1d+ IEG expression as mediators of 8.4_Glut:8.1_Glut 469 
neuronal rebalancing, as well as 9_Glut and 4_GABA vipr2+ IEG expression as mediators of RG2 wdr73 470 
expression. (O) NRG2-ERBB4 is the strongest cell-cell molecular signaling pathway identified between 9_Glut, 471 
4_GABA htr1d+, and 4_GABA vipr2+ (senders) and RG2 (receiver). (P) nrg2 shows building-associated 472 
upregulation in 9_Glut. (Q) erbb4 shows preferential expression in both RG2 and 8.4_Glut. (R) A circuit model 473 
for how neural activity and RG2 wdr73 expression may coordinate building-associated neuronal rebalancing in 474 
Dl-v.  475 
 476 
DISCUSSION 477 
 478 
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The diversity of social behaviors in nature is an opportunity to discover how conserved genes and cell 479 
populations generate variable neural and behavioral responses to social stimuli (Johnson and Young 2018; 480 
Jourjine and Hoekstra 2021; Hofmann et al. 2014; O’Connell and Hofmann 2011a). The ability to functionally 481 
profile many heterogeneous cell populations in under- and unstudied behavioral and species systems will be a 482 
boon to this endeavor. In this study we investigated the neurobiological substrates of castle-building in Mchenga 483 
conophoros by integrating snRNA-seq with comparative genomics and automated behavior analysis. Using 484 
natural individual genetic variation, we matched telencephalic nuclei back to 38 test subjects, enabling powerful 485 
analyses of building-associated signals that controlled for correlated variables that may explain differences in 486 
brain gene expression.  We first charted the cellular diversity of the telencephalon, and then profiled behavior- 487 
and gonadal-associated gene expression, cell type proportions, genomic signatures of behavioral evolution, 488 
and cell-cell signaling systems across telencephalic cell populations. Our results support central and related 489 
roles for glia, genome evolution, hippocampal-like neurogenesis, and cell type-specific neural activity in castle-490 
building behavior.  491 

Signatures of neuronal excitation reveal candidate populations activated during building 492 

Different social behaviors are regulated by distinct neural circuits and/or circuit activities in the brain (Newman 493 
1999; Goodson 2005; Amadei et al. 2017; Kimchi, Xu, and Dulac 2007; Dulac, O’Connell, and Wu 2014). 494 
Identifying which cell populations are important for a specific behavior is difficult, because most tools cannot 495 
functionally profile many heterogeneous cell populations at once. Three previous studies have supported the 496 
promise of sn/scRNA-seq technologies for mapping behavior-associated IEG expression across many cell 497 
populations (Lacar et al. 2016; Moffitt et al. 2018; Y. E. Wu et al. 2017); however, all three studies were 498 
conducted in the same genetically inbred C57BL6/J mouse strain, and thus cells that were pooled for 499 
sequencing could not be matched back to individual animals. In our study, we leveraged natural genetic 500 
variation among individuals to trace ~34,000 nuclei back to 38 individual males and analyzed building-501 
associated IEG expression while accounting for variance explained by other biological and technical factors. 502 
Our analysis revealed novel IEG-like genes and distinct patterns of building-, quivering-, and GSI-associated 503 
neuronal excitation across clusters and gene-defined cell populations. Building was associated with increased 504 
IEG expression in 9_Glut. Spatial profiling mapped 9_Glut to Dd, a pallial region that innervates Dl in a many-505 
to-one fashion in other fish, mirroring the conserved “pattern separator” circuit organization within the 506 
mammalian hippocampus (Elliott et al. 2017). ntrk2+ nuclei also exhibited building-associated IEG expression, 507 
highlighting the TrkB system as a candidate player in castle-building. TrkB is a receptor that transduces activity-508 
dependent signals into downstream modulation of neuronal differentiation, morphogenesis, survival, and long 509 
term potentiation (LTP) (Badurek et al. 2020; Lipsky and Marini 2007). Interestingly, ntrk2+ nuclei also exhibited 510 
building-associated pNG expression, suggesting TrkB may link building-associated neuronal firing to building-511 
associated neuronal plasticity. The only other population that exhibited both building-associated IEG and pNG 512 
expression was defined by expression of cckbr (encodes Cholecystokinin B Receptor). Interestingly, this 513 
receptor has recently been linked to NMDA receptor-mediated LTP and hippocampal neurogenesis in mice 514 
(Asrican et al. 2020; Chen et al. 2019).  515 

A role for neurogenesis in social behaviors tied to reproductive cycles 516 

Analysis of differential gene expression, pNG expression, cluster proportions, behavior-associated genome 517 
divergence, and RG biology supported a role for neurogenesis in the evolution and expression of castle-building 518 
behavior. These analyses provided converging evidence for building-associated neurogenesis in 8_Glut, a 519 
cluster that anatomically mapped to Dl. Briefly, Dl is a brain region in the lateral pallium of fish that is thought 520 
to be homologous to the mammalian hippocampus based on gene expression, cell morphology, afferent and 521 
efferent connectivity, anatomical, and behavioral evidence (Fotowat et al. 2019; Bingman, Salas, and 522 
Rodriguez 2008; Rodríguez et al. 2002; O’Connell and Hofmann 2011b; Ganz et al. 2014; Salas et al. 2017; 523 
Ocaña et al. 2017). For example, the Dl and the hippocampus have demonstrated roles in regulating spatial 524 
learning in fish and mammals (including humans), respectively (Engelmann, Wallach, and Maler 2021; Vikbladh 525 
et al. 2019; Miller et al. 2018; Nakazawa et al. 2004). Within 8_Glut, building was associated with a shift in the 526 
relative proportions of 8.4_Glut and 8.1_Glut, two populations that mapped specifically to ventral Dl, a 527 
subregion that exhibits selective responses during spatial learning and memory formation in other fish species 528 
(Uceda et al. 2015; Ocaña et al. 2017). Our data thus support the possibility that building behavior is associated 529 
with a reorganization of hippocampal-like cell populations involved in spatial learning. Interestingly, changes in 530 
the social environment induce telencephalic cell proliferation and migration in other cichlid species within three 531 
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hours, supporting the idea that behavior-associated neurogenesis can occur on relatively short timescales 532 
(Maruska, Carpenter, and Fernald 2012).  533 

In the wild, bowers are constructed selectively during the breeding season and function as social territories that 534 
males aggressively defend against intruders, as well as mating sites for courtship and spawning with females. 535 
Bowers are constructed through thousands of spatial decisions about where to scoop and spit sand that 536 
ultimately give rise to a species-specific geometric structure. It has been reported in several species that in 537 
response to structural damage or destruction (e.g. caused by storms), males will repair or reconstruct the bower 538 
to match the size, geometry, and spatial location of the original structure (McKaye, Louda, and Stauffer 1990; 539 
Kirchshofer 1953). After the breeding season ends, bowers lose their social significance and are abandoned. 540 
Together, these data suggest that spatial learning, memory, and decision-making play a central role in bower-541 
building, and further that spatial representations of the bower are maintained within breeding cycles. 542 
Importantly, in our paradigm, control males had previously built, suggesting that the rebalancing was temporary 543 
and eventually returned to baseline in the absence of building activity. Within this framework, it is intriguing to 544 
speculate that hippocampal-like neuronal rebalancing during building may be related to spatial representations 545 
of the bower structure and/or territory. Notably, similar phenomena have been reported in songbirds that repeat 546 
their song within a breeding season, but change their song between seasons (Brenowitz and Larson 2015; 547 
Goldman and Nottebohm 1983). These birds show robust increases in cell proliferation in vocal learning circuits 548 
during the breeding season that decline when the season is over. Neurogenesis may play an important role in 549 
seasonal mating behaviors across species, consistent with previous work demonstrating changes in brain 550 
region-specific cell proliferation and/or neurogenesis during species-specific social contexts in a variety of taxa 551 
(Walton, Pariser, and Nottebohm 2012; Bedos, Portillo, and Paredes 2018; Almli and Wilczynski 2012; 552 
Balthazart and Ball 2016; Maruska, Carpenter, and Fernald 2012; Dunlap, Chung, and Castellano 2013; Lévy 553 
et al. 2017).Estrogenic substrates of male social behavior 554 

Estrogen is a female gonadal steroid hormone that can be synthesized in the male brain via conversion of 555 
testosterone to estrogen by aromatase (L. R. Nelson and Bulun 2001). In the brain, estrogen can exert its 556 
effects at multiple levels, for example by regulating gene transcription (via EREs), neuronal excitability, synaptic 557 
plasticity, neurogenesis, and G-protein coupled receptor signaling (Kelly and Rønnekleiv 2009). Multiple lines 558 
of evidence supported a potential role for estrogen in the neural coordination of building. First, bDEGs (as well 559 
as qDEGs and gDEGs) contained canonical EREs, consistent with a role for estrogen in modulating building-560 
associated gene transcription. Out of all GO terms, ERE-containing bDEGs were most strongly enriched for 561 
“Schaffer collateral - CA1 synapse” (driven by building-associated expression of cacng2, ppp3ca, ptprd, ptprs, 562 
and l1cam), a deeply studied hippocampal synapse involved in associative learning and spatial memory in mice 563 
(Nakazawa et al. 2004; Soltesz and Losonczy 2018). In mice, estrogen increases the magnitude of long-term 564 
potentiation at this synapse (C. C. Smith, Vedder, and McMahon 2009). It is interesting to speculate that 565 
estrogen may regulate plasticity in a conserved hippocampal circuit during castle-building behavior. Second, 566 
building-associated increases in pNG expression were strongest in populations defined by neuromodulatory 567 
receptor genes, and were stronger in populations defined by ERs (esr1, esr2, esrra, esrrb, esrrg) compared to 568 
other receptor families, consistent with previous reports of estrogen-mediated neural plasticity in the 569 
mammalian forebrain (Barha and Galea 2010; Brinton 2009; Srivastava and Penzes 2011). Third, building was 570 
associated with strong increases in aromatase expression in RG, an effect that was driven most strongly by 571 
RG3. This glial population may coordinate building-associated effects of estrogen on brain gene expression, 572 
neural circuit structure and function, and male social behavior, consistent with previous work demonstrating 573 
estrogenic regulation of male social behaviors in diverse lineages (M. V. Wu et al. 2009; Huffman, O’Connell, 574 
and Hofmann 2013; Sonoko Ogawa et al. 2020; Ervin et al. 2015).  575 

An evolutionarily divergent gene module links neural activity and stem-like glia to hippocampal-like 576 
neurogenesis and behavior 577 

Glial cells have recently been shown to play central roles in synaptic communication, plasticity, learning, 578 
memory, behavior, and psychiatric disease (Santello, Toni, and Volterra 2019; Kastanenka et al. 2020; Nagai 579 
et al. 2021; X. Yu et al. 2018). In addition to building-associated aromatase expression in RG, we observed 580 
building-associated changes in RG subpopulation-specific gene expression, relative proportions, and 581 
signatures of quiescence. Comparative genomic analyses across 26 behaviorally-divergent species further 582 
converged on the importance of RG in castle-building behavior, raising the possibility that transcriptional 583 
specializations in glia have served as a substrate in castle-building evolution. A module of 12 co-expressed 584 
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CDGs was tightly linked to signatures of RG quiescence and was enriched in RG2, a population that showed 585 
building- associated downregulation of the CDG module (particularly wdr73), npas3, and markers of glial 586 
quiescence. Interestingly, one study in human epithelial cells found that suppressed wdr73 expression was 587 
most strongly associated with increased expression of ccnd1 (Tilley et al. 2021), an established marker of 588 
proliferation in RG/neural stem cells in vertebrates (Lukaszewicz and Anderson 2011; G. Zhang et al. 2021). 589 
Further analysis supported a circuit model whereby behavior-associated neuronal excitation of principal striatal 590 
GABAergic (4_GABA htr1d+ and 4_GABA vipr2+) and pallial glutamatergic (9_Glut) projections to 8.4_Glut 591 
nuclei in Dl-v mediate building-associated decreases in wdr73 expression in RG2, which in turn mediates 592 
behavior-associated neuronal rebalancing. Examination of molecular ligand-receptor pairs expressed between 593 
build-IEG+ populations and RG2 suggested that a simple spillover model mediated by NRG2-ERBB4 may 594 
explain the effect. Our results thus support a model whereby castle-building evolved in part by modifying gene 595 
regulatory networks in a glial subpopulation that responds to behavior-associated neural activity and that 596 
regulates hippocampal-like neurogenesis. These data are consistent with previous work suggesting that 597 
activation of long-range projections into the hippocampus can regulate hippocampal neurogenesis (Káradóttir 598 
and Kuo 2018; Song et al. 2016).  599 

The CDG module resides in a 19 Mbp genomic region that exhibits signals of divergence mirroring those 600 
reported for chromosomal inversions in other species systems (Lamichhaney et al. 2016; da Silva et al. 2019; 601 
Tuttle et al. 2016; Corbett-Detig and Hartl 2012; Roesti et al. 2015; Maney et al. 2020; Berg et al. 2017). It is 602 
thought that inversions can facilitate rapid evolution by protecting large-scale and adaptive cis-regulatory 603 
landscapes and multi-allele haplotypes (“supergenes”) from recombination (Schaal, Haller, and Lotterhos 2022; 604 
Hoffmann and Rieseberg 2008; Kirkpatrick and Barton 2006; Villoutreix et al. 2021). Evidence for the 605 
importance of inversions in phenotypic evolution has been shown in diverse lineages spanning flowers and 606 
humans (Huang and Rieseberg 2020; Stefansson et al. 2005). Two recent studies in the ruff and white-throated 607 
sparrows further support that inversions may shape social behavioral evolution in diverse lineages (Merritt et 608 
al. 2020; Purcell et al. 2014; Küpper et al. 2016). In our data, four genes in the CDG module, including wdr73, 609 
are immediately proximate to one end of the 19 Mbp region exhibiting strong behavior-associated divergence. 610 
It is therefore intriguing to speculate that these genes reside near an inversion “break point” region with a 611 
divergent cis-regulatory architecture in castle-building lineages. Future work is needed to determine if an 612 
inversion has shaped cis-regulatory expression of these genes, RG function, and the evolution of castle-613 
building behavior in Lake Malawi cichlid fishes.  614 

LIMITATIONS OF THE STUDY 615 

The molecular readout in this study was nuclear RNA which may not reflect protein function, for example due 616 
to post-transcriptional regulation. Because nuclear RNA can only be captured at a single time point within each 617 
individual, temporal analysis of decision-making making behaviors during building was limited. This study only 618 
profiled the telencephalon, and other brain regions may play critical roles in castle-building. Lastly, firing 619 
properties and circuit connections among populations can be investigated but not proven using snRNA-seq 620 
data. Future experiments are required to validate and determine the behavioral roles of specific neural circuits. 621 
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STAR METHODS 663 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 664 

All cichlids (species Mchenga conophoros) used in this study were fertilized and raised into adulthood (>180 665 
days) in the Engineered Biosystems Building cichlid aquaculture facilities at the Georgia Institute of Technology 666 
in Atlanta, GA in accordance with the Institutional Animal Care and Use Committee guidelines (IACUC protocol 667 
number A100029). This colony was originally derived from wild-caught populations collected in Lake Malawi. 668 
All experimental animals were collected as fry at approximately 14 days post-fertilization from mouthbrooding 669 
females and were raised with broodmates on a ZebTec Active Blue Stand Alone system. At approximately 60 670 
days post-fertilization, animals were transferred to 190-L (92 cm long x 46 cm wide x 42 cm tall) glass aquaria 671 
and were housed in social communities (20-30 mixed-sex individuals) into adulthood. Environmental conditions 672 
of aquaria were similar to those of the Lake Malawi environment; subjects were maintained on a 12-h:12-h 673 
light:dark cycle with full lights on between 8am-6pm Eastern Standard Time (EST) and dim lights on for 60 674 
minutes between light-dark transition (7am-8am and 6pm-7pm EST) in pH=8.2, 26.7°C water and fed twice 675 
daily (Spirulina Flake; Pentair Aquatic Ecosystems, Apopka, FL, U.S.A.). All tanks were maintained on a central 676 
recirculating system. Reproductive adult subject males (age 6-14 months post-fertilization, n=38) were visually 677 
identified from home tanks based on nuptial coloration and expression of classic courtship behaviors (i.e. 678 
chasing/leading, quivering). Reproductive adult stimulus females were visually identified from home tanks 679 
based on distension of the abdomen (caused by ovary growth) and/or buccal cavity (caused by mouthbrooding). 680 

METHOD DETAILS 681 

Behavior tanks 682 

Behavior tanks were equipped with LED strip lighting synced with external room lighting to minimize large 683 
shadows and maximize consistency in video data used for action recognition (10-h:14-h light:dark cycle). Sand 684 
(Sahara Sand, 00254, Carib Sea Inc.; ACS00222) was contained within a 38.1 cm long x 45.6 cm wide section 685 
of each tank and separated from the rest of the aquarium by a custom 45.6 cm wide x 17.8 cm tall x 0.6 cm 686 
thick transparent acrylic barrier secured with plastic coated magnets (1.25 cm wide x 2.5 cm tall x 0.6 cm thick; 687 
BX084PC-BLK, K&J Magnetics, Inc.). This design ensured that all fish could freely enter and leave the enclosed 688 
sand tray region throughout the trial. At the start of the trial, the smoothed sand surface lay approximately 29.5 689 
cm directly below a custom-designed transparent acrylic tank cover (38.1 cm long x 38.1 cm wide x 3.8 cm tall) 690 
that directly contacted the water surface to eliminate rippling for top-down depth sensing and video recordings.   691 

Behavior assays 692 

Subject males were introduced to behavioral tanks containing sand and four reproductive adult age- and size-693 
matched stimulus females of the same species. Broods were collected from all mouthbrooding females prior to 694 
introduction of subject males to behavior tanks. Prior to behavioral trials, each male was allowed to initiate 695 
castle-building to 1) confirm capacity and motivation to build and 2) minimize potential confounding effects of 696 
“novelty” on brain gene expression that may be caused by the male’s first experience building. After building 697 
was confirmed during the initial “pre-trial” period, the sand surface in each behavioral tank was smoothed 698 
shortly before lights off, and an automated depth sensing and video recording protocol was initiated as 699 
previously described using a Raspberry Pi 3 mini-computer (Raspberry Pi Foundation) (Johnson, Arrojwala, et 700 
al. 2020). Briefly, this system uses 1) a Microsoft XBox Kinect Depth sensor to track depth change across the 701 
sand surface every five minutes, enabling analysis of the developing bower structure over time, and 2) a 702 
Raspberry Pi v2 camera to record 10 hours of high-definition video data daily. The system regularly uploads 703 
depth change updates to a Google Documents spreadsheet, enabling real-time, remote monitoring of bower 704 
construction activity in each tank. Following each trial, a trained 3D Residual Network was used to predict male 705 
building and quivering behaviors from video data as previously described (Long et al. 2020). 706 

Tissue sampling 707 
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Actively constructing males (n=19) were identified through remote depth change updates and were collected 708 
between 11am-2pm EST (3-5 h after full lights-on and feeding) to control for potential effects of circadian 709 
rhythm, feeding, hunger, and anticipation of food on brain gene expression. At the same time, a neighboring 710 
male that was not constructing a bower (nor had initiated construction) but could also freely interact with four 711 
females and sand, was also collected (“control”, n=19). Immediately following collection, subjects were rapidly 712 
anesthetized with tricaine for rapid brain extraction, measured for standard length (SL, distance measured from 713 
snout to caudal peduncle) and body mass (BM), and rapidly decapitated for brain extraction. Telencephala 714 
(including olfactory bulbs) were dissected under a dissection microscope (Zeiss Stemi DV4 Stereo Microscope 715 
8x - 32x, 000000-1018-455), in Hibernate AB Complete nutrient medium (HAB; with 2% B27 and 0.5 mM 716 
Glutamax; BrainBits) containing 0.2 U/μl RNase Inhibitor (Sigma). Immediately following dissection 717 
telencephala were rapidly frozen on powdered dry ice and stored at -80 °C. Testes were then surgically 718 
extracted and weighed to calculate gonadosomatic index (GSI=gonad mass/BM*100) for each subject (subject 719 
information available in Table S1).  720 

Nuclei isolation   721 

Nuclei were isolated following a protocol adapted from (Martelotto 2020) and optimized for cichlid telencephala. 722 
Immediately prior to single nuclei isolation, frozen telencephala were pooled into five biological replicates (n=3-723 
4 subjects/pool) per behavioral condition (building versus control). Pools were organized such that individuals 724 
within a pool had nearly identical telencephalic mass with the aim of equalizing the relative mass of tissue and 725 
the relative number of nuclei sampled from each subject within each pool. Additionally, paired constructing 726 
versus control pools were organized such that males in both pools were matched as closely as possible in 727 
relative age, body mass, and sampling dates. Frozen telencephalon tissue sample pools were transferred into 728 
chilled lysis buffer containing 10 mM Tris-HCL (Sigma), 10 mM NaCl (Sigma), 3 mM MgCl2 (Sigma), 0.1% 729 
Nonidet P40 Substitute (Sigma), and Nuclease-free H2O. The tissue was incubated on ice and lysed for 30 730 
minutes with gentle rotation. Following lysis, 1.0 mL HAB medium was added and the tissue was rapidly 731 
triturated 20 rounds using silanized glass Pasteur pipettes (BrainBits) with a 500 μm internal diameter to 732 
complete tissue dissociation. Dissociated tissue were centrifuged (600 rcf, 5 minutes, 4°C) and resuspended 733 
in 2.0 ml chilled wash and resuspension buffer containing 2% BSA (Sigma) and 0.2 U/μl RNase Inhibitor 734 
(Sigma, as described above “Tissue Collection”) in 1X PBS (Thermo Fisher). The nuclei suspensions were 735 
filtered through 40 μm Flowmi® cell strainers (Sigma) and 30 μm MACS® SmartStrainers (Milltenyi) to remove 736 
large debris and aggregations of nuclei prior to fluorescence activated cell sorting (FACS).    737 

Fluorescence Activated Cell Sorting  738 

Pilot experiments revealed that multiplets (clumps of multiple nuclei adhered together) passed through both 739 
passive filtration steps, and therefore we further improved the quality and purity of our sample using FACS (BD 740 
FACSAriaTM Fusion Cell Sorter, BD Biosciences). Sizing beads (6 μm; BD Biosciences) and 1.0 μg/ml DAPI 741 
(Sigma) were used to set gating parameters, enabling selection of singlet nuclei based on size (forward scatter), 742 
shape (side scatter), and DNA content (DAPI fluorescence. Thus, this step efficiently filtered out multiplets and 743 
irregularly shaped nuclei (characteristic of unhealthy or dead nuclei). At least 300,000 nuclei/pool were 744 
collected into 1 mL wash and resuspension buffer for downstream sequencing.  745 

snRNA-sequencing  746 

Suspensions of isolated nuclei were loaded onto the 10x Genomics Chromium Controller (10x Genomics) at 747 
concentrations ranging from 400-500 nuclei/ul with a target range of 3,000–4,000 nuclei per sample. 748 
Downstream cDNA synthesis and library preparation using Single Cell 3’ GEM, Library and Gel Bead Kit v3.1 749 
and Chromium i7 Multiplex Kit were performed according to manufacturer instructions (Chromium Single Cell 750 
3’ Reagent Kits User Guide v3.1 Chemistry, 10X Genomics). Sample quality was assessed using high 751 
sensitivity DNA analysis on the Bioanalyzer 2100 system (Agilent) and libraries were quantified using a Qubit 752 
2.0 (Invitrogen). Barcoded cDNA libraries were pooled and sequenced on the NovaSeq 6000 platform (Illumina) 753 
on a single flow cell using the 300-cycle S4 Reagent kit (2x150 bp paired-end reads; Illumina).  754 

DNA sequencing 755 
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Genomic DNA was isolated from diencephalic tissue sampled from each test subject using a DNeasy Blood 756 
and Tissue Kit pipeline with a 60 min lysis time and without RNase A. The 260/280 nm absorbance ratio ranged 757 
from 1.91-2.10 across subjects. Libraries were prepared following a NEBNext Ultra II FS DNA Library Prep Kit 758 
for Illumina protocol. Libraries were sequenced on two NovaSeq 6000 lanes using 300-cycle SP Reagent Kits 759 
(2x150 bp paired-end reads; Illumina).  760 

Spatial transcriptomics 761 

Telencephala were microdissected from two size-matched build-control pairs of Mchenga conophoros males 762 
(n=4 males total), embedded in cryomolds, flash frozen on dry ice, and stored at -80°C until further processing. 763 
Tissue was cryo-sectioned coronally at 10-μm thickness at -20°C (Cryostar NX70) and mounted onto pre-764 
chilled Visium Spatial Gene Expression slides (10X Genomics). RNA quality (RIN > 7) was confirmed using an 765 
RNA 6000 Nano Kit (Agilent). Spatial gene expression slides were processed following manufacturer 766 
instructions (Visium Spatial Gene Expression Reagent Kits User Guide, 10X Genomics). Barcoded cDNA 767 
libraries were sequenced on the NovaSeq 6000 platform (Illumina).  768 

QUANTIFICATION AND STATISTICAL ANALYSIS 769 

Behavioral Analysis  770 

For all trials, 3D ResNet-predicted behaviors and structural change across the sand surface was analyzed over 771 
the 90 minutes preceding collection following the same general approach described previously (Johnson, 772 
Arrojwala, et al. 2020). Briefly, a smoothing algorithm was applied to remove depth change attributable to 773 
technical noise, and small regions of missing data were recovered by spatial interpolation. Bowers were defined 774 
as any region within which one-thousand or more contiguous pixels (equivalent to ~10 cm2) changed in 775 
elevation by more than 0.2 cm in the same direction (~2 cm3 volume change total) based on previous analysis 776 
of depth change caused by non-building home tank activity (Johnson, Arrojwala, et al. 2020). Depth change 777 
values were adjusted based on the cubed standard length of each subject male, to create a standardized 778 
measure of building activity (larger males have larger mouths and can scoop and spit a larger volume of sand). 779 
Action recognition was used to track the number, location, and timepoints of predicted bower construction 780 
behaviors (scoops, spits, and multiple events) and quivering behaviors over the same 90 min period. The 781 
number of quivering events was log-normalized due to a single outlier (building) male with 257 predicted 782 
quivering events (~5.9 standard deviations above the mean). Feeding behaviors were not analyzed because 783 
they can be performed by both males and females and we are not able to reliably attribute individual feeding 784 
events to the subject male.  785 

For simplicity, we generated a single “Bower Activity Index” (BAI) metric to reflect overall building activity by 786 
first calculating the regression line between depth change and building events for each trial (n=38, R2=0.76). 787 
We then projected each male’s depth change and bower behavior values onto that line, with the lowest value 788 
(0 predicted building events, 0 above threshold depth change) being set to 0. BAI was calculated as the 789 
Euclidean distance along the regression line from the lowest value. BAI was used as a continuous measure of 790 
castle-building behavior throughout this study.  791 

Differences in building, quivering, and GSI between groups were analyzed using a paired t-test in which behave 792 
and control subjects collected at the same time were treated as pairs.  793 

snRNA-seq pre-processing and quality control 794 

FASTQ files were processed with Cell Ranger version 3.1.0 (10X Genomics). Reads were aligned to the 795 
Maylandia zebra Lake Malawi cichlid genome assembly (Conte et al. 2019) using a splice-aware alignment 796 
algorithm (STAR) within Cell Ranger, and gene annotations were obtained from the same assembly (NCBI 797 
RefSeq assembly accession: GCF_000238955.4, M_zebra_UMD2a). Because nuclear RNA contains intronic 798 
sequence, they were included in the cellranger count step. Cell Ranger filtered out UMIs that were 799 
homopolymers, contained N, or contained any base with a quality score less than 10. Following these steps, 800 
Cell Ranger generated ten filtered feature-barcode matrices (one per pool) containing expression data for a 801 
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total of 32,471 features (corresponding to annotated genes) and a total of 33,895 barcodes (corresponding to 802 
droplets and putative nuclei) that were used passed through additional quality control steps in the “Seurat” 803 
package in R. Examination of total transcripts, total genes, and proportion of mitochondrial transcripts were 804 
similar across all ten pools, and therefore the same criteria were used to remove potentially dead or dying 805 
nuclei from all pools. Barcodes associated with fewer than 300 total genes, fewer than 500 total transcripts, or 806 
greater than 5% (of total transcripts) mitochondrial genes were excluded from downstream analysis on this 807 
basis. This step filtered out a total of 20 (0.059%) barcodes. To reduce risk of doublets or multiplets, barcodes 808 
associated with more than 3,000 total genes or 8,000 total transcripts were also excluded. This step filtered out 809 
a total of 201 barcodes (0.59%). In total, 33,674 barcodes (99.34%) passed all quality control filters and were 810 
included in downstream analyses.   811 

Dimensionality reduction  812 

In order to perform dimensionality reduction, we first identified 4,000 genes that exhibited the most variable 813 
expression patterns across nuclei using the FindVariableFeatures function in Seurat with the mean.var.plot 814 
selection method, which aims to identify variable features while controlling for the strong relationship between 815 
variability and average expression, and otherwise default parameters. Gene-level data was then scaled using 816 
the ScaleData function in Seurat with default parameters. To examine dimensionality, we first performed a 817 
linear dimensional reduction using the RunPCA command with the maximum possible number of dimensions 818 
(“dim” set to 50). We then used Seurat’s JackStraw, ScoreJackStraw, and JackStrawPlot functions to estimate 819 
and visualize the significance of the first 50 principal components (PCs), and the Elbow plot function to visualize 820 
the variance explained by the first 50 PCs. Because all 50 PCs were highly statistically significant, and no “drop 821 
off” was observed in variance explained across PCs, we used all 50 PCs for non-linear dimensional reduction 822 
(Uniform Manifold Approximation and Projection, UMAP) using the RunUMAP function in Seurat. For 823 
RunUMAP, “min.dist” was set to 0.5, “n.neighbors” was set to 50, and “metric” was set to “euclidean”. 824 

Clustering 825 

Prior to clustering, nuclei were embedded into a K nearest-neighbor (KNN) graph based on euclidean distance 826 
in UMAP space, with edge weights based on local Jaccard similarity, using the FindNeighbors function in Seurat 827 
(k.param=50, dims=1:2, prune.SNN=0). Clustering was then performed using Seurat’s FindClusters function 828 
using the Louvain algorithm with multilevel refinement (algorithm=2). This final step was performed twice using 829 
two different resolution parameters to generate both coarse- and fine-grained structural descriptions of the 830 
underlying data, facilitating investigation of both major cell types as well as smaller subpopulations. For more 831 
coarse-grained clustering (resolution=0.01) identified 15 1° clusters and fine-grained clustering (resolution=1.3) 832 
identified 53 2° clusters.   833 

Cluster marker gene analysis 834 

The biological identities of specific clusters were investigated using a multi-pronged approach that incorporated 835 
unbiased analysis of cluster-specific marker genes as well as supervised examination of previously established 836 
marker genes. Cluster-specific “marker” genes were identified using the FindAllMarkers function in Seurat. 837 
Briefly, this function compares gene expression within each cluster to gene expression across all other clusters 838 
and calculates Bonferroni-adjusted p-values using a Wilcoxon rank sum test. Functional enrichment analysis 839 
of GO categories among cluster-specific marker genes was investigated by first converting cichlid gene names 840 
to their human orthologs and then performing functional enrichment analysis using ToppGene Suite with default 841 
parameters . Enrichment results that survived FDR-adjustment (q<0.05) were considered statistically 842 
significant. Established cell type-specific and neuroanatomical marker genes were identified from the literature 843 
(Table S2) and were intersected with the output from FindAllMarkers to generate further insight into the 844 
biological identity of clusters.  845 

Assignment of nuclei to test subjects 846 

To match individual nuclei to individual test subjects, we used Demuxlet to match variants identified in snRNA-847 
seq reads to variants identified from genomic sequencing of each subject (Kang et al. 2018). First, genomic 848 
DNA from every test subject was collected and sequenced. In total, 276.7 Gbp of sequenced reads were 849 
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assigned quality scores≥30 (91.4% of all reads). The corresponding FASTQ files were filtered and aligned to 850 
the M. zebra Lake Malawi cichlid genome umd2a assembly (NCBI RefSeq assembly accession: 851 
GCF_000238955.4, M_zebra_UMD2a). The resulting bam file was sorted, duplicates removed, read groups 852 
added, and indexed using Picard tools. Variants were then called using GATK v4.1.8.1 HaplotypeCaller using 853 
the M. zebra umd2a reference genome. Based on pool, individual vcf files were merged, resulting in 10 files 854 
(one for each pool). These files were then filtered to retain only variants that varied among individuals in a pool. 855 
For each pool, only SNPs for which 1) at least one individual from the pool had a different genotype from the 856 
other individuals, and 2) no individuals had missing data, were used as input to Demuxlet. The number of SNPs 857 
used ranged from 112,385 to 357,177 with a mean of 241,780±22,369 per pool. 858 

Next, variants were called from snRNA-seq reads following a similar pipeline. Reads from Cell Ranger's output 859 
bam file were filtered for those that passed the quality control metrics described above using samtools v1.11. 860 
The resulting bam file was sorted, duplicates removed, read groups added, and indexed using Picard tools. 861 
Variants were then called using GATK HaplotypeCaller using the M. zebra umd2a reference genome and 862 
without the MappingQualityAvailableReadFilter to retain reads that were confidently mapped by Cell Ranger 863 
(MAPQ score of 255). The SNPs from the snRNA-seq reads and the genomic DNA were input to Demuxlet, 864 
which computed a likelihood estimation that each nucleus belongs to each individual in the pool. Nuclei were 865 
assigned to the individual test subject with the greatest probability estimated by Demuxlet. 866 

Identification of IEG-like genes 867 

Three canonical IEGs (c-fos, egr1, npas4) were used to identify additional genes exhibited IEG-like expression 868 
across clusters. For each of these three IEGs, nuclei were split into IEG-positive versus IEG-negative nuclei 869 
within each of the 53 clusters. Within each cluster, differential gene expression was analyzed between IEG-870 
positive versus IEG-negative nuclei using the FindMarkers function in Seurat, with “logfc.threshold” set to 0, 871 
and “min.pct” set to 1/57 (57 was selected as this was the number of nuclei in the smallest cluster). Within each 872 
cluster, any genes that did not meet this criterion were excluded and were assigned a p-value of 1. Because 873 
FindMarkers requires at least three nuclei to be present in both comparison groups, clusters that contained 874 
less than three IEG-positive nuclei were excluded. Genes that were detected in the majority of clusters, and 875 
that were significantly (p<0.05) upregulated in IEG-positive nuclei in the majority of those clusters were 876 
considered to be significantly co-expressed with each individual IEG. Genes that were significantly co-877 
expressed with all three IEGs were used as IEG-like markers for downstream analyses of IEG-like expression.   878 

Differential IEG expression 879 

Building-, quivering-, and gonadal-associated IEG expression was analyzed in 1° and 2° clusters, gene-defined 880 
populations within 1° and 2° clusters, and gene-defined populations regardless of cluster. To do this, we 881 
calculated an IEG score for each nucleus, equal to the number of unique IEG-like genes (n=25) expressed. 882 
Building-, quivering-, and gonadal-associated differences in IEG score were analyzed using a beta-binomial 883 
model in which the number of IEG-like genes observed as well as the number of the IEG-like genes not 884 
observed were tracked as indicators of recent neuronal excitation. This analysis was performed using the 885 
‘BBmm’ package in R (m=25). Because castle-building, quivering, and GSI were correlated with one another, 886 
we analyzed expression using a sequence of beta-binomial mixed-effects models in which different pairwise 887 
combinations of predictor variables (building, quivering, and GSI) competed to explain variance in IEG score. 888 
These models also included nested random terms to account for variance explained by individual variation, 889 
pair, pool, and RNA isolation/cDNA library generation batch. Within this framework, we ran the following seven 890 
models, which allowed building (analyzed as either a binary or a continuous variable), quivering, and GSI to 891 
compete in all possible combinations to explain variance in IEG score: 892 
 893 

1. IEG score ~ BAI + log(quivering events) + (subject/pool/batch) + (subject/pair) 894 
2. IEG score ~ BAI + GSI + (subject/pool/batch) + (subject/pair) 895 
3. IEG score ~ BAI + log(quivering events) + GSI + (subject/pool/batch) + (subject/pair) 896 
4. IEG score ~ Condition + log(quivering events) + (subject/pool/batch) + (subject/pair) 897 
5. IEG score ~ Condition + GSI + (subject/pool/batch) + (subject/pair) 898 
6. IEG score ~ Condition + log(quivering events) + GSI + (subject/pool/batch) + (subject/pair) 899 
7. IEG score ~ log(quivering events) + GSI + (subject/pool/batch) + (subject/pair) 900 
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 901 
We defined significant building-, quivering-, and gonadal-associated IEG effects as those in which 1) the raw 902 
p-value for the corresponding fixed effect (for building, BAI and condition; for quivering, log-normalized 903 
quivering; for gonadal, GSI) was significant (p<0.05) in every model, and 2) the harmonic mean p-value across 904 
models was significant after adjusting for multiple comparisons for all genes and populations analyzed 905 
(hmpadj<0.05). To calculate the harmonic mean p-value, we used the “harmonicmeanp” package in R. Thus, 906 
building-associated IEG effects were significant (the raw p-value for the effect of “condition” and “BAI” <0.05) 907 
in models 1-6, and if the harmonic mean p-value across models 1-6 was significant after adjusting for multiple 908 
comparisons across all cell populations.  909 

Building-, quivering-, and gonadal-associated gene expression 910 

Building-, quivering-, and gonadal-associated gene expression was analyzed within 1° and 2° clusters using a 911 
multiple linear mixed-effects regression approach with the “glmmSeq” package in R 912 
(https://github.com/KatrionaGoldmann/glmmSeq). Because castle-building, quivering, and GSI were correlated 913 
with one another, we analyzed expression using a sequence of linear mixed-effects regression models in which 914 
different pairwise combinations of predictor variables (building, quivering, and GSI) competed to explain 915 
variance in gene expression. These models also included nested random terms to account for variance 916 
explained by individual variation, pair, sample pool, and 10X Chromium run. Thus, sample size was equal to 917 
the number of individuals (n=38), with many repeated observations being recorded from each individual (equal 918 
to the number of nuclei sampled from that individual as assigned to the cluster being analyzed). Building was 919 
analyzed both as a continuous variable (BAI) and as a binary categorical variable (behave versus control).  920 
 921 
We defined bDEGS, qDEGs, and gDEGs as genes (within clusters) in which expression was significantly (raw 922 
p<0.05) associated with the corresponding fixed effect (for bDEGs, BAI and condition; for qDEGs, log-923 
normalized quivering; for gDEGs, GSI) in every model, and additionally in which the harmonic mean p-value 924 
across models was significant after adjusting for multiple comparisons for all genes and all clusters (5% false 925 
discovery rate). For each model, dispersion was estimated for each gene using the “DESeq2” package in R, 926 
using parameters recommended for single cell datasets (fitType = “glmGamPoi”, minmu = 1e-06). Size factors 927 
for each gene were calculated using the “scran” package in R, using default parameters, except that 928 
max.cluster.size was set to the number of nuclei assigned to the cluster being analyzed. Genes that were not 929 
observed in 19/19 pairs were excluded from analysis.   930 

Estrogen response element detection  931 

Estrogen receptors are hormone-dependent transcription factors capable of regulating target gene expression 932 
by binding to specific DNA sequences called estrogen response elements (EREs). EREs can be easily 933 
identified by their prototypic motif of AGGTCA separated by a 3-base spacer (Ikeda, Horie-Inoue, and Inoue 934 
2015). Genes with an ERE motif less than 25 kilobases away were found and the location of the ERE relative 935 
to the gene was recorded as either intragenic (ERE within the start site to the 3' polyA tail), promoter (ERE <= 936 
5 kb upstream of the gene), or distal (all other locations less than 25 kb away from the gene). To identify the 937 
location of the ERE to the closest gene, bedtools v2.29.1 was used using the closest command.  938 

Building-, quivering-, and gonadal-associated pNG expression 939 

Building-, quivering-, and gonadal-associated pNG expression was analyzed in 1° and 2° clusters, gene-940 
defined populations within 1° and 2° clusters, and gene-defined populations regardless of cluster using the 941 
same general approach described for IEG expression, except that building-associated effects were defined as 942 
those that were significantly associated with condition in all models. Because we did not expect neurogenesis 943 
or associated cellular processes to proceed over 90-minute timescales, we did not additionally require effects 944 
to be significantly associated with BAI in all models.  945 

Building-associated changes in cell proportions 946 

Behavior-associated differences in cell type-specific proportions were analyzed for 1° and 2° clusters with a 947 
binomial mixed-effects regression model using the glmer function within the “lmer” package in R. The model 948 
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included condition, GSI, and quivering as fixed effects, and included a random term for individual variation. 1° 949 
cluster proportions were calculated as the proportion of all nuclei assigned to each 1° cluster, and 2° cluster 950 
proportions were calculated as the proportion of 1° “parent” cluster nuclei assigned to each 2° “daughter” 951 
cluster. Thus, each nucleus was treated as an observation with a binary outcome (either an instance of the 952 
target cluster or not) from an individual that could be explained by condition, quivering, or GSI. p-values were 953 
estimated using the ‘lmerTest’ package in R, and qvalues were calculated using the ‘qvalue’ package in R. 954 
Building-associated effects were defined as those that were significant after accounting for multiple 955 
comparisons across all clusters with a false discovery rate of 5% (q<0.05).  956 

Cluster-specific enrichment of gene sets 957 

To test if genes associated with the evolution of bower construction behavior (identified through comparative 958 
genomics) were enriched in specific cell populations, we first calculated a “gene set score” for each nucleus, 959 
equal to the total number of unique behavioral evolution genes expressed. Because the gene set score could 960 
be impacted by the total volume of sequence data sampled from each nucleus, we divided the gene set score 961 
by the total number of unique genes expressed in each nucleus. To quantify enrichment, a Z-test was then 962 
used to compare “normalized” gene set scores for all nuclei within a cluster compared to all other nuclei. The 963 
distribution of the normalized values was assumed to be normal according to the central limit theorem and 964 
population standard deviation was approximated using sample standard deviation.  965 

Secondly, the effect size, as measured by Cohen's d, of the results were compared to those of random gene 966 
lists. To prevent differences in overall amount of expression between random genes and genes of interest from 967 
skewing results, random genes lists were chosen that had approximately equal number of UMIs expressed as 968 
a whole to the genes of interest. This was achieved by first ranking all the genes from the highest number of 969 
UMIs expressed to the lowest. Next, for each gene of interest, a pool of 100 random genes were chosen that 970 
were ranked most closely to the gene of interest and were not a gene of interest themselves. Then, 10,000 971 
random gene lists were created by choosing one gene at random from each pool. The enrichment test 972 
described above was then performed on the random gene lists. Finally, clusters that were significantly enriched 973 
for the genes of interest according to the process above and had significantly greater effect sizes than the 974 
10,000 random gene lists were considered to be significant.  975 

RG subclustering  976 

RG subclusters were determined using the same general procedure used for clustering 1° and 2° clusters but 977 
restricted to only those nuclei assigned to 1.1_RG and 1.2_RG.  978 

Analysis of castle-associated genomic divergence 979 

In order to identify potential behavior-associated genomic variants, comparative genomic analyses were 980 
performed using genomic sequence data collected from 27 Lake Malawi cichlid species (Patil et al. 2021). 981 
Fixation indices (FST) were calculated for polymorphic variants in two separate analyses using vcftools v0.1.17. 982 
The first analysis compared pit-digging (N=11) versus castle-building (N=9) species, and the second compared 983 
rock-dwelling (N=7) versus castle-building (N=9) species. Variants for which sequence data was missing from 984 
50% or more of species in either group were excluded from analysis. FST analyses were performed separately 985 
using the --weir-fst-pop and --fst-window-size 10000 flag to calculate FST across 10kb bins in vcftools. Then, 986 
bins where FST was greater than 0.20 in the pit-castle comparison and 0.20 in the rock-castle comparison were 987 
kept. These thresholds are both greater than the minimum FST of FDR-adjusted significant bins. By creating 988 
these more strict thresholds we aimed to ensure that the selected bins were extremely divergent between 989 
castle-building and non-castle-building species. Additionally, a higher threshold was selected for the rock-castle 990 
than the pit-castle comparison because of the greater evolutionary distance and thus greater overall FST. 991 
Finally, genes that were within 25kb of these bins meeting these thresholds were identified using bcftools v1.11 992 
with the closest command and the M. zebra genome as reference. Genes within 25kb of highly divergent pit-993 
castle and rock-castle bins are referred to here as "castle-divergent".  994 

CDG co-expression and module analysis  995 
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Modules of co-expressed CDGs were analyzed using weighted correlation network analysis (WGCNA) using 996 
the “WGCNA” v1.70-3 package in R. CDGs that were not observed in any nucleus were excluded from analysis. 997 
The normalized gene expression data for CDGs was used as the input gene expression matrix and the function 998 
pickSoftThreshold was used to determine the optimal soft-thresholding power. We determined the optimal soft-999 
thresholding power to be 1 because it was the lowest power for which the scale-free topology fit index reached 1000 
0.90. Then an adjacency matrix was created from the input gene expression matrix using the adjacency function 1001 
with power = 1, type = "signed" and otherwise default parameters. The adjacency matrix was used as the 1002 
topological overlap matrix (TOM) and the dissimilarity matrix was calculated as 1 – TOM. To detect modules, 1003 
k-means clustering was performed using all possible values of k and the results were compared to determine 1004 
the optimal k. First, a distance matrix was constructed from the dissimilarity matrix produced by WGNCA using 1005 
the dist function in R. Next, the function pam from the R package “cluster” v2.1.0 was used to cluster the 1006 
distance matrix with diss = T, otherwise default parameters, and k set to the value that produced the highest 1007 
average silhouette width for all genes. Briefly, silhouette width is a measure of the similarity of the genes within 1008 
a module to the genes outside the module, and higher values indicate better clustering. We found that k=2, 1009 
had the greatest average silhouette width. The strength of the module was evaluated using a two-sampled 1010 
Welch t-test comparing the silhouette width and gene-gene correlations for CDGs within the module versus 1011 
CDGs outside the module. To analyze the relationship between the CDG module and signatures of RG 1012 
quiescence, the correlation coefficient was calculated based the number of genes in the CDG module 1013 
expressed in each nucleus versus the number of quiescent markers expressed in each nucleus. We compared 1014 
the correlation coefficient against a permuted null distribution by randomly shuffling the expression values of 1015 
each gene in the module 10,000 times. 1016 

Spatial transcriptomic pre-processing and quality control 1017 

Base Call files were demultiplexed into FASTQ files and processed with Space Ranger v1.3.1 (10X Genomics). 1018 
Reads were aligned to the M. zebra umd2a reference assembly as described above for snRNA-seq (Conte et 1019 
al. 2019). Following these steps, Space Ranger generated three filtered feature-barcode matrices containing 1020 
expression data for a total of 32,471 features (corresponding to annotated genes). Spots with 0 UMIs were 1021 
removed resulting in 6,707 spots used in downstream analysis. 1022 

Spatial integration of snRNA-seq clusters 1023 

To predict locations of specific snRNA-seq identified clusters in spatial transcriptomics data, an ‘anchor’-based 1024 
integration workflow in Seurat was used. First, both the snRNA-seq and spatial data were normalized using the 1025 
SCTransform in Seurat. Next, anchors were identified between the reference snRNA-seq and the query spatial 1026 
data using FindTransferAnchors in Seurat, and a matrix of predictions scores was generated for each cluster 1027 
in every spot using the TransferData function in Seurat. The maximum prediction score across clusters was 1028 
not uniform, therefore we normalized the values between 0 and 1 in order to enable meaningful comparisons 1029 
across cell types. 1030 
 1031 
Cell-cell communication analysis 1032 
 1033 
To assess the connectivity of cell populations, cell-cell communication analysis was performed using the R 1034 
package CellChat v1.5.0. Briefly, CellChat estimates the strength of potential connection between 1035 
populations from a gene expression matrix based on a database of human ligand-receptor interactions. In 1036 
order to find the connection strengths between primary and secondary clusters, the gene expression matrix 1037 
was duplicated and the cells in the first copy were assigned the primary labels and the cells in the second 1038 
copy were assigned secondary labels. We also sought to analyze connections among additional gene-1039 
defined populations that demonstrated behavior-associated IEG expression. To achieve this, the gene 1040 
expression matrices for cells from these populations were duplicated againTherefore, before connection 1041 
strengths were evaluated, the human orthologs of the M.zebra gene names in the gene expression matrix 1042 
were found. Since, the gene expression matrix does not allow for duplicate gene names, e.g. many-to-one 1043 
orthologs, values for the many-to-one ortholog with the greatest number of normalized counts were kept and 1044 
others were excluded from analysis. Next, a CellChat object was created using the createCellChat function. 1045 
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Over-expressed genes and over-expressed interactions were found using the identifyOverExpressedGenes 1046 
and identifyOverExpressedInteractions functions respectively. Next, connection strengths were calculated 1047 
using the computeCommunProb function with the method for computing the average gene expression per 1048 
cell group set to truncatedMean, trim set to 0.1, and population.size set to FALSE. Then, the cellular 1049 
communication network was inferred and aggregated using the filterCommunication and aggregateNet 1050 
functions. The receptor-ligand and the signalling pathway weights were saved using subsetCommunication 1051 
with the slot.name parameter set to ‘net’ and netP respectively. 1052 
 1053 
Regularized Multiple Mediation Analysis 1054 
 1055 
Regularized multiple mediation analysis was performed using the R package mma v10.6-1(Q. Yu and Li 2017). 1056 
Briefly, this analysis used a regularization approach to test if one or more mediators explained the relationship 1057 
between building and 8.4_Glut:8.1_Glut neuronal rebalancing, and between building and RG2 wdr73 1058 
expression. The following variables were considered as possible mediators of building-associated 1059 
8.4_Glut:8.1_Glut neuronal rebalancing: GSI, quivering, RG1 wdr73 expression, RG2 wdr73 expression, RG2 1060 
CDG module score, RG8 CDG module score, RG3 cyp19a1 expression, RG4 proportion, IEG score in all ten 1061 
build-IEG+ populations, and IEG score in 8.1_Glut and 8.4_Glut. To investigate possible mediators of RG2 1062 
wdr73 expression, the same variables were analyzed, except RG2 wdr73 expression and RG2 CDG module 1063 
(which contains wdr73) score were excluded as possible mediators. The analysis was performed with testtype 1064 
= 1 (LASSO) and alpha1 and alpha2 both set to 0.05.   1065 
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