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21 Abstract 

22 Muscle segmentation is a process relied upon to gather medical image-based muscle 
23 characterisation, useful in directly assessing muscle volume and geometry, that can be used 
24 as inputs to musculoskeletal modelling pipelines. Manual or semi-automatic techniques are 
25 typically employed to segment the muscles and quantify their properties, but they require 
26 significant manual labour and incur operator repeatability issues. In this study an automatic 
27 process is presented, aiming to segment all lower limb muscles from Magnetic Resonance 
28 (MR) imaging data simultaneously using three-dimensional (3D) deformable image 
29 registration. Twenty-three of the major lower limb skeletal muscles were segmented from 
30 five subjects, with an average Dice similarity coefficient of 0.72, and average absolute relative 
31 volume error of 12.7% (average relative volume error of -2.2%) considering the optimal 
32 subject combinations. Segmented MR imaging datasets of the lower limb are not widely 
33 available in the literature, limiting the potential of new, probabilistic methods such as deep 
34 learning to be used in the context of muscle segmentation. In this work, Non-linear 
35 deformable image registration is used to generate 69 manually checked, segmented, 3D, 
36 artificial datasets, allowing access for future studies to use these new methods, with a large 
37 amount of reliable reference data.
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38 1. Introduction

39 Muscles enable all elected movements of the human body [1]. Relationships between 
40 structural muscle characteristics such as muscle volume, geometry and length, or level of fatty 
41 infiltration and the functional capacity of individual muscles have long been established 
42 [2,3,4]. Specifically, muscle volume and geometry are indicative of the maximal force that a 
43 muscle is capable of outputting [3,5,6] and fat infiltration within muscle tissue, known as 
44 myosteosis, reduces the saturation of contractile tissue, hindering the force generating 
45 capacity of a muscle [3,4]. Longitudinal changes in these structural characteristics are 
46 recognised as components of both aging [7,8,9] and the development of musculoskeletal 
47 (MSK) and neuromusculoskeletal disorders [10,11,12,13,14]. Through medical imaging 
48 analysis, structural muscle characteristics are measurable in vivo in a process named muscle 
49 segmentation [10,11]. 

50 Both Computed Tomography (CT) and Magnetic Resonance (MR) imaging, have been 
51 used to non-invasively gather quantitative structural muscle characteristics such as volume 
52 [15,16] or geometric shape [15,16,17]. The structural characteristics of the skeletal muscles 
53 within the lower limb are of particular interest, due to their capacity to enable locomotion 
54 [1,15,19]. As the lower limbs are such a large area of the body, many studies prefer MR 
55 imaging over CT, to limit ionising radiation exposure of subjects enrolled in studies or of 
56 patients in future potential clinical applications [15, 19]. The current approach used within 
57 the literature to gather these structural muscle characteristics from MR images is manual 
58 segmentation, during which the operator defines in each slice of the MR image (or in a 
59 subgroup of them) the contour of each muscle [15,19,20]. There are two main limitations of 
60 manual segmentation: the required operator input time and operator dependency issues of 
61 the outputs [5,6,15,18]. It is generally accepted that there are 35 individual lower limb 
62 muscles, not including those in the feet (some of these muscles can be separated into 
63 different branches or sub-muscles [15,22,23]), which must be segmented from (in the order 
64 of) hundreds of images, incurring a high processing time [15,20,21]. Recent advancements in 
65 computer vision (interpolation between segmented slices) and hardware (trackpads) have 
66 brought operator interaction time down to approximately 10 hours to segment all muscles 
67 within one lower limb [15,20,21]. Not only is this interaction time excessive, but operators 
68 must undergo training to achieve repeatable segmentation results from an intra-operator 
69 standpoint ( ±  10% volume is typically acceptable) [15]. Regardless of training, as suggested, 
70 there are significant inter-operator dependency issues noted within the literature, which have 
71 been shown to misinterpret muscle volume by up to 50% (for example, the peroneus brevis 
72 and longus [15]), depending on the muscle of interest and study cohort [15,21,24]. These 
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73 limitations of manual segmentation prevent the utilisation of muscle segmentation as a 
74 technique to inform large-scale quantitative investigations into muscle characteristics.

75 Many different automatic segmentation methods have been investigated within the 
76 literature in recent years to replace the manual approach [21,24,25,27]. Statistical shape 
77 modelling (SSM) entails the generation of an average atlas geometry, which can be scaled or 
78 deformed to fit individuals. It has been used to achieve a good agreement of automatically 
79 and manually generated segmentations of single muscles from MR images, such as the 
80 quadratus lumborum within the lower back by Engstrom et al. [25] where the Dice similarity 
81 coefficient (DSC), a volumetric and spatial measure of agreement, achieved was 0.86 ±  0.08 
82 (mean ±  standard deviation). This technique was shown to be well suited to the automatic 
83 segmentation of this muscle given its non-complex, truncated cone-like shape, but has not 
84 been explored in the segmentation of many individual muscles simultaneously. The large 
85 variability of muscle volume and geometry within the lower limb skeletal muscles between 
86 subjects, even within cohorts with similar anthropometric characteristics, limits the 
87 application of SSM to segment these muscles [15,29,30,31]. Image registration has also been 
88 explored within the literature to perform muscle segmentation. Simplistic applications, such 
89 as two-dimensional (2D) deformable image registration between subsequent MR imaging 
90 slices within subjects has been used to propagate segmentations of individual slices into 
91 partial sections of 3D muscle geometry using only a few manually segmented slices, with 
92 encouraging results (DSC ≈  0.91) [32]. 3D image registration has been used within 
93 longitudinal studies to populate MR images with partial segmentations of a small number of 
94 muscles to good effect, such as within the studies presented by Le Troter et al. [33] and 
95 Fontana et al. [34]. Though this longitudinal approach provides insight into the change in 
96 muscle characteristics over time, multiple MR image sequences are required from individual 
97 subjects at two different timepoints and one dataset must be manually segmented. Within 
98 the literature, inter-subject registration aiming to segment the muscles within a new subject, 
99 referencing a previously segmented subject has not yet been fully explored to the best of the 

100 author’s knowledge. An in-house image registration algorithm (Sheffield Image Registration 
101 Toolkit, ShIRT) has been used to segment both hard [43] and vascular [42,43] tissues with a 
102 high level of accuracy but has not yet been tested in the application of muscle segmentation. 
103 ShIRT performs deformable (non-linear) image registration, allowing high degrees of 
104 anatomical variability between inputted images to be addressed [41,42,43], and has the 
105 potential to automatically segment blocks of muscles or individual muscles given a fully 
106 segmented reference subject, but this is yet to be explored within the literature.
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107 Other methods have been shown to be effective in the segmentation of muscles. 
108 Probabilistic machine learning methods such as deep learning have been used to 
109 automatically segment the 3D geometry of individual muscles from MR images taken from 
110 several different cohorts [20,21,24]. These methods employ Convolutional Neural Networks 
111 (CNNs) which learn patterns that identify important features from training data in order to 
112 apply these learned patterns to segment new, unseen data [20,21,24]. Notably, the methods 
113 recently proposed by Ni et al. [24], where all lower limb muscles within a cohort (n = 64) of 
114 young healthy athletes were segmented with DSC comparable to that of the inter-operator 
115 dependence (DSC ≈  0.9), and those proposed by Zhu et al. [21] where all muscles within the 
116 shank were segmented from a cohort (n = 20) of children with cerebral palsy (DSC ≈  0.88). 
117 Though the segmentation accuracy found within these studies is remarkable, these methods 
118 are not widely accessible due to the main limitation of current deep learning methods: the 
119 requirement of large training databases (minimum ~20 segmented 3D images, the greater 
120 this number the more robust the method) [35]. Unfortunately, generating these segmented 
121 imaging datasets might not be well suited to MR imaging, given the associated high costs and 
122 manual processing time. Additionally, when used in medical image segmentation, deep 
123 learning generally has the major limitation of a significantly reduced performance when 
124 assessing imaging data taken from widely varying cohorts [35]. Data augmentation is a 
125 technique widely used in association with CNNs for the purpose of supplying greater amounts 
126 of training data and helping to generalise their application to image classification and 
127 segmentation tasks [36,37]. Within this context, image registration has been previously used 
128 to generate augmented images to facilitate the analysis of brain tumours [38] and skeletal 
129 deformities [39]. This suggests that, while not attempted before, similar approaches might be 
130 adopted for muscle segmentation.

131 The aim of this study is hence twofold. The first is to evaluate the accuracy of a method 
132 for automatic segmentation of individual skeletal muscles in the lower limb from MR imaging 
133 data using 3D deformable image registration. Secondly, the effectiveness of this approach in 
134 the generation of augmented datasets is explored.

135
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136 2. Methods

137 2.1. Subjects & imaging acquisition method

138 Retrospectively available lower limb T1-weighted MR images from 11 post-menopausal 
139 women (mean (standard deviation): 69 (7) years old, 66.9 (7.7) kg, 159 (3) cm) were used for 
140 this study [15]. Images were collected using a Magnetom Avanto 1.5T scanner (Siemens, 
141 Erlangen Germany), with an echo time of 2.59 ms, repetition time of 7.64 ms, flip angle of 10 
142 degrees. The study was approved by the East of England – Cambridgeshire and Hertfordshire 
143 Research Ethics Committee and the Health Research Authority (16/EE/0049). The MR images 
144 were acquired in four sequences, capturing the hip, thigh, knee, and shank. To reduce 
145 scanning time while still providing detailed geometries of the joints for use within the original 
146 study, the joints were acquired with a higher resolution (pixel size 1.05 mm2, slice spacing 
147 3.00 mm) than the long bone sections (pixel size 1.15 mm2, slice spacing 5.00 mm). The 
148 sequences were stacked in MATLAB forming one continuous 3D image from hip to ankle, 
149 firstly by homogenising the resolution of each of the imaging sequences taken from the 
150 different sections to be 1.00x1.00x1.00 mm3 through tri-linear interpolation (interp3, 
151 MATLAB 2006a). The fields of view of the images across the four sequences were equated by 
152 wrapping the images in blank data (greyscale value of 0), referencing the spatial metadata of 
153 the images to retain the relative subject position across the imaging sequences for each 
154 subject. The homogenised sequences were concatenated in the longitudinal direction, 
155 removing half of any overlapping volume from each section where the fields of view 
156 overlapped. Lastly, the images were cut in half in the frontal axis, isolating only the right limb. 
157 A sub-cohort of 5 of the 11 subjects was selected for automatic segmentation. The five 
158 subjects were chosen with the aim of creating a sub-cohort with a wide anatomical diversity, 
159 choosing the tallest and shortest [154.0 cm, 164.2 cm], the subjects with the lowest and 
160 highest Body Mass Index (BMI, kg/m2) [21.2, 32.1], and the youngest and oldest participants 
161 [59, 83].  Each subject was used as both a target and a reference for the image registration 
162 algorithm, creating 20 subject pairings for the sub-cohort (inter-subject analysis). For 
163 comparison, the 5 subjects were registered with a procedure similar to the inter-subject 
164 analysis, using the opposing limb (left vs right) as the reference dataset for the registration 
165 (intra-subject analysis).

166 2.2. Reference segmentations

167 Each of the five subjects involved in this study were segmented manually, as presented 
168 by Montefiori et al. [15]. Within this database, the muscles for which the coefficient of 
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169 variation of the manual segmentations when repeated by the same operator on three 
170 separate runs was greater than 10% were removed from the study, reducing the number of 
171 muscles considered in this study from 35 to 23. Table 1 presents the range of volumes of the 
172 23 muscles considered within this study within the cohort of 5 subjects. Their manual muscle 
173 segmentations were used as the templates to populate imaging data of new subjects with 
174 automatically generated muscle segmentations through image registration and to validate 
175 them.

Volumes
Body segment Body segment Minimum

(cm3)
Maximum
(cm3)

Adductor brevis 54.2 67.1
Adductor longus 59.7 91.7
Adductor magnus 282 457
Gluteus maximus 406 654
Iliacus 81.8 127

Hip

Tensor fasciae latae 17.4 57.9
Biceps femoris caput brevis 31.5 80.7
Biceps femoris caput longum 95.3 128
Gracilis 37.6 51.2
Rectus femoris 94 125
Sartorius 62.7 105
Semimembranosus 98.9 154
Semitendinosus 88.5 101
Vastus intermedius 214 313
Vastus lateralis 303 351

Thigh

Vastus medialis 167 277
Gastrocnemius lateralis 78.2 87
Gastrocnemius medialis 123 176
Peroneus brevis 33.7 41.6
Peroneus longus 25.7 59
Soleus 304 406
Tibialis anterior 74.4 94.2

Shank

Tibialis posterior 56.3 90.6

176

177 Table 1: 

178 The range of volumes of the muscles included within the study for the 5 subjects considered. The muscles are separated into 
179 three sections of the body (hip, thigh, and shank). The muscles considered are those that were segmented with an acceptable 
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180 level of repeatability [15]. Full description of muscle volumes within each subject expanded upon in supplementary material 
181 1.

182 2.3. Image pre-processing

183 The MR images of each subject were pre-processed to homogenise the distribution of fat 
184 tissue within the scans and maintain the focus of registration to the muscles. For each 2D slice 
185 of imaging data (example slice shown in Fig. 1. A) within each subject, firstly, the air-skin 
186 boundary was located using a Canny edge detector [40]. The area within the skin boundary 
187 was filtered (Fig. 1. C), in response to a threshold established from the greyscale frequency 
188 intensity plots of the images, creating a mask that contained only the muscle tissue (Fig. 1.D). 
189 A layer of fat was wrapped around the muscle tissue (Fig. 1.E and 1.F) to emphasise the outer 
190 boundary of the muscle tissue. The depth of this layer of fat was made equal to the optimal 
191 nodal spacing (NS, a parameter of the registration [41], set to 5 mm, details in 2.4) as the 
192 registration operates optimally in the circumstance that the object being registered is of 
193 similar size to the NS [41]. There were two possible scenarios for the fat wrapping process: 1) 
194 the layer of fat within the image was greater than 5 mm, and 2) the layer of fat was less than 
195 5 mm. In the first scenario, the subject’s fat tissue was wrapped around the muscle tissue at 
196 a depth of 5 mm. In the second scenario, artificial fat was wrapped around the body which 
197 was built in response to the greyscale frequency intensity peak that represents the fat. The 
198 pixels within 5 mm of the muscle tissue that lay outside the body were randomly assigned 
199 values using a uniform distribution with minimum and maximum equal to the mean ± 
200 standard deviation of the frequency intensity peak representing the fat. 

201 Fig. 1: 

202 The process of masking the fat tissue surrounding the muscles from the raw MR images (left) and wrapping in a homogenous 
203 layer of fat for two images taken from different subjects (right). The subject along the top row (right) had a fat layer less that 
204 5 mm thick and was wrapped with artificial fat, where the subject along the bottom row had a depth that was sufficient.

205 2.4. Segmentation

206 Following pre-processing, subject imaging datasets were registered using ShIRT [41]. In the 
207 registration process, displacement functions were computed that map each pixel in a 
208 reference image to a corresponding pixel in the target image. ShIRT solves displacement 
209 equations at nodes of an isotropic hexahedral grid overlapped to the fixed and moved images, 
210 with distance between the nodes equal to NS. The optimal NS for this registration task was 
211 found through a sensitivity analysis (see supplementary material 2). Throughout the 
212 registration process the optimal nodal displacements are smoothed in response to a 
213 smoothing coefficient, optimised in each registration to solve the registration problem [41] 
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214 (this was verified to be indeed optimal for this application, see sensitivity analysis in 
215 supplementary material 2). The 3D displacement field is calculated using tri-linear 
216 interpolated displacements between the nodes of the grid. The registered image was 
217 generated after applying the transformation to the reference image and using tri-linear 
218 interpolation. Similarly, the automatic segmentation of the muscles within the target subject 
219 was calculated applying the transformation to the manual segmentations of the reference 
220 subject (Fig. 2). 

221 To gauge the accuracy of the resulting segmentations, the registration and 
222 segmentation pipeline was used to segment the right limbs of the 5 subjects using the 
223 opposing limb as the reference input. The muscles within opposing limbs have been proven 
224 to be anatomically similar but distinct in both volume and geometry [15]. For these reasons, 
225 using the opposing limb in the segmentation pipeline should provide the best possible 
226 reference for the segmentation of the muscles within each of the 5 subjects.  

227 Fig. 2: 

228 The image registration process, shown for one 2D slice of imaging data (location within imaging sequences highlighted with 
229 a black line). Segmentation pipeline: the target and reference subject were pre-processed, homogenizing the fat layer, and 
230 registered in ShIRT. The map found through registration was applied to the manual segmentation contours of the reference 
231 subject (shown in green), resulting in an automatic segmentation of the target subject (shown in blue). Data augmentation 
232 pipeline: The combined MR imaging sequences are registered in ShIRT. The map outputted from the registration was used to 
233 deform the reference subject’s 3D imaging data and reference manual segmentations, resulting in a fully segmented, 
234 augmented 3D image. The augmented images are shown with each muscle taking a different greyscale value (visualised in 
235 blue image channel).

236 2.5. Segmentation validation

237 The reference registered image and the target image were overlapped to assess the quality 
238 of the registration. The two images were visualised simultaneously, with the registered and 
239 target images shown in green and red, respectively. Well registered images appear yellow 
240 with very few green or red flecks. Fig. 3 presents three example registration results, where 
241 the quality of registration increases from left to right.

242 Three complementary quantitative metrics were used to test the accuracy of the 
243 automatic segmentation protocol. The relative volume error (RVE) was calculated following 
244 equation 1 for each muscle in each subject. Additionally, the total volume error (TVE) between 
245 the reference and automatically segmented muscles was calculated as the error between the 
246 sum of all muscle volumes, shown in equation 1. 
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247 𝑅𝑉𝐸𝑖,𝑗 = 100 ×
𝑉𝐴𝑖,𝑗 ― 𝑉𝑀𝑖,𝑗

𝑉𝑀𝑖,𝑗

,         𝑇𝑉𝐸𝑗 = 100 ×
∑𝑁

𝑖=1 |𝑉𝐴𝑖,𝑗 ― 𝑉𝑀𝑖,𝑗
|

∑𝑁
𝑖=1 𝑉𝑀𝑖,𝑗

248 (1)

249 Where VAi,j and VMi,j are the volumes of the automatic muscle segmentation and ground truth 

250 (manual) segmentations, respectively. 

251 The Dice similarity coefficient (DSC) [45] was used to assess the accuracy of 
252 segmentation considering both volume and geometry, through comparison with the ground 
253 truth segmentation. The DSC varies between 0 and 1, with a value of 1 signifying that the 
254 proposed segmentation and ground truth are identical. The DSC was calculated (Equation 2) 
255 for each muscle (i) in each subject (j), where Ai,j and Mi,j represent the automatic muscle 
256 segmentation and the ground truth segmentation, respectively.

257 𝐷𝑆𝐶𝑖,𝑗 =
2(𝐴𝑖,𝑗 ∩ 𝑀𝑖,𝑗)
|𝐴𝑖,𝑗| ∪ |𝑀𝑖,𝑗|

258 (2)

259 Finally, the Hausdorff distance (HD) [46] between the automatic and reference muscle 
260 segmentations was calculated for each muscle in each subject, following equation 3, where 
261 ai,j is an element of Ai,j, mi,j, is an element of Mi,j, and d is the magnitude of the minimum 
262 distance between ai,j or mi,j and the nearest neighbouring point within Mi,j or Ai,j, respectively. 
263 For each subject the HD was calculated as the maximum among the minimum distances 
264 between the automatic and ground truth segmentations.

265 𝐻𝐷(𝐴𝑖,𝑗,𝑀𝑖,𝑗) = 𝑚𝑎𝑥 {(𝑑(𝐴𝑖,𝑗,𝑚𝑖,𝑗)) , (𝑑(𝑎𝑖,𝑗,𝑀𝑖,𝑗)) }

266 (3)

267 Fig. 3: 

268 Registration results of images taken from the shank. The registration quality is visualised within these plots with poor, 
269 moderate, and flawless registrations shown in a, b, and c, respectively. Yellow colour represents well registered regions. 

270 2.6. Generation of augmented data

271 The deformable image registration algorithm was used to generate segmented augmented 
272 MR imaging data, available for download within supplementary material 3 The stacked MR 
273 imaging data from the right limb of the 11 participants were registered to each of the other 
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274 subjects in the cohort, giving 110 combinations. No pre-processing was applied. The 
275 displacement vector field outputted from ShIRT (Fig. 2) was used to deform both the MR 
276 imaging sequence and the manual muscle segmentations of the reference subject. The output 
277 of each of these processes was a fully segmented 3D image that was dissimilar to both the 
278 reference subject and the target subject (Fig. 2). A four-point criterion was used for checking 
279 both the images and the segmentations to ensure anatomical credibility of the augmented 
280 dataset: a) the boundaries of the long bones and the skin must be reasonably smooth and 
281 continuous; b) the positioning and orientation of the joints must be anatomically viable, with 
282 the bones fitting together realistically; c) the muscle segmentations should reflect the muscle 
283 structure; and d) the location of each of the muscles relative to one another must be realistic 
284 (e.g. the vastus lateralis must be lateral with respect to the vastus medialis). If any one of 
285 these criteria were not met, the augmented dataset was discarded. Out of the retained 
286 datasets, 15 chosen at random were retested by a different operator to confirm the specificity 
287 of the inclusion criteria. Finally, the available muscle volumes were compared from within the 
288 augmented and original databases. The mean volume within each database was computed 
289 for each of the 23 muscles considered. The difference between the volume of each muscle 
290 within the database and the average was then calculated, and this value was normalised 
291 against the mean volume. The resulting values were percentages representing the 
292 distribution of available muscle volumes within each database, which after normalisation, 
293 could be compared.

294 3.  Results

295 3.1. Segmentation results 

296 A visualisation of an example registration and of the results of one segmentation are 
297 highlighted in Fig. 4 for images taken from the hip, thigh, and shank, respectively.  While the 
298 deformable image registration has accurately identified the muscle tissue in the target subject 
299 in most cases (yellow), some regions were not correctly registered (red or green). The 
300 segmentation results reflect this, where the registration appears successful overall, and the 
301 automatic segmentations are geometrically very similar to the reference segmentations. 
302 There are areas within the automatic segmentations that do not reflect the reference 
303 segmentations, such as the gluteus maximus in the hip section, and the tibialis muscles within 
304 the shank section. The automatic segmentations within the thigh section mostly agree with 
305 the reference segmentations.

306 Fig. 4: 
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307 Registration and segmentation results from the combination of subjects resulting in the median average DSC (subject 4 and 
308 2 as the target and reference, respectively). The registration inputs (top row) and outputs (bottom row) for these 
309 combinations of subjects are shown on the group of images on the left. The segmentation results are shown in the right three 
310 image groups, where the reference and automatic segmentations for the target subject are shown in blue and red 
311 respectively. The muscles that are not highlighted within the images, were found not to be segmented with an appropriate 
312 level of repeatability. 

313 3.1.1. Volume error

314 The TVE for the entire muscle body was 8.2  5.1 % (mean  standard deviation) across all 
315 subject combinations (Fig. 5). The mean RVE for the individual muscles was found to be below 
316 12.8% for all combinations and all upper quartiles were below 40% error. The best performing 
317 combination was subject 5 with 1 as the target and reference respectively, with among the 
318 smallest mean (-2.2%) and with the lowest quartiles (lower and upper quartiles of -10.5% and 
319 6.4%, respectively). The relative volume error was consistent across all muscles, with no 
320 correlation found between muscle volume and relative volume error (R2=0.092, p-
321 value=0.159); the muscles with the highest variability within this cohort (adductor brevis, 
322 rectus femoris) made up the outliers within the distributions of RVE. The mean RVE from the 
323 intra-subject (left vs right) analysis was 0.35%, (Fig. 5). 

324 Fig. 1: 

325 Relative volume error (%) (top), Dice similarity coefficient (centre), and Hausdorff distances (mm) (bottom) found for each 
326 muscle in each subject, using the other subjects in the sub-cohort as the reference. The numbers above each of the boxplots 
327 denotes the reference subject pair for each target subject 1-5 used within the registration. The green area represents the 
328 acceptable level of RVE resulting from inter-operator dependence, prescribed by Montefiori et al. 2019 [15]. The grey dashed 
329 lines represent the mean values from the intra-subject analysis for comparison. The box and whisker plots show the mean, 
330 interquartile ranges, and ranges across the 23 muscles considered.   

331 3.1.2. Dice Similarity Coefficient

332 When looking at the segmentations of the five subjects obtained using the other four as 
333 reference subjects, very variable results were observed. The greatest average DSCs were 
334 those resulting from the segmentation of subjects 1,2, and 4, using subject 2, 1 and 1 as the 
335 reference subject, respectively. The mean DSCs found for these combinations of subjects 
336 were greater than 0.70, lower quartiles greater than 0.67, and with a wide spread of results 
337 (0.35 < 𝐷𝑆𝐶 < 0.88). Subjects 3 and 5 were segmented with a consistently lower DSC, with the 
338 average DSC considering all reference subjects found to be 0.61 and 0.60 respectively (0.69, 
339 0.69 and 0.67 for subject 1, 2, and 4, respectively). Additionally, one of these subjects was 
340 always the worst performing reference subject considering DSC when used to segment all 
341 target subjects, with the lowest average DSC. There was a weak correlation found between 
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342 muscle volume and the DSC of the automatic segmentations (R2=0.332, p-value=0.003). The 
343 average DSC found within the intra-subject analysis was 0.80 (Fig. 5).

344 3.1.3. Hausdorff distance

345 Overall, the average HD was typically between 15 mm and 30 mm, with the upper quartile 
346 being below 40 mm, other than the segmentations of subject 3 and 5 using subject 2 and 3 as 
347 references, respectively (Fig. 5). The spread of results was large, with Interquartile Ranges 
348 (IQR) being between 7 mm and 21 mm. There was no correlation found between the HD and 
349 the size of the muscle for which the HD was calculated (R2=0.097, p-value=0.089), the error 
350 was consistent across muscles of all sizes. The average HD found within the intra-subject 
351 analysis was 17.7 mm.

352 3.2. Augmented data

353 After initial checking by the author, 69 of the 110 generated augmented datasets passed the 
354 inclusion criteria. 15 datasets were rechecked by an expert in muscle segmentation and all 15 
355 passed, giving 100% specificity. Fig. 6 showcases some examples of the augmented images 
356 collected. Visually, the augmented images are well segmented, and are dissimilar to the 
357 reference subjects, particularly in the second row of images, where the relative fat depth of 
358 the moving subject (green) is retained, but the cross-sectional area of the thigh is equated to 
359 the fixed subject (red). The misalignment of the muscle tissue within the registered images, 
360 visible as concentrations of either red or green colouration, establish a difference in the 
361 muscle geometry within the registered and original data. The augmented subjects generated 
362 for 1 target subject (subject 1) are presented within supplementary material 3, for visual 
363 comparison.

364 The anatomical variability of the muscles within the augmented database is compared 
365 to the original 11 subject database (Fig. 7). The volumes of each of the muscles within the 
366 original and augmented databases were normalised against the corresponding average 
367 muscle volume for each muscle within the respective databases. The percentage greater or 
368 smaller than the average volume was then calculated for each muscle, representing the 
369 variability of the muscle volumes within each database. The distributions of these 
370 percentages are presented (Fig. 7). The muscle volumes available within the augmented 
371 database were found to have a greater range of volumes, often 1.5 to 2 times greater than in 
372 the original database. The range of volumes for each muscle considered within the original 
373 and augmented databases are presented in supplementary material 4.

374 Fig. 6: 
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375 Inputs, outputs and resulting augmented subjects. Each row of images presents results within the hip (left), thigh (centre), 
376 and shank (right) for 3 subject combinations chosen at random (target x reference: 4 x 5 (top), 1 x 3 (middle), 7 x 9 (bottom)). 
377 Within each cell there are the inputted images into the registration (left), registered images with corresponding target image 
378 (centre) and resulting segmented, augmented images (right). The muscle labels are visible within the augmented images as 
379 the blue areas. Each muscle is assigned a distinct greyscale value and the labels are assigned alphabetically. 

380 Fig. 7: 

381 The anatomical variability of muscle volumes for each muscle, ordered from smallest to largest within the original and 
382 augmented databases shown in red and blue respectively. The height of the distributions was not normalised, and the violin 
383 plot contains 95% of the data, with 2.5% of data cut off from each side, removing outliers. 

384
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385 4. Discussion

386 This paper aimed at proposing a fully automatic tool to segment 23 major lower limb muscles 
387 simultaneously from MR imaging data using morphological image processing and deformable 
388 image registration. Furthermore, the same tool was used to generate a unique dataset 
389 including 69 fully segmented, augmented 3D images. To the best of the authors’ knowledge, 
390 this study represents the first attempt to segment complete 3D muscle geometry of many 
391 individual muscles simultaneously using deformable image registration while using different 
392 subjects as the reference. This would be desirable as muscle segmentation of a new subject 
393 could be performed without the need for manual processing.

394 All 23 muscles were segmented from five subjects with moderate success, considering 
395 three error metrics, the RVE, DSC and HD. The registration quality was high considering the 
396 combination of subjects that resulted in the median average DSC (Fig. 4) which suggests that 
397 in most cases, the registration performed as intended. This was confirmed by the total volume 
398 error metric, lower than 10% on average. However, all three-error metrics reflected a lower 
399 accuracy for the segmentation of individual muscles. The individual muscle RVE was typically 
400 larger than that of an acceptable level of inter-operator dependence (10%) [15], with the 

401 lower and upper quartiles often exceeding 10% in most subject combinations. The mean 
402 absolute RVE within the optimal subject combinations was 12.7%, meaning that on average, 
403 there was an over or underestimation of the muscle volume greater than the effect of 
404 operator variability. This indicates that the method would be best suited when only interested 
405 in the volume of the overall muscle body. Capturing the total muscle volume has proven 
406 useful in studies such as Handsfield et al. [19], where regression equations were presented, 
407 to estimate individual muscle volume from total muscle volume and other anthropometric 
408 data such as height and BMI. The DSC results, on the other end, indicate that if the purpose 
409 of the segmentation was that of extracting internal muscle characteristics, such as the level 
410 of fat infiltration [10], then alternative approaches should be pursued. Possible improvements 
411 of the method could come from a more targeted selection of the reference subject, which as 
412 shown by the reported results (Fig. 5) can increase the accuracy of the approach both in terms 
413 of individual muscle volume and DSC. Further studies are needed to test this hypothesis.

414 The geometry of the 23 muscles was captured moderately well only in the optimal 
415 combination of subjects (those with greatest lower quartile), with mean DSC of 0.74 and IQR 
416 range of 0.71 < DSC < 0.77. However, this is significantly smaller than the inter-operator 
417 dependence of the manual process, which, within the literature [2,15,21,24] is consistently 
418 found to be DSCs of around 0.90 for the muscles considered in this study. While the pair of 
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419 subjects leading to the best results in terms of DSC were the most similar in terms of height 
420 and BMI, these anthropometric characteristics were very different in the pair having the 
421 second-best DSC (mean = 0.74, IQR of 0.69 < DSC < 0.79). This suggests that the newly 
422 proposed masking process (code will be made available on GitHub) achieved the goal of 
423 homogenising the subject imaging data and could be adapted for the removal of unwanted 
424 artefacts from within medical or indeed any other images.

425 Particularly successful approaches within the literature that used 3D deformable 
426 image registration to perform muscle segmentation were those based on longitudinal data, 
427 such as Le Troter et al. [33] and Fontana et al. [27], who attained average DSC of 0.90 and 
428 0.85, respectively. Similar to the latter, were the DSC values here found when registering the 
429 left to right limb in the same subject. Notably, these approaches still require the manual 
430 segmentation of each subject at the baseline. Moreover, these studies segmented fewer 
431 muscles than the 23 presented in this study. Last but not least, the images collected within 
432 this study were not optimised for muscle segmentation. 

433 Overall, the main limitation of the proposed method clearly lies in the non-satisfactory 
434 capture of individual muscle volume. These could have been caused by the propagation of 
435 inaccuracies associated with the manual segmentations of the reference images through the 
436 registration. However, this aspect is likely to be negligible since the muscles with high inter-
437 operator variability [15] were discarded at source. More likely, the issue lied in the fact that 
438 the muscle-muscle boundaries present a weak grey-level gradient, in contrast to the muscle-
439 fat boundaries, which are shown to have a strong grey-level gradient within the MR images 
440 (Fig. 1, 2, 4). Since ShIRT accounts for grey-level gradients within the inputted images [41], 
441 the muscle-fat and muscle-bone boundaries were registered to a higher degree of accuracy 
442 than the muscle-muscle boundaries. This unbalance in the accuracy of the registration of the 
443 different regions is highlighted by the greater RVE of the individual muscles, when compared 
444 to the total volume error. Finally, another source of error could lie within the optimisation 
445 process of the registration parameters (NS and smoothing coefficient) [41]. While in this study 
446 these parameters were optimised for the highest overall performance in segmentation 
447 accuracy across all considered lower limb muscles, the values could be optimised for the 
448 different areas of the limb. This was not implemented in this study as a rewriting of the 
449 registration toolkit would be required. 

450 Despite the above limitations, the image registration protocol here proposed proved 
451 clearly useful when adopted to generate an augmented imaging database of 69 subjects 
452 having a much broader range of muscle volumes and geometries than the original 11 subject 
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453 database. This result came after removing 41 non anatomically realistic datasets, which 
454 required some manual checking the augmented datasets, suggesting that similar care should 
455 be taken if replicating the use of the method. These datasets, made publicly available, can be 
456 used to train deep learning methods [36,37,38,39]. Machine learning and deep learning 
457 methods are now dominant tools used within the field of medical image segmentation 
458 [21,24,48]. Where the average DSC found amongst the 23 muscles considered within the 
459 present study were found to be around 0.75, considering only the optimal reference subject 
460 for each target subject, deep learning methods have been used to segment the lower limb 
461 muscles with average DSC between 0.85 [21] and 0.90 [24]. These tools are typically only 
462 suitable for studies with extremely large cohorts, but this problem has been alleviated within 
463 some medical image analysis fields, such brain tumour assessment [38] and bone 
464 segmentation [39], through data augmentation. However, this technique is yet to have been 
465 explored for muscle segmentation and the database here presented will hopefully foster 
466 efforts in this direction. To the best of our knowledge, in fact, this is the first study providing 
467 a vast, multi-operator assessed set of fully segmented, labelled augmented MR imaging 
468 sequences of the lower limb. In future work, these augmented datasets will be used to 
469 calibrate CNN models, with the potential to increase segmentation accuracy [36,37] and lead 
470 to a solution for the automatic segmentation and characterisation of muscles in vivo.

471 5. Conclusion

472 This study presented a novel, fully automatic muscle segmentation method using image 
473 registration, aimed at segmenting all lower limb muscles simultaneously. The results fit in well 
474 with those studies within the literature that also use image registration to segment muscle 
475 sections or individual muscles. The 3D deformable image registration is limited in its capacity 
476 to perform individual automatic muscle segmentation with a high accuracy. Nevertheless, this 
477 approach can be useful to provide total muscle volume and can be further optimised by 
478 increasing the number of reference datasets. Moreover, the publicly available augmented 
479 database built in this work would enhance any future study that would aim to use deep 
480 learning approaches for the segmentation of muscles from MR images. 
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