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Abstract
Frequency-dependent selection (FDS) drives an evolutionary regime that maintains or dis-
rupts polymorphisms. Despite the increasing feasibility of genetic association studies on
fitness components, there are a few methods to uncover the loci underlying FDS. Based on a
simplified model of pairwise genotype–genotype interactions, we propose a linear regression
that can infer FDS from observed fitness. The key idea behind our method is the inclusion of
genotype similarity as a pseudo-trait in selection gradient analysis. Single-locus analysis of
Arabidopsis and damselfly data could detect known negative FDS on visible polymorphism
that followed Mendelian inheritance with complete dominance. By extending the single-
locus analysis to genome-wide association study (GWAS), our simulations showed that the
regression coefficient of genotype similarity can distinguish negative or positive FDS without
confounding other forms of balancing selection. Field GWAS of the branch number further
revealed that negative FDS, rather than positive FDS, was enriched among the top-scoring
single nucleotide polymorphisms (SNPs) in Arabidopsis thaliana. These results showed the
wide applicability of our method for FDS on both visible polymorphism and genome-wide
SNPs. Our study provides an effective method for selection gradient analysis to understand
the maintenance or loss of polymorphism.

Keywords: Frequency-dependent selection, Genome-wide association study, Pairwise inter-
action model, Selection gradient analysis
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1 Introduction
Widespread polymorphism is a remarkable hallmark of the genomes of wild organisms. Bal-
ancing selection occurs when multiple alleles are maintained at a single locus through nega-
tive frequency-dependent selection (FDS), overdominance, and spatiotemporal variation in
selection pressure (Hedrick, 2007). Among these mechanisms of balancing selection, nega-
tive FDS favors rare alleles over common alleles and consequently maintains multiple alleles
at a locus. To date, negative FDS has been reported to act on various polymorphic traits
such as coloration (Gigord et al., 2001; Takahashi et al., 2010; Le Rouzic et al., 2015;
Nosil et al., 2018), self-incompatibility (Llaurens et al., 2008; Joly and Schoen, 2011;
Shimizu and Tsuchimatsu, 2015), and resistance to natural enemies (Antonovics and
Ellstrand, 1984; Brunet and Mundt, 2000; Sato and Kudoh, 2017). Conversely, pos-
itive FDS favors common alleles over rare alleles, thus unbalancing polymorphisms (Borer
et al., 2010; Garrido et al., 2016).

High-throughput genotyping technology has now enabled us to evaluate the genomic
basis of ecologically important traits and/or fitness in wild organisms (Durham et al., 2014;
Fisher et al., 2016; Nosil et al., 2018; Exposito-Alonso et al., 2019; Tsuchimatsu et al.,
2020). Specifically, genome-wide single nucleotide polymorphism (SNP) data help depict
fitness-genotype association across genomes. In genome-wide association studies (GWASs)
and quantitative trait locus (QTL) mapping, many statistical genetic analyses are based on
linear regressions of a trait on genotype values (Broman and Sen, 2009; Gondro et al.,
2013). If the target trait is a direct component of fitness, the regression coefficient of each
locus describes the relationship between individual’s fitness and character — that is, selection
gradient (Lande and Arnold, 1983) — at a target locus. By repeating this selection
gradient analysis for all SNPs, for instance, Exposito-Alonso et al. (2019) quantified
directional selection on a genome of Arabidopsis thaliana.

Despite its increasing appreciation in directional selection, little is known about the appli-
cability of genetic association studies for FDS. To develop a general model of FDS, population
genetics theory has long modelled genotype’s fitness as a product of the frequency of a focal
genotype and its encounter frequency with the other genotypes, called pairwise interaction
model (Schutz and Usanis, 1969; Cockerham et al., 1972; Asmussen and Basnayake,
1990; Trotter and Spencer, 2007; Schneider, 2008). Originally developed for direct
competition among neighboring plants (Schutz and Usanis, 1969), the pairwise interaction
model has thus far been introduced for direct competition and mating in insect populations
(Álvarez-Castro and Alvarez, 2005). However, growing body of evidence suggests that
FDS occurs not only through direct interactions but also through the indirect ones between
genotypes (Antonovics and Ellstrand, 1984; Gigord et al., 2001; Takahashi et al.,
2010; Sato and Kudoh, 2017). For instance, natural enemies mediate negative FDS on plant
resistance when they attack undefended plants surrounding defended plants (Antonovics
and Ellstrand, 1984; Brunet and Mundt, 2000; Sato and Kudoh, 2017). Mate choice
in male insects also mediates negative FDS on female color polymorphism when male insects
learn about different colors of female individuals (Van Gossum et al., 2001; Takahashi
et al., 2010). Furthermore, while the pairwise interaction model assumes random interactions
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among individuals within subpopulations, e.g., mobile insects within split cages (Cosmidis
et al., 1999; Fitzpatrick et al., 2007; Takahashi et al., 2014) or within split plant patches
(Sato and Kudoh, 2017), the local action of FDS among neighboring plants is also plausi-
ble in a continuous vegetation (Janzen, 1970; CONNELL, 1971; Browne and Karubian,
2016) (also known as Janzen–Connell effects). If the pairwise interaction model can be ex-
changed with a general regression model, selection gradient analysis of FDS would become
feasible in diverse organisms under various spatial structures (Fig. 1a).

Figure 1: Presumable scheme from the fitness measurement (a) to selection gradient analysis
(b). (a) Individual fitness is observed as a consequence of pairwise interactions (two-way
arrows) among individuals carrying different genotypes (black and white squares) within
split subpopulations (top gray squares: cf. the case of A. halleri and I. elegans in this
study) or a continuous space (bottom: cf. the case of A. thaliana). (b) The selection
gradient is then analyzed based on regression of the observed fitness wi on genotypes gi. The
second term in the equation is the same as that in Equation (1) and indicates how the second
selection coefficient s2 represents the effects of genotype similarity between the genotypes gi
and gj.

Previously, we proposed regression models that incorporated neighbor genotype similarity
into genetic association studies (Sato et al., 2021b,a). This idea was inspired by a model
of ferromagnetism, which is widely known as the Ising model (Cipra, 1987). The pairwise
physical interaction between two magnets that attract or repel each other may provide
evolutionary insights into the effects of genetic interactions on spatiotemporal patterns and
fitness consequences (Sato et al., 2021b). If two genotypes benefit from their similarity,
these positive interactions force similar genotypes to be clustered within the local space. If
two genotypes benefit from their dissimilarity, these negative interactions force the mixing
of dissimilar genotypes across a space. Such a forward problem of the Ising model has
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been subject to genetic algorithms that mimic biological evolution (Anderson et al., 1991;
Prügel-Bennett and Shapiro, 1997) because population optima are achieved through a
series of updates on individual fitness. In contrast, an inverse problem of the Ising model
deals with how to estimate the coefficient of physical interactions from individual energy that
is analogous to individual fitness. These analogies between the Ising model and biological
evolution led us to hypothesize that the direction and strength of pairwise genetic interactions
could be estimated by incorporating genotype similarity as a pseudo-trait into selection
gradient analyses (Fig. 1b).

In this study, we aimed to develop an effective selection analysis that infers FDS based
on observed fitness. Specifically, we investigated whether the Ising-based model of pairwise
genetic interaction (i) can accurately detect known FDS via single-locus analysis of visible
polymorphic traits and (ii) screen FDS-associated polymorphisms from genome-wide SNPs.
To accomplish these objectives, we first developed and applied the single-locus analysis to
two examples under the split setting (Fig. 1a upper), including herbivore-mediated negative
FDS on the trichome dimorphism of a wild herb Arabidopsis halleri (Sato and Kudoh,
2017) and male-mediated negative FDS on the female color polymorphism of a damselfly
Ischnura elegans (Takahashi et al., 2014). The fact that trait expression of both trichome
dimorphism and female color polymorphism followed Mendelian inheritance with complete
dominance (Shimizu, 2002; Sánchez-Guillén et al., 2005; Kawagoe et al., 2011) allowed
us to substitute phenotype frequencies for genotype frequencies of the heterozygote and
dominant homozygote. Extending the single-locus analysis to GWAS simulation, we then
examined whether our method can aid in detecting simulated FDS from genome-wide SNPs.
Distinct population structures were assumed in this GWAS simulation: The split setting ex-
emplified mobile animals in split cages with variable morph frequencies (Takahashi et al.,
2014) or plants in split plots (Sato and Kudoh, 2017), where individuals are expected to
interact uniformly within the cage or plot (Fig. 1a upper). Contrastingly, the continuous
setting exemplified the Janzen–Connell effects (Janzen, 1970; CONNELL, 1971) in a for-
est or grassland, in which sessile organisms interact only with their neighbors and FDS is
restricted to local areas (Fig. 1a lower). The extended GWAS method was finally applied to
the branch number data on A. thaliana accessions to screen polymorphisms associated with
FDS under the continuous setting (Fig. 1a lower).

2 Methods

2.1 Model development

We developed a statistical method linking FDS, the Ising model, and a pairwise interaction
model. First, we modeled pairwise interactions based on the forward problem of the Ising
model. Then, we proposed a linear regression as an inverse problem of the Ising model.
Finally, we examined fitness functions in a panmictic population to show how regression
coefficients infer negative or positive FDS.

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.10.502782doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.10.502782
http://creativecommons.org/licenses/by/4.0/


2.1.1 Pairwise interactions based on the Ising model

To model pairwise interactions between genotypes, we focused on the Ising model of ferro-
magnetics. Let us assume that diploid organisms interact within panmictic subpopulations
and produce their offspring based on the realized fitness (Fig. 1a top). We assume that a
subpopulation k belongs to the meta-population K as k ∈ K, where two individuals i and
j belong to subpopulation k such that i, j ∈ k. We further assumed that individuals i and
j had two alleles at a locus, with the ancestral allele A being dominant over the derived
allele a, where the genotype values were encoded as gi(j) ∈ {AA, Aa, aa} = {+1, +1, -1}.
This dominant encoding represented well-reported cases in which FDS often acts on a trait
exhibiting dimorphism with complete dominance (e.g., Takahashi et al., 2010; Sato and
Kudoh, 2017). By incorporating the genotype similarity between i and j, we designated
fitness w for individual i as follows:

wi = w0 + s1gi +
s2
Nk

Nk∑
j=1

gigj (1)

where w0 indicates the base fitness; s1 and s2 indicate the selection coefficients for self-
genotype effects and genotype similarity, respectively; and Nk indicates the total number of
individuals within subpopulation k. The genotype similarity

∑Nk

j=1 gigj represents the simi-
larity (or difference) of the genotype composition of the subpopulation from the individual i.
If two individuals share the same genotype values, gigj = (+1)× (+1) = (−1)× (−1) = +1.
If two individuals have different genotype values, gigj = (−1)× (+1) = (+1)× (−1) = −1.
Thus, the within-population genotype similarity (

∑Nk

j=1 gigj)/Nk ranges from -1.0 (perfect
dissimilarity) to +1.0 (perfect similarity; Fig. 1b) as scaled by the total number of interact-
ing individuals within the subpopulation Nk. Additionally, we could also assume an additive
expression for a trait responsible for FDS as gi(j) ∈ {AA, Aa, aa} = {+1, 0, -1}, where the
products involving heterozygotes were considered 0× 0 = 0 (neither similar nor dissimilar).
This additive encoding enabled us to assume the intermediate strength of the FDS for an
intermediate morph. However, most empirical studies have reported FDS between two out
of multiple morphs (e.g., Gigord et al., 2001; Takahashi et al., 2010; Le Rouzic et al.,
2015; Sato and Kudoh, 2017; Nosil et al., 2018). As intermediate FDS on an additive
trait is still uncommon, in this study, we focussed on dominant encoding.

Analogous to the Ising model, the forward problem of Equation (1) is to optimize wi

with given s1 and s2 by modulating gi(j). This was analogous to biological evolution, where
s1 and s2 selected genotypes gi(j) based on the fitness wi. The point of this forward problem
of the Ising model is that negative or positive s2 favored mixed (i.e., locally negative FDS)
or clustered (locally positive FDS) genotype distributions in a lattice space, respectively
(Figure S1a,b). The stochastic simulation based on Equation (1) is given in Appendix S1,
Table S1, and Figure S1.
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2.1.2 Regression model as an inverse problem of the Ising model

To infer FDS from the inverse problem of the Ising model, we modified Equation (1) as
a regression model. We redefine the individual fitness wi as the response variable yi; the
genotype gi(j) as the explanatory variables xi(j); the base fitness w0 as the intercept β0; and
the selection coefficients s1 and s2 as the regression coefficients β1 and β2, respectively. We
also added a residual error ei to Equation (1) to obtain a statistical model as follows:

yi = β0 + β1xi +
β2
Nk

Nk∑
j=1

xixj + ei (2)

where Equation (2) poses a regression analysis to estimate β̂1 and β̂2 from the given yi and
xi(j). According to the inference from s2 (Appendix S1), the negative or positive β2 represents
a negative or positive FDS between two alleles, respectively.

When yi is an absolute fitness, the FDS may act asymmetrically between the two alleles.
For example, negative FDS on relative fitness is known to occur in the Hawk-Dove game
(Takahashi et al., 2018), where hawks profit from competition with doves, whereas doves
suffer from competition with hawks. Thus, for the correct inference of FDS, it was neces-
sary to consider asymmetric and symmetric FDS. Asymmetric FDS can be described by a
multiplicative interaction between the second and third terms of Equation (2) (Sato et al.,
2021b) and is expressed as follows:

yi = β0 + β1xi +
β2
Nk

Nk∑
j=1

xixj +
β12xi
Nk

Nk∑
j=1

xixj + ei (3)

where β12 indicates the coefficient for the asymmetric effects of genotype similarity. If β12
was statistically significant, the slope coefficient of the genotype similarity differed among
focal genotypes (Sato et al., 2021b), meaning that the strength or direction of FDS is
asymmetric between genotypes. When yi is a relative fitness, negative fitness effects on
one allele coincide with positive effects on another allele, and asymmetric FDS would be
unnecessary. By extending Equations (2) and (3) to mixed models, we could also apply
these regression methods for GWAS (Appendix S2).

2.1.3 Fitness functions with respect to regression coefficients

To clarify how the coefficients for genotype similarity effects β2 and asymmetric effects β12
corresponded to FDS, we finally analyzed Equation (3) as a function of allele frequencies.
We suppose that all individuals uniformly interact in a sufficiently large population with
random mating (i.e., Nk → ∞). The likelihood of one genotype interacting with the other
genotypes depends on genotype frequencies derived from an allele frequency within a popu-
lation (Appendix S3). Let f be the frequency of the A allele within the panmictic infinite
population. The ratio of genotype frequency on panmixia was as follows: AA: Aa: aa =
f 2 : 2f(1− f) : (1− f)2. Assuming the complete dominance of the A allele over the a allele
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(xi(j) ∈ {AA, Aa, aa} = {+1, +1, -1}), we calculated all the combinations among the three
genotypes (Table S2) and consequent fitness yi for AA, Aa, and aa genotypes as

yAA = yAa = β0 + (β2 + β12)f
2 + 2(β2 + β12)f(1− f)− (β2 + β12)(1− f)2 (4a)

yaa = β0 − (β2 − β12)f 2 − 2(β2 − β12)f(1− f) + (β2 − β12)(1− f)2 (4b)

where yAA, yAa, and yaa denote the fitness values for the AA, Aa, and aa genotypes, respec-
tively (Appendix S3). The allele-level marginal fitness was then defined by weighting the
genotype fitness with the allele frequency as follows:

yA = fyAA + (1− f)yAa (5a)
ya = fyAa + (1− f)yaa (5b)

Figure 2 shows how the fitness value Equations (5a) and (5b) vary in response to the
allele frequency f . Symmetric negative FDS was exemplified by the negative β2 without any
asymmetric effects β12 (i.e., β12 = 0; Fig. 2a). Asymmetric negative FDS was described by
the negative (Fig. 2c) or positive (Fig. 2e) asymmetric effect β12, where the negative β2
denoted negative FDS on the relative fitness between two alleles (Fig. 2c, e). In contrast,
symmetric positive FDS was exemplified by the positive β2 with no (Fig. 2b), negative (Fig.
2d), or positive (Fig. 2f) values of the asymmetric effect β12. In summary, the sign of the
symmetric effects β2 represents negative or positive FDS on relative fitness between two
alleles even when the asymmetric effects β12 are not zero.

While the Ising model poses an optimization problem of the total energy based on
its interaction coefficient (Cipra, 1987; Anderson et al., 1991; Prügel-Bennett and
Shapiro, 1997), evolutionary biologists have long analyzed optima of population-level mean
fitness under FDS (Cockerham et al., 1972; Schneider, 2008; Takahashi et al., 2018).
In a panmictic population, population-level mean fitness is given by the allele-level marginal
fitness weighted by its allele frequency (Appendix S3); that is, the weighted mean is given
as follows:

ȳ = fyA + (1− f)ya = f 2yAA + 2f(1− f)yAa + (1− f)yaa (6)

This population-level mean fitness is maximized at an intermediate frequency under symmet-
ric negative FDS (Fig. 2a) (Schneider, 2008). This expectation from randomly interacting
and mating populations is comparable to the forward problem of the Ising model when s2 < 0,
where spatially mixed genotypes increase the population sum of yi more than monomorphic
populations (Sato et al., 2021b). Even under an asymmetric negative FDS (Fig. 2c and
e), the population-level mean fitness became larger than expected by a weighted mean of
monomorphic populations (= frequency-independent selection) (Takahashi et al., 2018)
(Fig. 2c and e). In contrast, the population-level mean fitness was minimized at an inter-
mediate frequency under a symmetric positive FDS (Fig. 2b). Under asymmetric positive
FDS, the population-level mean fitness was neither maximized nor greater than expected by
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Figure 2: Numerical examples for the fitness values yi in response to allele frequency when
the A allele is completely dominant over the a allele. The black and gray lines indicate the
marginal fitness of A and a alleles; that is, Equations (5a) and (5b), respectively. Dashed
curves indicate the population-level mean fitness between the two alleles Equation (6). (a)
Symmetric negative FDS, (b) symmetric positive FDS, (c and e) asymmetric negative FDS,
and (d and f) asymmetric positive FDS. Closed and open circles indicate stable or unstable
states, respectively. The base fitness and no directional selection were set at β0 = 1.0 and
β1 = 0.0 for all panels.
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frequency-independent selection (Schneider, 2008; Takahashi et al., 2018) (Fig. 2d and
f). When A and a alleles show additive expression as xi(j) ∈ {AA, Aa, aa} = {+1, 0, -1},
fitness functions become so complicated that more than two equilibria might arise (Appendix
S3; Figure S2) but have rarely been reported empirically.

2.2 Single-locus examples

To test whether the known FDS could be detected using our method, we applied the single-
locus analysis equations (2) and (3) to Arabidopsis and Ischnura data (Sato and Kudoh,
2017; Takahashi et al., 2014) collected under a split setting (Fig. 1a, top). The fitness
components in the real data were absolute values (e.g., number of eggs, flowers, and repro-
ductive branches) where asymmetric FDS on the absolute fitness (Fig. 2c-d) was possible in
addition to symmetric FDS on relative fitness (Fig. 2a and b). Therefore, symmetric and
asymmetric FDS were tested using Equations (2) and (3), respectively. The lme4 package
(Bates et al., 2015) in R was used for the single-locus analyses.

2.2.1 Flower production of hairy and glabrous plants

We applied single-locus analysis for the flower production data of Arabidopsis halleri subsp.
gemmifera to detect known negative FDS mediated by leaf beetle attacks on hairy and
glabrous plants (Sato and Kudoh, 2017). The original data of Sato and Kudoh (2017)
are downloaded from the Dryad repository (https://doi.org/10.5061/dryad.53k2d) and were
re-analyzed using our proposed method. Sato and Kudoh (2017) set circular split plots
(1 m in diameter) and recorded the trichome phenotype (hairy or glabrous), the number
of flowers, leaf damage score, and the length of largest leaf for all individual plants within
each plot. Field surveys were conducted along a 200-m line transect at the Omoide River,
Hyogo, Japan (35◦06′N, 134◦56′E), from 2013 to 2016. The total sample size was 3,070
individuals among 324 plots. According to Sato and Kudoh (2017), we used a generalized
linear mixed model (GLMM) with a Poisson error structure and a log-link function. The
response variable was the number of flowers. The fixed effects were the self-phenotype (hairy
or glabrous), similarity between the two morphs, and total number of plants within each
field plot. The log-transformed length of the largest leaf (mm), which reflects the plant size,
was included as an offset term. The random effects were the field plot IDs nested below the
study years. In A. halleri, hairy alleles are known to be dominant over glabrous alleles at the
GLABRA1 locus (Shimizu, 2002; Kawagoe et al., 2011). Given the complete dominance
of hairy alleles, we assumed complete dominance at the GLABRA1 locus with xi(j) ∈ {AA,
Aa, aa} = {+1, +1, -1} on the basis of the trichome phenotype of an individual.

2.2.2 Egg production of andromorph and gynomorph females in a damselfly

We also applied single-locus analysis for the egg production by the blue-tailed damselfly
Ischnura elegans to detect known negative FDS and the consequent increase in population-
level mean fitness between an andromorph and a gynomorph (Takahashi et al., 2014;
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Le Rouzic et al., 2015). The original data were derived from Takahashi et al. (2014) and
consisted of 102 andromorphs and 79 infuscans-type gynomorphs. Takahashi et al. (2014)
assigned adult I. elegans with an andromorph frequency of 0.2, 0.5, or 0.8 into split-field
cages under low- or high-density conditions. The field experiment was conducted at the
Stensoffa Field Station of Lund University. We used a GLMM with a Poisson error structure
and a log-link function according to Takahashi et al. (2014). The response variable was
the number of mature eggs. The fixed effects were morph type and morph similarity within
a cage. The cage ID and experimental ID were considered random effects, where the cage
ID was nested below the experimental ID. The andromorph allele is known to be dominant
over the infuscans-type gynomorph allele on an autosomal locus (Sánchez-Guillén et al.,
2005). Therefore, on the basis of phenotype frequencies within the split cages, we assumed
complete dominance with genotype values encoded as xi(j) ∈ {AA, Aa, aa} = {+1, +1, -
1} for homozygous andromorphs, heterozygous andromorphs, and homozygous gynomorphs,
respectively. The interaction term between the morph type and similarity was also considered
in the line of GLMMs to test the significance of asymmetric FDS between the two morphs.
If the interaction term was not significant, the coefficients of the main effect were estimated
using GLMM without any interaction terms.

2.3 GWAS simulation

Simulations were used to evaluate the power of our method in detecting causal polymor-
phisms from genome-wide SNPs. The entire procedure consisted of three steps: We (i)
simulated genomic structure under balancing selection, (ii) conducted virtual experiments
to simulate fitness from the simulated genomes, and (iii) applied our method for GWAS of
simulated fitness and genomes. We used Equation (2) to focus on symmetric FDS on relative
fitness in this simulation because selection acted not on absolute but on relative fitness. To
test the notion that linear mixed models (LMMs) usually outperform standard linear models
(LMs) in GWAS (Kang et al., 2008), we compared the performance of both LMs [Equation
(2)] and LMMs (see Appendix S2 for the mixed model extension). We used SLiM version 3
(Haller and Messer, 2019) for population genetic simulations; and the vcfR (Knaus and
Grünwald, 2017), gaston (Perdry and Dandine-Roulland, 2020), rNeighborGWAS
(Sato et al., 2021b), and pROC (Robin et al., 2011) packages in R version 4.0.3 (R Core
Team, 2019) for GWAS mapping.

2.3.1 Simulated genomes

Population genetic simulations were performed using SLiM version 3 to create a realistic
genome structure. By running 30 independent iterations for 2000 generations, we simulated
50 kb nucleotide × three chromosomes × 10 subpopulations × 200 individuals. Base pa-
rameters were set as follows: mutation rate µ = 10−6, selection coefficient s1 = s2 = 0.1
for non-neutral mutations, and recombination rate r = 10−5. Ten subpopulations were dis-
tributed in a circle with a low migration rate m = 10−4 between neighboring populations.
In this simulation, we decomposed the total fitness as wi = wi,1 + wi,2. The first fitness
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component wi,1 involves self-genotype effects β1, and wi,2 is the second fitness component
subject to the power analysis of genotype similarity effects β2. For self-genotype effects β1,
we define stabilizing selection as wi,1 = 1.5 − [(zi,1 − z∗1)2/s1Nk], where z∗1 is the optimum
number of QTLs responsible for self-genotype effects per genome per population and zi is the
number of QTLs for individual i. We set z∗1 to 5 and assumed additive effects by the QTLs.
Following the standard way to simulate polygenic selection (Haller and Messer, 2019),
we did not substitute QTLs for w1,i even after they were fixed. For the genotype similarity
effects β2, we assumed four specific scenarios of selection on the second fitness component
wi,2 as follows:

Scenario 1. Negative frequency-dependent selection: For the test of β2, we simulated neg-
ative FDS on the second fitness component wi,2. We simulated negative FDS for the second
fitness component as wi,2 = 1.5 − s2gifk, where fk indicates the frequency of the mutation
within a subpopulation k. Novel mutations were assumed to be recessive to ancestral alleles
with genotype gi redefined as gi ∈ {AA, Aa, aa} = {1, 1, 0}. Polymorphisms were likely
balanced under negative FDS; thus, the mutation rate was set at half of the base parameter
to maintain the number of causal SNPs in the same order as that in the other scenario.

Scenario 2. Positive frequency-dependent selection: We also simulated the opposite
regime, positive FDS, on the second fitness component wi,2. It is known that locally acting
positive FDS within a subpopulation can lead to global coexistence of two alleles among
subpopulations (Molofsky et al., 2001). Therefore, we separated the entire population
into four panmictic subpopulations to simulate polymorphic loci. Similar to negative FDS,
we simulated positive FDS as wi,2 = 1.5 + s2gifk. Novel mutations were assumed to be
recessive to ancestral alleles with genotype gi redefined as gi ∈ {AA, Aa, aa} = {1, 1, 0}.

Scenario 3. Overdominance: To test whether β2 confounded frequency-independent types
of balancing selection, we simulated genomes under overdominance selection. The second
fitness component is defined as wi,2 = 1.5 + s2hgi, where h is the dominance coefficient
expressed on the basis of genotypes as {hAA, hAa, haa} = {1.0, 2.0, 1.0}.

Scenario 4. Spatiotemporally varying selection: To test another type of frequency-
independent balancing selection, we simulated genomes under spatiotemporally varying se-
lection. The second fitness component is defined as wi,2 = 1.5 + sgi, where s varies in space
and time. We assumed s2 = 0.1 for two subpopulations, and s2 = −0.1 for the other two sub-
populations. For six of the four subpopulations, we changed the selection coefficient in time
to s2 = 0.1 for odd generations and s2 = −0.1 for even generations. We reset m = 0.001 to
allow a higher migration rate. In this scenario, novel mutations were assumed to be recessive
to ancestral alleles.

2.3.2 Virtual experiments

Then, we sampled the simulated genomes and generated fitness values from the genotype
data. The simulated genomes were exported in variant call format (.vcf) and loaded into
R using the vcfR package (Knaus and Grünwald, 2017). SNPs were filtered with a cut-
off threshold of a minor allele frequency (MAF) of 0.01. We assumed two experimental
settings: split and continuous populations (Fig. 1a). To describe the two distinct cases, 900
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individuals were randomly sampled from each simulation without replacement and assigned
to a 30 × 30 lattice space for the continuous setting, or 10 individuals each to 90 split cages
for the split setting.

Fitness values were then simulated from the simulated genomes and their spatial ar-
rangement. To calculate the self-genotype component β1xi in Equation (2), we assigned 0.1
(which corresponded to the selection coefficient s1 in the population genetic simulation) to β1
of causal SNPs or zero to those of the other SNPs. The second fitness component at causal
SNPs was generated with β2 = 0.1 (corresponding to the strength of balancing selection s2
in the population genetic simulation) for negative or positive FDS as (±β2

∑Nk

j=1 xixj)/2Nk,
for overdominance as xi ∈ {AA, Aa, aa} = {1 + β2, 1 + β2h, 1}, and for spatiotemporally
varying selection as a random assignment of ±β2 to β2xi. Fitness variance was not ad-
justed for the first and second fitness components since the number of causal SNPs and
their effect sizes were controlled during the population genetic simulation above. Gaussian
residual errors were finally added to the simulated fitness such that approximately one-third
of the total phenotypic variation was attributed to the environmental variance as Var(e)
= (0.75)2×Var(w). This range of the number of causal SNPs and the proportion of pheno-
typic variation explained by the model were based on parameter settings where the model
performance was well differentiated (Sato et al., 2021b).

2.3.3 GWAS using simulated genomes and fitness

Finally, we performed association mapping of the simulated fitness with respect to β1 and β2.
The rNeighborGWAS package (Sato et al., 2021b) was used to implement the regression
model in Equation (2) as an LMM (Appendix S2). The false vs. true positive rate was
analyzed using the receiver operating characteristic (ROC) curve. Similar to the generative
model, we assumed the dominant encoding for the three genotypes, xi(j) ∈ {AA, Aa, aa} =
{+1, +1, -1}. To measure the efficiency of causal polymorphism detection, we calculated the
area under the ROC curve (AUC) for the -log10(p-values) of β1 or β2. The AUC ranged from
0.5 (no power to detect causal SNPs) to 1.0 (perfect matching between the top p-value score
and causal SNPs). To measure the accuracy of the effect size estimates, we compared the
true and estimated values of β2. To test whether LMMs could outperform standard LMs,
we also compared AUCs and β̂2 between LMM and LM.

2.4 Pilot GWAS

To examine whether our method is applicable to the real GWAS dataset, we conducted a
pilot GWAS of the reproductive branch number in field-grown A. thaliana under a contin-
uous setting (Fig. 1a lower). According to Sato et al. (2019), a summer cohort composed
of natural accessions with various life cycles was established to investigate the survival and
reproduction under stressful environments. We selected 199 worldwide accessions from 2029
inbred lines sequenced by the RegMap (Horton et al., 2012) and 1001 Genomes project
(Alonso-Blanco et al., 2016). Full-imputed genotypes were downloaded from the AraG-
WAS catalog (Togninalli et al., 2018). For the 199 accessions, 1,819,577 SNPs were
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selected at a cut-off threshold of MAF > 0.05. Three replicates of the 199 accessions were
sown on Jiffy-seven (33 mm in diameter) and stratified under constant dark conditions at
a temperature of 4C◦ for 1 week. Seedlings were first grown under short-day conditions (8
L: 16D, 20C◦) for 6 weeks. Individual plants were then potted into a plastic pot (6 cm in
diameter) filled with mixed soils of agricultural compost (Profi Substrat Classic CL ED73,
Einheitserde Co.) and perlite with a 3:1 L ratio of perlite. Potted plants were transferred to
the common garden at the Irchel Campus of the University of Zurich (Zurich, Switzerland:
47◦23′N, 08◦33′E) on 8 July 2019. In the field setting, a set of 199 accessions and an addi-
tional Col-0 accession were randomly assigned to each block without replacement. The 200
plants were set in plastic trays (10 × 40 cells in a continuous space) in a checkered pattern.
Three replicates of each block were set > 1.5 m apart from each other. We recorded the
length of the largest leaf (mm) at the beginning of the experiment, the presence of bolting
after 2 weeks, and the branch number at the end of the experiment (27 August 2019). We
considered the branch number as a proxy for fitness because it is known as a major fitness
component of A. thaliana (Chong et al., 2018) and other reproductive phenotypes were
difficult to observe owing to the stressful summer environment. Dead plants were recorded
as a branch number of zero, i.e. , with no fitness. Accession names and phenotype data are
presented in Table S3.

The branch number was analyzed as a target trait of GWAS. The rNeighborGWAS pack-
age version 1.2.3 (Sato et al., 2021b) was used to implement Equations (2) and (3) as GWAS
(Appendix S2). The inbred lines of A. thaliana have either AA or aa genotype, in which the
qualitative interpretation of β2 and β12 in this inbred case remains the same as in the case
of complete dominance (Appendix S3; Figure S3). The response was log(x+1)-transformed
number of branches. We assumed that FDS arose from genetic interactions among neighbor-
ing plants in small Arabidopsis, and thus, the genotype similarity was considered up to the
nearest neighbors; that is, Nk = 4 from a focal individual. The initial plant size, presence of
bolting, experimental block ID, and edge of each plot (or not) were considered as non-genetic
covariates. The marker kinship and genome-wide structure of neighbor genotype similarity
were considered random effects. After association mapping, we focused on SNPs with a
-log10(p-value) score > 4.0. We searched candidate genes within ∼10 kb around the target
SNPs based on the Araport11 gene model with the annotation of The Arabidopsis Infor-
mation Resource (TAIR; accessed on 31 December 2021). Gene ontology (GO) enrichment
analysis was conducted using the Gowinda algorithm (Kofler and Schlötterer, 2012)
with the options “–gene-definition undownstream1000,” “–min-genes 2,” and “–mode gene.”
The GO.db package (Carlson, 2020) and the latest TAIR AGI code annotations were used
to build the input files.
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Figure 3: Negative frequency dependence in (a) the size-adjusted number of flowers in A.
halleri and (b) the number of mature eggs in I. elegans. Fitness functions are based on the
estimates from Table 1 and are shown at a phenotype level (see case 3 in Appendix S3) to
project model trends on the observed fitness. The black and grey lines indicate the fitness
function of dominant (i.e., hairy and andromorph) or recessive (glabrous and gynomorph)
morphs, respectively. Filled and open circles indicate the observed fitness for the dominant
or recessive morph within a plot, respectively. The dashed curve shows the population-level
mean fitness. The black dot represents a stable equilibrium under negative FDS. In panel
(a), a single circle corresponds to a field plot where the average number of flowers adjusted
by plant size (mm) among hairy or glabrous plants is given after log(x+0.1)-transformed.

3 Results

3.1 Negative FDS on trichome dimorphism in A. halleri

To test whether the single-locus analysis could detect the known negative FDS, we applied
Poisson GLMM for the flower production data on hairy and glabrous plants of A. halleri
under the split setting of field plots (Sato and Kudoh, 2017). The Poisson GLMM detected
a negative and significant coefficient of the morph similarity β̂2 (Table 1a), indicating a
negative FDS where a focal plant produced more flowers as dissimilar morphs were grown
within the same plot. The lack of significance of the interaction term between the trichomes
and morph similarity suggest that negative FDS is symmetric between hairy and glabrous
plants (Table 1a). We also found the same level of the self-morph coefficient β̂1 as the
negative coefficient of morph similarity β̂2 (Table 1a), which indicates the simultaneous
action of directional selection and negative FDS between the two morphs. However, the
total number of plants, namely, the density, had no significant effect on flower production
(Table 1a). The fitness function estimated from β̂0, β̂1, β̂2, and β̂12 showed that a stable
equilibrium under negative FDS remained at a biased but not monomorphic frequency (Fig.
3a). This discrepancy between the observed frequency and expected equilibrium was likely
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because the present selection analysis could not incorporate another major component of
fitness in A. halleri that is clonal reproduction (Sato and Kudoh, 2017). These results
provide qualitative evidence for negative FDS on trichome dimorphism through the fitness
component of flower production.

Table 1: Poisson generalized linear mixed model (GLMM) applied to the number of flowers
between hairy and glabrous A. halleri (a) or the number of mature eggs between the andro-
morph and gynomorph of I. elegans (b). Morph similarity was calculated from the genotype
similarity defined by Equation (2). Estimated coefficients, their standard errors (SE), Z-
values, and p-values are shown for multiple regressions. Bold letters indicate significance at
p < 0.05 by Wald tests.
(a) Arabidopsis halleri

Fixed effects Coefficient SE Z p
Intercept β̂0 -2.076 0.17 -11.97 <2e-16
Self-morph β̂1 0.146 0.008 17.32 <2e-16
Morph similarity β̂2 -0.163 0.018 -9.22 <2e-16
Total no. of plants -0.006 0.010 -0.63 0.53
Self × Similarity β̂12 -0.088 0.048 -1.81 0.07

(b) Ischnura elegans
Fixed effects Coefficient SE Z p

Intercept β̂0 4.55 0.191 23.8 <2e-16
Self-morph β̂1 -0.021 0.008 -2.56 0.01
Morph similarity β̂2 -0.878 0.022 -39.30 <2e-16
Density 0.097 0.237 0.41 0.68
Self × Similarity β̂12 -0.042 0.25 -0.17 0.87

3.2 Negative FDS on female color polymorphisms in I. elegans

To further test whether the single-locus analysis could represent a known relationship be-
tween negative FDS and population-level mean fitness, we applied Poisson GLMM for the
data on the number of mature eggs between the andromorph and gynomorph of I. elegans
under the split setting of field cages (Takahashi et al., 2014). Consistent with the previous
evidence for negative FDS (Van Gossum et al., 2001; Le Rouzic et al., 2015), we found a
significantly negative coefficient of morph similarity β̂2 (Table 1b). The interaction term be-
tween the morph type and similarity was not significant (Table 1b), indicating no significant
asymmetry in the negative FDS between the two morphs. We also found a significant effect of
the morph type (andromorph or gynomorph) on the number of eggs, but its effect was much
less significant than that of morph similarity (Table 1b). As reported in a previous study
(Takahashi et al., 2014), the density did not significantly affect the egg number (Table
1b). The fitness function estimated from β̂0, β̂1, β̂2, and β̂12 shows that negative FDS allows
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for the coexistence of the two morphs at an intermediate frequency (Fig. 3b). Consistent
with the results of Takahashi et al. (2014), the population-level mean fitness increased at a
stable equilibrium at the intermediate frequency (Fig. 3b). These results support the action
of symmetric negative FDS and the consequent increase in the population-level mean fitness.
Taken together, A. halleri and I. elegans data suggest that our single-locus model can be
applied to the selection gradient analyses of FDS on visible polymorphic traits that follow
typical Mendelian inheritance with complete dominance (see also the discussion "Selection
gradient along genotype similarity").

3.3 Detection of simulated FDS across a genome

We simulated genotypes and fitness to test whether our method could distinguish negative
FDS, positive FDS, overdominance, and spatiotemporally varying selection among genome-
wide SNPs. The simulated genomes had 2,000 to 4,500 SNPs with MAFs > 0.01 across 50 kbp
nucleotide sequences (Fig. S4). They exhibited low heterozygosity (H t < 0.1) and moderate
to strong differentiation among 10 populations (G st < 0.5; Fig. S4c), where approximately
200 SNPs were involved in polygenic stabilizing selection (Fig. S4a). Regarding the causal
SNPs, SNPs responsible for positive FDS showed strong population structures (G st > 0.8)
with low heterozygosity (H t < 0.05; Fig. S4b) because positive FDS disrupts polymorphisms
within a population. In contrast, since negative FDS maintains polymorphisms within a
population, SNPs responsible for negative FDS had weak population structures (G st < 0.2)
with high heterozygosity (H t > 0.35; Fig. S4b).

We implemented the single-locus model Equation (2) as a linear mixed model (LMM)
for GWAS (Appendix S2) and evaluated the performance of LMMs in terms of causal poly-
morphism detection and effect size estimates (Fig. 4). The power to detect negative and
positive FDS was strong (median AUC > 0.8) in both split and continuous settings (Fig.
4a, b, d and e). The direction of the FDS matches the estimated sign of β2 (Fig. 4c and
f). In contrast, our method had almost no power to detect overdominance (Fig. 4b and e).
Compared with overdominance, spatiotemporally varying selection was more likely, but the
power remained weak (median AUC < 0.6) and its estimated coefficients had a median value
of almost zero (Fig. 4b-c and e-f). These results indicate that our method retains the power
to detect negative and positive FDS in GWAS, with other types of balancing selection less
likely confounded.

The performance of LMMs was compared with that of standard LMs (Fig. 4, Fig. S5).
In terms of AUC, LMMs outperformed LMs in the detection of negative FDS (Fig. 4b and
e, Fig. S5b and e). Although LMs and LMMs exhibited similar performances for positive
FDS, LMs overestimated the true strength of positive FDS more than LMMs (Fig. 4c and
f, Fig. S5c and f). LMMs retained a slight power to detect polygenic stabilizing selection
(weakly concave ROC curve; Fig. S6a and d), whereas LMs had almost no power to detect
the stabilizing selection (almost flat ROC curve; Fig. S7a and d). These results suggest that
LMMs are better suited to the proposed method because they can more efficiently capture
negative FDS or prevent overestimation of the strength of positive FDS.
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Figure 4: Performance of linear mixed models to estimate four types of simulated selection:
NFDS, negative frequency-dependent selection (blue); PFDS, positive frequency-dependent
selection (red); OD, overdominance (dark gray); and STVS, spatiotemporally varying selec-
tion (light gray). The top and bottom panels show the results of the split and continuous
settings, respectively (Fig. 1a). The left panels (a) and (b) show the receiver operating
characteristic (ROC) curve, which indicates the relationship between the true positive rate
and false positive rate. The middle panels (b) and (e) show the area under the ROC curve
(AUC). Dashed lines at AUC = 0.5 indicate no power to detect causal single nucleotide
polymorphisms (SNPs). The right panels (c) and (f) show the estimated β2 of causal SNPs,
where negative and positive values indicate negative and positive FDS, respectively. Cross
marks indicate the true simulated magnitude of β2. Boxplots show the median by a center
line, upper and lower quartiles by box limits, and 1.5× interquartile range by whiskers.

3.4 Field GWAS of the branch number in A. thaliana

To examine feasibility using a real GWAS dataset, we finally applied an LMM for field GWAS
of the branch number in A. thaliana (Fig. 5) under the continuous setting (Fig. 1a lower).
QQ-plots exhibited little inflation of the observed p-value score against the expected score
(Fig. S8). Of 561 plants, 181 bolted 2 weeks after they were transferred to the field in July.
The proportion of branch number variation explained by self-genotypes (= σ̂2

1/(σ̂
2
1 + σ̂2

e)) was
0.68, indicating high heritability of the fitness component. For the self-genotype effects β1
(i.e., standard GWAS), we detected no significant SNPs above the Bonferroni threshold but
found a peak on the top of chromosome 4 (Fig. 5a; Table S4a). The top of chromosome 4 is
known to encompass a flowering QTL and natural variation in the FRI (Aranzana et al.,
2005). GO enrichment analysis detected no significant annotations at a false discovery rate
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of < 0.05.

Figure 5: Genome-wide association studies of branch number in field-grown Arabidopsis
thaliana under the continuous population setting (Fig. 1a lower). The results of linear
mixed models are shown. (a, b, and c) Manhattan plots for self-genotype effects, genotype
similarity effects, and asymmetric effects, respectively. Horizontal dashed lines indicate
p-value = 0.05, after Bonferroni correction. (d) Histogram of estimated β2 among SNPs
exhibiting p-values < 0.0001. Negative and positive β2 infer loci responsible for negative and
positive FDS, respectively.

For the genotype similarity effects β2, we also found no significant SNPs but top-scoring
SNPs on chromosomes 3 and 5 (Fig. 5b). Within 10 kbp near the top-scoring SNP on chro-
mosome 3, we observed the GAE6 gene, which encodes a UDP-D-glucuronate 4-epimerase
involved in pectin biosynthesis, cell wall integrity, and immunity to pathogens (Bethke
et al., 2016). To elucidate the genome-wide patterns of β2 and candidate genes, we focused
on SNPs exhibiting p-values of < 10−4, corresponding to <0.025 percentiles. Of the 254 SNPs
selected, 195 and 59 showed negative and positive β2, respectively (Fig. 5d). Genes involved
in plant immunity and resistance, such as GAE6, ARGONAUTE 4 (AGO4 ), and ACTI-
VATED DISEASE RESISTANCE 1 (ADR1 ), were observed within 10 kb near the SNPs
showing negative β2 at p-value < 0.0001 (Table S4b). In contrast, AVRRPT2-INDUCED
GENE 1 (AIG1 ) was only a resistance-related gene observed near the SNPs showing positive
β̂2 at p-values of < 0.0001 (Table S4b). GO enrichment analysis found no significant GO
annotations at a false discovery rate of < 0.05.

We also tested the asymmetric effects β12 for all SNPs by detecting a QTL on chromosome
5 near the Bonferroni threshold (Fig. 5c). These SNPs exhibited positive β2 and β12 (i.e.,
β̂2 = 0.78 and β̂12 = 1.13 on chromosome 5 at position 22382673: Table S4c), indicating
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positive effects of a reference allele on absolute fitness together with positive FDS on relative
fitness. Genes potentially related to growth were located near this top-scoring SNP, including
SUMO2 and SUMO3. GO enrichment analysis found no significant GO annotations at a
false discovery rate of < 0.05.

To compare the LMMs and LMs, we applied standard linear models for the branch
number (Fig. S9). For the self-genotype effects, a large number of SNPs showed larger
-log10(p-values) scores than the Bonferroni threshold (Fig. S9a). The observed p-values
for the self-genotype effects were greater than expected (Fig. S10a), showing that LMs
should not be used for GWAS of the branch number. We also observed a slight inflation
in the observed p-values for the genotype similarity and asymmetric effects (Fig. S10b-c).
Consistent with the results of LMMs, the estimate sign of β̂2 indicated that negative FDS
rather than positive FDS was more likely observed among the top-scoring SNPs (Fig. S9d).
Combined with the simulation above, these empirical results suggest that LMMs are more
suitable for GWAS than LMs. The line of GWAS simulation and application shows that
our method can also be used to screen polymorphisms associated with FDS (see also the
discussion "Applicability for GWAS")

4 Discussion

4.1 Selection gradient along genotype similarity

Selection gradient analysis is a powerful approach for empirical studies to quantify selection
in action (Lande and Arnold, 1983; Mitchell-Olds and Shaw, 1987; Chong et al.,
2018). By incorporating genotype similarity as a pseudo-trait, we propose a linear regression
that simplifies a pairwise interaction model of FDS. The single-locus analysis of A. halleri
and I. elegans suggests that our method is applicable to plants and animals in natural
or semi-natural fields. As the covariate of genotype similarity (

∑Nk

j=1 xixj)/Nk denotes how
similar (or dissimilar) the neighbor compositions are with the focal individual, conclusions are
expected to be the same as we regress fitness components on the frequency of other morphs.
Empirical studies have often tested the effects of morph frequency on fitness in the subset
data of each morph (McCauley and Brock, 1998; Bennington and Stratton, 1998;
Sato and Kudoh, 2017) or evaluated relative fitness without monomorphic subpopulations
(Gigord et al., 2001; Takahashi et al., 2010). In contrast to the analysis of partial data,
the proposed method deals with a full dataset for statistical tests of the coefficient β2, which
determines the direction and strength of the symmetric FDS.

Even when FDS is asymmetric between two alleles, another coefficient β12 helps us infer an
accurate form of FDS on absolute fitness. Although the multiplicative model [Equation (3)]
requires the additional estimation of β12, we could still analyze the full dataset without using
the subset data of each morph. Practically, we should first test β12 using the multiplicative
model and then test β2 using the linear model [Equation (2)] if β12 is not significant. The
main effects β̂2 infer negative or positive FDS on relative fitness, whereas the coefficient of
the asymmetric effect β̂12 modulates the fitness slope along the allele frequency (Fig. 2).
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Despite the increased complexity due to the interaction term β12, the direction of FDS on
the relative fitness can be simply interpreted by estimation of the main effect β2.

Alteration of the population-level mean fitness is another remarkable outcome of the
pairwise interaction model (Cockerham et al., 1972; Asmussen and Basnayake, 1990;
Schneider, 2008). Based on the simplified model of pairwise interactions, our method pro-
vides an additional inference of the relationships between the population-level mean fitness
and allele frequency (Fig. 2). For instance, with symmetric negative FDS, the mean fitness
is expected to increase more in polymorphic than in monomorphic populations (Fig. 2a).
The line of empirical studies on I. elegans has reported such an increased population-level
mean fitness at an intermediate frequency (Takahashi et al., 2014) as well as negative
FDS on female color polymorphisms (Le Rouzic et al., 2015). The results of our reanal-
ysis show symmetric negative FDS (i.e., β̂2 < 0; Table 1b) and a consequent increase in
population-level mean fitness at an intermediate frequency in I. elegans (Fig. 3b). Although
the reanalysis of A. halleri data shows the joint action of directional selection and biased
frequency on its equilibrium, negative FDS still maintained the dimorphism and very slightly
increased population-level mean fitness at an intermediate equilibrium frequency (Fig. 3a).
Combined with the previous evidence, the present method provides an empirical approach
to understand how FDS increases population-level mean fitness.

4.2 Applicability for GWAS

By incorporating the population structure as random effects, we extended our method to
LMMs that have often been used in GWAS (Kang et al., 2008) (see also Appendix S2).
Our simulations suggest that LMMs improve the power to detect causal polymorphisms
or prevent us from exaggerating effect-size estimates of FDS. However, caution should be
exercized regarding the genetic structure of the loci underlying positive or negative FDS. As
positive FDS disrupts polymorphisms, their selected loci likely showed low heterozygosity
and strong population differentiation (Fig. S4). While LMMs could deal with the population
structure, their effect-size estimates were still larger than the true signals (Fig. 4c and f).
This might be due to a similar genetic structure between the neutral and selected loci when a
genome underwent positive FDS. In contrast, negative FDS results in high heterozygosity by
maintaining polymorphisms within a population (Fig. S4), where LMMs performed better
than LMs by separating the neutral population structure and loci subject to negative FDS.
Furthermore, the signals of negative and positive FDS were well distinguished from those of
overdominance and spatiotemporally varying selection.

The application to A. thaliana accessions showed a genome-wide excess of negative FDS
and a few loci underlying asymmetric positive FDS. This result seems plausible because
polymorphic loci are more likely to persist under negative FDS than positive FDS. In the
present study, we found candidate genes that might be involved in conferring plant resistance
to pathogens. Several studies have reported negative effects of FDS on plant resistance to
pathogens (Antonovics and Ellstrand, 1984; Brunet and Mundt, 2000). In contrast,
such resistance genes were not found near the loci responsible for asymmetric positive FDS.
We also found growth-related candidate genes near the loci associated with asymmetric posi-
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tive FDS. Plant competition is known to exert asymmetric and positive frequency-dependent
effects from tall to short plants (Weiner, 1990), where growth-related loci are more likely
to be observed than defense-related loci. However, the top-scoring SNPs were still below the
genome-wide threshold of significance. Thus, experimental studies using single-gene mutants
are necessary to validate FDS on genes related to plant resistance or competition.

4.3 Potential limitation

Pairwise interaction models have been extensively analyzed in relation to one locus with
multi-alleles (Schneider, 2006; Trotter and Spencer, 2007) and multi-loci with mul-
tiple alleles (Schneider, 2010), in addition to the model of one locus with two alleles
(Cockerham et al., 1972; Asmussen and Basnayake, 1990; Schneider, 2008). At the
expense of wide applicability, our method was too simplified to reflect all the theoretical
features of pairwise interaction models. For example, the combination of overdominance and
FDS at the same locus or epistasis among loci responsible for FDS was not considered in the
current regression model. Even the one-locus two-allele model can make fitness functions
have multiple equilibria when it involves the additive action of FDS on a quantitative trait
(Appendix S3), yet more complex outcomes may arise from the realistic genetic architec-
ture. In nature, FDS may act on more than two co-dominant alleles at a single locus, such
as the S-allele system in plant self-incompatibility (Hatakeyama et al., 1998; Shimizu and
Tsuchimatsu, 2015). Multi-state extension of the Ising model, which is known as the Potts
model (Potts, 1952), may deal with this situation if plausible mechanisms of biological
inheritance can be incorporated.

4.4 Conclusions

The present study offers an effective way to resolve fitness-genotype associations with respect
to FDS. Our phenotype-driven approach can distinguish between positive and negative FDS
based on direct observations of fitness. In molecular population genetics, phenotype-free
methods are available to detect signatures of past balancing selection (Siewert and Voight,
2017). While fitness measurements are labor-intensive, selection gradient analysis has an
advantage in quantifying ongoing FDS. Now that genome information is accumulating in
wild organisms (Lewin et al., 2018), organismal biologists may utilize genome data for a
deeper understanding of the maintenance of polymorphism. A joint approach using genomics
and fitness evaluation would enable future studies to unveil FDS throughout the genome.
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Supplementary Materials

Appendix S1. Metropolis algorithm with Mendelian inheritance

The forward problem of the Ising model is to optimize the individual fitness wi with the given
selection coefficients s1 and s2. Figure 1 shows two contrasting cases, where one represents
short-range interactions in a lattice space while the other shows uniform interactions within
a series of split populations. Individual fitness is defined by Equation (1) in the main text as
wi = w0 + s1gi + s2

Nk

∑Nk

j=1 gigj. The magnetic interaction was defined in the Ising model as
H = −J

∑
<i,j> gigj + η

∑
gi, where the total energy H can be regarded as the population

sum of fitness
∑
wi, magnetic interaction coefficient J as the total interaction strength s2Nk,

and external magnetic force η as the total strength of directional selection s1Nk.
To represent inheritance and selection, we updated the genotype gi(j) and fitness wi

based on the Metropolis algorithm and Mendelian inheritance. The individual fitness wi was
updated following the Metropolis algorithm (Metropolis et al., 1953), which has often
been used in a series of stochastic sampling methods, such as the Markov chain Monte Carlo
method (Bishop, 2006). Here, we consider a change in the genotype gi from generation t to
t+ 1. Let g′i be a proposed genotype for t+ 1, and let w(g′i|gi,t) be a conditional fitness with
a given genotype gi,t at t. Then, g′i can be accepted/rejected based on its likelihood ratio on
the current fitness w(gi,t) as

gi,t+1 =

{
g′i exp(w(g′i|gi,t)− w(gi,t)) > p

gi,t otherwise.

where scalar p is sampled from a uniform distribution as p ∼ Unif(0, 1). This update process
may mimic selection to some extent of stochasticity.

To incorporate Mendelian inheritance into the forward problem of the Ising model, the
transition from gi,t to gi,t+1 was weighted by genotype segregation among the offspring. When
two genotypes gi,t and gj,t crossed each other at generation t, we could expect nine possible
combinations among parental genotypes, as shown in Table S1.

Table S1: Cross tables among AA, Aa, and aa genotypes.
gi / gj AA A aa

AA AA AA AA Aa Aa Aa
AA AA AA Aa Aa Aa

Aa AA AA AA Aa Aa Aa
Aa Aa Aa aa aa aa

aa Aa Aa Aa aa aa aa
Aa Aa Aa aa aa aa

The probability of sampling AA, Aa, and aa at t + 1 generation is denoted as PAA,t+1,
PAa,t+1, and Paa,t+1, respectively. Let fAA, fAa, and faa be the frequencies of genotypes AA,
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Figure S1: Numerical simulations maximizing the fitness w1 = w0 + s1gi + (s2/Nk)
∑Nk

j=i gigj
(Appendix S1) for 100 generations. White, gray, and black indicate the AA, Aa, and aa
genotypes, respectively. Top panels (a, b) represent plant genotype distributions across a
100 × 100 continuous lattice space when interactions are restricted to the second nearest
neighbors (Nk = 14). Each grid corresponds to an individual. Bottom panels (c, d) represent
the genotype frequencies among 100 split populations composed of 100 individuals each. Each
vertical bar corresponds to a population. Left panels (a, c) simulate positive frequency-
dependent selection (FDS), while right panels (b, d) simulate negative FDS. The base fitness
and directional selection coefficient were set at w0 = 0 and s1 = 10−4 for all simulations,
while the subpopulation size Nk and interaction strength per individual s2/Nk were changed.
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Aa, and aa within a population with fAA, fAa, and faa. In summary, the transition from
generation t to t+ 1 is expressed as

 PAA,t+1

PAa,t+1

Paa,t+1

 =

 (fAA + 0.5fAa) (0.5fAA + 0.25fAa) 0
(faa + 0.5fAa) (0.5fAA + 0.5fAa + 0.5faa) (fAA + 0.5fAa)

0 (0.25fAa + 0.5faa) (0.5fAa + faa)

 PAA,t

PAa,t

Paa,t

 ,

where the elements of the transition matrix were calculated from the three genotype frequen-
cies and the segregation ratio of Mendelian inheritance. The zero elements pose a constraint
where one homozygote cannot turn into another homozygote in a single generation. Given
that the sum of the three genotype frequencies was 1 as fAA+fAa+faa = 1, the probability of
remaining as a heterozygote was 0.5. Therefore, the outcome from the modified Metropolis
algorithm was expected to be qualitatively the same as a random proposal of three genotypes,
but quantitatively different in the excess of heterozygotes within a population.

Figure S1 shows the results of the numerical simulations with the three genotypes en-
coded as gi(j) ∈ {AA, Aa, aa} = {+1, +1, -1}. The three genotypes were well mixed and
maintained in a continuous space when s2 < 0 (Fig. S1b), whereas several clusters of the aa
genotype were observed when s2 > 0 (Fig. S1a). Three genotypes were also maintained at an
intermediate frequency in a split space when s2 < 0 (Fig. S1d), whereas the allele frequency
was heavily biased when s2 > 0 (Fig. S1c). The numerical simulations show that the sign
of s2 likely corresponded to the direction of the frequency-dependent selection (FDS) in a
continuous and split space.

Appendix S2. Mixed model extension

To implement GWAS, we modified Equations (2) and (3) as a linear mixed model (LMM)
that considered genetic relatedness as a random effect (Kang et al., 2008). In terms of
Henderson’s mixed model (Henderson et al., 1959), such GWAS models have the same
structure as phylogenetic comparative methods that analyze interspecific phenotypic vari-
ation among phylogenetic trees (Kang et al., 2008; Hadfield and Nakagawa, 2010).
According to Hadfield and Nakagawa (2010), we designated the genetic-related matrix
as A and introduced random effects ui to Equation (2) as follows:

yi = β0 + β1xi + β2

Nk∑
j=1

xixj + ui + ei (S1)

where a vector including ui for n individuals followed a normal distribution as ui ∈ u and
u ∼ Norm(0, σ2

1A1 + σ2
2A2). The residual ei is expressed as ei ∈ e and e ∼ Norm(0, σ2

eI).
The n × n variance–covariance matrices denote the self-genetic relatedness or the entire
genotype similarity among n individuals as A1 = 1

2(q−1)X
T
1X1 + 1

2
and A2 = 1

(q−1)X
T
2X2,

where q denotes the number of loci. The elements of n individuals × q loci matrix X1

consist of explanatory variables of the self-genotype values. As we defined xi(j) = (−1, 1),
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the genetic-related matrix A1 was scaled to represent the proportion of loci shared among n
× n individuals. The elements of n individuals × q loci matrix X2 consist of the genotype
similarity as

X2 =


(
∑Nk

j=1 x1,1xj)/Nk (
∑Nk

j=1 x1,2xj)/Nk ... (
∑Nk

j=1 x1,nxj)/Nk

(
∑Nk

j=1 x1,2xj)/Nk (
∑Nk

j=1 x2,2xj)/Nk ... (
∑Nk

j=1 x2,nxj)/Nk

... ... ... ...

(
∑Nk

j=1 xq,1xj)/Nk (
∑Nk

j=1 xq,2xj)/Nk ... (
∑Nk

j=1 xq,nxj)/Nk


, where the n×n matrix A2 indicates a sample structure related to genotype similarity. The
variance component parameters σ2

1 and σ2
2 determine the relative contributions of A1 and

A2 to the vector of random effects u.
To incorporate asymmetric FDS into GWAS, we considered a sample structure based on

the asymmetric FDS in LMM. Here, we extended Equation (3) into LMM as

yi = β0 + β1xi +
β2
Nk

Nk∑
j=1

xixj +
β12xi
Nk

Nk∑
j=1

xixj + ui + ei (S2)

where the random effect ui is redefined as ui ∈ u and u ∼ Norm(0, σ2
1A1 + σ2

2A2 + σ2
12A12).

The additional n × n variance-covariance matrix A12 denotes a sample structure because
of the asymmetric effects among n individuals as A12 = 1

(q−1)X
T
12X12. The elements of n

individuals × q loci matrix X12 consist of explanatory variables for the asymmetric effects
as follows:

X12 =


(x1,1

∑Nk

j=1 x1,1xj)/Nk (x1,2
∑Nk

j=1 x1,2xj)/Nk ... (x1,n
∑Nk

j=1 x1,nxj)/Nk

(x1,2
∑Nk

j=1 x1,2xj)/Nk (x2,2
∑Nk

j=1 x2,2xj)/Nk ... (x2,n
∑Nk

j=1 x2,nxj)/Nk

... ... ... ...

(xq,1
∑Nk

j=1 xq,1xj)/Nk (xq,2
∑Nk

j=1 xq,2xj)/Nk ... (xq,n
∑Nk

j=1 xq,nxj)/Nk


The additional parameter of the variance component σ2

12 compares the relative importance
of the asymmetric effects with those of the self-genotype effects σ2

1 and genotype similarity
effects σ2

2. Additionally, the individual-level formula Equation (S1) can also be converted
into a common matrix form (Henderson et al., 1959) as follows:

y = Xβ + Zu + e (S3)

where y is n × 1 fitness vector with yi ∈ y; X is a matrix of fixed effects, including
a unit vector, self-genotype xi, genotype similarity covariate (

∑Nk

j=1 xixj)/Nk, and other
covariates for n individuals; β is a vector that included coefficients of the fixed effects; Z
is a design matrix allocating individuals to a genotype; u is the random effect as Var(u)
= σ2

1A1 + σ2
2A2 + σ2

12A12; and e is the residual as Var(e) = σ2
eI.

To efficiently solve LMMs, we first estimated σ2
1 and σ2

2 without any fixed effects (i.e., null
model) using the average-information restricted maximum likelihood method implemented
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in the gaston package (Perdry and Dandine-Roulland, 2020). Then, to compare the
significance of β1 and β2 to the null model, we solved Equation (S3) using fast approximation
by eigenvalue decomposition on a random effect matrix σ̂2

1A1+σ̂2
2A2+σ̂2

12A12. The likelihood
ratio test was used to compare the models with and without β2. The standard GWAS is a
subset of Equation (S1) when β2 = 0 and σ2

2 = 0 (Sato et al., 2021b); thus, we set β2 and σ2
2

to zero when testing β1. Such stepwise likelihood ratio tests were essential for conservative
tests of each parameter in Equations (S1) and (S2) because the self-genotype variable xi and
the genotype similarity variable (

∑Nk

j=1 xixj)/Nk were strongly correlated when the MAF was
very small (Sato et al., 2021b). Stepwise likelihood ratio tests were implemented using the
rNeighborGWAS package version 1.2.4 (Sato et al., 2021b). The nei_lmm() function was
applied for power analysis and GWAS in the main text. The "asym = TRUE" option was
chosen when testing the asymmetric effects β12.

Appendix S3. Fitness function under symmetric and asymmetric
FDSs

To analyze the regression model Equation (3) as a fitness function of allele frequency, we
considered a single diallelic locus in an ideal population where (i) diploid individuals were
randomly mating, (ii) uniformly interacting, and (iii) the population size was sufficiently
large (i.e., N → ∞). We also assumed no maternal or paternal effects on fitness such that
the genotypes Aa and aA could not be distinguished. To concentrate on the mean trends of
the model, we neglected the residuals as ei = 0. Replacing Nk into N , we redefined Equation
(3) as follows:

yi = β0 + β1xi +
β2
N

N∑
j=1

xixj +
β12xi
N

N∑
j=1

xixj (S4)

where the trait value yi corresponds to the fitness value wi for individual i, the intercept
β0 corresponds to the base fitness w0, the self-genotype coefficient β1 corresponds to the
directional selection coefficient s1, and the coefficients β2 and β12 correspond to the se-
lection coefficients related to FDS. The second term can also be transformed for simplic-
ity as β2(

∑N
j=1 xixj)/N = β2xi(

∑N
j=1 xj)/N , and the third term, β12xi(

∑N
j=1 xixj)/N =

β12x
2
i (
∑N

j=1 xj)/N . Provided x2i = (−1)2 = 12 = 1, the third term represents a selection
gradient due to the relative abundance of one allele in a neighborhood, irrespective of the
self-genotype of a focal individual i.

We then transformed Equation (S4) into a function of the frequency of A alleles f , where
the frequency of an allele was defined conversely as 1 − f . When all the individuals were
randomly interacting in a panmictic population, the interaction strength between i and j
depended on the frequencies of AA, Aa, or aa genotypes derived from allele frequency. Thus,
the fitness values of the three genotypes, yAA(f), yAa(f), and yaa(f), are functions of allele
frequency f . For convenience, we suppressed the dependence on f , unless necessary. The
ratio of AA, Aa, and aa genotypes within the panmictic population was given by AA:Aa:aa
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= f 2 : 2f(1−f): (1−f)2. Assuming the aforementioned ideal population, we designated all
combinations of interactions among AA, Aa, and aa genotypes and weighted the interactions
based on their genotype frequencies. Table S2 lists the interaction strength weighted by the
genotype frequency for symmetric and asymmetric effects. Based on these cross tables (Table
S2), we redefined Equation (S4) for the three genotypes as:

Table S2: Cross tables showing the strength of pairwise interactions between the focal geno-
type xi and counterpart xj in a randomly interacting and mating population.
(a) Symmetric effects
xj \ xi xAA xAa xaa
xAA β2f

2xAAxAA β2f
2xAaxAA β2f

2xaaxAA

xAa 2β2f(1− f)xAAxAa 2β2f(1− f)xAaxAa 2β2f(1− f)xaaxAa

xaa β2(1− f)2xAAxaa β2(1− f)2xAaxaa β2(1− f)2xaaxaa

(b) Asymmetric effects
xj \ xi xAA xAa xaa
xAA β12f

2x2AAxAA β12f
2x2AaxAA β12f

2x2aaxAA

xAa 2β12f(1− f)x2AAxAa 2β12f(1− f)x2AaxAa 2β12f(1− f)x2aaxAa

xaa β12(1− f)2x2AAxaa β12(1− f)2x2Aaxaa β12(1− f)2x2aaxaa

yAA = β0 + β1xAA + β2f
2xAAxAA + 2β2f(1− f)xAAxAa + β2(1− f)2xAAxaa

+ β12f
2x2AAxAA + 2β12f(1− f)x2AAxAa + β12(1− f)2x2AAxaa

(S5a)

yAa = β0 + β1xAa + β2f
2xAaxAA + 2β2f(1− f)xAaxAa + β2(1− f)2xAaxaa

+ β12f
2x2AaxAA + 2β2f(1− f)x2AaxAa + β12(1− f)2x2Aaxaa

(S5b)

yaa = β0 + β1xaa + β2f
2xaaxAA + 2β2f(1− f)xaaxAa + β2(1− f)2xaaxaa

+ β12f
2x2aaxAA + 2β2f(1− f)x2aaxAa + β12(1− f)2x2aaxaa

(S5c)

We further weighted the genotype-level fitness values by allele frequency. The allele-level
marginal fitness for A or an allele is then given by:

yA = fyAA + (1− f)yAa (S6a)
ya = fyAa + (1− f)yaa (S6b)

The population-level mean fitness was finally defined by the weighted mean of the marginal
fitness as follows:
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ȳ = fyA + (1− f)ya

= f 2yAA + 2f(1− f)yAa + (1− f)2yaa
(S7)

Consequently, we could analyze fitness functions by inputting specific values in the three
genotype values xAA, xAa, and xaa throughout Equations (S5) and (S6).

Case 1. Complete dominance with random mating: Novel mutations are expected to
be recessive during adaptive evolution. Empirical studies have reported FDS on dimorphic
traits that often exhibit complete dominance of one over another allele (e.g., Takahashi
et al., 2010; Sato and Kudoh, 2017; Goldberg et al., 2020). First, we considered the case
in which the A allele was completely dominant over an allele, as encoded by xi(j) ∈ {AA,
Aa, aa} = {+1, +1, -1}. Here, we neglected the directional selection as β1 = 0 in Equation
(S5) to focus on the fitness functions under FDS alone. Replacing the genotypes (xAA, xAa,
and xaa) according to their genotype values in Equation (S5) gave the fitness value to the
three genotypes as

yAA = yAa = β0 + β2[(+1)× (+1)]f 2 + β2[(+1)× (+1)]2f(1− f) + β2[(+1)× (−1)](1− f)2

+ β12[(+1)2 × (+1)]f 2 + β12[(+1)2 × (+1)]2f(1− f) + β12[(+1)2 × (−1)](1− f)2

= β0 + β2(2f − 1 + 2f − 2f 2) + β12(2f − 1 + 2f − 2f 2)

= β0 + (β12 + β2)(4f − 2f 2 − 1) where xAA = xAa = +1

(S8a)

yaa = β0 + β2[(−1)× (+1)]f 2 + β2[(−1)× (+1)]2f(1− f) + β2[(−1)× (−1)](1− f)2

+ β12[(−1)2 × (+1)]f 2 + β12[(−1)2 × (+1)]2f(1− f) + β12[(−1)2 × (−1)](1− f)2

= β0 − β2(2f − 1 + 2f − 2f 2) + β12(2f − 1 + 2f − 2f 2)

= β0 + (β12 − β2)(4f − 2f 2 − 1) where xaa = +1

(S8b)

The marginal fitness following Equations (S6a) and (S6b) was given by

yA = fyAA + (1− f)yAa = fyAA + (1− f)yAA = yAA (S9a)
ya = fyAa + (1− f)yaa = yaa + 2fβ2(4f − 2f 2 − 1) (S9b)

The relative fitness between A and a alleles was calculated as: yA−ya = yAA−yaa−2fβ2(4f−
2f 2− 1) = 2β2(1− f)(4f − 2f 2− 1). Solving yA− ya = 0 with respect to f within the range
of (0,1) resulted in f ∗ = −0.5

√
2 + 1, which showed a single stable or unstable state within

f = (0, 1) in the case of complete dominance under FDS. The population-level mean fitness
is finally given by
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ȳ = fyA + (1− f)ya

= β0 + (4fβ2 − 2f 2β2 − β2 + β12)(4f − 2f 2 − 1)
(S10)

Figure 2 in the main text shows the marginal fitness [Equations (S9a) and (S9b)] and mean
fitness [Equation (S10)]. The mean fitness was maximized at a stable equilibrium at the
intermediate allele frequency under symmetric negative FDS, whereas it was minimized at
an unstable equilibrium under symmetric positive FDS. When asymmetric FDS and complete
dominance are involved, equilibria do not always match the maxima or minima of the mean
fitness because of the nonlinearity of the marginal fitness in response to f . However, the mean
fitness at the stable or unstable point was still higher or lower than expected compared with
the weighted mean of the two monomorphic populations. A similar notion was suggested by
pairwise interaction models in population genetics (Cockerham et al., 1972; Schneider,
2008).

Case 2. Additive effects with random mating: Although few empirical studies have
reported FDS on quantitative traits, this case is of theoretical interest in the pairwise inter-
action model (Schneider, 2008). Considering the fitness value as a quantitative trait, we
then analyzed the additive effects of A and a alleles on yi as encoded by xi(j) ∈ {AA, Aa,
aa} = {+1, 0, -1}. Replacing the genotypes (xAA, xAa, and xaa) according to their genotype
values in Equations (S5) gave the fitness value to the three genotypes as:

yAA = β0 + β2[(+1)× (+1)]f 2 + β2[(+1)× (−1)](1− f)2

+ β12[(+1)2 × (+1)]f 2 + β12[(+1)2 × (−1)](1− f)2

= β0 + β2f
2 − β2(1− 2f + f 2) + β12f

2 − β12(1− 2f + f 2)

= β0 + β2(2f − 1) + β12(2f − 1)

= β0 + (β12 + β2)(2f − 1) where xAA = +1

(S11a)

yAa = β0 where xAa = 0 (S11b)

yaa = β0 + β2[(−1)× (+1)]f 2 + β2[(−1)× (+1)](1− f)2

+ β12[(−1)2 × (+1)]f 2 + β12[(−1)2 × (−1)](1− f)2

= β0 − β2f 2 + β2(1− 2f + f 2) + β12f
2 − β12(1− 2f + f 2)

= β0 − β2(2f − 1) + β12(2f − 1)

= β0 + (β12 − β2)(2f − 1) where xaa = −1

(S11c)

The fitness function for the two homozygotes AA and aa [i.e., Equations (S5a) and (S5c)]
turned out to be linear in response to f . The marginal fitness following Equations (S6a) and
(S6b) is then given by:

yA = fyAA + (1− f)yAa

= β0 + f(β12 + β2)(2f − 1)
(S12a)
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ya = fyAa + (1− f)yaa

= β0 + (1− f)(β12 − β2)(2f − 1)
(S12b)

The relative fitness was calculated as yA − ya = (2f − 1)[f(β12 + β2)− (1− f)(β12 − β2)] =
(2f − 1)(2β12f − β12 + β2). Solving yA − ya = 0 with respect to f within a range of (0,1)
yields f ∗ = 0.5 and f ∗ = 0.5(β12 − β2)/β12, showing that the additive action of FDS made
multiple equilibria possible at the intermediate allele frequency f = (0, 1). The mean fitness
following Equation (S7) is finally given by:

ȳ = fyA + (1− f)ya

= β0 + f 2(β12 + β2)(2f − 1) + (1− f)2(β12 − β2)(2f − 1)

= β0 + (2f − 1)[2f 2(β12 + β2)− 2f(β12 − β2) + β12 − β2]
(S13)

Figure S2 shows numerical examples of the marginal fitness [Equations (S12a) and (S12b)]
and the mean fitness [Equation (S13)] in response to f . Similar to the case of complete
dominance, the mean fitness was maximized or minimized at a stable or unstable equilibrium
under the symmetric FDS (Fig. S2a and b). In contrast, a stable and unstable equilibrium
occurred simultaneously under asymmetric FDS (Fig. S2c and f), where the maxima or
minima of mean fitness did not always match the equilibria. This potential of multiple
equilibria was also suggested by a one-locus two-allele model of pairwise interactions when
it involved asymmetric FDS (Schneider, 2008).

Case 3. Asexual or inbred lines without mating: In common gardens or laboratory exper-
iments, researchers arbitrarily distribute inbred accessions in space and retrieve individuals
before mating (e.g., Schutz and Usanis, 1969; Sato et al., 2021b). This was also the case
for the field GWAS in the main text. Furthermore, ecological studies often focus on FDS at
the phenotype level with asexual reproduction assumed (e.g., Takahashi et al., 2018). In
these cases, heterozygosity was negligible, and the two homozygotes were encoded as xi(j) ∈
{AA, aa} = {+1, -1} (Sato et al., 2021b). Let fAA and faa be the frequency of AA and aa
genotypes within a population, where fAA + faa = 1. The fitness function for the AA or aa
genotype is given by:

yAA = β0 + β2fAA[(+1)× (+1)] + β2(1− fAA)[(+1)× (−1)]

+ β12fAA[(+1)2 × (+1)] + β12(1− fAA)[(+1)2 × (−1)]

= β0 + β2(2fAA − 1) + β12(2fAA − 1)

= β0 + (β12 + β2)(2fAA − 1) where xAA = +1

(S14a)

yaa = β0 + β2fAA[(−1)× (+1)] + β2(1− fAA)[×(−1)× (−1)]

+ β12fAA[(−1)2 × (+1) + β12(1− fAA)[(−1)2 × (−1)]

= β0 − β2(2fAA − 1) + β12(2fAA − 1)

= β0 + (β12 − β2)(2fAA − 1) where xaa = −1

(S14b)
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Figure S2: Numerical examples for the fitness values yi in response to allele frequency when
A and a alleles have additive effects on the fitness; that is, Equations (S12a) and (S12b) in
Appendix S3. Black and gray lines indicate the marginal fitness of the A allele or an allele,
respectively. The dashed curves indicate the mean fitness per population; that is, Equation
(S13) in Appendix S3. (a) Symmetric negative frequency-dependent selection (FDS); (b)
symmetric positive FDS; (c and e) asymmetric negative FDS; and (d and f) asymmetric
positive FDS. Closed and open circles indicate a stable or unstable state, respectively. The
base fitness and no directional selection were set at β0 = 1.0 and β1 = 0.0 for all panels.
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where the population-level mean fitness was given by its weighted mean as follows.

ȳ = fAAyAA + (1− fAA)yaa

= fAA(yAA − yaa) + yaa

= 2β2fAA(2fAA − 1) + (β12 − β2)(2fAA − 1) + β0

(S15)

Figure S3 shows the fitness function of the AA or aa genotype [Equations (S14a) and
(S14b)] and population mean [Equation S15]. The fitness function of the two homozygotes
was the same as that of the additive case described above. The mean fitness became simpler
as the allele frequency corresponded to the genotype frequency. As this inbred case repre-
sented two genotypes with asexual reproduction, its conclusion was basically the same as
that derived from game theoretical models (Takahashi et al., 2018).

In Figure 3, we present this inbred case with β1 6= 0, where the genotype fitness Equations
(S14a) and (S14b) is rewritten as

yAA = β0 + β1 + (β12 + β2)(2fAA − 1) (S16a)
yaa = β0 − β1 + (β12 − β2)(2fAA − 1) (S16b)

where the relative fitness is given by yAA− yaa = 2β1 + 2β2(2fAA− 1). Solving yAA− yaa = 0
with respect to fAA = (0, 1) yields f ∗AA = 1 − 0.5β1/β2. Therefore, the directional selection
coefficient β1 may modify the equilibrium. When β1 6= 0, the mean fitness Equation (S15)
can also be rewritten as:

ȳ = fAAyAA + (1− fAA)yaa

= 2β2fAA(2fAA − 1) + (β12 − β2)(2fAA − 1) + 2fβ1 − β1 + β0
(S17)
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Figure S3: Numerical examples of fitness values yi in response to allele frequency when only
the AA and aa genotypes exist without mating [Equations (S14a) and (S14b) in Appendix
S3]. Black and gray lines indicate the fitness functions for the AA and aa genotypes, re-
spectively. The dashed curves indicate the mean fitness per population; that is, Equation
(S15) in Appendix S3. (a) Symmetric negative frequency-dependent selection (FDS); (b)
symmetric positive FDS; (c and e) asymmetric negative FDS; and (d and f) asymmetric
positive FDS. Closed and open circles indicate a stable or unstable state, respectively. The
base fitness and no directional selection were set at β0 = 1.0 and β1 = 0.0 for all panels.
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Supplementary Tables S3-S4 (see SuppTablesS3-S4.xlsx)

Table S3: List of plant accessions used for genome-wide association studies (GWAS) and
their phenotypes.

Table S4: List of candidate genes related to self-genotype effects (a), genotype similarity
effects (b), and asymmetric effects (c) on the branch number in Arabidopsis thaliana.
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Supplementary Figures S4–S10
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Figure S4: Structure of simulated genomes regarding the loci responsible for stabilizing selec-
tion (a), the other forms of selection (b), and genome-wide single nucleotide polymorphisms
[SNPs](c). Number of SNPs, mean minor allele frequency (MAF), mean heterozygosity (H t),
and mean fixation indices (G st) are shown among 30 iterations for four scenarios of selec-
tion: NFDS, negative frequency-dependent selection; PFDS, positive frequency-dependent
selection; OD, overdominance; STVS, spatiotemporally varying selection.
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Figure S5: Performance of standard linear models to estimate four types of simulated selec-
tion: NFDS, negative frequency-dependent selection; PFDS, positive frequency-dependent
selection; OD, overdominance; and STVS, spatiotemporally varying selection. The top and
bottom panels show the results of the split and continuous settings, respectively (Fig. 1a).
The left panels show the receiver operating characteristic (ROC) curve, which indicates the
relationship between the true positive rate and false positive rate. Line colors indicate dif-
ferent simulation scenarios (blue, NFDS; red, PFDS; black, OD; gray, STVS). The middle
panel shows the area under the ROC curve (AUC). Dashed lines at AUC = 0.5, indicate
no power to detect causal single nucleotide polymorphisms (SNPs). The right panels show
the estimated β2 of causal SNPs, where negative and positive values indicate negative and
positive FDS, respectively. Cross marks indicate the true simulated magnitude of β2.
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Figure S6: Performance of linear mixed models to detect stabilizing selection under its joint
action with four types of selection: NFDS, negative frequency-dependent selection (blue);
PFDS, positive frequency-dependent selection (red); OD, overdominance (dark gray); and
STVS, spatiotemporally varying selection (light gray). The top and bottom panels show the
results of the split and continuous settings, respectively (Fig. 1a). The left panels show
the receiver operating characteristic (ROC) curve, which indicates the relationship between
the true positive rate and false positive rate. The middle panels show the area under the
ROC curve (AUC). Dashed lines at AUC = 0.5, indicate no power to detect causal single
nucleotide polymorphisms (SNPs). The right panels show the estimated β1 of causal SNPs,
where negative and positive values indicate negative and positive FDS, respectively. Cross
marks indicate the true simulated magnitude of β2.
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Figure S7: Performance of standard linear models to detect stabilizing selection under its
joint action with four types of selection: NFDS, negative frequency-dependent selection
(blue); PFDS, positive frequency-dependent selection (red); OD, overdominance (dark gray);
and STVS, spatiotemporally varying selection (light gray). The upper and lower panels show
the results of the split and continuous settings, respectively (Fig. 1b). The left panels show
the receiver operating characteristic (ROC) curve, which indicates the relationship between
the true positive rate and false positive rate. The middle panels show the area under the
ROC curve (AUC). Dashed lines at AUC = 0.5, indicate no power to detect causal single
nucleotide polymorphisms (SNPs). The right panels show the estimated β1 of causal SNPs,
where negative and positive values indicate negative and positive FDS, respectively. Cross
marks indicate the true simulated magnitude of β2.
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Figure S8: QQ-plots showing observed and expected p-values for the genome-wide association
studies of branch number in field-grown A. thaliana. The results obtained using the linear
mixed models are shown. The left (a), middle (b), and right (c) panels display self-genotype,
genotype similarity, and asymmetric effects, respectively. Dashed lines indicate the identity
between the observed and expected p-value scores.

Figure S9: Genome-wide association studies of branch number in field-grown A. thaliana.
The results of standard linear models are presented. (a, b, and c) Manhattan plots for self-
genotype effects, genotype similarity effects, and asymmetric effects, respectively. Horizontal
dashed lines indicate p-value of < 0.05, after Bonferroni correction. (d) Histogram of esti-
mated β2 among single nucleotide polymorphisms (SNPs) exhibiting p-values of < 0.0001.
Negative and positive β2 infer loci responsible for negative and positive frequency-dependent
selection, respectively.
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Figure S10: QQ-plots showing observed and expected p-values for the genome-wide associ-
ation studies of branch number in field-grown A. thaliana. The results of standard linear
models are presented. The left (a), middle (b), and right (c) panels display self-genotype,
genotype similarity, and asymmetric effects, respectively. Dashed lines indicate the identity
between the observed and expected p-value scores.
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