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ABSTRACT

Imaging flow cytometry (IFC) combines flow cytometry with microscopy, allowing rapid
characterization of cellular and molecular properties via high-throughput single-cell
fluorescent imaging. However, fluorescent labeling is costly and time-consuming. We present
a computational method called DeeplFC based on the Inception U-Net neural network
architecture, able to generate fluorescent marker images and learn morphological features
from IFC brightfield and darkfield images. Furthermore, the DeepIFC workflow identifies
cell types from the generated fluorescent images and visualizes the single-cell features
generated in a 2D space. We demonstrate that rarer cell types are predicted well when a
balanced data set is used to train the model, and the model is able to recognize red blood cells
not seen during model training as a distinct entity. In summary, DeepIFC allows accurate cell
reconstruction, typing and recognition of unseen cell types from brightfield and darkfield

images via virtual fluorescent labeling.

INTRODUCTION
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Imaging flow cytometry (IFC) is a recent technique which combines fluorescent microscopy
and flow cytometry into a high-throughput analysis platform (George et al. 2004). IFC allows
for the study of cellular and molecular properties in fluidic samples at a single-cell level in
high-throughput manner. It has been found useful in quantifying nucleic acids and protein
expression (Doan et al. 2018), classifying rare cell types (Doan et al. 2018), identifying cells
in their early apoptotic stage (George et al. 2004), examining host-intracellular parasites
(Haridas et al. 2017) and other diagnostic purposes in hematology (Betters et al. 2015). In
recent years, machine learning on IFC data (Luo ef al. 2021) has been used to predict DNA
content, quantify mitotic cell cycle phases (Blasi et al. 2016), reconstruct diabetic retinopathy
disease progression and the cell cycle of Jurkat cells (Eulenberg et al. 2017) as well as to

classify and identify white blood cells (Lippeveld ef al. 2020, Nassar et al. 2019).

Fluorescent labeling requires a considerable amount of time, resources and effort, and can
damage the cells (Icha et al. 2017). Consequently, so-called label-free or virtual staining
approaches have been considered which may allow bypassing fluorescent labeling altogether.
Recent studies in fluorescent imaging have used deep learning models to virtually stain
brightfield images of adipose tissue (Wieslander et al. 2021), detect acute lymphoblastic
leukemia cells (Doan, Case et al. 2020) and to discriminate between different cell lines
(Matsuoka et al. 2021). Machine learning on IFC brightfield and darkfield images have been
used to distinguish cell types (Lippeveld et al. 2020) and transitions between cell states
(Eulenberg et al. 2017).

Label-free deep learning methods have been created to reconstruct fluorescent images from
brightfield images (Christiansen et al. 2018, Ounkomol et al. 2018, Nguyen et al. 2021), but
to our knowledge, the reconstruction of single-cell multichannel fluorescent images in IFC
data has not been proposed. Label-free cytometry methods based on segmentation and
unsupervised modeling (Nguyen et al. 2021), weak supervision (Otesteanu et al. 2021),
cytometry by time of flight (CyTOF) (Hu et al. 2020) and time-stretch microscopy (Li et al.
2019) have been suggested. Previous methods have also utilized the Amnis IDEAS®
software analyses, such as nuclear localization, or user generated cell masks (Lippeveld et al.
2020), which allow for the segmenting of the cell from its surroundings based on pixel
intensity. Cell masks may negatively impact analysis, if their accuracy is not high enough

(Dominical et al. 2017). They may also hinder recognizing the differences between cell states
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(Hennig et al. 2017). Spatial distribution of labels and dim-bright label continuum are also

not explicitly modeled in these approaches.

In this study we present a novel method called DeepIFC (Fig. 1) to generate fluorescent
images solely from morphological information in blood cell imaging flow cytometry data
with minimal preprocessing. DeeplFC consists of a deep neural network model trained on
brightfield and darkfield images of cells to generate corresponding fluorescent images. In
contrast to many other approaches, DeeplFC reconstructs fluorescent images instead of
predicting cell class labels such as the cell type, or fluorescent label intensity. The model also
learns an intermediate representation of each input cell, which is useful in distinguishing cell
types and features. We present tools to examine these representations (i.e., features) visually,
and a method to identify cell types based on fluorescent images predicted by the DeeplFC
model. Importantly, DeeplFC does not require manually annotated training data (e.g., cell
type labels or cell image masks). We trained DeeplFC models on IFC data generated on
peripheral blood mononuclear cells (PBMC), and evaluated the performance of these models
also on data on red blood cells (RBC), a cell type not used in training. The DeeplFC
workflow and models trained on PBMC data are available on GitHub

(https://github.com/timonenv/DeeplFC).
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Figure 1. DeeplFC workflow. Imaging flow cytometry images are extracted from
compensated image files (CIF) and image background intensities are normalized. Brightfield

and darkfield images are processed by the DeeplFC model to generate corresponding
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Sfluorescence images. DeeplFC model also yields single-cell features, which the workflow
visualizes by projecting the features onto a two-dimensional space with UMAP. The workflow
also contains an interactive tool usable in a web browser for displaying the two-dimensional

projection together with observed and generated images.

RESULTS

DeeplFC predictive performance and analysis of cellular features

DeeplFC models trained on PBMC IFC data (“complete dataset”, Methods) were found to
accurately reconstruct fluorescent images of markers CD45 (+=0.90), CD14 (r=0.88) and
CD3 (=0.87), thresholding the average intensity values to determine marker positivity
(CD45, AUROC=0.982; CD14, AUROC=0.979; CD3, AUROC=0.959) using only
brightfield and darkfield images of the test dataset withheld from training (Fig. 2a). In
addition to these surface markers, the reconstructions of images exhibiting positivity for
7-AAD were successful (»=0.79, AUROC=0.954). 7-AAD permeates the cell wall and binds
to the DNA sequence of dead or damaged cells. On the other hand, fluorescent images for the
surface markers CD56 (+=0.53, AUROC=0.805), CD19 (»=0.61, AUROC=0.800) and CD8
(r=0.41, AUROC=0.728) were less accurately reconstructed, likely due to the relatively small
numbers of cells in the complete dataset exhibiting these markers (Supplementary Table 1)
and morphological features unique to cells expressing surface markers such as CD8 and
CD56 being difficult to distinguish in IFC images. Examples of measured images and images

reconstructed by DeeplFC are shown in Supplementary Fig. 1 and Supplementary Fig. 2.
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Figure 2. DeeplFC model predictive performance in PBMC data (“complete dataset”). a)
Receiver operating characteristic (ROC) curve for each cell marker. b) Confusion matrix
showing recall for the strict cell typing strategy where the ground truth (target cell types) is
provided by observed fluorescent images (Methods, Supplementary Fig. 4b). Label “WBC”
denotes a white blood cell only exhibiting the CD45 marker, and “Unknown” a cell
exhibiting an unknown combination of markers not matching any cell type on the panel, or

negativity for all markers.

To evaluate the ability of DeeplFC to identify cell types in the complete PBMC data, we
assigned cell types based on thresholded fluorescent intensities in images generated by
DeeplFC (strict cell typing strategy; Methods). We also performed the same cell typing
procedure for observed images by manual gating in IDEAS® software (Supplementary Fig.
4a, gating strategy 1) as well as thresholding the mean intensity of each fluorescent image
(Supplementary Fig. 4b) to establish two different ground truth settings. When compared to
the image-based ground truth, DeepIFC was able to accurately classify monocytes (90%
recall, 78% precision) likely due to their distinct morphology (Fig. 2b, Supplementary Table
3). Despite both CD3 and CD45 markers being well predicted individually, performance
predicting CD8- CD56- T cells was found to be at the moderate level (80% recall, 73%
precision). This was mostly due to falsely predicted CD8 and 7-AAD label fluorescence,
since 6% and 7% of CD8- CD56- T cells were predicted to be cytotoxic T cells, or dead or
damaged cells, respectively. Dead or damaged cells were predicted at 73% recall and 54%
precision. DeeplFC showed high performance of 87% recall and 92% precision when

predicting cells of unknown type, that is, cells where the predicted marker fluorescences did
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not correspond to any known combination or are all negative (Fig. 2b, Supplementary Fig.
4b, ¢). In contrast to these well-predicted types, the cell types appearing in smaller amounts
in the data or exhibiting T cell subtype markers were predicted at much lower recall levels
(NK, 25%; NKT, 24%; cytotoxic T, 13%; B, 5%). Unsurprisingly, the most common incorrect
prediction for NKT cells was a T cell, with 41% of true NKT cells classified as T cells.
Likewise, 72% of true cytotoxic T cells were classified as T cells. Of true NK cells, 31%
were identified as WBCs due to failure to predict CD56 fluorescence from morphology. The
predictive performance on multiple cell types improved when dead or damaged, unknown
cells and cells positive for only the CD45 marker were removed from analysis. Most notably,
recall and precision for monocytes improved from 90% and 78% to 98% and 92%,
respectively (Supplementary Table 3). Cell type fractions predicted by DeeplFC were found
to correspond well to fractions obtained from observed images and analysis in IDEAS®

(Figure 3, Supplementary Table 1).
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Figure 3. Cell type fractions obtained from gating strategy 1 performed in IDEAS®, and
thresholding of average fluorescence intensities performed for the ground truth images and
DeeplFC predicted images as per the permissible cell typing strategy, for each donor sample.
Number of cells indicated for each sample. Comparison of a) image-based ground truth and

IDEAS® cell type fractions, b) image-based ground truth and DeeplFC generated cell type
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fractions, and c¢) DeeplFC generated cell type fractions and IDEAS® cell type fractions. d)

An inset of the image-based ground truth and DeeplFFC comparison restricted to range [0,
40%)].

We then extracted features learnt by the DeepIFC model for each cell in the complete PBMC
dataset, and visualized them by projecting the features to two dimensions with UMAP
(MclInnes et al. 2018). We observed four distinct large clusters (Fig. 4) corresponding to T
cells (cluster 1), monocytes (2), dead or damaged cells (3), and objects which did not exhibit
any fluorescent label or had unknown combinations of markers (4). In addition, two smaller
clusters consisting of debris were visible (5a, 5b). A subset of cells (n=5778; 1%) expressing
both the monocyte marker CD14 and dead/damaged marker 7-AAD were found to connect
the monocyte and dead/damaged cell clusters. These dead/damaged monocytes are most
likely morphologically distinct enough from other cells so that they form a bridge between
the two clusters instead of mixing with other dead/damaged cell types (3). Although rarer cell
types, that is, cell types exhibiting T cell subtype markers in the data did not constitute
separate clusters, we found NKT cells to be concentrated to the bottom left of cluster 1, while
NK and B cells were found predominantly in the bottom right of cluster 1. Similar clustering

of cytotoxic T cells was not found.
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Figure 4. UMAP projections of single-cell features learnt by DeeplFC. Features were
extracted and combined from the seven DeeplFC models learnt for each cell type in the data.
a) Data from the DeeplF'C models trained on complete PBMC data. Cell types identified with

the strict typing strategy according to observed images are indicated with colors. Four main
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clusters are visible: T cells (1), monocytes (2), dead or damaged cells (3), and objects not
expressing any fluorescent marker or otherwise unknown (4). Two smaller clusters containing
debris are indicated with 5a and 5b. b) UMAP projection showing combined PBMC and RBC
data (Doan et al. 2020). DeeplFC distinguishes RBCs as a distinct entity (cluster 6) based on
their morphology despite not seeing large numbers of these types of cells during model
training. As red blood cells do not express any marker, they are correctly identified as
“unknown” class along with other cells negative for all markers, or with unknown
combinations of positive markers. The RBC cluster also connects to the unknown/all negative

cluster, but forms a distinct entity.

Prediction of doublet events

The PBMC IFC data contained a number of acquisition events where two (doublets) or more
cells were imaged at the same time. Scrutiny of fluorescent images generated by the DeeplFC
complete data model revealed that the method was able to predict label fluorescence
separately for multiple cells in the same event (Supplementary Fig. 3). We found the doublet
events to contain proportionally fewer T and cytotoxic T cells compared to all events (T,
58.9% of cells in doublet events, 95% CI 54.9-62.7% vs 65% of cells in all events; cytotoxic
T, 10.5%, 95% CI 8.2-13.1% vs 15%), while exhibiting a two-fold increase in monocytes
(24.8%, 95% CI 21.5-28.3% vs 12%). T cell - T cell doublets were the most common at 23%
of all doublet events. Other cell doublets were more rare, e.g. cytotoxic T cell - T cell pairing
(13% of all doublet events), NKT - T cell (6%), monocyte - T cell (6%) and natural killer - T
cell (6%). Monocytes were most often paired with other monocytes (18% out of all doublet

events).

DeeplFC recognizes a cell type not seen during training

To understand whether DeeplFC models would be useful in analyzing cell types not seen
during training, we processed brightfield and darkfield images of red blood cells from a
recent IFC study (Doan et al. 2020; dataset Mixed CE47 D2) with the DeeplFC model
trained on PBMC images (“complete dataset”) without retraining the model on RBC images,
and computed the DeeplFC features for the RBC images. Surprisingly, a large fraction of

these RBCs (97%) formed a new cluster (Cluster 6, Fig. 4b) separate from the mononuclear
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cell clusters, demonstrating the ability of DeeplFC to recognize cells with unseen

morphology as a distinct entity.
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Figure 5. DeeplFC binary prediction accuracy (Y-axis) in the balanced PBMC datasets with
respect to the number of cells of the target cell type (X-axis). Target cell type indicated by the

color. Average accuracies over three replicates (i.e., training runs) are shown.

Balancing training data improves DeepIFC prediction performance

Finally, we investigated whether it would be possible to improve DeeplFC performance on
cell types which were poorly predicted in the complete PBMC dataset. To do this, we created
balanced datasets separately for each cell type such that the proportion of the target cell type
was set to 50% (Methods). DeeplFC models were trained on multiple balanced datasets with
different amounts of target cells to study the effect of number of cells on performance.
Prediction performance of DeepIlFC models showed substantial improvements on multiple
cell types over the performance of models trained with the unbalanced, complete dataset

(Fig. 5, Supplementary Fig. 5, Supplementary Table 3). For most cell types, the saturation


https://doi.org/10.1101/2022.08.10.503433
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.10.503433; this version posted September 22, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

point in performance increase was reached at 3200 cells, with the rise in accuracy slowing
down with larger cell amounts. Notably, a large performance gain was observed with NKT
cells, which were predicted at 83% recall and 63% precision in balanced data compared to
24% recall and 21% precision in unbalanced data. Similarly, recall of NK, cytotoxic T and B
cells increased from 25% to 67%, 13% to 68% and 5% to 54%, respectively. Results for
average accuracies over three training runs for each model are shown in Figure S, and the
results for best performing individual models are shown in Supplementary Figure S and

Supplementary Table 3.

DISCUSSION

In this study, we presented a novel computational method called DeepIFC for reconstructing
fluorescent images from brightfield and darkfield images acquired with an imaging flow
cytometer. Although generating images across multiple microscopy modalities has been
demonstrated in fluorescence microscopy (Wang et al. 2019), to our knowledge DeeplFC is
the first method employing such cross-modality learning in multichannel IFC. DeeplFC
trained on IFC data from PBMCs showed high accuracy in reconstructing fluorescent images
for the cell surface markers CD45, CD3 and CD14 solely from morphology. The method was
additionally able to accurately recognize dead and damaged cells, which may enable sample
quality control in IFC without explicitly staining for damaged cells thus allowing a
fluorescent channel to be used for other purposes (George et al. 2004). Interestingly, no
distinct difference in dead or damaged cell morphology from live ones was visible to the
expert eye in brightfield and darkfield images, despite DeeplFC predicting the fluorescence
of dead/damaged cell marker 7-AAD reasonably well. This may be due to the phase of
apoptosis where no changes to cell morphology clearly visible to human experts have
occurred yet, but the cells already bind 7-AAD. Accurately predicting quality of cells is of
critical importance in operation of blood services and biobanks, and thus models such as

DeeplFC hold promise to decrease costs and improve throughput in these facilities.

DeeplFC enables identification of cell types and characteristics via virtual gating of the
generated fluorescent images. DeeplFC models achieved classification performances ranging
from 54% (B cells) to 92% (monocytes) for recall, and from 61% (cytotoxic T cells) to 91%
(monocytes) for precision. The reason for the accurate prediction of certain cell types

(CD45+ leukocytes, CD3+ T cells, CD14+ monocytes, 7-AAD+ dead cells) may be that they
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were either present in high amounts in the data (leukocytes, T cells) or their morphology was
distinct from the other cell types (monocytes, dead cells). Cell types appearing in smaller
amounts were predicted at much lower recall levels in the complete, unbalanced dataset (NK,
25%; NKT, 24%; cytotoxic T, 13%; B, 5%), however training with balanced data resulted in
substantially improved prediction performance compared to unbalanced original data in most
cell types (NK, 67%; NKT, 83%:; cytotoxic T, 68%; B, 54%) except for CD8- CD56- T cells.
Similarly to previous efforts utilizing machine learning (Lippeveld et al. 2020), DeepIFC had
difficulties distinguishing between T cell subtypes. Morphological differences between T cell
subtypes (CD56, CD8) were not found to be visible to the human eye in brightfield images.
Regardless, we found DeeplFC to classify the subtypes better than random guess (cytotoxic
T, 64% binary classification accuracy; NKT, 70%).

A unique feature of our approach compared to previous IFC data analysis methods which
attempt to predict marker positivity as labels (Eulenberg et al. 2017, Nassar et al. 2019,
Lippeveld et al. 2020) is that DeepIFC reconstructs the entire fluorescent image instead of
outputting a binary or class-based prediction. This allows the method to consider the spatial
distribution of fluorescence as well as predict fluorescence in multiple cells in the same IFC
acquisition event, and offer the user visual cues on the virtual fluorescent labeling process.
These capabilities may enable analysis of complex cell-cell interactions without fluorescent
labels (Burel et al. 2020). To this end, DeepIlFC was able to identify different cell types in
doublet events, highlighting a two-fold increase in the proportion of monocytes in doublet
events (25% in doublets vs 12% in all events). Monocyte-monocyte doublets are found in e.g.
psoriasis patients’ blood (Golden et al. 2015), while T cells are known to form doublets with

monocytes in the event of infection (Burel et al. 2019).

We demonstrated how DeeplFC models can be applied to data not seen during training, for
example from cell types not present in training data, to detect novel cell entities. Analyzed
with a DeeplFC model trained on data from PBMC samples with RBCs removed, a set of
RBCs from an independent study (Doan, Sebastian et al. 2020) formed a distinct cluster from
mononuclear cell types. Machine learning methods able to distinguish labels not present in
training datasets (i.e., zero-shot learning) have been studied extensively (Wang et al. 2019).
In this study we showed for the first time these capabilities applied to IFC. We envision
DeeplFC models trained on larger datasets to be able to distinguish a wide variety of cell

types and cellular characteristics. As RBCs have morphology distinct from mononuclear
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cells, it would be interesting to explore DeepIlFC’s performance also on other cell types not

present in the datasets used in this study.

In the future the effect of larger, balanced and augmented datasets may be examined to
improve the performance of DeeplFC, as suggested by Lippeveld et al. (2020). Cell masks
such as those generated by IDEAS® may reduce the possible bleedthrough between
channels. The quality of the samples may also play a role. The samples utilized here were
frozen and thawed, and there was substantial variation in the amount of dead cells per sample
(6.6%—42.0%). Suboptimal cryopreservation may cause alterations of the cellular phenotype
and lead to non-specific binding of antibodies (Germann et al. 2013, Tomlinson et al. 2013)
as well as changes in morphology. On the other hand, analysis of fresh samples, especially
from patients, is not technically possible. The method should, thus, be able to handle
suboptimal samples. Other improvement could be further optimization of the antibody panel

by testing different fluorochromes for different markers.

Taken together, methods such as DeeplFC able to perform virtual labeling and cell type
identification solely from morphology hold promise to transform diagnosis of hematological
diseases and blood processing pipelines by not having to introduce fluorescent labels during
workflow, reducing costs and processing time required. Possible avenues to develop the
method further include utilizing larger training datasets covering more cell types, data
augmentation to improve performance on rare cell types (Luo, Nguyen ef al. 2021), and a

user-friendly graphical tool to use the software.

CODE AVAILABILITY

The DeeplFC workflow and models trained on PBMC data are available under a permissible
license. An example of the interactive UMAP tool for a subset of the complete MNC data can
be found here: https://timonenv.github.io/DeeplFC/. The code, trained models and

requirements for the DeeplFC workflow are found here:

https://github.com/timonenv/DeeplFC.
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METHODS

DeepIFC model

We developed a computational workflow called DeeplFC to perform virtual fluorescent
labeling on brightfield and darkfield IFC images (Fig. 1). For each input cell, DeeplFC
workflow results in a generated image for each fluorescent channel, and a set of single-cell
features. The generated images are then used to perform virtual gating to classify cell types.
DeeplFC also visualizes the single-cell features by projecting the features onto a
two-dimensional space with Uniform Manifold Approximation and Projection for Dimension

Reduction (UMAP) (Mclnnes ef al. 2018).
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Figure 6. DeeplF'C model architecture is based on Inception U-Net (Cahall et al. 2019). The

model inputs two brightfield and one darkfield images, and generates a predicted fluorescent
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image. The model consists of contracting (encoding) and expanding (decoding) paths, with a
bottleneck layer in the middle outputting single-cell features. Number of filters, and input
dimensionality are indicated under each module. Bottom right corner: architecture of an

Inception module (Szegedy et al. 2015), consisting of convolutional and max-pooling layers.

At the core of DeeplFC is a deep neural network model based on the Inception U-Net
architecture (Cahall et al. 2019) (Fig. 6). Inception U-Net combines the U-Net architecture
common in image segmentation tasks (Ronneberger et al. 2015) with Inception modules
(Szegedy et al. 2015). The model processes input images through consecutive Inception
modules, where the spatial dimensions are first contracted towards the model bottleneck (Fig.
6, contracting path), and then expanded towards the output image (Fig. 6, expanding path).
Each subsequent Inception module in the DeepIFC model contained two times the number of
filters contained by the preceding module, up to 512 filters. In addition, there are skip
connections which connect the layers of the same spatial dimension in the contracting and
expanding path. Max-pooling layers are used to reduce the input dimensionality before the
model bottleneck, and then upsampling layers restore the original dimensionality to generate
the fluorescent image. In addition to the fluorescent image, a set of 128 features can be
extracted for each cell from the model’s bottleneck layer. For UMAP visualization, features
for all marker channels are concatenated to form feature files in the shape of n_cells x 128, so
all markers can be visualized in the same plot. Each DeepIlFC model generates a single
fluorescent image for each instance in the data. Thus, a separate DeepIFC model is trained for

each fluorescent channel in the input data.

DeeplFC converts each input CIF image to Hierarchical Data Format (HDF) using the
Cifconvert tool (Lippeveld et al. 2020), and extends images to 128x128 size by padding
edges with zero values. To normalize backgrounds in fluorescent images, each image Y is
transformed with
Y’ = max(0,Y — Q(Y[Y > 0],q))

where Q is the quantile function and g was set to 0.6 in our study, to obtain images similar to
those produced by IDEAS® software (Luminex corporation, Austin, Texas, US)
(Supplementary Fig. 1, 2).

Isolation and staining of the cells


https://www.codecogs.com/eqnedit.php?latex=Y'%20%3D%20%5Cmax(0%2C%20Y-Q(Y%5BY%3E0%5D%2C%20q))#0
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Human peripheral blood mononuclear cells (PBMC) were extracted from buffy coats of
blood samples from six voluntary anonymous blood donors (Finnish Red Cross Blood
Service) using Ficoll-Pague™ Plus (GE Healthcare Life Sciences) density gradient
centrifugation according to manufacturer’s recommendations. PBMCs were frozen to be

stained later.

Thawed PBMCs, 10° cells in 50 pl of staining buffer (containing 0,5 % human serum
albumin - 2 mM EDTA in PBS), were stained with a panel of covalently linked fluorescent
antibodies designed to identify main mononuclear cell types (PBMC panel); CD45-FITC
(leukocyte marker; Biolegend), CD14-PE-Dazzle (monocyte; Biolegend), CD19-BV510 (B
cell; Biolegend), and CDS8-BV605 (cytotoxic T cell; Biolegend), CD3-PE (T cell;
eBioscience), CD56-APC (natural killer or natural killer T cell; 1% three samples eBioscience,
next four samples Miltenyi Biotec) and 7-aminoactinomycin D (7-AAD, dead/damaged cell;
BD Biosciences) (Supplementary Table 4). Cell samples were also stained with
corresponding isotype control antibodies. To reduce the background staining, cells were

treated with BD Fc Block (BD Biosciences), following the manufacturer’s recommendation.

Imaging flow cytometry of peripheral blood mononuclear cells

Seven PBMC samples of six blood donors (Supplementary Table 5) were imaged with a 12
channel Amnis® ImageStream®* Mark II imaging flow cytometer (ISX) (Luminex) to
capture images of mononuclear cells (MNC). One of two samples (NK11B) obtained from
the same donor was discarded from the experiment as it contained a high amount of cells
positive for the damaged/dead cell marker 7-AAD (54%) (Supplementary Table 1), possibly
due to an error in freezing and unfreezing the sample. Images were acquired at 60x
magnification with low flow rate/high sensitivity (40 mm/s, core 7 pm), pixel size 0.33x0.33
um? and depth of field 2.5 pm. During the experiment, excitation lasers 405 nm (intensity
120 mW), 488 nm (intensity 145 mW) and 642 nm (intensity 150 mW) were used.
Fluorescent signals were gained using channels Ch02-Ch05, Ch08, Ch10 and Ch11. Channels
ChO1 and Ch09 were used for brightfield (BF) images and channel 12 for darkfield (scattered
light, SSC). Examples of images obtained from IDEAS® are shown in Supplementary
Figure 1.
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We aimed to acquire 100,000 imaging events for each sample. Single color controls were
used for compensation. Isotype controls and unlabelled cells were used to determine the auto
fluorescence and non-specific signal. The integrated software INSPIRE® (EMD Millipore)
was used for data collection. Both uncompensated and compensated images were created
from the experiments with the IDEAS® software (version 6.2). Compensated images were
created by applying a compensation matrix to uncompensated image data in IDEAS®, and
used in training and evaluating the DeepIlFC models. In addition to images, also numerical
cell features collected during the experiment (e.g., intensity of fluorescence) were extracted

from IDEAS®.

We performed a gating analysis in IDEAS® software, where positive events for each surface
marker were gated based on the intensity values of fluorescent signals. Altogether two types
of gating hierarchies were employed (Supplementary Fig. 4a, 1). In the first one, cell surface
markers were gated from all events (“All”). This gating hierarchy was used to compare
DeeplFC and IDEAS® results. In the second, R1 gate was set based on aspect ratio intensity
and area features on channel 1 (brightfield) to exclude cell debris and cell clumps before
surface marker gating (Supplementary Figure 4a, 2). Cell types were defined as follows in
all IDEAS® gating hierarchies: leukocytes (CD45+), T cells (CD45+CD3+), Cytotoxic T
cells (CD45+CD3+CD8+), Natural Killer T cells (CD45+CD3+CD56+), Natural Killer (NK)
cells (CD45+CD3-CD56+), B cells (CD45+CD19+), and monocytes (CD45+CD14+). Gates
were set based on isotype control samples and cell populations separated on area vs.

fluorescence intensity plots (Supplementary Fig. 6).

Cell typing

In order to classify cell types using the fluorescent images generated by DeeplFC, we
implemented two cell typing strategies, permissible and strict typing (Supplementary Table
2). In both strategies, marker positivity depends whether the average intensity of the
fluorescent image exceeds the specified threshold value. Threshold values were determined
for each marker by inspecting intensity histograms and fluorescent target images, most
commonly set at 0.01 (Supplementary Fig. 7). The threshold value for the DNA-binding
7-AAD was determined to be lower than the other six surface markers (0.007), possibly due
to 7-AAD binding inside the cell, instead of the surface, as well as dead cells’ ability to bind
antibodies non-specifically (Tomlinson et al. 2013). The threshold for CD19, CD8 and CD56
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was also found to differ from the rest of the markers (0.006-0.012). To perform cell typing,
each input cell was processed with all seven DeeplFC models, each predicting the fluorescent
image of one marker. Permissible typing of DeepIFC model predictions was used to compare
to the cell type proportions reported by IDEAS® to allow a cell to be assigned in both “T
cell” and “dead/damaged” classes, for example. On the other hand, strict cell typing was used
to report classification measures which allow each cell to be in exactly one class, which is a
useful measure for excluding dead or damaged cells from other populations due to their
ability to bind antibodies non-specifically, possibly distorting real cell population counts
(Germann et al. 2013, Tomlinson et al. 2013). The cell type fractions obtained with IDEAS®
with gating strategy 1 are shown in Supplementary Table 1. Three different IDEAS®-based
gating strategies were utilized with the data. Different gating strategies were undertaken to
showcase the difference between isolating debris and dead cells from the data before cell type
quantification, and leaving all of the objects in the whole population in order to mimic the
raw CIF dataset. DeeplIFC results were compared with gating strategy 1 (Supplementary Fig.

4a) and an image-based ground truth generated from the fluorescent marker channel images.

Finding doublet events in the data

To find leukocyte cell doublets, we extracted events that exhibited high CD45 intensity
values (mean intensity >0.04; n=8840 events, 1.7%), as such high values can be caused by
the fluorescence of two cells. We then manually removed single cell events from these
candidate events. A random subset (n=622) of these cells was selected and classified into cell
types by visually examining marker fluorescence intensity for each cell in the events, as it
was not possible to utilize the previously implemented cell typing method (Supplementary
Table 2) for cell doublets. Jeffrey’s confidence intervals were computed for all cell types at

0=0.05 comparing the proportion of cells observed in doublets to the proportion in all cells.

Training models on complete and balanced datasets

To train DeepIFC models on all (complete) IFC data obtained from the six PBMC samples
stained with the MNC panel (n=527,107 cells), we assigned all images from two samples into
a test dataset (200,000 cells, 38%), and divided the remaining images into training (247,107
cells, 47%) and validation (80,000 cells, 15%) datasets. Seven DeeplFC models were trained

with training data, one for each individual marker channel in data.
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To train models on data balanced with respect to cell types, we created a series of datasets
{X¢} for each target cell type ¢, such that the size of each dataset |X|=100x2', with ¢ € {B
cell, monocyte, T cell, cytotoxic T cell, NK, NKT, dead/damaged} and i=2,...,6. The same
two donors as in the complete dataset experiment were assigned to the test set, and other four
donors to the training set. To create each dataset, 50% of cells were sampled from cells of the
target cell type in the complete dataset and 50% from any other cell type. For cell types with
at least 100x2°=6400 cells in the complete data, this resulted in a series of datasets of sizes
400, 800, 1600, 3200 and 6400 cells. For B cells and NKT cells, the largest datasets were
instead 3200 and 3112 cells, respectively, due to lack of cells of the particular type in the

complete data.

All DeeplFC models were trained by minimizing binary cross-entropy (BCE) of the
generated fluorescent images compared to the true (target) image in a training dataset with
the Adam optimizer (Kingma & Ba 2014). To train on complete data, initial learning rate
0.002 and minibatch size 20 were used. Training was stopped early after a maximum of 100
epochs or when BCE in the validation dataset did not improve for five epochs. We decided to
use 8 filters in the first Inception module based on a hyperparameter search (Supplementary
Material; Supplementary Fig. 8). To train on balanced data, initial learning rate 0.001,
minibatch size 25, 500 maximum epochs, early stopping after 10 epochs, and 8 filters in the
first module were used. The models were trained three times for each variation of dataset.
These model iterations were tested with 1, 2, 4, 8, 16 and 32 filters, and the best balance
between training time and accuracy was with 8 filters (Supplementary Fig. 8). The model
achieving the smallest BCE in the validation dataset was retained from each experiment for
further analysis. All models were trained on Nvidia Tesla V100 GPUs with 16 GB RAM
(CUDA version 11.0).

Ethical considerations

PBMCs were isolated from buffy coats that are leftover products from the standard blood
donation. Voluntary blood donors have been informed about the study and they have signed
the informed consent. The study has been evaluated and approved by the ethical committee of
Helsinki University Hospital District HUS/1845/2019 (original statement 26.06.2019,
amendments 27.11.2019 and 30.10.2020). All the samples have been treated anonymously.
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