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Abstract

The scientific reform movement has proposed openness as a potential remedy
to the putative reproducibility or replication crisis. However, the conceptual
relationship between openness, replication experiments, and results reproducibility
has been obscure. We analyze the logical structure of experiments, define the
mathematical notion of idealized experiment, and use this notion to advance a
theory of reproducibility. Idealized experiments clearly delineate the concepts of
replication and results reproducibility, and capture key differences with precision,
allowing us to study the relationship among them. We show how results
reproducibility varies as a function of: the elements of an idealized experiment, the
true data generating mechanism, and the closeness of the replication experiment to
an original experiment. We clarify how openness of experiments is related to
designing informative replication experiments and to obtaining reproducible results.
With formal backing and evidence, we argue that the current “crisis” reflects
inadequate attention to a theoretical understanding of results reproducibility.

1 Introduction

In a number of scientific fields, replication and reproducibility crisis labels have been
used to refer to instances where many results have failed to be corroborated by a
sequence of scientific experiments. This state of affairs has led to a scientific reform
movement. However, this labeling is ambiguous between a crisis of practice and a crisis
of conceptual understanding. Insufficient attention has been given to the latter, which
we believe is a detriment to moving forward to conduct science better. In this paper, we
make theoretical progress toward understanding replications and reproducibility of
results (henceforth “results reproducibility”) by a formal examination of the logical
structure of experiments1.

We view replication and reproducibility as methodological subjects of metascience.
As we have emphasized elsewhere (Devezer et al., 2021), these methodological subjects
need a formal approach to properly study them. Therefore, our work here is necessarily
mathematical; however, we make our conclusions relatable to the broader scientific
community by pursuing a narrative form in explaining our framework and results within
the main text. Mathematical arguments are presented in the appendices. Our objective
is to build a strong, internally consistent, verifiable theoretical foundation to understand
and to develop a precise language to talk about results reproducibility. We advance

1Some of the ideas developed in depth here appeared in preliminary form in (Baumgaertner et al.,
2018).
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mathematical arguments from first principles and proofs, using probability theory,
mathematical statistics, statistical thought experiments, and computer simulations. We
ask the reader to evaluate our work within its intended scope of providing theoretical
precision and nuanced arguments.

The following backdrop to motivate our research matters: A common concern voiced
in the scientific reform literature and recent scholarly discourse regards various forms of
scientific malpractice as potential culprits of reproducibility failures and openness is
sometimes touted as a remedy to alleviate such malpractices (Collins and Tabak, 2014;
Iqbal et al., 2016; National Academies of Sciences, Engineering, and Medicine, 2017;
Nosek et al., 2015, 2022). Some malpractice is believed to take place at the level of the
scientist. For example, hypothesizing after the results are known involves presenting a
post hoc hypothesis as if it were an a priori hypothesis, conditional on observing the
data (Kerr, 1998; Munafò et al., 2017). Another example is p-hacking, a statistically
invalid form of performing inference to find statistically significant results (Bruns and
Ioannidis, 2016; Gelman and Loken, 2013; Munafò et al., 2017). Some is believed to
operate at the community or institution level. For example, publication bias involves
omitting studies with statistically nonsignificant results from publications and is
primarily attributed to flawed incentive structures in scientific publishing (Collaboration
et al., 2015; Munafò et al., 2017). Before we suspect malpractice of either kind and set
out to correct the scientific record or demand reparations, however, it behooves the
scientific community to gain a complete understanding of the factors that may account
for a given sequence of research results.

If a result of an experiment is not reproduced by a replication experiment, before we
reject it as a false positive or suspect some form of malpractice, we need to assess and
account for: i) sampling error, ii) theoretical constraints on the reproducibility rate of
the result of interest, conditional on the elements of the original experiment, and iii)
assumptions from the original experiment that were not carried over to the replication
experiment. First of these is a well-known and widely understood statistical fact that
describes why methodologically we can at best guarantee reproducibility of a result on
average (that is, in expectation). The second point about the theoretical limits of the
reproducibility rate is not well understood and we hope to address this oversight in this
paper. The last one has been brought up in individual cases but typically in an ad hoc
manner and we aim to provide a systematic approach for comprehensive evaluations of
replication experiments. Since metascientific heuristics may lead us astray in these
assessments, we need a fine-grained conceptual understanding of how experiments
operate and relate to each other, and what role openness plays in facilitating replications
or promoting reproducible results. Indeed a replication crisis and a reproducibility crisis
are different things, and should be understood on their own. We distinguish between
replication experiments and results reproducibility, and discuss precursors of each.

In this paper, we argue that “failed” replications do not necessarily signify failures of
scientific practice2. Rather, they are expected to occur at varying rates due to the
features of and differences in the elements of the logical structure of experiments. Using
a mathematical characterization of this structure, we provide precise definitions of and
clear delineation between replication, reproducibility, and openness. Then, using toy
examples, simulations, and cases from the scientific literature, we illustrate how our
characterization of experiments can help identify what makes for replication
experiments that can, in theory, reproduce a given result and what determines the
extent to which experimental results are reproducible. In the next section, we define
main notions that we use to build a logical structure of experiments which helps us
derive our theoretical results.

2We are not the first to take issue with the “replication crisis” framing. We invite the interested
reader to visit Feest (2019)’s provocative and incisive assessment of why replication is overrated.
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2 The logical structure of experiments

2.1 Definitions

The idealized experiment is a probability experiment: A trial with uncertain outcome on
a well-defined set. A scientific experiment where inference is desired under uncertainty
can be represented as an idealized experiment. The results from an experiment can be
defended as valid only if the assumptions of the probability experiment hold. One useful
setup for us is as follows: Given some background knowledge K on a natural
phenomenon, a scientific theory makes a prediction, which is in principle testable using
observables, the data D. A mechanism generating D is formulated under uncertainty
and is represented as a probability model MA under assumptions A. Given D, inference
is desired on some unknown part of MA. The extent to which parts of MA that are
relevant to the inference are confirmed by D is assessed by a fixed and known collection
of methods S evaluated at D (similar descriptions for other purposes can be found in
Devezer et al., 2019, 2021).

Definition 1. The tuple ξ := (K,MA, S,D) is an idealized experiment.

Definition 1 of ξ captures some key distinct elements of experiments whose
population characteristics can in principle be tested. These elements are not necessarily
independent of each other. For example, K may inform and constrain the sets of
plausible MA and S. Or it may be necessary for MA to constrain S.

MA includes the sampling design when sampling a population conforming A, which
we assume to be independent of sampling design. For example, A may be the description
of an infinite population of interest, which may be sampled in a variety of ways to yield
distinct probability models MA for the data depending on the sampling scheme.

We distinguish two elements of S: Spre and Spost. Spre is the scientific
methodological assumptions made prior to data collection and procedures implemented
to obtain D. Spre captures assumptions in designing and executing an experiment such
as experimental paradigms, study procedures, instruments, and manipulations.
Conditional on K and MA, Spre is reliable if the random variability in D is due only to
sampling variability modeled by MA. Spost is the statistical methods applied on D. If
inferential, Spost is reliable if it is statistically consistent. S is reliable if and only if Spre

and Spost are reliable.
We also distinguish two elements of D: Ds and Dv. Ds is the structural aspects of

the data, such as the sample size, number of variables, units of measurement for each
variable, and metadata. Dv is the observed values, that is, a realization conforming Ds.
Some statistical approaches to assess risk and loss focus on the reproducibility
conditional on Dv, whereas others focus on averages over independent realizations of Dv.

Definition 1 of ξ allows us to scaffold other definitions as follows. An exact
replication experiment ξ

′
must generate D

′
independent of D conditional on MA in the

values but with the same structure Ds.

Definition 2. The tuple ξ
′
:= (K

′
,M

′

A, S
′
, D

′
) is an exact replication ex-

periment of ξ if K
′ ⊃ K,M

′

A ≡ MA, D
′

s ≡ Ds and D
′

v is a random sample

independent of Dv. If at least one of (M
′

A, S
′
, D

′

s) differs from (MA, S,Ds) or

K
′ ̸⊃ K, then ξ

′
can at most be a non-exact replication experiment of ξ.

3/38

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2022. ; https://doi.org/10.1101/2022.08.10.503444doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.10.503444
http://creativecommons.org/licenses/by/4.0/


Definition 2 mathematically isolates ξ and ξ
′
from R. That is, ξ

′
does not need to

have a specific aim to be performed or worked with as a mathematical object. The
benefits of this isolation will become clear in section 3, where an unconditional ξ and its
non-exact ξ

′
pair may become a ξ and its exact ξ

′
pair, conditional on R.

Often, however, we would perform experiments with a specific aim and would like to
see whether the result of ξ is reproduced in ξ

′
. Depending on the desired mode of

statistical inference, example aims include hypothesis testing, point or interval
estimation, model selection, or prediction of an observable. Further, when augmented
with an R, K

′
must differ from K in a specific way. Encompassing all these statistical

modes of inference, we introduce the notion of a result R, as a decision rule. For
convenience, we assume that R lives on a discrete space here.

Definition 3. Let X be the sample space and R ≡ {r1, r2, · · · , rq}, q ∈ Z+ be
the decision space. For sample size n ∈ Z+, the function R : Xn → R is a result.

R is obtained by mapping the application of Spost on D on to the decision space. If

ξ
′
is aimed at reproducing R of ξ, it is conditional on R and leads us to the following

connection between an idealized experiment and a result.

Definition 4. Let R and R
′
be results from ξ and ξ

′
respectively. R = ro is

reproduced by R
′
= rd if d = o, else R = ro is not reproduced.

In definition 4, reproducibility of R depends on the available actions r1, r2, · · · , rq.
The size of q is case specific. Examples are as follows. In a null hypothesis significance
test, q = 2 : the null hypothesis and the alternative hypothesis. In a model selection
problem we entertain q models and choose one as the best model generating the data.
In a parameter estimation problem for a continuous parameter, we build q arbitrary
bins, and call a result reproduced if the estimate from ξ

′
falls in the same bin as the

result from ξ. How the bins are constructed in a problem affects the actual
reproducibility rate of a result. However, for our purposes in this paper, theoretical
results hold for all cases regardless of this tangential issue.

The class of problems of interest to us here involves cases where in a sequence of
exact replication experiments, if S is reliable, we should expect a regularity in the
results. That is, probability theory tells us that if the elements of an idealized
experiment are well-defined, then we should expect the results from a sequence of
replication experiments to stabilize at a certain proportion, given the characteristics of
an idealized experiment and the true data generating mechanism. This notion is
formalized in definition 5.

Definition 5. Let ξ(1), ξ(2), · · · , ξ(N) be a sequence of idealized experiments.
The reproducibility rate

ϕ = lim
N→∞

N−1
∞∑
i=1

I{R(i)=ro}

of a result R = ro is a parameter of the sequence (I{C} = 1 if C, and 0 otherwise).
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An advantage of definition 5 is that conditional on R = ro in ξ and a sequence of
replication experiments ξ(1), ξ(2), · · · , ξ(N), the relative frequency of reproduced results
ϕN converges to ϕ ∈ [0, 1] as N → ∞. So, we immediately have

ϕN = N (−1)
∑N

i=1 I{R(i)=ro} as a natural estimator of ϕ. Further, we are formally
comforted to know that limN→∞ P (ϕN = ϕ) = 1. That is, with high probability, the
estimated reproducibility rate ϕN from a sequence of replication experiments will get
closer to the true reproducibility rate of the original experiment ϕ.

Finally, we turn to the last of our key concepts: openness. Openness refers to the
accessibility of all necessary information regarding the elements of ξ by another
idealized experiment ξ∗. This accessibility may be used for a variety of purposes. For
example, Spost can be re-applied to D to verify R independently of ξ. In this capacity,
openness facilitates the auditing of experimental results by way of screening off certain
errors, including human and instrumental (e.g., data entry and programming errors),
that may be introduced in the process of obtaining R initially. On the other hand,
openness may be needed to perform an exact ξ

′
by way of duplicating Spre to obtain D

′

and Spost to obtain R
′
. In this capacity, openness makes exact ξ

′
possible.

Openness is critically related to reproducibility since the degree to which information
is transferred from ξ to ξ

′
impacts the ϕ of a given result. However, not all elements of

ξ need to be open for all purposes. Therefore, a nuanced understanding of openness
requires evaluating it at a fixed configuration of the elements of ξ conditional on a
specific purpose, rather than as a categorical judgment at the level of the whole
experiment, as open or not. This leads us to think of openness element-wise, as in
definition 6.

Definition 6. Let Π be the power set of elements of ξ and π ∈ Π. ξ is π-Open
for ξ∗ if π ⊂ K∗ where ξ∗ is an idealized experiment that imports information
from ξ.

A specific example of π-Open of definition 6 would be π ≡ (MA, Spre) where ξ∗ gets
all the information about the assumptions, model, pre-data methods from ξ but no other
information. Another example of π-Open is the special case where ξ has all its elements
open, that is π ≡ (K,MA, S,D). In this case, for convenience, we say ξ is ξ-Open for ξ∗.

2.2 Fundamental results on replications and reproducibility rate
from first principles

Here we present two results about reproducibility and some remarks, based on
definitions 1-6. A well-formed theory of reproducibility requires results of these type:
fundamental, mathematical, and invoking a functional framework to study replications
and reproducibility. They serve as theoretical benchmarks to check other results against.
Technically oriented readers may refer to Appendix 1 and Appendix 2 for a more
detailed discussion and results complementary to the main argument.

We begin by noting that, given definition 5 and the discussion following it, it is not
straightforward to say exactly what we gain if we were to update the estimated
reproducibility rate based on the results obtained from performing more replications.
Indeed, to understand the value of replication experiments in assessing the
reproducibility of a result, a strong mathematical statement is required, which is our
result 1.
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Symbol Name Description Formal
definition/result

ξ Idealized Scientific experiment Definition 1
experiment represented as a probability

experiment

ξ
′

Replication Idealized experiment aiming to Appendix 2,
experiment reproduce R from another experiment Definition 2,

by generating D
′
independent from D Result 2

K Background State of scientific knowledge Appendix 3,
knowledge on the phenomenon of interest used Remark 2

to conceptualize, design, and
perform the experiment

MA Assumed Assumed mechanism generating Appendix 4,
model the data Result 3

A Population Population characteristics independent
assumptions from sampling design, such as

finiteness and continuity
M Model Model properties which depend on

specification researcher assumptions, such as
sampling scheme

S Method Fixed and known set of methods
for collecting and analyzing data

Spre Pre-data Scientific assumptions made prior Result 4
methods to collecting data and procedures

implemented to obtain D
Spost Statistical Statistical procedures applied Appendix 5,

methods on D Result 5
D Data Application of Spre to sample

the population assuming MA

Ds Data Structural aspects of the data such Appendix 6
structure as sample size and number and type Result 6

of variables
Dv Data Observed values that signify a fixed Result 7

values realization of the data
R Result Decision rule which maps the Definition 3, 4

application of Spost to D onto the
decision space such as choice of a model
over others, a parameter estimate, or
rejection of a null hypothesis

ϕ True Limiting frequency of Appendix 1,
reproducibility reproduced results in a sequence of Appendix 7,
rate replication experiments Definition 5,

ϕN Estimated Sample frequency of Result 1,
reproducibility reproduced results in a sequence of N Result 8,
rate replication experiments Remark 1

π-Open Openness Which elements of ξ are Definition 6

available to ξ
′

Table 1. Quick reference guide to notation and key terms.
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Result 1. Let ξ(1), ξ(2), · · · , ξ(N) be a sequence of replication experiments with
reproducibility rate ϕ given by definition 5. Then,

P
(

lim
N→∞

ϕN = ϕ
)
= 1, (1)

where ϕN is the sample reproducibility rate of result R = ro obtained from the
sequence (proof in Appendix 1).

Result 1 is fundamental to study replications and reproducibility for a number of
reasons:

1. It provides a basis for building trust in the notion of reproducibility from
replication experiments. Roughly, it says that if we perform replication
experiments and estimate the reproducibility rate of ro by ϕN from these
experiments, then we are guaranteed that deviations of ϕN from ϕ are going to get
small and stay small.

2. It is almost necessary to move forward theoretically. It immediately implies that if
the assumptions of an original experiment are satisfied in its replication
experiments, then we are adopting a statistically defensible strategy by continuing
to perform replication experiments and updating ϕN as a proportion of successes
to assess the reproducibility rate. Therefore, result 1 gives us a theoretical
justification of why we should care about performing more replication experiments
whose assumptions are satisfied and be interested in estimating reproducibility
rate based on those replication experiments alone. Further, violating the
assumptions of ξ in replication experiments implies that ϕN converges to some ϕ
defined by the flaws underlying a non-exact sequence of replications of ξ rather
than the reproducibility rate of ro of interest.

3. As we will detail in result 2, a theoretically fertile way to study replication
experiments is by defining a sequence of experiments as a stochastic process. The
results from such processes almost always require the solid foundation provided by
result 1.

Remark 1. The reproducibility rate given in definition 5 has excellent properties
as shown by result 1. However, we keep in mind that definition 5 is only one way
to measure reproducibility. It is a counting measure which counts the reproduced
results. Instead, a continuous measure as a degree of confirmation of a result
might seem more proper to measure reproducibility. One has to be aware that
just defining a reproducibility measure does not imply that it has desirable
mathematical properties. It is easy to define meaningful continuous measures of
reproducibility which might have pathological properties (e.g., that do not satisfy
result 1) and these should be avoided (see Appendix 1 for details).

In practice Spost are functions of sample moments, such as the sample mean. In
these cases, sometimes the Lindeberg-Lévy Central Limit Theorem (CLT) and its
extensions provide useful results about the properties of ξ(1), ξ(2), · · · . However,
restricting Spost this way constrains the mathematical setting to study the statistical
properties of ξ(1), ξ(2), · · · or results reproducibility. For example, working with the CLT
is challenging when Spost cannot be formulated as a function of a fixed sample size or to

7/38

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2022. ; https://doi.org/10.1101/2022.08.10.503444doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.10.503444
http://creativecommons.org/licenses/by/4.0/


discuss the properties of a sequence of replication experiments directly, without referring
to Spost as a means to estimate a particular R.

We provide a broad setting without these limitations by assuming that K requires
only minimal validity conditions on MA and S. Specifically, we let MA be any
probability model, subject only to some mathematical regularity conditions such as
continuity of distribution functions, the existence of the mean and the variance of the
variable of interest. We also let Spost be the sample distribution function3. With the
generality provided by these assumptions, we obtain one of our main theoretical results.

Result 2. The sequence of idealized experiments ξ(1), ξ(2), · · · given by defini-
tion 5 is a proper stochastic process, seen as a joint function of random sample
D and of each value in the support of data generating mechanism, x ∈ R (see
constructive proof in Appendix 2).

Result 2 is of fundamental importance to study results reproducibility
mathematically because it allows us to apply the well-developed theory of stochastic
processes to build a theory of results reproducibility. Two aspects of result 2 are
noteworthy:

1. When we obtain a random sample in ξ and perform inference using a fixed value
of a statistic such as a threshold, the sequence ξ(1), ξ(2), · · · constitutes random
variables independent of each other conditional on the true model generating the
data. Obtaining the distributions implied by ξ helps us understand the statistical
nature of replication experiments.

2. ξ
′
generates new data D

′
and R

′
is conditional on D

′
. That is, when inference is

performed for a particular replication experiment, the data are fixed. Most
generally, conditional on D

′
if the empirical distribution function is R

′
, then the

replication experiment estimates the model generating the data. Therefore, a
replication experiment determines a sample based estimate of a statistical model.

Summary of all notation and terms introduced in this section can be found in table 1
for quick reference. In the next section, we introduce a toy example as a running case
study to instantiate our theoretical results on replications, reproducibility, and openness.

3 A toy example

Our toy example involves an inference problem regarding a population of ravens, K. An
infinite population of ravens where each raven is either black or white constitutes the
population assumptions, A. Each uniformly randomly sampled raven can be identified
correctly as black or white, which defines the pre-data methods, Spre. The result of
interest, R, is to estimate the (unknown) population proportion of black ravens, p, or
some function of it.

We consider six distinct sampling scenarios, which lead to six distinct MA, and thus
six distinct idealized experiments. To avoid overly complicated mathematical notation
we denote the models by: ξbin, ξnegbin, ξhyper, ξpoi, ξexp, ξnor. These models represent
the binomial, negative binomial, hypergeometric, Poisson, exponential, and normal
probability distributions for the data generating mechanism, respectively. In specific

3We assume that the order in which the data values appear has no bearing on the inferential goal.
The cases in which the order contains information are important for a variety of subject matters, but it
is well known that the statistical techniques that deal with them are too specialized to be treated in a
general setup. An example is autoregressive models.
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Experiments
(Exact)

Result Model
Population
Assumptions

sample n 
ravens from 

a finite subset 
of the 

population

estimate
proportion of 
black ravens

p

ξhyper

Hypergeometric
experiment

sample w 
white ravens

estimate
proportion of 
black ravens

p

ξnegbin

Negative 
Binomial

eperiment

sample n 
ravens

estimate
proportion of 
black ravens

p

ξbin

Binomial 
experiment

Infinite  
population

of
black 

and white
ravens

Population
proportion 
of black is p

sample n 
ravens

estimate 
mean

number of 
black ravens 
approximated 

by np

ξnor

Normal
experiment

measure 
time between
sampled n 

ravens

estimate 
mean

time to 
black ravens 
approximated 

by np

ξexp

Exponential
experiment

sample n 
ravens

estimate 
 mean

number of 
black ravens

approximated 
by np

ξpoi

Poisson 
experiment

Experiments
(Approximate)

ResultModel

Figure 1. Six idealized experiments ξbin, ξnegbin, ξhyper, ξpoi, ξexp, ξnor : The binomial,
negative binomial, hypergeometric, Poisson approximation to binomial, exponential
waiting times between Poisson events, and normal approximation to binomial, respectively.
All but ξhyper assume infinite population (A) of black and white ravens, with sampling
designs resulting in distinct probability models (MA). ξhyper assumes sampling from a
finite subset of the population. All experiments aim at performing inference on result
(R), which reduces down to an estimate of either the population proportion of black
ravens or the mean number of black ravens in the population.

examples, we also vary Spost, the point estimator of the parameter of interest to take
values as maximum likelihood estimate (MLE), method of moments estimate (MME),
and posterior mode (i.e., Bayesian inference). We further vary Ds via the sample size
(i.e., n ∈ {10, 30, 100, 200}). We use these idealized experiments to illustrate our results
in the rest of the paper.

These six idealized experiments make the following sampling assumptions. ξbin stops
when n ravens are sampled. ξnegbin stops when w white ravens are sampled. ξhyper is a
special case where the sampling has access only to a finite subset of the infinite
population delineated by A. ξbin, ξnegbin, ξhyper are often called exact models, in the
sense that their MA does not involve any limiting or approximating assumptions. On
the other hand, ξpoi approximates ξbin where a large sample of n ravens is sampled
when the proportion of black ravens p is small. The larger the n and the smaller the p
such that np remains constant, the better the approximation. ξexp has the same
approximative characteristics and parameter as ξpoi. However, notably, ξexp records the
time between observations instead of counting the ravens, so its Spre is different from all
other experiments. Finally, ξnor approximates ξbin where a large sample of n ravens
with intermediate proportion of black ravens, p, holds.

As the result of interest, R, these six idealized experiments aim to estimate either
the proportion of black ravens, p, in the population or the rate of black ravens sampled,
np → λ, a function of p, in the approximative models. Figure 1 shows distinctive
elements of these six idealized experiments.

In section 4, we use these six idealized experiments to show that openness connects
to reproducibility in a variety of ways and to reproduce a given result, replication
experiments do not need to be exact. We show that conditional on a given result from
an original experiment, non-exact replication experiments can serve as valid exact
replication experiments, if the inferential equivalence holds between the original and the
replication. We further show that, the true rate of reproducibility of a sequence of exact

9/38

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2022. ; https://doi.org/10.1101/2022.08.10.503444doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.10.503444
http://creativecommons.org/licenses/by/4.0/


replication experiments and a sequence of non-exact replication experiments are distinct
(except trivially) for a given result.

4 Element-wise openness and assessing the meaning
of replications

Tools and procedures have been developed to help facilitate openness in science (Collins
and Tabak, 2014; Munafò et al., 2017; Nosek et al., 2015; Wagenmakers et al., 2012).
Guidelines may argue for making as much information available as possible about an
experiment or leave it to intuition to guide which elements of an experiment are relevant
and need to be shared for replication. We are interested in better understanding what
does and does not need to be made available, in service of which objective, and under
what conditions. We perceive two main issues: what openness means for performing
meaningful replications and how it impacts results reproducibility. We first evaluate the
former. Then we show that a uniform, wholesale framing of openness is not the remedy
to the reproducibility crisis that some take it to be.

ξ has elements involving uncertainty, such as Dv taken as a random variable.
Uncertainty modeled by probability is always conditional on the available background
information (Lindley, 2000), and thus reproducibility of R is always conditional on K.
That is, ξ

′
must import sufficient information from ξ with respect to R of interest to

assess whether R is reproduced in R
′
. A ξ

′
that aims to reproduce a given result from ξ

may be performed in a variety of ways depending on which elements of ξ are open.

Degree of Openness

Not open
DS

Not open
Spost

Not open
MA

Not open
Spost, DS

Not open
MA, Ds

Not open
MA, Spost

All open Not open
MA, Spost, DS

Spost

maximum likelihood estimate

posterior mode

Ds

n = 200 n = 30
MA

Binomial

Negative binomial

Hypergeometric

Poisson

Exponential

Normal

Legend

Figure 2. For the models in the toy example, degrees of openness (as given by
definition 6) are depicted in 8 networks, each consisting of the same 24 idealized
experiments. Each idealized experiment is represented by a node in each network. These
24 experiments are obtained by a 6× 2× 2 factorial design. The first factor, MA, takes 6
values: binomial, negative binomial, hypergeometric, Poisson, exponential, normal. The
second factor, Spost, takes 2 values: MLE and Posterior mode. The third factor, Ds,
takes two values: n = 30 and n = 200. Connections between nodes represent potential
substitutions of non-open elements of idealized experiments. As more elements of an
idealized experiment are non-open, the probability of choosing an exact replication
decreases, as indicated by increased connectivity in the network.
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In the context of our toy example, figure 2 shows a network structure of some
possible ξ as a function of which elements of ξ are open. Specifically, we consider
variations of the six experiments introduced in section 3 for two Spost (MLE and
posterior mode) and two Ds (n = 30 and n = 200) yielding 24 distinct ξ, each denoted
by a node in each network in figure 2. Given one of these 24 as ξ, all possible 24
experiments are either exact or non-exact ξ

′
. We use definition 6 and specify π to assess

the degree of openness in these experiments. When ξ is ξ-Open, the probability of exact
replication is 1 and every node of the network is only connected to itself. If ξ is π-Open,
where π is a proper subset of ξ then ξ

′
may be a non-exact replication of ξ in various

ways because ξ
′
needs to substitute in a value for elements that are not in π. Therefore,

the probability of ξ
′
being an exact replication of ξ is lower than when ξ is ξ-Open. In

figure 2, we show the network structures that result from choosing non-open elements
with equal probability among all substitutions considered for each element. The network
complexity depends on the size of π. If it is large, the number of connections among the
nodes in the network is small and each connection is strong (e.g., strongest when all
open). In contrast, if it is small, the number of connections among the nodes in the
network is large because there are both multiple substitutions to be made and multiple
possibilities for each, and each connection is weak (e.g., weakest when MA, Spost, Ds not
open in figure 2). Hence, as the size of π decreases, it becomes less probable to perform
an exact replication of ξ. By looking at which elements of ξ are open to start with, we
can assess how the sequence ξ(1), ξ(2), · · · of replication experiments can be
misinterpreted if the necessary elements were not open and/or got lost in translation. In
the rest of this section, we organize our results by elements K,MA, S,D.

4.1 Background knowledge, K

Providing an exact description of what goes into K is notoriously difficult. K, which is
more of a philosophical element of ξ, typically carries over much more than what can be
immediately gleaned over by a transparent and complete description of MA, S, and D.
We understand K to contain theoretical assumptions, contextual knowledge,
paradigmatic principles, a specific language, presuppositions inherent in a given field; in
short, a lot of inherited cultural and historical meaning of the kind Feyerabend refers to
as natural interpretations in Against Method (Feyerabend, 1993, p. 49). As Feyerabend
explains, such natural interpretations are not easy to make explicit or even sometimes
be aware of and thus, being open about them might not be a matter of choice. However,
observations gain meaning only against this backdrop and experiments can only be
interpreted correctly by using the same language used to design them in the first place.
Within ξ, this tends to happen implicitly whereas when performing ξ

′
, there is no

guarantee that all the relevant information in K will carry over to K
′
.

Using the binomial experiment in our toy example, we can illustrate why K is an
integral part of ξ and what role it plays for ξ

′
. In ξbin, our aim (R), is to estimate the

proportion of black ravens (p) in an infinite population of ravens (A). MA samples n
ravens. As our Spre, we count black and white ravens by naked eye. As our Spost, we
use the maximum likelihood estimator of p. We set n = 100, which constitutes our Ds.
This description of ξbin based on a specific configuration of MA, Spre, Spost, Ds could
just as well be used to define an experiment in which scientists are interested in
estimating the proportion of black swans in a population of black and white swans.
While ξbin would still be mathematically well-defined, its scientific content and context
is not captured by any of these four elements. For that, we need K. Without K, we
would have to consider an ξ

′

bin about black swans as an acceptable replication of ξbin
about black ravens, based on mathematical structure alone. K, then, communicates
scientific meaning across experiments.

As a more practical example of the import of K, we consider a recent “failed”
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replication experiment. Murre (2021) attempted to replicate a classical experiment
by (Godden and Baddeley, 1975) on context-dependent memory. Context-dependent
memory refers to the hypothesis that the higher the match between the context in
which a memory is being retrieved and the context in which the memory was originally
encoded, the more successful the recall is expected to be. In the abstract, Murre (2021)
summarizes the results of the replication experiment as follows: “Contrary to the
original experiment, we did not find that recall in the same context where the words
had been learned was better than recall in the other context.” Does this suggest that
the results of the original experiment were a false positive—as replication failures are
commonly interpreted? There are many reasons to not jump at that conclusion
including sampling error and the fact that the context of the replication was different
from that of the original Godden and Baddeley (1975) experiment. Specifically, unlike
the original, the replication was being filmed as part of a TV program. We will set these
obvious concerns aside for a moment to focus on another. Ira Hyman explains the issue
in a Twitter thread (Hyman, 2021). Hyman indicates that the phenomenon of
context-dependent memory is conditional on the distinctiveness of the encoding context.
That is, if distinct contexts are used over multiple trials, the chances that the context
will be remembered with the encoded information increases. When the context is not
distinctive enough or remains constant over trials, the effect disappears. Another known
boundary condition for the phenomenon is the outcome variable: Past research has
shown that this works for retrieval tasks (e.g., free recall) and not recognition. The
Murre (2021) replication did not carry over these contextual details and changed the
design in a way to not instigate context-dependent memory. As a result, the differences
between R and R

′
become impossible to attribute to a single cause and fail to provide

evidence that can confirm or refute the results of the original Godden and Baddeley
(1975) experiment. It is even questionable whether the Murre (2021) experiment
provided an appropriate test of the result of interest in the first place to be considered a
meaningful or relevant replication.

This replication example on context-dependent memory appears to imply that a ξ
′
is

meaningful or relevant with respect to a specific result R. By definition 2 and its
interpretation, however, we know that mathematically it is more convenient to separate
the definition of ξ

′
from R. It follows that there are at least two aspects of assessing the

meaning and relevance of a replication.
First, while an operational definition of K is elusive, a useful way to think about K

is “all the information in ξ that is not already in MA, S, and D”. At the minimum, for
ξ
′
to be considered a meaningful replication of ξ, K

′
must import some information in

K regarding the immediate scientific context of ξ. For this to hold, there is no need to
invoke the notion of R.

Second, to assess the reproducibility of a given R, K
′
must import relevant

information pertaining R from ξ. That is, replication experiments unconditional and
conditional on R are not the same objects. To emphasize the difference between them,
we distinguish between in-principle and epistemic reproducibility of an R in remark 2
(for further details, see appendix Appendix 3).

Remark 2. Let ξ be an idealized experiment and ξ
′
be its exact replication.

Conditional on R from ξ, K
′
is necessarily distinct from K for epistemic repro-

ducibility of R by R
′
, but not necessarily distinct for in-principle reproducibility

of R by R
′
.

In practice, ξ
′
can never be an exact replication of ξ in an ontological sense. The ξ is

a one-time event that has already happened under certain conditions and ξ
′
has to
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differ from ξ in some aspect. The best standard ξ
′
can purport to achieve is to capture

relevant elements of ξ in a such way that performing inference about R while adhering
to A and sampling the same population is possible within an acceptable margin of error.
However, every experiment is embedded in its immediate social, historical, and scientific
context, making it a non-trivial task for scientists to include all the relevant K when
they report the experiment in an article and make explicit all the natural
interpretations used to assign meaning to its results. As such, designing and conducting
replication experiments cannot be reduced to a clerical implementation of reported
experimental procedures. A comprehensive understanding of K is increasingly critical
as ξ

′
diverges further away from ξ to be able to comprehend the nature and importance

of the divergence for the interpretability of ξ
′
and for results reproducibility. For ξ

′
to

serve their intended objective, information readily available from ξ
′
needs to be

supplemented by a careful historical and contextual examination of the relevant
literature and the broader scientific background. Otherwise, ξ

′
may differ from ξ in

non-trivial ways impacting the meaning of the evidence obtained and changing the
estimated reproducibility rate.

4.2 Model, MA

For ξ
′
to be able to reproduce all possible R of ξ, MA must be specified up to the

unknown quantities on which inference is desired. This specification must be
transmitted to ξ

′
, such that MA and M

′

A are identical for inferential purposes mapping
to R. If an aspect of MA that has an inferential value mapping to R is not transmitted
to ξ

′
and this inferential value is lost, then R cannot be meaningfully reproduced by R

′
.

On the other hand, given an inferential objective mapping to a specific R, the aspects of
MA that are irrelevant to that inferential objective need not be transmitted to ξ

′
to

meaningfully reproduce R by R
′
. Counterintuitively, to meaningfully reproduce R by

R
′
, MA and M

′

A do not need to be identical, as given by result 3.

Result 3. MA and M
′

A do not have to be identical in order to reproduce a result

R by R
′
. Under mild assumptions, the requirement for R to be reproducible

by R
′
is that there exists a one-to-one transformation between MA and M

′

A for
inferential purposes mapping to R (proof and details in Appendix 4).

As an example of result 3, consider ξbin and ξnegbin in figure 1. Conditional on the
objective of estimating p, the population proportion of black ravens, any of
(ξbin, ξbin), (ξbin, ξnegbin), (ξnegbin, ξbin), (ξnegbin, ξnegbin) can be effectively considered

a pair (ξ, ξ
′
) of an idealized experiment and its (exact) replication. The reason is that

the quantity of interest p is an identifiable parameter in both experiments although MA

and M
′

A are not necessarily identical4.
In practice, when conducting a sequence of replication experiments, we would be

interested in gauging the extent to which we can reproduce a specific result. Assuming
that S are the same throughout all experiments, we expect the observed reproducibility
rate of a sequence of experiments whose elements are chosen from ξbin, ξnegbin to
converge on the same value, capturing the information on p, in the same way. However,
result 3 does not imply that the (true) reproducibility rate of any two sequences of
experiments involving any MA and M

′

A are equal to each other. In fact, the (true)
reproducibility rates of two sequences are not equal, when non-exact replications are
involved.

4Compare this statement to definition 2 of an exact and non-exact replication experiment uncondi-
tional on an inferential objective.
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Openness of MA to M
′

A needs to be distinguished from the equivalence of MA and

M
′

A. In ξbin and ξnegbin, M
′

A is not equivalent to MA. However, the binomial and the
negative binomial models become equivalent with respect to a certain inferential
objective that allows for reproducing a specific R, which is estimating p. To establish
this compatibility, MA should be open to ξ

′
but does not need to be assumed in ξ

′
.

Specifically, to set M
′

A to be the negative binomial model in ξ
′
to reproduce the

estimate of p in ξ, we need to know that ξ has used the binomial model. This ensures
that ξ

′
can use a model that has the same parameter p with the exact same meaning as

in ξ and same population assumptions A such that the inferential equivalence holds. A
counterexample where A is different and this matters for reproducing a specific R is
ξhyper. ξhyper samples from an arbitrary finite subset of infinite population but still uses
the same parameter p as ξbin and ξnegbin. The estimate of p in ξhyper will be biased due
to differences in A. Without access to full specification of MA, this compatibility
between MA and M

′

A or lack thereof cannot be established.
This point is illustrated in many-analyst studies (Botvinik-Nezer et al., 2020;

Silberzahn et al., 2018) in which a fixed D is independently analyzed by multiple
research teams who are provided D and a research question that puts a restriction on
which R would be relevant for the purposes of the project. The teams were not,
however, provided a MA, Spost, or full specification of K. Teams used a variety of
models differing in their assumptions about the error variance and the number of
covariates (MA) to analyze D. The results differed widely with regard to reported effect
sizes and hypothesis tests. So even when D was open, the lack of specification with
regard to MA yielded largely inconsistent results. It is not because the same aspects of
reality cannot be captured by different models but because researchers did not
automatically agree on which aspects to capture in their models.

Taking stock, our ravens example is deliberately simple to help in our analysis. State
of the art models are often large objects. If MA is large, it might not always be clear
which class of models M

′

A can be drawn from to be equivalent to MA, and finding this

class might be unfeasible. Then MA needs to be both open to and photocopied by ξ
′
to

be able to reproduce the results of interest. This point is particularly important to
communicate to scientists who primarily engage in routine null hypothesis significant
testing procedures and may not be conventionally expected to transparently report their
models5.

4.3 Method, S

4.3.1 Pre-data methods, Spre

Spre comprises a wide range of procedural components in ξ that feeds into collection of
Dv. Examples of Spre are determining types of observables, unobservables, and
constants, measurement and instrumentation choices, and sampling procedures such as
random number generators used in computational methods.

Pertaining to mathematical features of the variables of interest, Spre may capture
their types or a particular scaling. For example, a variable can be assumed discrete,
continuous, or both discrete and continuous for mathematical convenience. This choice
determines whether we are bound by a counting measure or a Lebesgue measure. A
variable can also be assumed categorical, ordinal, interval, or ratio. Some variables or
parameters are scaled to the interval [0, 1] on the real line, to make their interpretation
natural. All of these Spre choices affect MA and the consequent Spost.

5Cooper and Guest (2014) and Guest and Martin (2021) make a similar point for computational
reproducibility. They highlight the importance of making models available, and particularly clearly
reporting model specifications and implementation assumptions so as to facilitate replication.
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Pertaining to operational features of the variables of interest, Spre may capture the
method of observation and measurement instruments. In our toy example, a raven can
be observed for its color by naked eye (Spre), but another investigator may opt for a

mechanical pigment test (S
′

pre). What considerations should be given when making
substitutions for Spre? One issue due to choices in operationalization is measurement
error. Measurement error in observables, when not accounted for, might be a factor
unduly exacerbating irreproducibility or inflating reproducibility (Devezer et al., 2021;
Loken and Gelman, 2017; Stanley and Spence, 2014). Another issue arises due to
arbitrary choice of experimental manipulations or conditions which might not be
mathematically equivalent. For example, manipulations that are not tested for
specificity may end up manipulating non-focal constructs or only weakly manipulate the
focal construct (i.e., leading to small effect sizes) (Gruijters, 2022).

Even though knowing all these features is useful in understanding Spre, there is a
caveat. All aspects of Spre must be fixed before realizing Dv and it is challenging to

assess a priori whether ξ and ξ
′
using different Spre and S

′

pre respectively can be
equivalent to each other. Due to these complexities and ambiguities surrounding Spre,

openness of Spre seems to be the easiest way to obtain an equivalent S
′

pre in designing

and performing ξ
′
. However, there are well-known examples to show that Spre and S

′

pre

can be different and yet ξ and ξ
′
can be equivalent conditional on R, which leads us to

result 4.

Result 4. Spre and S
′

pre do not have to be identical in order to reproduce a
result R.

As an example of result 4, consider models ξpoi and ξexp in figure 1. ξpoi has a good
approximative model to the model in ξbin if we think of sampling ravens continuously
from a population where black ravens are rare. We assume np → λ, where λ is rate of
sampling the black ravens (parameter of the Poisson model) and under this assumption,
we focus on inference on λ. Now, as a thought experiment, let us assume that we do not
have a device to count the number of black ravens past 1. However, we have a
chronometer. As a result of using the model in ξpoi, we are, as a mathematical fact, also
using the model ξexp, which measures the time between observing black ravens. Further,
the two models have the same parameter, with the same interpretation. Therefore, if we
were to measure the time between observing black ravens for a sample, then we can still
perform inference on the rate of observing black ravens from the population. We note
that ξbin, ξnegin, ξhyper, ξpoi, ξnor operate under different assumptions, but are still
counting ravens and interested in the number of black ravens. In contrast, ξexp is
considerably different from these experiments. It is not counting ravens, but measuring
time, which we would reasonably define as a continuous variable. While Spre in ξexp
differs considerably from all other experiments in our toy example, the exponential
experiment would serve as a meaningful ξ

′
to reproduce R in any of them, at least

approximately.

4.3.2 Statistical methods, Spost

Statistical methods, Spost, that are designed for a specific inferential goal, R, but do not
return identical values when applied to a fixed D are common. Conversely, some
statistical methods return identical values for a specific inferential goal, R, and they are
mathematically equivalent conditional on D, even though they operate under distinct
motivating principles. We have the following result.
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Result 5. Spost and S
′

post do not have to be identical in order to reproduce a
result R by R′.

For the experiments ξbin and ξnegbin in our toy example, the maximum likelihood
estimator (MLE) and the method of moments estimator (MME) of p are numerically
equivalent (see Appendix 5). This equivalence holds even when the interpretation of
probability differs between methods. For example, MLE and the posterior mode in
Bayesian inference under uniform prior distribution on parameters are equivalent
regardless of all else.

At the minimum, for ξ
′
to be a meaningful replication of ξ conditional on R, the

modes of inference should be equivalent. That is, the pair (Spost, S
′

post) should belong
to one of: point estimators, interval estimators, hypothesis tests, predictions, or model
selection. Further, Spost should be open to ξ

′
but it does not need to be duplicated to

establish equivalence. For example, to use MME to estimate p in ξ
′
, we need to know

that ξ has used MLE or MME. This way, we can ensure that ξ
′
will at least use a

numerically equivalent estimator as the one used in ξ, even if not equivalent in principle.
On the other hand, it is well-known that a variety of Spost for the same mode of
inference may yield different R. The many-analyst project by Silberzahn et al. (2018)
provides clear examples of this. Teams which were given a fixed D to analyze for a
pre-determined R (i.e., effect size as given by odds ratio), ended up implementing their
choice of Spost. Even when their modeling assumptions matched, the results they
reported varied. For instance, out of the teams that assumed a logistic regression model
with two covariates, one pursued a generalized linear mixed-effects model with a logit
link for Spost (Silberzahn et al., 2018, line 15 in Table 3) and another pursued a
Bayesian logistic regression (Silberzahn et al., 2018, line 16 in Table 3). The confidence
intervals around the effect size estimates reported by these two teams do not even
overlap despite using a fixed D.

4.4 Data, D

4.4.1 Data structure, Ds

In statistics and philosophy of statistics, D
′
is often seen as the new data of the old kind

in the sense that Dv and D
′

v are independent of each other but Ds and D
′

s are identical.
However, conditional on R, we have result 6.

Result 6. Ds and D
′

s do not have to be identical in order to reproduce a result
R by R′.

As an example of result 6, we consider the models in ξpoi and ξexp in figure 1.
Poisson model counts the black ravens as observable. It assumes that black ravens are
observed with a constant rate. Exponential model measures the time between arrivals of
black ravens. It also assumes that black ravens are observed with a constant rate. By
referring to the unit of observations we see that the data structures in ξpoi and ξexp are
distinct. And yet, the unknown parameter about which inference is desired is the same,
λ—the rate of black ravens appearing in continuous sampling (see Appendix 6).

As another example, note that the stopping rules of ξbin and ξnegbin are different
from each other. The stopping rule affects Ds because the maximum number of black
ravens in ξbin is n but in ξnegbin it is the maximum number of black ravens in the
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population. And yet, the estimate of p is the same in both experiments.
Data sharing is sometimes viewed as a prerequisite for a reproducible

science (Hardwicke et al., 2018; Molloy, 2011; National Academies of Sciences,
Engineering, and Medicine, 2017; Stodden, 2011). Our analysis suggests that this
statement requires further qualification and calls for attention to Ds. Result 6
notwithstanding, changes in Ds are not trivial and they impact the true reproducibility
rate. For example, ξ

′
might be designed to have a larger sample size than that of ξ. In

this case, the variance of the sampling distribution of the sample mean decreases
linearly with the sample size and hence it would be different for ξ and ξ

′
. Typically,

larger sample sizes are pursued to increase the statistical power of a hypothesis test in
ξ
′
. While such ξ

′
will indeed increase the power of a test, it also impacts the

reproducibility rate. Counterintuitively, under some scenarios this might play out as
reproducing false results with increased frequency (see Devezer et al., 2021, for such
counterintuitive results).

4.4.2 Data values, Dv

Having open access to Dv has no bearing on designing and performing a meaningful ξ
′

or on the reproducibility of R. Conditional on R, ξ
′
aims to reproduce R, not Dv.

Therefore, reporting R from ξ is sufficient for ξ
′
to assess whether R is reproduced by

R
′
. However, information from ξ can be reported in a variety of ways and does not

necessarily contain R. We show this with an example. We consider a model selection
problem with three models M1,M2,M3, where ξ and ξ

′
use Some Information Criterion

(SIC) as Spost. Assume ξ reports selecting M1 as R. This is all ξ
′
needs to import to

know whether R is reproduced in R
′
. If R

′
reports M1 as the selected model, then it is

reproduced, else it is not. However, if which model is selected is not reported as R, ξ
′

needs values of SIC from ξ for all M1,M2,M3, so that ξ
′
can redo the analysis of ξ to

find out what R was. In the unlikely event that not even SICs are reported, ξ
′
would

need Dv to re-perform the whole analysis of ξ by applying Spost to D to calculate SICs
and then get R.

Result 7. ξ does not have to be Dv-Open in order for ξ
′
to reproduce a result

R.

That said, openness of Dv might facilitate auditing of R and vetting it for errors.
There may be other benefits to open Dv such as enabling further research on Dv (e.g.,
meta-analyses). The distinction we draw matters particularly when there may be valid
ethical concerns regarding data sharing (Borgman, 2012). Open Dv is best evaluated on
its own merits as has been discussed extensively (Janssen et al., 2012) but cannot be
meaningfully appraised as a facilitator of replication experiments or precursor of results
reproducibility. While some level of open scientific practices is necessary to obtain
reproducible results, open data are not a prerequisite.

5 Exact versus non-exact replications: A simulation
study on reproducibility rate

So far we have established that to reproduce R, all elements of ξ do not need to be open,
and not all elements that are required to be open need to be duplicated for a meaningful
ξ
′
. On the flip side, we also established that relatively simple openness considerations

such as experimental procedures, hypotheses, analyses, and data will not suffice to make
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ξ
′
meaningful. The challenge in making π-openness useful for replication experiments is

to clearly identify and delineate the elements of the idealized experiment. For example,
proper K is difficult to define and communicate with precision. Also, MA is at times
conflated with Spost and left opaque in reporting. As we discussed earlier, making K

explicit and clearly specifying MA up to its unknowns is critical when designing ξ
′
.

Hitherto, we focused on replication experiments and only alluded to results
reproducibility when needed. In this tack, we have mathematically isolated ξ from R,
and made some statements about ξ unconditional, and then conditional on R to
emphasize their difference. Now that we turn our attention to explicitly drawing the
link from replications to reproducibility, we condition R on ξ.

Given a sequence of exact replication experiments ξ(1), ξ(2), · · · and a result R from
an original experiment ξ, do we expect to confirm R with high probability irrespective
of the elements of ξ? The answer is “no” as shown elsewhere (Devezer et al., 2019,
2021). The true reproducibility rate of a result is a function of not only the true model
generating the data but also the elements of the idealized experiment. ξ may be
characterized by a misspecified MA (e.g., omitted variables, incorrect formulation
between variables and parameters), unreliable Spre (e.g., measurement error,
confounded designs, non-probability samples), unreliable Spost (e.g., inconsistent
estimators, violated statistical assumptions), errors in D (e.g., recording errors), or large
noise to signal ratio (e.g., large error variance and small expected value). All of these
lead to the mathematical conclusion that the true reproducibility rate ϕ is specific to
each configuration of ξ and thus can take any value on [0, 1]. Therefore, ϕ tells us more
about the experiment itself than some unobserved reality that is presumed to exist
beyond it. Since we are now conditioning on ξ and questioning the reproducibility rate
of R, the conclusion is that while a degree of openness may be able to address a
“replication” crisis by facilitating faithful replication experiments, it does not suffice to
solve any alleged “reproducibility” crisis.

Openness of elements of ξ facilitates ξ
′
, thereby allowing us to estimate ϕ of R by

ϕN conditional on ξ. However, ϕ cannot be reasonably used as a target of scientific
practices where each ξ is designed to maximize it. It does not make sense to think that
a ξ that returns the highest reproducibility rate for a given R is scientifically most
relevant or most rigorous experiment. For example, choosing an Spost that always
returns the same fixed value regardless of Dv would yield ϕ = 1. In fact, ϕ can be made
independent of what it would be under sampling error6.

A reasonable expectation from ξ
′
is to deliver a scientifically relevant estimate of ϕ,

given R. Openness plays an important role in this regard. In section 4 we established
that any non-open elements of ξ would need to be substituted for in ξ

′
, leading to a

non-exact replication. The following result states how a sequence of non-exact
replications alter the reproducibility rate.

Result 8. Assume a sequence ξ(1), ξ(2), · · · , ξ(J) of idealized experiments in
which a result R is of interest. Then, the estimated reproducibility rate of R in
this sequence converges to the mean reproducibility rate of R in J replication
experiments. (See Appendix 7 for proof.)

Result 8 states that the true reproducibility rate to which the estimated
reproducibility rate of a sequence of non-exact replication experiments converges is the
mean reproducibility rate of results from all experiments in the non-exact sequence and
not the true reproducibility rate of a fixed original result. Hence, the reproducibility

6See Devezer et al. (2021) for examples of ϕ = 1 under uncertainty.
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rate is a function of all elements of the idealized experiment, for both a fixed original
experiment and all its replications. Each replication that is non-exact in a different way
from others introduces variability, decreasing the precision of estimates given a fixed
number of replications.

We illustrate the link between replication experiments and reproducibility rate with
a simulation study. We consider a series of exact and non-exact replication experiments
to analyze the variation in the reproducibility rate of a result as a function of the
elements of ξ. We use sequences of two idealized experiments ξpoi and ξnor, which are
approximate models to binomial from our toy example. For all conditions, we fix the
true proportion of black ravens and the number of trials in the exact binomial model at
0.01 and 1000, respectively. These arbitrary choices make the true reproducibility rate
distinct under ξpoi and ξnor. As R, we choose a point estimate for the location
parameter of the probability model. For convenience, we assume that the parameter
estimates of the original experiments are equal to the true value. After each replication
experiment we determine whether this result is reproduced by R

′
based on whether it

falls within some suitably scaled population standard deviation units of the true
parameter value.

In exact replications, we vary MA, Spost, Ds of the idealized experiment, each
element taking two values. This results in a 2 (MA) x 2 (Spost) x 2 (Ds) study design (8
conditions) for exact replications where: 1) Model assumed, MA ∈ {ξpoi, ξnor}, 2)
Method as point estimate, Spost ∈ {MLE, posterior mode}, 3) Sample size,
Ds ∈ {30, 200}. When Spost is the posterior mode, we use conjugate priors: Gamma
distribution with rate and shape parameters 5 (arbitrarily chosen) for ξpoi, and Normal
distribution with prior mean 10 and prior precision 1 for ξnor. In figure 3, panels A and
B show 100 independent runs of a sequence of 1000 exact replication experiments under
these conditions, for ξpoi and ξnor, respectively.

In non-exact replications, we vary the set from which the replication experiment is
uniformly randomly chosen from in each step. This results in additional 3 conditions: A
set of all 8 idealized experiments, a set of 4 idealized experiments with lowest
reproducibility rates, and a set of 4 idealized experiments with highest reproducibility
rates. Panel C shows 100 independent runs of a sequence of 1000 non-exact replication
experiments under these conditions.

We emphasize that all parameters of the simulation example in figure 3 are chosen
so that the implications of differences between different models, methods, and data
structures make the link between replications and reproducibility explicit. It is certainly
possible to choose these parameters to obtain any true reproducibility rate defined by a
specific ξ since ϕ ∈ [0, 1].

Conditional on R, some conclusions from figure 3 are as follows.

1. The true reproducibility rate depends on the true data generating mechanism and
the elements of the original experiment. Specifically, the true reproducibility rate
in our simulation is a function of the true model generating the data, MA, and
also Ds such as the sample size, and Spost such as the method of point estimation.
This can be seen from exact replication sequences of 8 idealized experiments in
panels A and B, with the true reproducibility rate for each experiment indicated
by stars.

2. By weak law of large numbers, even if the true reproducibility rate is high (e.g.,
orange in panel A and green in panel B), the estimated reproducibility rate from a
short sequence of exact replications has higher variance than the variance of the
estimated reproducibility rate in a longer sequence. However, the estimated
reproducibility rate from exact replications ultimately converges to the true
reproducibility rate of an original result from a fixed ξ illustrating result 1.
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Figure 3. Reproducibility rates of a true result in sequences of 1000 exact (A. and
B.) and non-exact (C.) replication experiments. Spost is varied as MLE and Posterior
mode, and Ds is varied as n = 30 and n = 200. Each condition is color coded and
consists of 100 independent runs. A. MA : Poisson. • MLE, n = 200; • Posterior mode,
n = 200; • MLE, n = 30; • Posterior mode, n = 30. B. MA : Normal. • Posterior mode,
n = 200; • MLE, n = 200; • Posterior mode, n = 30; • MLE, n = 30. C. Three cases
of 1000 non-exact replication experiments where they are chosen uniformly randomly
from the set of • all eight idealized experiments, • four idealized experiments with lowest
reproducibility rates, • four idealized experiments with highest reproducibility rates.
In A., B., C., ∗ is the mean of the reproducibility rates of 100 runs at step 1000, an
estimate of the true reproducibility rate for the sequence of idealized experiments. D.
Variances of all 11 exact and non-exact sequences at step 50 of the simulation with
respect to the estimated reproducibility rate (see text for interpretation).

3. Estimated rate of reproducibility from a sequence of non-exact replications may
be drastically different from the true reproducibility rate of an original result. The
sequence of idealized experiments shown in pink in panel C of figure 3 is a
sequence of non-exact replications for any of the 8 original idealized experiments
in panels A and B. For example, assume the original experiment we aim to
replicate is ξpoi with Spost and Ds set to posterior mode and sample size n = 30,
respectively. Blue sequences in panel A show that the true reproducibility rate of
R (i.e., the estimate of location parameter) from these sequences of exact
replication experiments is close to zero as shown by the convergence of 100 runs
(i.e., blue star). If Spost and Ds were not open in this experiment then we would
have had to substitute for them and the pink sequences in panel C would serve as
plausible replication experiments. In this case, we would estimate the
reproducibility rate of R as approximately 60% (i.e., pink star).

4. In a sequence of replication experiments, the set we choose the experiments from
matters for true reproducibility rate. An original idealized experiment and its
non-exact replications belonging to a set of idealized experiments that have true
reproducibility rates close to each other for a given R yield an estimated
reproducibility rate that is closer to the true value of the original experiment. For
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example, the yellow and blue sequences in panel C come from a set of 4 idealized
experiments with the lowest and highest reproducibility rates among all 8
experiments, respectively. Compare the set of experiments sampled in the blue
sequence to the set of experiments sampled in the yellow sequence. The latter
serves as a more relevant set of idealized experiments for replications of the orange
and purple experiments in panel A and the dark blue and green experiments in
panel B, yielding a better reproducibility rate estimate for the original R. This
pattern is an illustration of the broader theoretical result 8.

In practice, however, we do not have access to the true reproducibility rate of any
idealized experiment to help determine our replication sets. We have to make our
decision based on the elements of the idealized experiment instead, and that
requires a thorough understanding of how each element of the idealized
experiment impacts the reproducibility rate in a given situation.

5. The variance of the estimated reproducibility rate of results in a sequence of
non-exact replications can be higher or lower than the variance of the estimated
reproducibility rate in a sequence of exact replications of the original experiment.
The pattern of variances we observe in panel D is a direct consequence of nϕ
following a binomial distribution and result 8. As a mathematical fact of the
binomial distribution, its variance is maximum at ϕ = 0.5 and decreases as the
probability of success, ϕ, gets closer to 0 or 1. Hence, we expect our estimates to
vary greatly in a sequence of non-exact replication experiments with moderate
true reproducibility rates. If a sequence of non-exact replications come from a
homogeneous set of very high (or very low) true reproducibility rates, we expect
our estimates to vary little. On the other hand, we expect highest variation in our
estimates from exact replications if ϕ = 0.5 from the original experiment and from
non-exact replications if they are highly heterogeneous in their true
reproducibility rates.

In sum, the mere choice of the elements of ξ impacts both the level of the true
reproducibility rate and the variance of the estimated reproducibility rate. Any
divergence in ξ

′
may move the estimated reproducibility rate away from the true value

for an original result and increase the variance of its estimates. In Appendix 8, we
provide a broader example for result 8 in the context of linear regression models, under
a model selection (rather than parameter estimation) scenario, where both true and
false original results are considered. This simulation study demonstrates a similar
pattern of results to those presented in figure 3. Combined, simulation results confirm
that reproducibility rate can take any value on [0, 1] depending on the elements of ξ
even when the original experiment indeed captures a true result, there is no scientific
malpractice, and meaningful replication experiments can be performed to reproduce R.

6 Discussion

In this paper we focused on scientific experiment as the critical unit of analysis,
formalizing the logical structure of experiments toward building a theory of
reproducibility. We clarified what makes for a meaningful replication experiment even
when an exact replication experiment is not possible and established how openness of
different elements of the idealized experiment contribute to it. We distinguished between
the ability of a replication experiment to reproduce a result and the true reproducibility
rate for that result. We showed that theoretically it is not possible to justify a desired
level of reproducibility rate in a given line of research and to reach a high level of
reproducibility rate via eliminating malpractice, requiring open procedures or data, or
performing replication experiments. Now we discuss key insights from our findings.
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6.1 Reproducibility and the search for truth

A layperson understanding of reproducibility to the effect that “if we observe a natural
phenomenon, we should be able to reproduce it and if we cannot reproduce it, our
initial observation must have been a fluke” is exceedingly misleading. A statistical fact
is that reproducibility is not simply a function of “truth”. This was illustrated
in (Devezer et al., 2019) and proved in (Devezer et al., 2021): True results are not
perfectly reproducible and perfectly reproducible results are not always true (
see Appendix 9 for proof). True reproducibility rate of a result and the variability in its
estimator are determined by many factors including but not limited to the true data
generating mechanism: The degree of rigor of the original experiment as assessed by the
extent to which its elements are individually reliable and internally compatible with
each other, the degree to which replication experiments are faithful to the original and
how any discrepancies impact the results, the degree of rigor of the replication
experiment wherever it diverges from the original, and how we determine for a result to
be reproduced. Factors such as effect size, sampling error, missing background
knowledge, and model misspecification (Box, 1976; Dennis et al., 2019) could render
true results difficult to reproduce.

As a useful reminder, sampling error might be masked by the choice of method and
other elements of the idealized experiment. A false result could be 100% reproducible
due to the choice of estimation method. Therefore, judgments of reproducibility cannot
exclusively be used to make valid inference on the truth value of a given result (see also
Bak-Coleman et al., 2022, for a computational model with a similar conclusion).

Even if some form of a perfect experiment that captures ground truth and its exact
replications exist, it might take many epistemic iterations of theoretical, methodological,
and empirical research to achieve them (see Chang, 2004, p. 45, for a detailed discussion
on epistemic iteration). We cannot expect to skip the arduous iterative process of doing
science and hope to arrive at a non-trivially reproducible science with procedural
interventions. In most fields and stages of science, focusing on maximizing
reproducibility seems like a fool’s errand. For meaningful scientific progress, at the
minimum we should take care to properly analyze the elements of the original
experiment to assess how they might impact the true reproducibility rate and analyze
the discrepancies of replication experiment(s) from the original to gauge how our
reproducibility estimates may vary from the true value of the original result’s
reproducibility. In the course of “normal science” (borrowing terminology from Kuhn,
1970), reproducibility of a result is more likely to tell us something about the
experiments that generated the result and its reproducibility rate estimates than the
lawlikeness of some underlying phenomenon.

6.2 Defining reproducibility

One aspect of reproducibility that often gets overlooked: how we define and quantify a
result and its reproducibility also determines the true reproducibility rate. For example,
in a null-hypothesis significance test, we might call a “reject” decision in a replication
experiment as a successfully reproduced result if the original experiment rejected the
hypothesis. On the other hand, we might instead look at whether effect size estimate of
the replication experiment falls within some fixed error around the point estimate from
the original experiment. Everything else being equal, the true reproducibility rates are
expected to be different between these two cases using different reproducibility criteria.

Our findings hold under mathematical definitions of a result (definition 3) and of
reproducibility rate (definition 5). In the absence of such theoretical precision, we often
resort to heuristic, common sense interpretations of terms. In Appendix 1 we present a
detailed argument on why and how theoretical precision matters and provide an
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example of a plausible measure of reproducibility without desirable statistical properties.
Such lax standards in definitions invite unwanted or strategic abuse of ambiguities when
interpreting replication results when we have a limited understanding of what we should
expect to observe. Our surprise at “failed” replication results or delight in “successful”
ones may not be warranted and what we observe could simply be a theoretical
limitation imposed by our definitions rather than a reflection of the true signal that
presumably exists in nature. For an extreme example, consider the following: We might
call a result as reproduced if the replication effect size estimate falls on the real line.
That would trivially give us a 100% reproducibility rate.

Whenever we evaluate replications and estimate reproducibility, it is incumbent on
us to understand how we define our results, how we determine reproducibility, and how
our measures should be expected to behave under specific conditions.

6.3 Reproducibility and openness

Open practices in science have been intuitively proposed as a key to solving the issues
surrounding reproducibility of scientific results. However, a formal framework to
validate this intuition has been missing and is needed for a clear discussion of
reproducibility. The notion of idealized experiment serves as a theoretical foundation for
this purpose. Using this foundation, we have distinguished the concepts of replication
and reproducibility, showing how openness is related to meaningful replications. We
have also distinguished between two types of reproducibility (Appendix 3). Whether
elements from one experiment carry over to a replication experiment is only relevant to
epistemic–as opposed to in-principle–reproducibility. In practice, however, resource
constraints determine the availability and transferability of information between
experiments. A realistic framework needs to provide a refined sense of which elements of
an experiment need to be open to reproduce a given result, as opposed to simply saying
“all of it”.

We have identified different levels and layers of openness, and examined their
implications. An experiment that is completely open in all elements does not necessarily
lead to reproducible results and an experiment that does not open its data does not
necessarily hinder replication experiments. Nevertheless, irreproducible results
sometimes raise suspicion and discussions typically turn towards concerns regarding the
transparency of research or validity of findings. These discussions are typically driven
by heuristic thinking about replications. Such heuristics might not hold and can lead to
erroneous inferences about research findings and researchers’ practices. To move the
needle forward, we have provided a detailed evaluation of which elements of an
experiment need to be made open relative to some objective, and which do not. For
example, while necessary to audit the results of a given experiment, data sharing is not
a prerequisite for performing replications or reproducing results (contrary to some
suggestions, for example by National Academies of Sciences, Engineering, and Medicine,
2017), but other elements of an experiment are. On the other hand, reporting model
details, such as modeling assumptions, model structure, and parameters, becomes
critical for improving the accuracy of estimates of reproducibility. Notably, even in
recent recommendations for improving transparency in reporting via practices such as
preregistration, models are typically left out while transparency of hypotheses, methods,
and study design are emphasized (Nosek et al., 2018; van’t Veer and Giner-Sorolla,
2016). Also noteworthy is that some degrees of openness is difficult to attain, such as
fully open background knowledge, often causing practical constraints to limit our
choices for replication experiments.

When critical elements of an original experiment are not open, replication
researchers would be forced to introduce substitutions in their experimental designs.
Such substitutions, as we have illustrated, characterize non-exact replications and will
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likely alter reproducibility rates in different directions, contributing to the challenge of
interpreting replication results. Strong theoretical foundations and well-defined shared
empirical paradigms in a given area of research could help generate meaningful
substitutions whose downstream consequences on inference are well-understood.

6.4 Choosing non-exact replications

Assuming a sequence of perfectly repeatable experiments is a theoretical
convenience—one that especially frequentist statistics enjoys greatly. In scientific
practice we lack the luxury provided by this assumption. Exact replications are
practically impossible. Understanding the implications of result 8 is crucial in this
respect. It states that any sequence of non-exact replications converges to a true
reproducibility rate. This rate may or may not be scientifically meaningful for a specific
purpose. Especially for a sequence of non-exact replications, it is hard to find a
scientifically meaningful interpretation of what the reproducibility rate shows, even
when it is high.

A proper understanding of the elements of the original experiment needs to precede
any replication design. And wherever divergences from the original experiment are
inevitable, we should strive to theoretically match new design elements to the original
ones if our objective is to reproduce an original result. When that is not possible,
simulations varying the degree and nature of these divergences would inform us on their
impact on the reproducibility rate and can provide guidance in designing non-exact
replication experiments. A lack of theoretical understanding in this regard poses
significant constraints on the interpretability of replication results.

In cases where the original experiment suffers from design issues that make results
predictably less reproducible, it is advisable to iteratively work toward improving the
configuration of the idealized experiment first before attempting any non-exact
replications (Feest, 2019). If there is nothing there to revisit, we might be better off
saving our scientific curiosity and resources for more fruitful avenues. In fact, there is
room for major theoretical advancements on why and how to choose replications.

6.5 Reproducibility of a result versus accumulation of scientific
evidence

We hope that advancing theoretical understanding of results reproducibility helps
delineate how and why it is different from other quantities that aim to measure the
accumulation of scientific evidence. The notion of reproducibility is unique in the sense
that it is anchored on the results of an initial experiment. To the contrary,
meta-analytic effect size estimates, for example, focus on an underlying true effect, after
accounting for variation between studies being meta-analyzed while robustness tests aim
to assess to what extent estimated quantities of interest are sensitive to changes in
model specifications. It is a widespread interpretation that reproducibility also speaks
to the reliability or validity of an underlying true effect and can reasonably be used as a
measure of evidence accumulation. It should be clear by now that this is a
misconception. Truth certainly plays a role in reproducibility of a given result but not
(always) too loudly as reproducibility primarily captures patterns specific to the original
experiment. A replication experiment in reference to an original result is a particular
kind of an idealized experiment that has the capacity for achieving certain scientific
objectives, such as confirming a theoretically precise prediction under well-specified
conditions (that is, attempting to account for sampling error as a last source of
uncertainty after everything else has already been accounted for) or estimating the
reproducibility rate of a particular result of a given experiment. For other scientific
objectives, such as to make an initial scientific discovery, to pinpoint the conditions
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under which a precise and reliable signal can be captured, to aggregate evidence for a
theorized phenomenon, or to gauge the robustness or heterogeneity of an observed
phenomenon across contexts, there are other idealized experiments better suited to the
task than replications (Bak-Coleman et al., 2022; Feest, 2019) such as systematic
exploratory experimentation (Steinle, 1997), metastudies (Baribault et al., 2018),
multiverse analyses (Steegen et al., 2016), meta-analyses, and continuously cumulating
meta-analyses (Fletcher, 2021). The fact that scientists still care to meticulously design
their experiments to be informative and meaningful has more to do with other scientific
values and objectives than reproducibility.

In a sense, accumulation of scientific evidence in support of a finding requires
epistemic iterations and triangulation by independent approaches and methods to
achieve specific scientific objectives (e.g., discovering a new phenomenon, explaining a
mechanism, predicting a future observation). This process leads to gradually
eliminating uncertainty and enhancing our confidence in our theories and observations.
On the other hand, attempts at reproducing a given result in replications prioritize
understanding and fine-tuning the logical structure of experiments, which we see as
human data generation mechanisms. Proper appreciation of this aspect of
reproducibility is capable of guiding us in the right direction in our struggle to design
more rigorous and informative experiments under uncertainty.

6.6 Concluding remarks

The discourse on scientific reform and metascience has so far pursued a “crisis” framing,
focusing on behavioral, social, institutional, and ethical failings of the scientific endeavor
and calling for immediate institutional and collective action. Our analysis shows that
neither elimination of scientific malpractice nor actively encouraging replication
experiments would necessarily improve the reproducibility of results. Because
irreproducibility, when formally defined, appears to be an inherent property of the
scientific process rather than a meaningful scientific objective to pursue. While
reproducibility rate is a parameter of the system and thereby a function of truth, that
view of the concept misses the big picture—that reproducibility reflects the properties
of experiments. We perceive two issues with advancing a replication/reproducibility
crisis narrative:

1. Conflating replication and reproducibility creates an inaccurate impression that
these two alleged issues of not being able to conduct informative replication
experiments and not being able to reproduce results are indistinguishable issues
that can be addressed via similar solutions.

2. Framing irreproducibility as a crisis implies that there is an ideal rate of
reproducibility we should expect or strive to achieve in a given field at a given
time and we are falling short of this ideal standard.

Our mathematical results firmly argue against both of these misconceptions.
Shifting the discourse on scientific reform and metascience toward greater theoretical

may help change the course of science. Instead of prioritizing crisis management
measures, progress can be made by falling back on fundamental issues and working our
way from the bottom up. That may require individual scientists to take a step back and
reassess the way they have been practicing science. Circling back to our original
premise, we emphasize that the problem is conceptual: The logical structure of
experiments is not well understood and how experiments relate to reality gets
misconstrued. Experiments are data generating machines and each element outlined in
this work determines what kind of data they will generate. Gaining clarity with regard
to how experiments impact the observed reality and properly assessing the empirical
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value of a given experiment for a given objective should precede concerns regarding
possible replications. Theory of reproducibility is a step in this direction.
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Appendix 1

Proof of result 1. And an example pertaining remark 2 that meaningful
continuous measure of reproducibility which is nonetheless pathological.
Result 1 is a consequence of Strong Law of Large Numbers. An easy proof relies on
Kolmogorov’s almost everywhere convergence which states that a sequence of
independently and identically distributed random variables with finite mean converges
almost surely to a constant if and only if that constant is the expected value of random
variables. The sequence ϕ(1), ϕ(2), · · · , ϕ(N) obtained from ξ(1), ξ(2), · · · , ξ(N)

(respectively) satisfies Kolmogorov’s. By definition 5 ϕN ∈ [0, 1] and ϕi are independent
of each other and identically distributed and the expected value is E(ϕN ) = ϕ < ∞,
proving result 1.

Importantly, remark 2 cautions us that result 1 does not hold for all measures of
reproducibility. A well defined ξ and ϕ are prerequisities for result 1 to hold. We use a
counterexample with a continuous measure of reproducibility to clarify this point. As
opposed to a 0-1 measure such as ϕN , we consider a (maybe) more desirable measure of
reproducibility rate, perhaps a degree of agreement between the results of ξ and ξ

′
to

assess whether ro from ξ is reproduced in ξ
′
. One way to represent this degree of

agreement is to replace the indicator function in definition 5 with a function of a
continuous random variable. For example, for a sequence of idealized experiments
ξ(1), ξ(2), · · · we might define Y (i+1)/Y (i), where Y (i) ∼ Nor(0, σ) is a centralized
statistic from ξ(i), as score on how extreme is a specific result with respect to an
original result Y (o). Here Y (i) are independent and identically distributed random
variables conditional on ξ(i). The setup is such that if Y (i+1)/Y (i) = 1, then the results
in ξ(i+1) and ξ(i) have exactly the same degree of agreement. Thus, one can define the
reproducibility rate as

ϕ∗
N = N (−1)

N∑
i=1

(Y (i+1)/Y (i)).

This measure of reproducibility rate might seem reasonable, but it is statistically
unacceptable. To see this, we substitute ϕN with ϕ∗

N and we see that equation 1 is not
true and we do not have desirable statistical properties for our estimator of
reproducibility (Serfling, 1980, p.12). Consequently, the statistical justification for the
concept of result reproducibility falls apart. This example shows that one has to define
the parameter and its estimator of the reproducibility rate by obeying the constraints of
statistically desired properties for reproducibility rate to be a useful concept. It is wise
to check that a new concept defined in a developing field is statistically well-behaved.
Statistical nuances might get lost in applications with important consequences for
results reproducibility.

Some additional statistical properties of ϕN given in definition 5 are as follows. The
sampling distribution of ϕN is asymptotically normal with E(ϕN ) = Nϕ and
V ar(ϕN ) = Nϕ(1− ϕ) by the Central Limit Theorem. All else being equal, the results
for which the true reproducibility rate is high or low have low variance for the estimator
and for the results for which the true reproducibility rate is around 0.5 the variance of
the point estimator is large (largest when p = 0.5). Approximately 100% Confidence
Intervals (and tests of approximately power 1) can arbitrarily be built, with the
property that only finitely many of the confidence intervals do not contain the true
reproducibility rate ϕ. This result, which fundamentally relies on the law of the iterated
logarithm, constitute a strong basis for statistical methods about ϕ.
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Appendix 2

Proof of result 2 (constructive): The sequence of idealized experiments
ξ(1), ξ(2), · · · given by definition 5 is a proper stochastic process, seen as a
joint function of random sample D and of each value in the support of data
generating mechanism, x ∈ R.

K, S,MA are not stochastic, so we condition on them. ξ(i) draws a simple random
sample D(i) = Xn

(i) independent of all else. We note two facts for the proof:

i. For fixed Xn, the sample estimate of MA, is a well-defined probability model for
all x. This setup induces the set of proper probability distribution functions: right
continuous cumulative distribution functions with left limits on [0, 1]. Three of
these cumulative distribution functions are exemplified in figure 4, left and middle
panels.

ii. For any fixed x in the support of the cumulative distribution function of MA, the
sample estimate of MA as a function of the random data Xn is a random variable,
which makes ξ a random variable. This is exemplified in figure 4, right panel,
conditional on red line.

Together, (i.) and (ii.) imply that as a joint function of random D and x, ξ is a
proper stochastic process (Serfling, 1980, Chapter 1-3) on the space of right continuous
functions with left limits on [0, 1]. Examples are all gray cumulative distribution
functions depicted in figure 4, right panel.

Result 2 is a convenient way to study replications and reproducibility. It has a
number of mathematical implications. First, it established that ξ is a well-behaved
stochastic process with a limiting distribution. It is of interest to know the limit of this
process. It tells us to which point the sample reproducibility rate from replication
experiments converge.

Technically, the sequence of probability measures defined for the stochastic process
associated with ξ(1), ξ(2), · · · on Borel sets with respect to the metric that we describe
below has a limiting process that convergences in distribution. Establishing this
convergence helps us to understand the limiting behavior of ξ(1), ξ(2), · · · , and
characterizing this limiting behavior. Donsker’s Theorem characterizes the limiting
process and states that ξ must convergence to the Wiener measure. Thus, the
probability distribution of the reproducibility rate converges to the normal distribution.
Readers interested in the theory of convergence in stochastic processes may refer
to (Serfling, 1980, Chapter 1-3) for details. We give a brief description of necessary
background here. There are three essential elements to study the convergence of a
proper stochastic process: 1) A proper field on which the process takes values (the class
of sets of interest) and a metric associated with it to assess the convergence of the
process, 2) The probability measure that determines the behavior of the process, 3)
Using (1) and (2), a complete mathematical formulation of the stochastic process which
can be used to show convergence to some well-defined distribution.

We now consider a stochastic process as a function of t ∈ [0, 1], a random point in
the space of right continuous functions on [0, 1] with left hand limits. We let the
supremum of the L1 norm between any two points in the space and the metric to assess
the convergence to be the classical Kolmogorov-Smirnov distance. By ⌊nt⌋ we denote
the floor function, the integer part of nt. Given {Xn = (X1, X2, · · · , Xn); n ∈ Z+},
where Xi are independent of each other and identically distributed, we define the
stochastic process defined on partial sums:∑⌊nt⌋

i=1 [Xi − E(Xi)] + [nt− ⌊nt⌋][X⌊nt⌋+1 − E(Xi)]√
nV ar(Xi)

.
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For elements of this process, if we denote the probability distribution for a sample size n
by Pn, then the limiting distribution is the well-known Wiener measure, W. Some
results follow from this.

ξ is most generic when MA is any probability model. This induces Spost having the
sampling distribution function of any statistic. In this most generic case, the
distribution of the sample reproducibility rate ϕN for the sequence ξ(1), ξ(2), · · · is
asymptotically normal. To see this, we first let Xn = M−1

A (w), where w ∈ [0, 1] so that
we have the image of the statistical model and assume that ϕN evaluated at 0 and 1 is
0. The stochastic process √

n{ξ[M−1
A (w)]− w}

converges to a specific Wiener process, with bound end points, which is a Brownian
Bridge: The process is Gaussian with zero expectation and for two points w1, w2 the
covariance function Cov(W(w1),W(w2)) = w1(1− w2), with the ordering w1 ≤ w2, and
wi ∈ [0, 1].

By definition of this stochastic process and its convergence to a Brownian Bridge, we
see that for each fixed value of x, ξ is asymptotically normally distributed with mean
MA and variance MA(1−MA)/n.

The result can also be studied fixing one dimension at a time, giving two corollaries.
For random data Xn the elements of the sequence of replication experiments
ξ(1), ξ(2), · · · are random variables and conditionally independent of each other. For
fixed data, the elements of the sequence of replication experiments ξ(1), ξ(2), · · · are
probability models.
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Figure 4. Left: Empirical CDF (ECDF) of a sample of size 30, emphasizing that the
ECDF is a right continuous function. Middle: ECDF of the sample in the left panel
(black) and that of an independent sample of size 10 (red) emphasizing that the ECDF
is a random variable whose probability distribution is determined by the sample values
(and hence data generating mechanism). Right: 100 independent samples of varying
sample size (gray) emphasizing that ECDF is a stochastic process. Red vertical line
shows the distribution of ECDF conditional on value x∗.

Appendix 3

Details on remark 2: Let ξ be an idealized experiment and ξ
′
be its exact

replication. Conditional on R from ξ, K
′
is necessarily distinct from K for

epistemic reproducibility of R by R
′
, but not necessarily distinct for

in-principle reproducibility of R by R
′
.

We define and distinguish in-principle reproducibility and epistemic reproducibility
conditional on a result R. It is clear that π-openness where π is a non-empty set is
necessary to make the elements of ξ available for replication ξ

′
. Further, R also needs to
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be open for ξ
′
to be able to determine whether R

′
has epistemically reproduced R. So,

information on R across the sequence of replication experiments is a logical necessity for
epistemic reproducibility. As an example, consider two scenarios 1 and 2. In each
scenario, there are two experiments, the originals (ξ1 and ξ2, respectively) and their
replications (ξ

′

1 and ξ
′

2, respectively). Each experiment assumes an infinite population of
black and white ravens (A). ξ1 and ξ2 have identical MA, S,Ds. R is the estimate p̂ of
the population proportion of black ravens p, obtained using an independent Dv. We
assume that the number of black ravens b observed in ξ1 and ξ

′

1, and ξ2 and ξ
′

2 are the
same.

Closed scenario: The experiments are isolated from each other and there is no
information flow from ξ1 to ξ

′

1. Thus, ξ
′

1 can only match all the elements of ξ1 that are
relevant to p̂ either by chance or by an extreme precision of prior theoretical formulation.
By our example, ξ1 and ξ

′

1 have identical MA, Ds, S and have the same observed value b
in the sample, thus they return the same estimate p̂. However, ξ

′

1 does not have any
information pertaining R from ξ1, and thus ξ

′

1 is in a position neither to learn from R of
ξ1, nor to claim that it reproduced the result of ξ1 by R

′
. If an external observer were

to observe the experiments ξ1 and ξ
′

1, they could learn from the results of both
experiments simultaneously. Starting with a prior view of equal proportion of black and
white ravens, they could use the number of ravens observed in ξ1 and ξ

′

1, to conclude
that R of ξ1 is indeed reproduced by R

′
of ξ

′

1 and arrive at an updated view. When
there is no information exchange with regard to R between the ξ1 and ξ

′

1, however,
there is no meaningful or immediate epistemic interaction between ξ1 and ξ

′

1, and there
is no knowledge of reproducibility unless an all-knowing third party is involved.

Experiment 1

and

Data in 
favor of black
ravens is 1/1

 

View on proportion of 
black ravens 

before observing 
the data is 1/2

View on proportion
of black ravens 
after observing 
the data is 3/4

gets

Experiment 1'

and

Data in 
favor of black
ravens is 1/1

 

View on proportion of 
black ravens 

before observing 
the data is 1/2

View on proportion
of black ravens 
after observing 
the data is 3/4

gets

Data in 
favor of black
ravens is 1/1

 

View on proportion of 
black ravens 

before observing 
the data is 1/2

View on proportion
of black ravens 
after observing 
the data is 5/6

Without any knowledge of Experiment 1,
Experiment 1' might be an exact replication but the 
results of Experiment 1 can only be 
"In-Principle".

External Observer

Information from Experiment 1
to

External Observer

Information from Experiment 1'
to

External Observer

and gets

Experiment 2

and

Data in 
favor of black
ravens is 1/1

 

View on proportion of 
black ravens 

before observing 
the data is 1/2

View on proportion
of black ravens 
after observing 
the data is 3/4

gets

Information from 
   Experiment 2 
 to Experiment 2'

and gets

Data in 
favor of black
ravens is 1/1 

Experiment 2'

View on proportion of 
black ravens 

before observing 
the data is 1/2

View on proportion
of black ravens 
after observing 
the data is 5/6

Closed Scenario
In-principle Reproducibility

Open Scenario
Epistemic Reproducibility

Figure 5. Epistemic versus in-principle reproducibility with an example of Bayesian
information flow and learning (details within appendix text).

This closed scenario shows that if there is no openness in the sense of information
flow from one experiment to the next, it is improbable (but still possible) for an
experiment to reproduce the result of another experiment. In order to acknowledge this
point, we say that a result can only be in-principle reproducible if there is no epistemic
exchange between ξ1 and ξ

′

1 which could speak to the reproducibility of R, with the
exception of via some omniscient external observer. At times historians of science
illustrate such examples of scientific discoveries independently arrived at by different
scientists unaware of each other’s work.

Open scenario: There is information flow from ξ2 to ξ
′

2, with respect to R and other
information relevant to obtain p̂

′
in ξ

′

2. If ξ
′

2 incorporates this information, it is a
replication. Here, ξ

′

2 matches the elements of ξ2 by social learning. The information
necessary for learning is transmitted in K and R. Starting with p̂ as R, ξ

′

2 could
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conclude that they have indeed reproduced it. Thus, in the open scenario there is an
epistemic interaction between ξ2 and ξ

′

2 which contributes to the progress of science
through deliberate transfer of knowledge via social learning, which gives us the notion of
epistemic reproducibility.

As an example, we show the difference between epistemic reproducibility and
in-principle reproducibility in figure 5 with an infinite population of black and white
ravens and Bayesian inference. The panel on the left illustrates the closed scenario:
Researchers of ξ1 assume a prior view of 1/2 on p̂. After observing n = 2 black ravens,
they update their view to p̂ = 3/4 by Bayesian inference. Researchers of ξ

′

1 assume a
prior view of 1/2 on p̂ and observe identical Dv, n = 2 black ravens as in ξ1, and they
update their view with same Spost, to reach p̂ = 3/4. However, in the absence of an
external observer these two results cannot be epistemically connected, thus
reproducibility is only in principle in the absence of an external observer privy to both
experiments. The panel on the right illustrates the open scenario: Researchers of ξ2
assume a prior view of 1/2 on p̂. After observing n = 2 black ravens, they update their
view to p̂ = 3/4 by Bayesian inference. ξ

′

2 is a proper replication experiment. It is
informed by the result of ξ2 as well as K,MA, S,Ds and observes identical Dv as ξ2. ξ

′
2,

starting with a view of p̂ = 3/4 from ξ2, they update their view to p̂
′
= 5/6. Thus, ξ

′

2

learns from ξ2, here in a Bayesian manner. The two results can be connected and thus
reproducibility is epistemic.

Appendix 4

Proof of result 3: MA and M
′

A do not have to be identical in order to

reproduce a result R by R
′
. Under mild assumptions, the requirement for R

to be reproducible by R
′
is that there exists a one-to-one transformation

between MA and M
′

A for inferential purposes mapping to R.
We first give a proof for the statement and then follow with a specific example. We

let FX(x) and FX′ (x) be distribution functions with inverses F−1
X (x) and F−1

X′ (x),

under ξ and ξ
′
, respectively. By assumption, a one-to-one function, g, from FX′ (x) to

FX(x) exists. For two distribution functions whose inverses exist, the mapping of
population quantiles from one to the other also exists if there is a one-to-one function
between these distribution functions. All well-behaved (non-order) statistics can be
represented as quantiles, so we prove result 3 without loss of generality by setting the
quantity of inferential interest as xq where FX(xq) = P (X ≤ xq) = q ∈ [0, 1]. If using

equivalent estimators of quantiles with samples from MA and M
′

A respectively, then the

mapping carries over to R to R
′
. We have

xa = F−1
X′ (a) = E−1

X′ [I{X′≤xa}] = g{E−1
X [I{X≤xb}]} = F−1

X (b) = xb, (2)

where I{A} = 1 if A and 0 otherwise. Equations 2 hold for estimators of population
quantities and an estimator of xa can be equated to an estimator of xb via a one-to-one
transformation g, by replacing the population quantities with their estimators 2. This
result applies to non-parametric and parametric models alike, in fact to all distributions
with well-defined inverses.

As an example with two parametric models from figure 1 we consider the problem of
estimating the proportion of black ravens, p using ξbin as the original experiment and
ξnegbin as its replication. The characteristic function of ξbin and ξnegbin are
(1− p+ peit)n and pw(1− eit + peit)−w, respectively. The characteristic function for a
random variable fully defines its probability model and thus, ξbin and ξnegbin have
distinct models. Yet p is an identifiable and estimable parameter of both experiments.
The maximum likelihood estimator of p is p̂(ξbin) = p̂(ξnegbin) = b/n because ξbin and
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ξnegbin are in a likelihood equivalence class with respect to parameter p. To see this, we
note that the maximum likelihood estimator is obtained by setting the expression
resulting from taking the derivative of the logarithm of the likelihood function (i.e, score
function) with respect to p and solving for p. Under ξbin the score function is

d

dp
[logP(b|p, n)] = d

dp
(logCn,b) +

d

dp
(b log p) +

d

dp
[w log(1− p)]. (3)

Under ξnegbin the score function is

d

dp
[logP(b|p, w)] = d

dp
(logCn−1,w−1) +

d

dp
(b log p) +

d

dp
[w log(1− p)]. (4)

Equations 3 and 4 differ only in their first terms which is irrelevant to estimate p and
thus p̂(ξbin) = p̂(ξnegbin) = b/n is the unique solution. The first terms on the right hand
side of these two equations determine the stopping rule of the experiments. In ξbin we
stop the experiment when n ravens are observed and the last raven can be black or
white. In ξnegbin we stop the experiment when w white ravens are observed and the last
observation must be a white raven. This difference between stopping rules means that:
1) Spre is different from S

′

pre. 2) Under our choice of Spost and S
′

post as the maximum
likelihood estimator, the stopping rules in two models are irrelevant for estimating the
proportion of black ravens in the population.

Appendix 5

Proof of result 5: Spost and S
′

post do not have to be identical in order to
reproduce a result R by R′.

There are a few heuristic ways to derive well-behaved statistical estimators of
parameters. Examples include: method of moments, maximum likelihood, posterior
mode (Bayesian). Well-known estimators may be equal to each other in value but
motivated by distinct principles. For example, for some distinct probability models in
the exponential family, the method of moments and the maximum likelihood estimator
return the same value. Or, using uniform prior in Bayesian inference, the posterior
mode always returns the same value as the maximum likelihood estimator. This
motivates result 5 in the sense that Spost and S

′

post do not have to be identical to
reproduce R by R′.

As an example based on ξbin from figure 1 we consider the following three estimators:

• If Spost is the maximum likelihood estimator motivated by the likelihood principle,
then we have (see Appendix 4)

p̂MLE = b/n.

• If Spost is the method of moments estimator, the motivation is to set the
population mean equal to the sample mean and solve for p and we have

p̂MME = b/n.

• If Spost is the posterior mode under the uniform prior (a special case of conjugate
prior for ξbin) we have

p̂MP = b/n.

Therefore, ξ can employ any one of these three estimators as Spost and ξ′ can employ

another as S
′

post and still reproduce R by R′, as if they have used the same statistical
method. For other modes of statistical inference such as hypothesis tests and prediction,
we can find examples of numerically equivalent methods that are not identical in
motivation (e.g., Shively and Walker, 2013).
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Appendix 6

Proof of result 6: Ds and D
′

s do not have to be identical in order to
reproduce a result R by R

′
.

The data structures of probability models that correspond to ξbin, ξnegbin, ξhyper,
ξpoi, ξexp, ξnor are all distinct. In ξbin and ξnegbin the data structures are a sample of
size n ravens and a sample of size w white ravens, respectively, from an infinite
population in which p is constant. Stopping rules of the sampling in these experiments
are different from each other: The last raven must be white in ξnegbin but not in ξbin. In
ξhyper, the stopping rule is the same as ξbin, but the parameter p changes with each
sample obtained due to finite population assumption in ξhyper.

In ξpoi and ξexp, np → λ is the rate of black ravens appearing in the process. The
observable in ξpoi is the random variable bt, the count of black ravens at time t and we
denote the count of black ravens at time t+ δ by bt+δ. The observable in ξexp is the
random waiting time δ to observe another black raven assuming a black raven is
observed at time t. The equivalence between the parameters of ξpoi and ξexp is given by

P (T ≤ t) = 1− P (bt+δ − bt = 0), (5)

where the cumulative distribution function of the time variable in MA in ξexp is related
to the counts in MA in ξpoi by probability of no event in time period δ. Equation 5
implies that no black raven is observed in δ. By Poisson probability mass function we
have this probability as P (bt+δ − bt = 0) = e−δ and we have P (T ≤ t) = 1− e−δ. This
identifies T as an exponential random variable in ξexp implying that the data structures
in ξpoi and ξexp are distinct. Yet, irrespective of all these differences in data structures,
ξbin and ξnegbin estimate the same parameter, p. Further, ξpoi and ξexp also estimate
the same parameter, λ. Hence, R can be reproduced by R′ without the data structures
being identical in ξ and ξ

′
.

Appendix 7

Proof of result 8: Assume a sequence ξ(1), ξ(2), · · · , ξ(J) of idealized
experiments in which a result R is of interest. Then, the estimated
reproducibility rate of R in this sequence converges to the mean
reproducibility rate of R in J replication experiments.

Conditional on all other elements of an idealized experiment, definition 5 and
consequently equation (1) assume that data are generated independently in each
replication which implies that R(i) are independent and identically distributed random
variables. Result 8 is straightforward for independent and identically distributed
random variables. Unconditionally on the elements, however, R(1), R(2), · · · in the
sequence ξ(1), ξ(2), · · · are not independent and identically distributed, implying that
R(i) are not drawn from the same sampling distribution of results. An easy way to see
this is to pick ξ(i) and ξ(j) distinct at least with respect to one element. In exact
replications, R(i) and R(j) will converge to their unique true reproducibility rate ϕ(i)

and ϕ(j) by equation (1). However, equation 1 can be generalized to obtain result 8 as
follows using a theorem due to Kolmogorov (See Rao, 1973).

We let ϕ
(1)
N , ϕ

(2)
N , · · · be estimates of reproducibility rates, with means ϕ(1), ϕ(2), · · ·

and variances N−1ϕ(1)(1− ϕ(1)), N−1ϕ(2)(1− ϕ(2)), · · · , respectively. We assume that
the series

∑∞
i=1 i

−1ϕ(i)(1− ϕ(i)) converges. Then,

N−1
N∑
i=1

ϕ
(i)
N → N−1

N∑
i=1

ϕ(i), almost surely. (6)
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Expression (6) states that the estimated reproducibility rate of results from non-exact
replication experiments meaningfully converges to the mean true reproducibility rate of
the idealized experiments performed. The case of exact replications given by
equation (1) is a special case of the equation (6), where all non-exact replications are
identical to each other (and thus exact) with respect to the result obtained in an original
idealized experiment. That is, if equation (6) is applied to ξ ≡ ξ1) ≡ ξ(2) ≡ · · · ≡ ξ(N),
where the true reproducibility rate for Ro obtained from ξ is ϕ, and we get

N−1
N∑
i=1

ϕ
(i)
N → N−1

N∑
i=1

ϕ(i) = N−1
N∑
i=1

ϕ = ϕ, almost surely. (7)

Appendix 8

Reproducibility rate of R as a model selection problem, in the context of
linear regression models.

In addition to the simulation example given in 3, here we present a second
simulation example to illustrate the convergence of reproducibility rates from exact and
non-exact replication experiments to their true value. Our example involves model
selection problem in the context of linear regression models. Briefly, we assume the
linear regression model

y = Xβ + ϵ

where y is n× 1 vector of responses, X is n× k matrix of fixed observables with first
column entries equal to 1, β is k × 1 vector of parameters, and ϵ is n× 1 vector of
independent and identically distributed normal errors with mean 0 and unknown
variance. The statistical problem is as follows: Given D with Dv independent and
identically distributed and Ds constituting n× 1 responses and n× k observables, select
the best linear regression model among three models with respect to a model selection
criterion (Spost). The saturated model is given by

X = (1,x1,x2,x3),with β = (β0, β1, β2, β3),

where x1,x2,x3 are n× 1 vectors of first, second, and third predictors,and β1, β2, β3

their respective regression coefficients. The set of three models considered in the model
selection problem are:

1. X = (1,x1,x2,x3),with β = (β0, β1, β2, β3),

2. X = (1,x1,x2),with β = (β0, β1, β2),

3. X = (1,x1,x3),with β = (β0, β1, β3).

In all cases the true model generating the data is model 3. For each ξ (and their exact
replications), we vary four elements MA, R, Spost, Ds in a 2× 2× (2× 2 + 1) simulation
study design:

1. MA : Model as determined by the signal to noise ratio in the true model
generating the data. Two values are: Signal : Noise = 1 : 1, which is equivalent to
the statistical condition E(Y ) : σ = 1 : 1, and Signal : Noise = 1 : 4, which is
equivalent to the statistical condition E(Y ) : σ = 1 : 1 in figure 6.

2. R : Result of the original experiment. Two values are: True and False.

3. Spost : Model selection method. Two values are: Akaike’s Information Criterion
(AIC) and Bayesian Information Criterion (BIC).

36/38

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2022. ; https://doi.org/10.1101/2022.08.10.503444doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.10.503444
http://creativecommons.org/licenses/by/4.0/


4. Ds : Data structure. Two values are: Sample sizes n = 10 and n = 100.

5. Condition +1 : Uniformly randomly chosen non-exact replications at each step of
the sequence from the set of all idealized experiments.

We performed 100 runs of a sequence of 1000 exact replication experiments for each of
the sixteen experimental conditions, plus 100 runs of a sequence of 1000 non-exact
replication experiments where (MA, R, Spost, Ds) is chosen uniformly randomly from
sixteen conditions. Four of the experimental conditions (MA, R values) are shown in
panels of figure 6: A: Signal : Noise = 1 : 1 and TRUE result; B: Signal : Noise = 1 : 1
and FALSE result; C: Signal : Noise = 1 : 4 and TRUE result; D: Signal : Noise = 1 : 4
and FALSE result. Five experimental conditions (Spost, Ds values + non-exact
replications) are shown in colored lines in each panel of figure 6. Green: AIC, n = 100;
Orange: AIC, n = 10; Purple: BIC, n = 100; Blue: BIC, n = 10; Grey: non-exact
replications. The result of interest is the reproducibility rate of the result of the original
experiment, which is given by a star for each condition. The plots in figure 6 and the
points to which they converge to illustrate how true reproducibility rate changes
depending on the elements of ξ and the effect of divergence of ξ

′
from ξ. We emphasize

that all parameters of the simulation example in figure 6 are chosen so that one can
discern the effect of varying models, methods, and data structures.
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Figure 6. A simulation example to illustrate the convergence of reproducibility rates
from exact and non-exact replication experiments to their true value. See text within
the appendix for description of panels.

We interpret the results as follows.

1. The reproducibility rates for false results and for true results sum to 1, which is a
verification of simulation experiments.

2. By the true rates of reproducibility marked by stars, we observe that they depend
on the true data generating mechanism, and the elements of the original
experiment, Spost and Ds. For example, as the noise increases, the true
reproducibility rate gets smaller, and the variance of the estimated reproducibility
rate increases. So for larger noise, replication results are expected to be highly
variable. True reproducibility rates of true results also change with sample size
and method.

3. Reproducibility rate increases with sample size for true results whereas it
decreases for false results such that low sample size makes false results more
reproducible in our simulations.

4. Even when the true reproducibility rate is high, we might see a lot of variation in
observed reproducibility rate after a small number of replications even when they
are exact replications. Fourth, non-exact replications yield highly variable
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observed reproducibility rates that do not converge to the true reproducibility rate
of the original result.

This simulation experiment complements the one presented in the main text
(figure 3) by providing a different illustration from our toy example. The context of
linear regression models is readily relevant to many practicing scientists. Moreover, this
simulation extends the results to new contexts by observing the outcome of interest
under different levels of system noise and both true and false original results. Ultimately
both simulations show considerable variability in true reproducibility rates as a function
of the elements of and relationship between original and replication experiments.

Appendix 9

True results are not necessarily reproducible and perfectly reproducible
results may not be true.

Reproducibility is a function of the true unknown data generating model and the
elements of ξ. Devezer et al. (2021) provides some account. We give a brief overview
with a proof by counterexample. Conditional on R from ξ, we let ξ(1), ξ(2), · · · be exact
replications of ξ and I{b∗} be the indicator function that equals 1 if the first raven in
the sample is black, and 0 otherwise. To prove the first part of the statement we choose
the estimator

p̂ =
b+ I{b∗}

n+ I{b∗}
.

The estimator p̂ is valid on [0, 1] by: if b = n, then the first raven sampled must be
black and p̂ = 1, else if b = 0, then the first raven must be white and p̂ = 0 such that
p̂ ∈ [0, 1]. However, p̂ is unbiased for p only with probability (1− p). The reason is that
the probability of first raven is white raven is (1− p) and if it is a white raven we get
p̂ = b/n giving E(p̂) = E(b/n) = (1/n)(np) = p. In contrast, p̂ is biased for p with
probability (1− p). The reason is that the probability of first raven is black raven is p
and if it is a black raven we get E(p̂) ̸= p. This does not only show that the true results
are not always reproducible, but also shows that the reproducibility rate can be a
function of the true parameter.

To prove the second part of the statement, choose the estimator p̂ = c, where c is a
constant in [0, 1]. E(p̂) = c. This expectation is only equal to p when p = c. However,
the result using this p̂ is reproducible with probability 1, thereby completing the proof.
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