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Abstract 
Pain emerges from the integration of sensory information about threats and contextual 
information such as an individual’s expectations. However, how sensory and 
contextual effects on pain are served by the brain is not fully understood so far. To 
address this question, we applied brief painful stimuli to 40 healthy human participants 
and independently varied stimulus intensity and expectations. Concurrently, we 
recorded electroencephalography. We assessed local oscillatory brain activity and 
inter-regional functional connectivity in a network of six brain regions playing key roles 
in the processing of pain. We found that sensory information predominantly influenced 
local brain oscillations. In contrast, expectations exclusively influenced inter-regional 
connectivity. Specifically, expectations altered connectivity at alpha (8-12 Hz) 
frequencies from prefrontal to somatosensory cortex. Moreover, discrepancies 
between sensory information and expectations, i.e., prediction errors, influenced 
connectivity at gamma (60-100 Hz) frequencies. These findings reveal how 
fundamentally different brain mechanisms serve sensory and contextual effects on 
pain.  
 
 
Teaser 
Sensory and expectation effects on pain are implemented by fundamentally different 
brain mechanisms. 
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Introduction 
Pain serves to protect the body. To this end, the brain translates sensory information 
about potential threat into an unpleasant experience and protective behavioral 
responses. However, this translation is not only shaped by sensory but also by 
contextual information, such as an individual’s expectations (1-3). Expectations can 
yield powerful and clinically relevant changes of the pain experience, for example 
through placebo and nocebo effects (4-7). Moreover, contextual and expectation 
effects are particularly relevant for pathological aberrations of the pain experience in 
chronic pain disorders (8-10).  
 
In the brain, pain is associated with complex patterns of neural activity in 
somatosensory, insular, cingulate, and prefrontal cortices as well as subcortical brain 
areas (11, 12). Neurophysiological studies using electroencephalography (EEG), 
magnetoencephalography (MEG), and intracranial recordings have shown that this 
brain network yields complex temporal-spectral patterns of neural responses including 
evoked potentials and oscillatory responses at alpha (8-12 Hz), beta (13-30 Hz), and 
gamma (30-100 Hz) frequencies (13). In addition, it is increasingly recognized that not 
only local brain activity, but also the communication between brain regions, i.e., inter-
regional brain connectivity, critically shapes the experience of pain (14-20). 
 
Recent studies have started to unravel how these complex spatial-temporal-spectral 
patterns of brain activity serve sensory and contextual effects on pain. Functional 
magnetic resonance imaging (fMRI) studies have revealed that these effects are 
served by different spatial patterns of brain activity. For instance, patterns of brain 
activity termed the neurological pain signature (NPS) and the stimulus intensity 
independent pain signature (SIIPS) are particularly sensitive to sensory and contextual 
effects on pain, respectively (21, 22). EEG studies have indicated that the temporal-
spectral patterns of sensory and contextual effects on pain also differ (23-25). 
Specifically, evoked potentials and oscillatory responses to noxious stimuli are more 
sensitive to sensory information than to expectations (23-25). In contrast, the 
temporal-spectral pattern of expectation effects on pain has remained largely unclear 
so far. Mechanistic considerations suggest that contextual effects on pain such as 
expectations might be particularly shaped by inter-regional top-down connectivity 
between supra-modal and sensory brain regions at alpha and beta frequencies (13). 
Moreover, predictive coding frameworks of brain function (26, 27) propose that 
discrepancies between sensory and expectation effects, i.e., prediction errors (PE), 
are mediated by brain oscillations and connectivity at gamma frequencies (28-30). 
However, direct evidence for these hypotheses on how sensory and expectation 
effects on pain are implemented by local brain activity and inter-regional connectivity 
is lacking so far.  
 
To better understand and directly compare how local brain oscillations and inter-
regional connectivity serve sensory and contextual effects on pain, we re-analyzed 
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data from an EEG experiment in which brief painful stimuli were applied to healthy 
human participants (23). Therein, sensory and contextual information was modulated 
by varying stimulus intensity and expectations about upcoming stimulus intensity, 
respectively. We here assessed and compared how local oscillatory brain activity and 
inter-regional connectivity in a core network of six brain regions associated with the 
processing of pain serves the effects of stimulus intensity and expectations on pain.  
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Results 
To investigate how the brain serves sensory and contextual influences on pain, we 
employed a probabilistic cueing paradigm. We applied brief painful heat stimuli to the 
left hand and independently modulated stimulus intensity and expectations in a 2 × 2 
factorial design. To modulate stimulus intensity, we applied painful stimuli of two 
different levels (high intensity [hi] and low intensity [li]). To modulate expectations, the 
painful stimuli were preceded by one out of two visual cues, probabilistically indicating 
the intensity of the subsequent stimulus. The high expectation (HE) cue was followed 
by a hi stimulus in 75% of the trials and by a li stimulus in 25% of the trials. Conversely, 
the low expectation (LE) cue was followed by a hi stimulus in 25% of the trials and by 
a li stimulus in 75% of the trials. The experiment thus comprised four trial types (Figure 
1A): high intensity, high expectation (hiHE); high intensity, low expectation (hiLE); low 
intensity, high expectation (liHE); low intensity, low expectation, (liLE). In each trial, 
after the painful stimulus, the participants were asked to provide a rating of the 
perceived pain intensity on a numerical rating scale ranging from 0 (no pain) to 100 
(maximum tolerable pain). Figure 1b shows the sequence of a single trial. The 
experiment included 160 trials per participant. 

 
 
Figure 1. Experimental design. (a) Probabilities of different pain stimulus intensities (low 
intensity, li; high intensity, hi) for different levels of expectation (low expectation, LE; high 
expectation, HE). (b) In each trial, a cue was presented that probabilistically predicted the 
intensity of a subsequent painful stimulus. Three seconds after the stimulus, a verbal pain 
rating was obtained from the participants. More details on the experimental design can be 
found in [Nickel et al. 2022]. 

 
We analyzed oscillatory brain activity and functional connectivity in a network of six 
brain regions (Figure 2) known to play key roles in the cerebral processing of pain (31). 
The brain regions were the contralateral primary somatosensory cortex (S1), the 
contra- and ipsilateral parietal operculum (cPO, iPO; including the secondary 
somatosensory cortex and parts of the insular cortex), the anterior cingulate cortex 
(ACC), and the contra- and ipsilateral prefrontal cortex (cPFC, iPFC). Some of these 
brain regions are particularly associated with processing of sensory information (S1, 
cPO, iPO) whereas others are more associated with supramodal cognitive and 
emotional processes (ACC, cPFC, iPFC) (11, 12). Coordinates for these six regions 
of interest (ROIs) were taken from human intracranial recordings which represent the 
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gold standard for electrophysiological brain responses to pain stimuli (31). To assess 
oscillatory brain activity, we calculated frequency-specific power in source space. To 
assess functional connectivity between brain regions, we calculated the debiased 
weighted phase lag index (dwPLI) (32). Both local activity and inter-regional 
connectivity were assessed in the alpha (8-12 Hz), beta (14-30 Hz), and gamma (60-
100 Hz) frequency bands. These frequency bands are known to exhibit changes in 
oscillatory power in response to brief painful stimuli (33-36) and play key roles in inter-
regional communication in the brain (37). In addition, to assess the dominant direction 
of information flow in selected connections and frequency bands, we computed an 
asymmetry index based on the partial directed coherence measure (38) of directed 
functional connectivity. 
 

 
 
Figure 2.  Regions of interest and corresponding MNI coordinates. Axial, coronal, and 
sagittal view of the brain and the six regions of interest. S1: contralateral primary 
somatosensory cortex; cPO, iPO: contra- and ipsilateral parietal operculum; ACC: anterior 
cingulate cortex; cPFC, iPFC: contra- and ipsilateral prefrontal cortex.   

 
To relate brain activity and connectivity to sensory and expectation effects on pain, we 
defined different patterns describing the relation between response variables and 
experimental manipulations (39, 40). In particular, these patterns characterize how 
neural phenomena and pain ratings are linked to intensity, expectations, or 
discrepancies thereof (prediction errors, PEs) across the four trial types (Figure 3). To 
formally link the data to these patterns, we performed repeated measures analyses of 
variance (rmANOVAs) (41) with the independent variables intensity and expectation. 
In these rmANOVAs, features signaling stimulus intensity and expectations would 
manifest as main effects, whereas features signaling PEs would manifest as 
interactions. To allow for the interpretation of negative findings, we specifically 
performed Bayesian rmANOVAs (41).  

cPFC

ACC

iPFC

iPO cPO

S1

MNI coordinates (mm)

Region x y z

S1 30 -30 60
cPO 49 -11 10
ACC 0 6 38
iPO -49 -11 10

cPFC 31 44 13
iPFC -27 39 13
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Figure 3. Possible response patterns indicating effects of stimulus intensity, expectations, 
and PEs. Effects of stimulus intensity (low intensity, li; high intensity, hi), expectations (low 
expectation, LE; high expectation, HE), and prediction errors were tested by means of 
rmANOVAs. An experimental modulation can lead to either a relative increase (first row) or 
relative decrease (second row) of oscillatory activity or connectivity. 

 
The effects of stimulus intensity and expectations on pain intensity ratings  
Figure 4 shows pain intensity ratings for the four trial types. Analyses of pain ratings 
provided decisive evidence for main effects of intensity (BF = 1.1*1021) and 
expectation (BF = 5.5*102) on pain ratings. Specifically, as expected, hi stimuli yielded 
higher pain ratings than li stimuli, and HE cues yielded higher pain ratings than LE 
cues. Moreover, there was moderate evidence against an interaction effect of intensity 
and expectation (BF = 0.27). Thus, the results confirmed that stimulus intensity and 
expectations shaped pain ratings.  
 

 
 
Figure 4. Effects of stimulus intensity, expectations, and prediction errors on pain ratings. 
Rain cloud plot (42) of pain ratings for two levels of stimulus intensity (low intensity, li; high 
intensity, hi) and expectation (low expectation, LE; high expectation, HE). A Bayesian 
rmANOVA yielded decisive evidence for main effects of stimulus intensity and expectation 
(BF = 1.1*1021 and BF = 5.5*102, respectively). Moreover, there was moderate evidence 
against an interaction (BF = 0.27). 
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We first assessed how brief noxious stimuli influenced local oscillatory brain activity in 
the six ROIs. Time-frequency representations (TFRs, Fehler! Verweisquelle konnte 
nicht gefunden werden.) indicated that noxious stimuli suppressed alpha and beta 
activity in all ROIs and increased gamma activity predominantly in S1. In addition, 
noxious stimuli yielded increases of activity at frequencies below 8 Hz which reflect 
evoked potentials analyzed previously (23).  
 Next, we assessed how stimulus intensity and expectations influence local 
brain activity in our core network associated with pain processing. We therefore 
determined the power of brain activity in the six ROIs at alpha, beta, and gamma 
frequencies averaged across the 1 s post-stimulus interval. The results of Bayesian 
rmANOVAs with the factors intensity and expectation are shown in Figure 6. We found 
that stimulus intensity modulated local brain activity at all frequency bands and in all 
ROIs. Strongest stimulus intensity effects were observed at alpha frequencies where 
we found moderate to decisive evidence for effects on oscillatory brain activity for all 
ROIs. In all ROIs, stronger stimuli yielded stronger suppressions of alpha activity.  
Weaker effects were observed at beta frequencies where we found moderate 
evidence for an intensity effect on brain activity in S1, iPO, and cPFC. In these ROIs, 
stronger stimuli yielded stronger suppressions of beta activity. In the gamma frequency 
band, we observed moderate evidence for an intensity effect on S1 brain activity with 
stronger stimuli inducing higher amplitudes of gamma activity.  

In contrast, we found weak to moderate evidence against effects of 
expectations or PEs on local brain activity at all frequency bands. Control analyses 
using shorter time windows showed qualitatively similar results (Figure S2). 
 In summary, we found that stimulus intensity but not expectations or PEs 
significantly influenced local oscillatory brain activity in response to brief painful stimuli.  
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Figure 5. Time-frequency representations of local oscillatory brain activity in the six ROIs. 
The first and third columns show concatenated band specific TFRs for all six ROIs. The 
second and fourth columns show time-courses of brain activity in the alpha, beta and 
gamma band. Vertical, dark-gray bars in the TFR plots indicate the frequency intervals 
based on which the time courses of brain activity were computed.  

iPFC
 / 6

0
0.5

1

20 40 60 80

100

-0.6

-0.4

-0.2

0 0.2

0.4

-60 60signal change [%]

S1 / 1

0 0.5 1

20

40

60

80

100
ACC / 3

0 0.5 1

20

40

60

80

100

0 0.5 1

-20
0

20
alpha

0 0.5 1
-10
0

10
beta

0 0.5 1
0

10

gamma

PO / 2

0 0.5 1

20

40

60

80

100

0 0.5 1

-20
0

20
alpha

0 0.5 1
-10
0

10
beta

0 0.5 1
0

10

gamma
cPFC / 5

0 0.5 1

20

40

60

80

100

0 0.5 1

-20
0

20
alpha

0 0.5 1
-10
0

10
beta

0 0.5 1
0

10

gamma

iPO / 4

0 0.5 1

20

40

60

80

100

0 0.5 1

-20
0

20
alpha

0 0.5 1
-10
0

10
beta

0 0.5 1
0

10

gamma
iPFC / 6

0 0.5 1

20

40

60

80

100

0 0.5 1

-20
0

20
alpha

0 0.5 1
-10
0

10
beta

0 0.5 1
0

10

gamma

S1 

cPO

iPO iPFC

cPFC

ACC       

0 0.5 1

-20
0

20
alpha

0 0.5 1
-10
0

10
beta

0 0.5 1
0

10

gamma

fre
qu

en
cy

 [H
z]

 
fre

qu
en

cy
 [H

z]
 

fre
qu

en
cy

 [H
z]

 

time [s] time [s] time [s] time [s] 

% %

% %

% %

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.10.503459doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.10.503459
http://creativecommons.org/licenses/by-nc/4.0/


 10 

 
 

Figure 6. Effects of stimulus intensity, expectations, and prediction errors on local brain 
activity. Effects were assessed by Bayesian rmANOVAs with the factors intensity and 
expectation. The color of the heat map tiles scales with the log of the Bayes factor. It ranges 
from blue (BF < 1/3, at least moderate evidence against an effect) to yellow (BF > 3, at 
least moderate evidence for an effect). Brain images display ROIs in yellow which exhibit 
at least moderate evidence for an effect (BF > 3). 

 
 
The effects of stimulus intensity and expectations on inter-regional functional 
connectivity  
We next investigated how stimulus intensity and expectations influenced 
communication in our core network associated with pain processing.  We therefore 
determined pairwise inter-regional connectivity in a network of six ROIs resulting in 15 
connectivity values. These analyses were performed separately for the alpha, beta, 
and gamma frequency bands in the 1 s post-stimulus interval. Figure 7 shows the 
results of Bayesian rmANOVAs. 
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We found moderate evidence for a stimulus intensity effect on the cPO – ACC 
connection in the alpha band. Here, connectivity was higher in the hi than the li 
condition. For most other connections and frequency bands, we found weak to 
moderate evidence against stimulus intensity effects.  

Effects of expectation were found in the alpha band exclusively. We specifically 
observed moderate evidence for an expectation effect on the cPFC – S1 and iPO – 
cPO connections. In these connections, connectivity was lower in the HE than the LE 
conditions. For most other connections and frequency bands, we found weak to 
moderate evidence against expectation effects.  

PE effects were observed in the gamma band exclusively. We found moderate 
to strong evidence for a PE effect on the cPFC – ACC and iPFC – PO connections. 
Specifically, the mean connectivity values of mismatch conditions (hiLE, liHE) were 
lower than those of non-mismatch conditions (liLE, hiHE). In other words, conditions 
involving a PE exhibited lower connectivity than those without a PE. For most other 
connections and frequencies, we observed weak to moderate evidence against a PE 
effect. 

Taken together, we found that stimulus intensity and expectation influenced 
connectivity at alpha frequencies whereas PE effects were found at gamma 
frequencies.  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.10.503459doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.10.503459
http://creativecommons.org/licenses/by-nc/4.0/


 12 

 
Figure 7. Effects of stimulus intensity, expectations, and prediction errors on inter-regional 
functional connectivity. Effects were assessed by Bayesian rmANOVA with the factors 
intensity and expectation. The color of the heat map tiles scales with the log of the Bayes 
factor. It ranges from blue (BF < 1/3, at least moderate evidence against an effect) to yellow 
(BF > 3, at least moderate evidence for an effect). Brain images display connections in 
yellow which exhibit at least moderate evidence for an effect (BF > 3). 

0.2

0.2

0.3

3.7

0.2

1

8.9

0.2

0.3

0.4

0.4

0.2

1

0.2 0.4

S1 PO ACC iPO cPFC

PO

ACC

iPO

cPFC

iPFC

0.7

0.7

0.3

0.2

0.2

0.4

0.2

0.4

0.2

0.2

0.5

0.2

0.3

0.3 0.2

S1 PO ACC iPO cPFC

0.2

0.2

0.5

0.2

0.2

0.2

0.2

0.4

1.3

0.3

0.2

1.5

0.3

0.2 0.3

S1 PO ACC iPO cPFC
log(1/3)

0

log(3)

0.2

0.4

0.4

0.3

0.2

0.2

0.4

0.2

0.2

0.3

0.2

0.5

0.5

0.2 0.4

S1 PO ACC iPO cPFC

PO

ACC

iPO

cPFC

iPFC

0.3

0.2

0.3

0.9

0.4

0.4

2.6

0.5

0.3

0.2

0.3

0.3

0.2

0.3 0.2

S1 PO ACC iPO cPFC

0.2

0.3

0.6

0.3

1.4

1.2

0.3

0.3

4.5

0.2

46

0.6

0.3

0.4 0.2

S1 PO ACC iPO cPFC
log(1/3)

0

log(3)

0.3

0.2

0.2

0.3

0.2

5.6

0.2

0.2

0.3

0.6

0.2

0.2

0.2

0.2 0.7

S1 PO ACC iPO cPFC

PO

ACC

iPO

cPFC

iPFC

0.2

0.4

0.3

0.2

2.3

0.2

0.2

0.2

0.5

0.2

0.2

0.2

0.2

0.4 0.2

S1 PO ACC iPO cPFC

0.4

0.2

0.9

0.2

0.2

0.2

0.2

0.2

1.2

0.2

0.2

0.3

0.2

0.2 0.5

S1 PO ACC iPO cPFC
log(1/3)

0

log(3)

alpha beta gamma

intensity

expectation

prediction 
error

log(3)log(1/3) 0

log(BF)

cPO

cPO

cPO cPO

cPO cPO cPO

cPO cPO cPO

cPO

cPO

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.10.503459doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.10.503459
http://creativecommons.org/licenses/by-nc/4.0/


 13 

Direction of functional connectivity 
The previous analyses showed that stimulus intensity, expectations and PEs 
modulated functional connectivity at alpha and gamma frequencies in a core network 
associated with pain processing. We were next interested to assess the direction of 
information flow for connections in which we found at least moderate evidence for 
intensity, expectation, and/or PE effects. To this end, we calculated an asymmetry 
score of directed connectivity between pairs of brain regions. The score was based on 
the bivariate partial directed coherence (PDC, (38)) measure and ranged from -1 to 1. 
The absolute value and the sign of the score indicate the strength and the direction of 
asymmetry, respectively. For the cPO-ACC connection, for which intensity effects 
were observed in the alpha band, we found strong evidence (BF = 13.4) that 
information flowed from cPO to ACC. For the cPFC-S1 connection, for which 
expectation effects were observed in the alpha band, we found strong evidence (BF = 
13.1) that information flowed from cPFC to S1. For the other connections and 
frequency bands, we did not find evidence for an asymmetry of information flow. Thus, 
as summarized in Figure 8, for connections showing intensity effects, we found 
information flow predominantly from sensory to higher-order brain areas. Conversely, 
for connections displaying expectation effects, we found information flow 
predominantly from higher-order to sensory brain areas. 
     

 
 

Figure 8. Direction of functional connectivity. Using an asymmetry score based on the 
PDC connectivity metric, we assessed the direction of information flow in connections 
which exhibited evidence for an effect in the previous connectivity analysis. Brain 
images depict connections with strong evidence for asymmetric information flow. The 
arrows indicate the dominant direction of information flow. 

 
Comparisons of stimulus intensity and expectations effects on local oscillatory brain 
activity and inter-regional functional connectivity  
The previous analyses indicated that local brain activity and inter-regional connectivity 
differentially serve sensory and expectation effects on pain. We specifically observed 
that stimulus intensity shaped local brain activity more than inter-regional connectivity, 
while expectations and PEs shaped inter-regional connectivity more than local activity. 
To address this statistically, we conducted a Bayesian comparison of activity and 

Frequency Connection BF Direction

alpha

cPFC – S1 13.1 à

ACC – cPO 13.4 ß

iPO – cPO 0.19 -

gamma
iPFC – cPO 0.33 -

cPFC – ACC 0.16 -
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connectivity models predicting the levels of stimulus intensity, expectation and PE. We 
found decisive evidence that activity models predicted stimulus intensity better than 
connectivity models (BFpow/conn > 105). Conversely, there was decisive evidence that 
connectivity models predicted expectations (BFconn/pow > 102) and PEs (BFconn/pow > 
2*102) better than activity models.   
 
Summary 
Figure 9 summarizes the main findings. On the behavioral level, both stimulus intensity 
and expectation significantly modulated the perception of pain. As expected, both 
higher stimulus intensities and expectations of stronger stimuli evoked higher pain 
ratings. In the brain, stimulus intensity effects were predominantly associated with 
changes of local brain activity. Stronger stimuli yielded stronger responses to brief 
painful stimuli in alpha, beta, and gamma frequency bands. In contrast, expectation 
effects on pain were associated with changes of inter-regional functional connectivity 
but not with changes of local brain activity. We particularly found that expectation 
effects were associated with top-down connectivity at alpha frequencies from cPFC to 
S1 and with connectivity between cPO and iPO. PEs were associated with changes 
of gamma-band connectivity exclusively. Bayesian model comparisons confirmed the 
differential involvement of local activity and inter-regional connectivity in sensory and 
expectation effects on pain. Specifically, stimulus intensity has a stronger influence on  
local brain activity than on inter-regional connectivity. Vice versa, expectations and 
PEs shape inter-regional connectivity more than local brain activity.  
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Figure 9. Synopsis of the effects of stimulus intensity, expectations, and prediction errors 
on pain perception, local brain activity, and inter-regional functional connectivity. Increases 
of stimulus intensity led to increases of pain ratings and local brain activity at gamma 
frequencies as well as to decreases of brain activity at alpha and beta frequencies. 
Expectations of stronger pain yielded increases of pain ratings and reduced connectivity 
between cPO and iPO and from cPFC to S1 at alpha frequencies. In contrast, expectations 
did not modulate local brain activity at any ROI and any frequency band. PEs did not 
change pain ratings or local brain activity but iPFC-cPO and cPFC-ACC connectivity at 
gamma frequencies. The last column shows the results of a Bayesian comparison of local 
brain activity and connectivity models predicting intensity, expectation and prediction 
errors. 
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Discussion 
In the present study, we investigated how the brain serves sensory and contextual 
effects on pain. To this end, we applied noxious stimuli to healthy human participants 
and independently modulated stimulus intensity and expectations. Pain ratings 
confirmed that stimulus intensity and expectation both influenced pain perception. 
Analyses of EEG recordings revealed that sensory and expectation effects on pain 
were served by fundamentally different brain mechanisms. In a core network 
associated with the processing of pain, sensory information shaped local oscillatory 
brain activity rather than inter-regional functional connectivity. In contrast, expectation 
and prediction errors influenced inter-regional functional connectivity but not local 
oscillatory brain activity.  

 
Sensory and expectation effects on local oscillatory brain activity and inter-regional 
functional connectivity  
We observed that sensory information shapes local oscillatory brain activity 
significantly more than inter-regional connectivity. The effects of stimulus intensity on 
local oscillatory activity in various frequency bands are in accordance with previous 
EEG and MEG studies (24, 33, 43, 44). However, the effects of stimulus intensity on 
local brain activity and inter-regional connectivity have not been directly compared so 
far.   
We further observed that expectations influenced inter-regional functional connectivity 
but not local oscillatory brain activity. To the best of our knowledge, expectation effects 
on functional connectivity have not yet been investigated by neurophysiological 
recordings. A few studies have investigated expectation effects on local oscillatory 
brain activity (24, 25, 45, 46). Their findings were inconsistent. Some studies found 
that expectations of high pain were associated with increased alpha activity (24, 45), 
others report unchanged (25), or decreased alpha activity (46). The present findings 
do not rule out any expectation effects on local brain activity. However, the crucial 
finding here is not the lack of expectation effects on local oscillatory activity, but that 
expectation effects on connectivity are significantly stronger than on local oscillatory 
activity.   
 
Expectation and prediction error signaling in the processing of pain  
We found that expectation and prediction errors influenced connectivity at alpha/beta 
and gamma frequencies, respectively. This observation can be interpreted with 
reference to predictive coding (PC) frameworks of brain function. PC is a general 
theory used to explain how perception arises from the integration of sensory 
information and expectations (26). The framework proposes that the brain maintains 
an internal model of the environment which continuously generates predictions about 
sensory input. Discrepancies between these predictions and the actual sensory 
evidence, i.e. PEs, serve to adjust the internal model. In this way, the brain allocates 
its limited resources to events that are behaviorally relevant and useful for updating 
predictions, i.e., learning. It has been suggested that alpha and beta oscillations serve 
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the signaling of predictions, whereas gamma oscillations have been proposed to signal 
PEs (28-30, 39). The present findings are in good accordance with this framework. 
They specify that expectation effects on pain might be particularly related to 
connectivity at alpha frequencies from the prefrontal to the somatosensory cortex. 
Specifically, expecting less pain was associated with relatively stronger connectivity. 
This implies that alpha-band connectivity might be mechanistically involved in an 
active down-regulation of nociceptive input. Prediction errors on the other hand were 
reflected in reduced gamma connectivity indicating that they are signaled in the brain 
in terms of a disruption of inter-regional communication which is in line with a recent 
study on PE signaling in the processing of pain (24). 
 
Distinct brain mechanisms serve sensory and expectation effects on pain 
The key finding of our study is that sensory and expectation effects on pain are served 
by distinct brain mechanisms. Previous fMRI studies have already revealed that 
sensory and contextual effects on pain are associated with different spatial patterns of 
brain activity. For instance, one spatial pattern of brain activity termed the neurologic 
pain signature (NPS) is much more sensitive to sensory than to contextual effects on 
pain (47, 48). Vice versa, another pattern of brain activity termed the stimulus intensity 
independent pain signature (SIIPS) is sensitive to contextual but not to sensory effects 
on pain (22). Moreover, a spatial dissociation between the encoding of sensory 
information and expectations has also been found within the insular cortex (39).  
Our results extend these findings by showing that not only the spatial brain activity 
patterns serving sensory and contextual effects on pain differ but that these effects 
are served by fundamentally different neurophysiological mechanisms. Sensory 
effects predominantly occurred in local brain oscillations whereas expectation effects 
were exclusively observed in inter-regional connectivity. The dissociation of sensory 
and expectation effects suggests that both physiological phenomena are partially 
independent of each other.  
These findings might have implications for the understanding, assessment, and 
treatment of clinical pain conditions. In acute pain, which is predominantly shaped by 
sensory information, assessing and modulating local oscillatory brain activity might be 
appropriate. In contrast, in chronic pain, which is often largely detached from sensory 
information, inter-regional connectivity might be more informative than local activity. 
Such a close association between inter-regional connectivity and chronic pain is in 
accordance with studies using fMRI (15, 49, 50) and recent EEG studies on 
connectivity in chronic pain (51, 52) and psychiatric disorders (53). In this way, the 
present findings can help to guide the development of biomarkers of acute and chronic 
pain. Beyond, our results might inform the search for neuronal targets for invasive as 
well as non-invasive interventions aiming at alleviating pain. 
 
Limitations 
When interpreting our findings, certain limitations should be considered. First, in our 
paradigm, the effects of expectations on pain perception were weaker than the effects 
of stimulus intensity. The lack of expectation effects on local brain activity might 
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therefore reflect the weak expectation effects on pain perception, and other paradigms 
with stronger expectation effects on perception might well modulate local brain activity. 
However, the central finding of the present study is not the absolute strength of 
sensory and expectation effects but that the patterns of sensory and expectation 
effects on local brain oscillations and brain connectivity fundamentally differ. The 
strength of perceptual effects might well determine the strength of neurophysiological 
effects but is unlikely to fundamentally change the difference in the patterns of sensory 
and expectation effects on brain activity and connectivity. We are therefore confident 
that the present findings reflect a fundamental difference in the brain mechanisms 
serving sensory and expectation effects on pain. 
Second, to modulate pain, we manipulated participants’ expectations. Expectations 
are a particularly powerful and clinically highly relevant modulator of pain (4-7). 
However, it is unclear whether the present observations are specific to expectation-
induced modulations of pain or whether they generalize to other cognitive and 
contextual modulations of pain. 
Third, we applied brief experimental pain stimuli to healthy human participants. It is 
unclear whether these findings can be translated to other experimental and clinical 
types of pain. It remains to be investigated whether the findings generalize to chronic 
pain conditions in which other brain mechanisms apply and in which the brain 
undergoes substantial structural and functional plasticity (11, 54).  
 
Conclusions 
Taken together, the present study shows that sensory and expectation effects on pain 
are served by distinct brain mechanisms. Sensory effects on pain are served by 
changes of local oscillatory brain activity, whereas expectation effects and 
discrepancies between sensory information and expectations are served by changes 
of inter-regional functional connectivity. These results provide novel basic science 
insights into the brain mechanisms of pain and analgesia. They specifically advance 
the understanding of how the brain serves key modulations of the subjective 
experience of pain. Beyond, they can inform the development of novel tools for the 
assessment and treatment of clinical pain conditions. 
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Materials and methods 
Participants 
The study was performed in healthy human participants at the university hospital of 
the Technical University of Munich (TUM). Written informed consent was obtained 
from all participants prior to the experiment. The Ethics Committee of the Medical 
Faculty of the TUM approved the study protocol. The study was preregistered at 
ClinicalTrials.gov (NCT04296968) and conducted in accordance with the latest 
version of the Declaration of Helsinki. It followed recent guidelines for the analysis and 
sharing of EEG data (55). Inclusion criteria were right-handedness and age >18 years. 
Exclusion criteria were pregnancy, neurological or psychiatric diseases, and regular 
intake of medication (aside from contraception and thyroidal medication). Severe 
internal diseases (e.g. diabetes) and skin diseases (e.g. psoriasis, vitiligo), previous 
surgeries at the head or spine, current or recurrent pain, metal or electronic implants, 
and any previous side effects associated with thermal stimulation constituted 
additional exclusion criteria.  

For the current rmANOVA design (one group, four measurements), an  
assessment of statistical power using G*Power (56) yielded a sample size estimate of 
36 participants with a power of 0.95, an alpha of 0.05, and medium effect sizes of f = 
0.25 (corresponding to an η2 of 0.06 (57)).  

The original study recruited 58 healthy human participants (29 females, age: 
24.0 ±	4.3 y [mean ±	SD]). Ten participants were excluded due to either the absence 
of pain or low pain ratings [<10 on a numerical rating scale from 0 (no pain) to 100 
(maximum tolerable pain)] during the familiarization run (n = 8), excessive startle 
responses in response to painful stimulation during the training run (n = 1), or technical 
issues with the response box used during catch trials (n = 1). To ensure robust 
estimates of connectivity values, we here additionally excluded participants with less 
than 10 trials remaining after the raw data cleaning procedure described below (n = 
8). The final data set used here thus comprised 40 participants (all right-handed, 21 
females, age: 23.4 ±	 2.9 y). Average anxiety and depression scores were below 
clinically relevant cutoff scores of 8/21 (58) on the Hospital Anxiety and Depression 
Scale (59) (anxiety: 3.2 ±	2.2; depression: 0.9 ±	1.2).  
 
Procedure 
The objective of this analysis was to assess how sensory and contextual modulations 
are served by local brain activity and inter-regional brain connectivity. The experiment 
involved two levels of noxious stimulus intensities (hi and li) and two types of visual 
cues (HE and LE) resulting in four experimental conditions. The visual cues 
probabilistically predicted the intensity of the subsequent noxious stimulus. The high 
expectation (HE) cue was followed by a hi stimulus in 75% of the trials and by a li 
stimulus in 25% of the trials. Vice versa, the low expectation (LE) cue was followed by 
a hi stimulus in 25% of the trials and by a li stimulus in 75% of the trials ( 
Figure 1a).  
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Figure 1b depicts the sequence of events for each trial. After a variable fixation period 
ranging from 1.5 to 3 s, a visual cue (either blue dot or yellow square) was displayed 
for 1 s. A brief painful heat stimulus was applied 1.5 s after cue offset. 3 s after the 
painful stimulus, participants were visually prompted to provide a verbal rating of the 
perceived pain intensity on a numerical rating scale ranging from 0 (no pain) to 100 
(maximum tolerable pain in the context of the experiment). To ensure that participants 
continuously paid attention to the visual cues, participants were visually prompted to 
indicate by a button press whether a HE or a LE cue had been presented last in 10% 
of the trials. An average accuracy of 95.6 ±	 0.1% indicated that participants 
successfully focused on the task during the entire experiment. Trials were separated 
by a 3 s period during which a white fixation cross was presented.  

The experiment consisted of four runs with 40 trials each (hiHE [n = 15], hiLE 
[n = 5], liLE [n = 15], liHE [n = 5]), resulting in total trial numbers of hiHE [n = 60], hiLE 
[n = 20], liLE [n = 60], liHE [n = 20]. Runs were separated by short breaks of ∼3 min. 
Pairings of visual cues with stimulus intensities were balanced across participants.  

Prior to the experiment, the participants were familiarized with the stimulation 
and the intensity rating procedure by applying a sequence of 10 heat stimuli. Next, 
participants were informed about the pairing between cues and stimulus intensities 
and a training run comprising 16 trials was conducted. This was to ascertain that all 
participants were aware of the pairing and to minimize learning during the main 
experiment. During the experiment, participants sat in a comfortable chair. They wore 
protective goggles and listened to white noise on headphones to eliminate effects of 
ambient sounds. Please see (23) for additional details.  
 
Stimulation 
A laser pulse with a wavelength of 1,340 nm, a duration of 4 ms and spot diameter of 
approximately 7 mm was used to apply painful stimuli to the left hand (60). For li and 
hi stimuli, the stimulus intensity was set to 3 and 3.5 J, respectively. These stimulus 
intensities are known to consistently elicit painful sensations of discriminable intensity 
(60). The stimulation site was slightly changed after each stimulus to avoid tissue 
damage and habituation or sensitization. 
 
Recordings and preprocessing 
Brain activity was recorded using actiCAP snap/ slim with 64 active sensors (Easycap) 
placed according to the extended 10-20 system and BrainAmp MR plus amplifiers 
(Brain Products, Munich, Germany). During the recording, sensors were referenced to 
FCz and grounded at Fpz. The signals were sampled at 1,000 Hz (0.1-μV resolution) 
and band-pass filtered between 0.016 and 250 Hz while impedances were kept below 
20 kΩ.  

The BrainVision Analyzer software (version 2.1.1.327, Brain Products, Munich, 
Germany) was used for preprocessing. First, raw signals were low-pass filtered with a 
cutoff frequency of 225 Hz. After down-sampling to a rate of 500 Hz, a 1 Hz high-pass 
filter (fourth-order Butterworth) and a band-stop filter between 49 and 51 Hz filter 
removing line noise were applied. An independent component (IC) analysis based on 
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the extended infomax algorithm was then conducted based on the -4.2 to 3.2 s peri-
stimulus time windows of the EEG data. Subsequently, ICs representing artifacts 
originating from eye movements or muscles were removed from the unfiltered EEG 
data (61) using visual inspection. Moreover, data segments of 400 ms centered around 
data samples with amplitudes exceeding ±100 μV and data jumps exceeding 30 μV 
were automatically marked for rejection. Finally, the data were inspected visually and 
remaining artifacts were manually marked for rejection. All signals were re-referenced 
to the average reference. The cleaned data were exported to Matlab (version R2019b, 
Mathworks, Natick, MA) and further analyses were performed using FieldTrip [version 
20210411 (62)]. Data were segmented into epochs ranging from -4 to 3 s in peri-
stimulus time and all trials with marked artifacts or pain ratings of zero were excluded. 
This resulted in 49.5 ±	8.5, 16.8 ±	2.8, 18.0 ±	1.6, and 52.9 ±	4.2 trials per participant 
in the liLE, liHE, hiLE, and hiHE conditions, respectively. To assure that all analyses 
for the different trial types were eventually performed on the same number of trials, we 
matched the numbers of trials. Figure S1 shows details of the trial matching procedure. 
 
Source model 
To project sensor-level time series to source level, we employed Linearly Constrained 
Minimum Variance (LCMV) beamformers (63) implemented in FieldTrip (62). 
Frequency-specific array-gain LCMV spatial filters for alpha, beta and gamma 
frequencies were constructed based on a lead field and a frequency-specific 
covariance matrix. A boundary element approximation of a realistically shaped, three-
shell head model was used as the lead field. For each individual and frequency band, 
the covariance matrix was computed from the band-pass filtered, -1 s to 1 s (peri-
stimulus time) concatenated data segments of all (non-rejected) trials. To ensure a 
robust computation of the inverse of the covariance matrix we employed Tikhonov 
regularization as implemented in FieldTrip with a regularization parameter value of 5% 
of the average sensor power. The fixed orientation of the lead field for every source 
location was chosen to maximize the spatial filter output. Source-level signals were 
then obtained by applying the frequency-specific LCMV operator to the corresponding 
band-pass filtered sensor-level time series.  
 
Assessment of source-level time-frequency representations 
Source-level time-frequency representations were obtained using the following 
procedure: First, we projected the band-pass filtered sensor-level signals to source 
space using five frequency-specific LCMV spatial filters (i.e., for frequencies <8 Hz, 8-
12 Hz, 13-30 Hz, 30-60 Hz, and 60-100 Hz). For each ROI, we generated TFRs as 
well as time-courses of alpha, beta, and gamma brain activity. The TFRs are based 
on Hanning-tapered data. Time courses of brain activity were computed based on 
moving time windows and using a Slepian multi-taper approach (see below). TFRs 
and time-courses of brain activity were computed from data segments with widths of 
500 ms and 250 ms for frequencies below and above 30 Hz, respectively. Both TFRs 
and time-courses of brain activity are displayed as percentage change relative to a 
baseline period ranging from 0.75 to 0.25 s before the stimulus. To maximize the 
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signal-to-noise ratio for visualization, the results represent the grand average across 
participants and hi trials. 
Analysis of local brain activity 
Local oscillatory brain activity was assessed as frequency-specific source power of 
the 6 ROIs. First, source level timeseries band-pass filtered to the frequency band of 
interest were obtained using the beamformer described above. For these signals, we 
computed the power of the frequency in the middle of the frequency band of interest 
using a Slepian multi-taper approach (64). The spectral smoothing width was set to 
one half of the width of the frequency band of interest. In this way, the power value 
incorporates information of the entire frequency band of interest. We computed source 
power in the alpha (8-12 Hz), beta (14-30 Hz) and gamma (60-100 Hz) frequency 
bands for each trial. We then averaged power values across trials for each condition 
and subject. To allow for the comparison of the effects on local brain activity to those 
on brain connectivity, the analysis was primarily performed on a 1 s post-stimulus 
interval. However, sensor-level findings indicate that the effects of painful stimuli on 
oscillatory brain activity are usually confined to shorter time windows. Specifically, 
pain-induced suppressions of brain activity at alpha and beta frequencies occur at 
latencies between 500 and 900 ms and between 300 and 600 ms, respectively (33, 
43). In addition, pain-induced increases of brain activity at gamma frequencies occur 
between 150 and 350 ms (44). We therefore performed control analyses using these 
shorter time intervals (see Supplementary Figure S2 for results).  
 
Analysis of inter-regional connectivity 
Connectivity analyses were performed on the 1 s post-stimulus intervals of the source 
level timeseries of the 6 ROIs. First, we computed the source level cross-spectral 
density of each participant using a multi-taper approach analogous to the one used for 
the computation of source power. 

To assess functional connectivity, we calculated the debiased weighted Phase 
Lag Index (dwPLI, (32)) based on all trials of each condition and for every subject. We 
selected the dwPLI measure due to its insensitivity to volume conduction effects.  

For the assessment of the direction of connectivity, we used an asymmetry 
score based on bivariate partial directed coherence (PDC, (38)). Specifically, for two 
ROIs A and B, the bivariate PDC analysis yields two values, PDCAàB and PDCBàA, 
representing the directed connectivity strength from A to B and from B to A, 
respectively. We cast these two values into a single asymmetry score, (PDCAàB - 
PDCBàA)/(PDCAàB + PDCBàA), ranging from -1 to 1. A large absolute value of the 
asymmetry score indicates a strong asymmetry of directed connectivity. The sign of 
the asymmetry score reveals the predominant direction of information flow. Direction 
of connectivity was calculated for connections that had shown intensity, expectation, 
and/or PE effects in previous analyses. For connections with evidence for an intensity 
or expectation effect in the Bayesian ANOVA, we included all trial types in the 
computation of the asymmetry score. For connections with evidence for an interaction 
effect, we included trials with a mismatch between cue and intensity only. 
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Statistical analyses 
For each of the four trial types (liLE, hiLE, liHE, hiHE), behavioral and EEG measures 
were computed based on an identical number of trials. This number was determined 
as the minimum number of available trials across the four trial types. Details of the trial 
matching procedure can be found in the supplementary material (Figure S1).  
Building upon previous investigations (39, 40), we made specific predictions about 
how EEG responses signaling stimulus intensity, expectations, PEs, or combinations 
thereof are modulated across the four trial types. To formally test these predictions, 
we performed repeated measures ANOVAs (rmANOVAs) with the independent 
variables stimulus intensity and expectation. In these rmANOVAs, responses signaling 
stimulus intensity and expectations would manifest as main effects, whereas 
responses signaling PEs would manifest as interactions. To quantify effects and to 
facilitate interpretation of negative findings, we performed Bayesian rmANOVAs 
(41).(41). In Bayesian rmANOVAs, the Bayes factor (BF) is the ratio between the 
likelihood of the data given the effect of interest and the likelihood of the data without 
the effect of interest. BF > 3 and BF > 10 indicate moderate and strong evidence in 
favor of the effect of interest, whereas BF < 1/3 and BF < 0.1 indicate moderate and 
strong evidence against the effect of interest, respectively (41). We considered a 
neural measure or pain rating as corresponding to the intensity or expectation pattern 
if there was at least moderate evidence for the corresponding main effect. Accordingly, 
we considered a neural measure or pain rating as corresponding to the prediction error 
pattern if the evidence for an interaction effect of intensity and expectation was at least 
moderate.  

Lastly, for the assessment of asymmetry of information flow we tested 
asymmetry scores against 0 using a nonparametric Bayesian t-test. 

All parametric Bayesian analyses were conducted using the BayesFactor 
package in R (65), for non-parametric Bayesian t-tests we used freely available R code 
(66).  
 
Bayesian model comparison 
We intended to statistically assess whether an experimental contrast (intensity, 
expectation, or PE) is associated more strongly with local activity or inter-regional 
connectivity. To this end, we conducted a Bayesian comparison of power-based and 
connectivity-based models predicting the levels of intensity, expectation and PE. 
Specifically, we computed the Bayesian evidence of logistic models mapping 
individual power and connectivity values to the probability of observing a certain level 
of intensity, expectation, or PE. In the analysis, we consider Npow = 6 power values 
and Nconn = 15 connectivity values in each of the Nfreq = 3 frequency bands. For each 
of the three types of experimental contrasts, this resulted in Nfreq*Npow = 18 model 
evidence values for the power-based models and Nfreq*Nconn = 45 model evidence 
values for the connectivity-based models. The Bayes factor for, e.g., the intensity 
manipulation reported in the manuscript is the average of the 18 power-based model 
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evidence values divided by the average of the 45 connectivity-based model evidence 
values. For the factor expectation and the interaction between expectation and 
intensity, i.e., PE, we proceeded analogously. The derivation of Bayesian model 
comparisons for logistic regression models follows the description in (67) and is 
provided in the supplement.  
 
Data and code availability 
All raw and preprocessed data in EEG-BIDS format are available at the open science 
framework (OSF, https://osf.io/jw8rv/). The code will be made available at OSF upon 
acceptance. 
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Supplementary Information 
Trial matching 

 
Figure S1. Trial matching. (a) The experiment comprised 160 trials per participant. In 
each trial, a cue (LE/HE) was presented which probabilistically predicted the intensity 
of a subsequent painful stimulus (li/hi). A LE(HE) cue preceded a li(hi) stimulus in 75% 
and a hi(li) stimulus in 25% of trials. This design in combination with the rejection of 
bad trials resulted in an unbalanced number of trials across the four trial types liLE, 
hiLE, liHE, and hiHE. (b) In order to circumvent a sample-size bias problem, all neural 
measures were computed based on the same number (m ≤ 20) of trials. The matching 
of trial sets was done randomly and repeated k = 256 times. For each trial set, the 
corresponding values (pain rating/power/connectivity) were computed. This resulted in 
k estimates per measure which were averaged to obtain a single value per measure.  
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The effects of stimulus intensity and expectations on local brain activity in time 
windows showing strongest responses 
 

 
 
Figure S2. Effects of stimulus intensity, expectations, and prediction errors on local 
brain activity. Power at alpha, beta, and gamma frequencies was quantified using the 
time windows 500-900 ms, 300-600 ms, and 150-350 ms, respectively. Heat maps 
indicate Bayes factors of a Bayesian rmANOVA with factors intensity and expectation. 
The color of the heat map tiles scales with the log of the Bayes factor. It ranges from 
blue (BF < 1/3, at least moderate evidence against an effect) to yellow (BF > 3, at least 
moderate evidence for an effect). Brain schematics display ROIs in yellow which exhibit 
at least moderate evidence for an effect (BF > 3). 
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FRQQHFWLYLW\� 7R WKLV HQG� ZH FRQGXFWHG D %D\HVLDQ FRPSDULRQ RI SRZHU�EDVHG DQG
FRQQHFWLYLW\�EDVHG PRGHOV SUHGLFWLQJ WKH OHYHOV RI LQWHQVLW\� H[SHFWDWLRQ� DQG 3(� 7KH
GHULYDWLRQV LQ WKLV VHFWLRQ IROORZ WKH GHVFULSWLRQ LQ %LVKRS HW DO� �������

6D\ WKHUH DUH N SDUWLFLSDQWV WR EH LQFOXGHG LQ WKH DQDO\VLV� /HW 6i,(i,3i, DQG &i EH
WKH GDWD YHFWRUV DVVRFLDWHG ZLWK SDUWLFLSDQW i ∈ 1, . . . , N � 7KH YHFWRUV 6i = [0, 0, 1, 1]!

DQG (i ∈ [0, 1, 0, 1]! HQFRGH WKH OHYHOV RI VWLPXOXV LQWHQVLW\ �OL� �� KL� �� DQG H[SHF�
WDWLRQ �/(� �� +(� ��� UHVSHFWLYHO\� 7KH YHFWRUV 3i = [P i

/(OL, P
i
+(OL, P

i
/(KL, P

i
+(KL]

! DQG
&i = [C i

/(OL, C
i
+(OL, C

i
/(KL, C

i
+(KL]

! FRQWDLQ WKH FRUUHVSRQGLQJ YDOXHV RI SRZHU DQG FRQQHF�
WLYLW\� UHVSHFWLYHO\� ,Q WKH IROORZLQJ� ZH ZLOO VROHO\ IRFXV RQ WKH FRPSDULVRQ RI PRGHOV
GLVFULPLQDWLQJ ORZ DQG KLJK LQWHQVLW\� 7KH GHULYDWLRQ RI WKH FRPSDULVRQ RI PRGHOV IRU
WKH H[SHFWDWLRQ DQG 3( FRQWUDVWV LV DQDORJRXV�

)LUVW� WR DUULYH DW D VLQJOH ELQDU\ GHSHQGHQW DQG D VLQJOH FRQWLQXRXV LQGHSHQGHQW YDUL�
DEOH �SHU PRGHO�� ZH DYHUDJH WKH GDWD DFURVV WKH WZR OHYHOV RI H[SHFWDWLRQ� ,Q DGGL�
WLRQ� WR DFFRXQW IRU WKH UHSHDWHG PHDVXUHV GHVLJQ RI WKH H[SHULPHQW� ZH FHQWHU WKH
SDUWLFLSDQW�OHYHO LQGHSHQGHQW YDULDEOH DW �� 7KXV� IRUPDOO\�

6̄i =

[
0
1

]
���

3̄i =

[
(P i

/(OL + P i
+(OL − P i

/(KL − P i
+(KL)/4

(P i
/(KL + P i

+(KL − P i
/(OL − P i

+(OL)/4

]
���

&̄i =

[
(C i

/(OL + C i
+(OL − C i

/(KL − C i
+(KL)/4

(C i
/(KL + C i

+(KL − C i
/(OL − C i

+(OL)/4

]
���

7KH GDWD RI DOO SDUWLFLSDQWV LV FRELQHG LQ YHFWRUV 6̄ = [6̄1!, ..., 6̄N!]!� 3̄ = [3̄1!, ..., 3̄N!]!�
DQG &̄ = [&̄1!, ..., &̄N!]!� 7R EH DEOH WR XVH WKH VDPH SULRU IRU DOO LQGHSHQGHQW YDUL�
DEOHV� WKH GDWD YHFWRUV RI WKH LQGHSHQGHQW YDULDEOHV DUH VFDOHG E\ WKHLU VWDQGDUG GHYL�
DWLRQ�

6̂ = 6̄/VWG(6̄) ���
3̂ = 3̄/VWG(3̄) ���
&̂ = &̄/VWG(&̄) ���

,Q ERWK PRGHOV WR EH FRPSDUHG� WKH SUREDELWOL\ RI REVHUYLQJ WKH KLJK LQWHQVLW\ �KL� OHYHO
LV PRGHOHG DV D ORJLVWLF IXQFWLRQ�

p(hi|x;µ, σ) = 1

1 + H[S ((x− µ)/σ)
, ���

ZKHUH µ DQG σ DUH SDUDPHWHUV FRQWUROOLQJ WKH ORFDWLRQ DQG VFDOH RI WKH ORJLVWLF IXQFWLRQ�
UHVSHFWLYHO\� 'HSHQGLQJ RQ WKH W\SH RI PRGHO� WKH FRQWLQXRXV LQGHSHQGHQW YDULDEOH x
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UHSUHVHQWV HLWKHU D SRZHU RU D FRQQHFWLYLW\ YDOXH� 7KH OLNHOLKRRG RI WKH GDWD JLYHQ WKH
PRGHO SDUDPHWHUV WKXV LV

p(6̂, [|µ, σ) =
2N∏

k=1

p(hi|xk;µ, σ)
Ŝk(1− p(hi|xk;µ, σ))

(1−Ŝk). ���

ZLWK

[ =

{
3̂ SRZHU PRGHO �SRZ�
&̂ FRQQHFWLYLW\ PRGHO �FRQQ��

���

)RU WKH FRPSXWDWLRQ RI WKH %D\HVLDQ PRGHO HYLGHQFH D SULRU GLVWLUEXWLRQ RYHU WKH PRGHO
SDUDPWHUV µ DQG σ PXVW EH VSHFLILHG� +HUH� ZH VHOHFW D ELYDULDWH VWDQGDUG QRUPDO
GLVWULEXWLRQ�

[
µ
σ

]
∼ N

([
µ
σ

]
; �, ,

)
, ����

ZKHUH � DQG , DUH WKH ]HUR YHFWRU DQG LGHQWLW\ PDWUL[� UHVSHFWLYHO\� )LJXUH 6� VKRZV
JUDSKV RI ORJLVWLF IXQFWLRQV IRU VHYHUDO SDUDPHWHU YDOXHV GUDZQ IURP WKH SULRU GLVWULEX�
WLRQ�

-10 -8 -6 -4 -2 0 2 4 6 8 10
power (centered and standardized)

0

0.2

0.4

0.6

0.8

1

p(
hi

)

data
 = 0.45,  = -0.2
 = 1.3,  = -0.28
 = -1.3,  = -0.57
 = -0.58,  = 0.72
 = -1.3,  = 1.3
 = -0.13,  = -0.094
 = 0.76,  = -1.4

)LJXUH 6�� *UDSKV RI ORJLVWLF IXQFWLRQV IRU VHYHUDO SDUDPHWHU YDOXHV GUDZQ IURP WKH
SULRU GLVWULEXWLRQ VSHFLILHG DERYH� 7R VKRZ WKH SULRU JUDSKV LQ UHODWLRQ WR WKH GDWD� E\
ZD\ RI H[DPSOH� SRZHU YDOXHV RI 52, 6� DUH GHSLFWHG DV EODFN FLUFOHV� 6SHFLILFDOO\� WKH
[� DQG \�YDOXHV RI WKH GDWD SRLQWV FRUUHVSRQG WR WKH YDOXHV LQ YHFWRUV 3̂ DQG 6̂� UHVSHF�
WLYHO\�

$FFRUGLQJ WR %D\HV¶ UXOH� WKH SUREDELOLW\ RI WKH GDWD JLYHQ WKH PRGHO �D�N�D� PRGHO
HYLGHQFH� LV

pPRGHO =

∫∫
p(6̂, [|µ, σ) N

([
µ
σ

]
; �, ,

)
dµ dσ, ����
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ZKHUH IRU WKH SRZHU DQG FRQQHFWLYLW\ PRGHOV� [ LV VXEVWLWXWHG E\ 3̂ DQG &̂� UHVSHFWLYHO\�
,Q RXU LPSOHPHQWDWLRQ� ZH FRPSXWH WKLV LQWHJUDO XVLQJ VWDQGDUG 0RQWH &DUOR LQWHJUDWLRQ
ZLWK 105 VDPSOHV�

7KH GHVFULEHG SURFHGXUH UHVXOWV LQ NSRZ = 6 SRZHU DQG NFRQQ = 15 FRQQHFWLYLW\ YDOXHV
SHU IUHTXHQF\ EDQG� 7KH PRGHO HYLGHQFH LV FRPSXWHG IRU DOO LQGLYLGXDO SRZHU DQG
FRQQHFWLYLW\ YDOXHV DW DOO NIUHT = 3 IUHTXHQF\ EDQGV� 7KH UHVXOWLQJ PRGHO HYLGHQFH
YDOXHV DUH GHQRWHG E\ pml

SRZ DQG pnlFRQQ ZLWK LQGLFHV m� n� DQG l FRGLQJ IRU WKH GLIIHUHQW
SRZHU� FRQQHFWLYLW\ DQG IUHTXHQF\ YDOXHV� UHVSHFWLYHO\� 7KH %D\HV IDFWRUV UHSRUWHG LQ
WKH PDQXVFULSW UHSUHVHQW WKH UDWLR RI DYHUDJHG PRGHO HYLGHQFHV�

BFSRZ�FRQQ =
NFRQQ

∑NSRZ
m=1

∑NIUHT
l=1 pml

SRZ

NSRZ
∑NFRQQ

n=1

∑NIUHT
l=1 pml

FRQQ

����

BFFRQQ�SRZ = (BFSRZ�FRQQ)
−1 ����


