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Abstract 
Primary resistance drastically limits the clinical success of immune checkpoint 

blockade (ICB) in melanoma. Resistance to ICB may also develop when tumours 

relapse after targeted therapy. To identify cancer cell-intrinsic mechanisms driving 

resistance to ICB, we generated single-cell RNA-sequencing (scRNA-seq) data from 

a prospective longitudinal cohort of patients on ICB therapy, including an early time 

point obtained after only one cycle of treatment. Comparing these data with murine 

scRNA-seq datasets, we established a comprehensive view of the cellular architecture 

of the treatment-naïve melanoma ecosystem, and defined 6 evolutionarily conserved 

melanoma transcriptional metaprograms (Melanocytic or MEL, Mesenchymal-like or 

MES, Neural Crest-like, Antigen Presentation, Stress (hypoxia response) and Stress 

(p53 response)). Spatial multi-omics revealed a non-random geographic distribution 

of cell states that is, at least partly, driven by the tumour microenvironment. The single-

cell data allowed unambiguous discrimination between melanoma MES cells and 

cancer-associated fibroblasts both in silico and in situ, a long-standing challenge in 

the field. Importantly, two of the melanoma transcriptional metaprograms were 

associated with divergent clinical responses to ICB. While the Antigen Presentation 

cell population was more abundant in tumours from patients who exhibited a clinical 

response to ICB, MES cells were significantly enriched in early on-treatment biopsies 

from non-responders, and their presence significantly predicted lack of response. 

Critically, we identified TCF4 (E2-2) as a master regulator of the MES program and 

suppressor of both MEL and Antigen Presentation programs. Targeting TCF4 

expression in MES cells either genetically or pharmacologically using a bromodomain 

inhibitor increased immunogenicity and sensitivity to targeted therapy. This study 

describes an increasingly complex melanoma transcriptional landscape and its rapid 

evolution under ICB. It also identifies a putative biomarker of early response to ICB 

and an epigenetic therapeutic strategy that increases both immunogenicity of ICB-

refractory melanoma and their sensitivity to targeted therapy. 
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Introduction 
Despite several breakthroughs in the field, metastatic melanoma (MM) continues 

to be a major clinical challenge1,2. Although treatment outcomes have substantially 

improved since the introduction of immune checkpoint blockade (ICB)3,4 approximately 

half of the MM patients do not gain any durable survival benefit. One of the key 

challenges is therefore to elucidate why ICB therapies, such as anti-PD-1, anti-CTLA-

4 or their combination, are effective in some, but not all, patients, and ultimately identify 

rational therapeutic (combination) strategies that overcome resistance. 

Tumour-extrinsic and intrinsic mechanisms can drive resistance to ICB5,6. For 

instance, tumour mutational burden has been associated with ICB response through 

increased neoantigen formation, bolstering immunogenicity7,8. Inactivating mutations 

in genes encoding components of the antigen processing and/or presentation 

machinery (e.g., MHC class I, B2-microglobulin) can lead to ICB resistance. Similarly, 

tumours with inactivating mutations in JAK1/JAK2 are associated with loss of 

interferon responsiveness, and thereby resistance to PD-1 blockade9,10.  

In addition, there is increasing evidence that melanoma cells can adopt a variety 

of phenotypic states through nongenetic reprogramming, and thereby exhibit different 

sensitivities to cancer treatments, including ICB11. Dedifferentiation of melanoma cells 

was previously described as such a nongenetic mechanism that drives immune 

escape and resistance to adoptive T cell transfer12,13. Based on bulk RNA-seq data 

analyses of anti-PD-1 treated melanoma patients, with samples collected at baseline 

and upon progression, it was further proposed that dedifferentiation may also be a 

mechanism driving resistance to ICB14. Deconvolution of additional bulk RNA-seq 

datasets and immunostaining further confirmed the enrichment of a dedifferentiated 

(NGFRhigh) Neural-Crest-like program in tumours associated with immune-exclusion15 

and resistance to immunotherapy16. Mechanistically, dedifferentiation was proposed 

to dampen response to ICB due to a decrease in expression and/or presentation of 

melanocytic antigens12,13, MHC class I downregulation17, and secretion of the 

neurotrophic factor BDNF, which contributes to resistance to antigen-specific T cells15. 

Consistent with these findings, the innate PD-1-inhibitor resistance (IPRES) signature 

(which was defined based on the analysis of bulk RNA-seq data and includes 26 gene 

signatures associated with dedifferentiation) was associated with poor response to 

anti-PD-1 in pre-treatment biopsies14. However, such an association could not be 

established in other melanoma cohorts18,19. The difficulty in identifying reliable 
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predictive information at baseline using bulk transcriptomic data was further 

exemplified by the lack of reproducibility when predicting response to ICB using 

IMPRES16,20, yet another gene expression signature derived from bulk RNA-seq 

datasets21 . Bulk longitudinal analyses later confirmed that a robust pre-treatment 

biomarker is unlikely to capture the heterogenous nature of cancer and/or anticipate 

the rapid evolution of tumour phenotypes under ICB therapy17. 

It has therefore become evident that understanding resistance to ICB requires 

single-cell resolution and temporal dissection of the entire cellular architecture of the 

melanoma ecosystem. Using scRNA-seq, a MYC-driven malignant gene expression 

signature associated with immune evasion and T-cell exclusion was recently 

identified22. Although very informative, this study was limited by the recovery of a 

relatively small number of malignant cells and absence of patient-matched samples 

across both time points. In addition, only one responder was identified in the discovery 

cohort. It is important to note that, equal to the previous study by the same group23, 

most biopsies in this study originated from patients with prior exposure to diverse 

treatments. Therefore, a comprehensive view of the cellular architecture of the 

treatment-naïve melanoma ecosystem, and in particular of its transcriptomic 

landscape, and its evolution under ICB therapy is still lacking. 
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Results 
Portraying the treatment-naive human melanoma transcriptomic landscape. 

To dissect the cellular composition of the human melanoma ecosystem and 

study how it evolves under ICB, we set up a unique prospective longitudinal study 

including treatment naïve stage III/IV (AJCC 8th edition) melanoma patients receiving 

anti-PD-1 based therapy (anti-PD-1 monotherapy (nivolumab): n=17; anti-PD-1 and 

anti-CTLA4 combination therapy (ipilimumab + nivolumab): (n=6) SPECIAL trial; 

UZ/KU Leuven #S62275). Cutaneous, subcutaneous or lymph node metastases were 

biopsied before initiation of therapy (before treatment; BT). Subsequently, a second 

tumour biopsy was collected right before the administration of the second ICB 

treatment cycle (early on-treatment; OT). We obtained patient- and lesion-matched 

biopsies across both time points for 20 patients. Part of the obtained material was 

preserved for routine pathological assessment, multiplex immunohistochemistry 

(mIHC), multiplex RNA fluorescence in situ hybridization (mFISH) and untargeted 

spatial transcriptomics. The remaining tissue was processed for single-cell 

transcriptome profiling (Figure 1A). Demographic, clinical, histopathological and 

genetic information was collected at baseline. Patients with unresectable disease were 

stratified as responders (complete remission, partial remission) and non-responders 

(stable disease, progressive disease) based on RECISTv1.1. best overall response, 

whereas patients treated with curative intent were stratified according to pathological 

response assessment at tumour resection24.  

In total, > 59K single cells passed our quality control requirements (see 

methods). To dissect the cellular composition of the melanoma tumour 

microenvironment (TME), we first measured the activity of previously described 

stromal, immune and malignant/melanoma gene sets22 and assigned each cell from 

the unsupervised clusters to one of these three compartments (Supplemental Figure 

S1A-C). Importantly, each of these compartments could be detected in all lesions, 

irrespective of their metastatic site of origin (Supplemental Figure S1D). 

We further refined our malignant cell annotation pipeline to filter out cells that do 

not exhibit large-scale genomic rearrangements (Supplemental Figure S1E), and do 

not harbour a high score for the malignant signature described by Jerby-Arnon and 

colleagues22 or for the “Melanoma Signature”, which we generated to discriminate 

between dedifferentiated melanoma cells and cancer-associated fibroblasts 
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(Supplemental Figure S1E,F and Supplemental Table S1; see methods and below). 

We also excluded cells expressing the immune cell marker gene PTPRC (CD45).  

As previously reported for melanoma22,23,25 and other human cancers26,27, 

dimension reduction visualisation showed a clear separation of malignant cells per 

patient, thereby impeding identification of shared transcriptomic states (Supplemental 

Figure S2A). This was partly overcome by regressing for patient ID and integrating the 

data using Harmony28 (Supplemental Figure S2B,C). Silhouette29 scores were 

measured to identify the optimal clustering resolution (Supplemental Figure S2D), 

which we initially set to 12 Seurat malignant clusters (Supplemental Figure S2E). 

Differential gene expression (DEG) analysis resulted in characteristic gene lists for 

each cluster (Supplemental Table S2). This analysis prompted us to merge cluster 0 

and cluster 2 as they exhibited a similar enrichment for ribosomal genes, thus yielding 

11 distinct malignant clusters.  

For an in-depth characterisation of the treatment-naïve melanoma ecosystem, 

we performed another DEG analysis focusing on the untreated samples and 

interpreted the differentially expressed gene lists (Supplemental Figure S3A and 

Supplemental Table S3) using EnrichR30 across multiple databases (Supplemental 

Table S4). Gene regulatory modules were also defined for each cluster using 

SCENIC31 (Supplemental Figure S3B and Supplemental Table S5). 

For the functional annotation of malignant clusters (Figure 1B) we relied both on 

the interpretation of DEG lists, with various gene set enrichment tools (Supplemental 

Table S4), and prior biological knowledge acquired through analysis of a scRNA-seq 

dataset from Tyr::NRasQ61K/°;Ink4a-/- mouse tumours32. Unsupervised clustering of 

these mouse lesions identified 7 distinct melanoma cell states, which we named 

Melanocytic, Mesenchymal-like, Neural Crest-like, Stress (hypoxia), RNA-processing, 

Stem-like (pre-EMT) and Antigen Presenting cell states. 6 of these 7 murine 

melanoma states overlapped with cellular states identified in the human lesions 

(Figure 1C). These included the Melanocytic (MEL), Mesenchymal-like (MES), 

Antigen Presentation, Neural Crest-like, Stress (hypoxia response) cell states. The 

murine RNA processing state largely overlapped with the human Stress (p53 

response) state. Among the previously described marker genes NGFR was identified 

in the Neural-Crest-like state, VEGFA was highly expressed in Stress (hypoxia 

response) cells, and collagen genes (i.e. COL5A1) in MES cells (Supplemental Figure 

S3A). HLA class I and II and other genes involved in antigen processing and 
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presentation, such as TAP1, B2M and NLRC5, were identified as discriminative 

markers of the Antigen Presentation cell population (Supplemental Figure S3A and 

Supplemental Table S3). Antigen Presentation cells also expressed many of the 

canonical interferon-stimulated genes, including among others STAT1-regulated 

genes (Supplemental Figure S3B and Supplemental Table S3). 

The cross-species comparison also highlighted five human-specific cell states: 

an Interferon Alpha/Beta Response state expressing interferon type I responsive 

genes (i.e. IFI6, IFI27, IRF7), but not genes involved in antigen processing and 

presentation. A Mitotic state, which expressed high levels of MKI67 and TOP2A, was 

also identified, as well as a Mitochondrial state, which exhibited high mitochondrial 

gene expression and showed no consistent pathway enrichment. We annotated this 

latter cell state as a “low quality” (LQ) malignant cell cluster. Mitotic and Mitochondrial 

(LQ) cell clusters are both routinely identified in human tumour biopsy samples33,34. 

Finally, two patient-specific clusters (Patient-specific A and Patient-specific B), which 

did not exhibit any specific recognizable functional features, emerged at this level of 

resolution. Since these clusters were only detected in individual patients, we 

postulated that they may be driven by specific genetic alterations. Note that while the 

murine pre-EMT stem-like state did not emerge as an independent cluster, supervised 

analysis highlighted human melanoma cells from different patients residing in this 

state32. 

Using the gene signature of each state we calculated signature scores and 

visualized each score per state (Figure 1D). While the cellular heterogeneity of 

melanoma cells broadly aligned with the 11 cell states, a substantial fraction of cells 

was not exclusively constrained to these states, indicating that melanoma cells can 

manifest multiple and/or overlapping phenotypes.  

The MITF rheostat model predicts that melanoma cell state identity is regulated 

by the activity of the MITF transcription factor (TF)11. The proliferative/melanocytic and 

dedifferentiated invasive/mesenchymal-like states exhibit high and low MITF activity, 

respectively. Measuring the activity of these gene expression programs35,36 across all 

malignant cells confirmed that cells with varying MITF activity co-exist in drug-naïve 

human metastatic melanoma lesions (data not shown). As expected, the Neural Crest-

like and MES states were the most dedifferentiated states. We also measured the 

activity of a series of previously published melanoma transcriptional cell states37–40 
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identified in various cellular and/or in vivo model systems to confirm their identity 

and/or presence in clinical samples22 (Figure 1E and Supplemental Table S6). 

Next, we grouped all malignant cells in distinct Copy Number Variation (CNV) 

genomic clusters using the inferred CNV profiles described in Supplemental Figure 

S1E. An alluvial plot was used to connect the genomic and transcriptomic clusters for 

each cell (Figure 1F). Except for cells from the patient-specific clusters A and B, all 

transcriptional clusters were fed with cells from different genomic clusters. 

Moreover, we were able to retrieve all the metaprograms in most of the samples 

and we did not observe any association between the abundance of a particular 

melanoma cell state and a specific oncogenic driver mutation (Supplemental Figure 

S4C, D).  

Together these analyses identified several recurrent and evolutionarily 

conserved transcriptional metaprograms in melanoma, which do not appear to be 

driven by genetic intra-tumour heterogeneity, but instead are likely to be specified by 

cues emanating from the tumour microenvironment. 

 

Spatially mapping of melanoma cell state diversity. 
To gain insights into the spatial organization of the various melanoma cell states 

in drug-naïve lesions, we performed untargeted spatially resolved transcriptomics on 

selected samples (n=6; S1 to S6) from our patient cohort, using the 10X Genomics 

Visium platform. Each section was annotated by a pathologist based on the 

morphology of the associated haematoxylin and eosin (H&E) staining. Regions were 

labelled as either malignant, stromal or immune.  

On the Visium platform, multiple (often different) cell types contribute to the 

transcription profile of each capture area or spot (up to 20 cells/spot). Therefore, to 

properly capture the nuances of the molecular profile of each patient, and to not risk 

quenching weak signals, each slide/patient was analysed separately41. To spatially 

resolve the malignant cell states, the spatial transcriptomics data was integrated with 

the scRNA-seq data using Seurat-v3 anchor-based (CCA) integration42 and CellTrek43 

deconvolution methods (Figure 2A and Supplemental Figure S5A). The Seurat 

anchor-based integration confirmed that spots in cancer regions were highly enriched 

for the malignant signature and spots falling outside of the malignant areas were 

enriched with stromal and/or immune cells (data not shown). These findings were 

considered as affirmative of our mapping’s validity. 
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These spatial transcriptomics data further confirmed the existence of the above-

described melanoma cell states, including the two stress states (hypoxia response 

and p53 response), among cancer cells in the absence of dissociation for scRNA-seq. 

Zooming further into the cancer regions revealed that melanoma transcriptional 

metaprograms are not randomly distributed but tend to co-occur in spatially restricted 

clusters (Figure 2A-B and Supplemental Figure S5A-B). The differential spatial 

distribution of the malignant cell states can be further highlighted through co-

localisation analyses. We found that, as opposed to Mesenchymal-like cells, cells 

harbouring the Neural Crest-like state preferentially co-occurred with Antigen 

presentation cells (Supplemental Figure S5C). 

 Using the scRNA-seq data, we further established a significant positive 

correlation between the percentage of cells harbouring the Antigen Presentation state 

and activated CD8+ T cells (Figure 2C). Quantitative inference and analysis of 

intercellular communication networks predicted a functional interaction between these 

two cell types through engagement of the MHC class I and II signalling pathways 

(Figure 2D). Consistently, the Antigen Presentation cell state was enriched in lesions 

with an immune inflamed, often referred to as brisk, phenotype (Supplemental Figure 

S5D). To further establish a spatial relationship between these two cell types, we 

performed mIHC using multiple iterative labelling by antibody neodeposition44 (MILAN) 

on treatment naïve melanoma samples (n=10). Neighbourhood analysis confirmed 

enrichment of melanoma cells positive for the MHC class II marker HLA-DR in the 

proximity of CD8+ T cells (Tcy; Figure 2E,F). In contrast, HLA-DR-negative melanoma 

cells and CD8+ T cells occurred in mutually exclusive regions. 

Together, these findings indicate that the transcriptomic heterogeneity of 

melanoma is spatially organized within the tumour architecture and is, at least partly, 

driven by heterotypic cellular interactions with the tumour microenvironment. For 

instance, by integrating signalling predictions with cellular proximity, the data suggest 

that the melanoma Antigen Presentation cell population emerge by direct interaction 

with immune cells (i.e. CD8+ T cells). 

 

Unambiguous detection of melanoma MES cells. 
Similar to epithelial cancer cells that have undergone Epithelial-to-Mesenchymal 

Transition (EMT), melanoma cells that acquired a mesenchymal-like/dedifferentiated 

phenotype closely resemble normal mesenchymal cells and cancer associated 
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fibroblasts (CAFs) in particular11,45,46. Findings concerning EMT through the analysis 

of bulk-level expression data from human tumours have therefore been confounded 

by the presence of CAFs47. Moreover, identification of coherent and specific marker 

gene sets that distinguish CAFs and malignant cells that underwent EMT has been a 

major challenge in the field. Recently, an approach for decoupling the mesenchymal 

expression profiles of cancer cells and CAFs leveraging scRNA-seq datasets was 

developed and applied to various epithelial cancers47. Unexpectedly, there was no 

clear evidence for a full EMT malignant state, indicating that this state either does not 

exist, or is extremely rare and/or transient. Instead, cancer cell-specific partial EMT 

(pEMT) programs that are distinct from CAF signatures were defined. Even more 

surprisingly, pEMT was not associated with any specific clinical features across 

cancers, thereby indicating that the clinical relevance of pEMT expression programs 

may be highly context-specific. Our single cell analyses did, however, identify 

melanoma cells expressing a full MES program in both human and mouse32 datasets. 

In our human dataset, the 50 most abundantly expressed genes in MES cells were 

remarkably almost all highly expressed in CAFs (Figure 3A, left panel and 

Supplemental Figure S6A, B). In order to define a melanoma-specific Mesenchymal-

like gene expression signature, we established a list of the 50 most differentially 

expressed genes between melanoma MES cells and CAFs (Figure 3A right panel and 

Supplemental Table S7). Several of these genes including CDH19 and S100A1, which 

we termed Minimal Lineage Genes (MLGs), were identified in both mouse and human 

MES signatures and were indeed highly and selectively expressed in MES cells 

(Figure 3B). Importantly, expression of these genes was higher than MITF and SOX10, 

two melanoma markers known to be expressed at very low to undetectable levels in 

the dedifferentiated MES cells. In contrast, whereas stromal genes like THY1, LUM 

and DCN were expressed at higher levels in CAFs than in MES cells, several markers 

including the basic helix-loop-helix TF TCF4 (also known as ITF2 or E2-2) were 

instead expressed at comparable levels in both cell types (Figure 3C). Note that, 

consistent with previous findings48, TCF4 expression was also detected in endothelial 

(ECs) and plasmacytoid dendritic cells (pDCs; data not shown). Measuring expression 

of these genes in all melanoma states revealed that while CDH19 and S100A1 were 

expressed in all of them (including MES cells), TCF4 and other stromal genes were 

selectively expressed in melanoma MES cells (Figure 3D). We conclude that the 

MLGs provide the field with a unique tool to unambiguously discriminate between 
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dedifferentiated/mesenchymal-like melanoma cells and CAFs in both mouse and 

human single-cell datasets.  

We next sought to devise a method for the detection and mapping of 

Mesenchymal-like cells in situ. Because expression of the MLGs is relatively low in 

MES cells, we opted to combine a highly sensitive detection mFISH method 

(RNAscope) with a multiplexed protein staining assay CODEX for CO-Detection by 

indEXing49. Guided by our scRNA-seq data, we designed a mFISH panel selecting the 

most discriminatory MLGs (S100A1 and CDH19) and MES (THY1, DCN, LUM) 

markers to complement a broad panel of melanoma, immune and stromal protein 

markers (see methods for a full list). We included the pan-mesenchymal marker TCF4, 

as well as MITF and SOX10, in both our protein and RNA panels. We first tested the 

method on a selected treatment naïve melanoma lesion. MES cells were identified by 

co-staining of MLGs (CDH19 and S100A1) and melanoma markers (MITF and 

SOX10) with MES markers (DCN, THY1, LUM and TCF4) within the CD45-negative 

cell population. Instead, CAFs were positive for the MES markers and negative for 

MLGs. Other melanoma subpopulations were positive for the MEL and MLG markers 

and negative for the MES markers (Figure 3E). Note that pDCs were identifiable as 

CD45+ CD31- MES- MLGs-, and ECs were CD45- CD31+ MES+ MLGs- (data not 

shown). To further validate our method, we selected another melanoma sample that 

was particularly rich in melanoma MES cells and harboured the BRAFV600E mutation. 

We stained adjacent sections with our combined multiplex IHC/FISH protocol, and with 

an antibody directed against BRAFV600E mutation. As expected, this sample contained 

a very high proportion of cells identified as melanoma MES cells (Supplemental Figure 

S6C). These same cells also stained for the BRAFV600E-specific antibody, thus further 

confirming their malignant origin. 

Together, these data provide methodologies to unambiguously identify true 

melanoma MES cells in both scRNA-seq datasets and on tissue sections, and firmly 

establish the presence of these cells in human treatment-naïve melanoma lesions. 

 

MES cells are enriched in early on-treatment melanomas refractory to ICB. 
Having established the cellular architecture of the drug-naïve melanoma 

ecosystem and the necessary tools for the unambiguous annotation of all malignant 

cell states, we next studied how one cycle of ICB therapy may remodel the melanoma 

transcriptional landscape. There were no overall differences in the proportion of the 
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various melanoma cell states between the BT and OT time points grouping responding 

and non-responding patients. (Supplemental Figure S7A). Interestingly, however, two 

of the melanoma cell states, namely the MES and Antigen Presentation states were 

associated with divergent clinical responses (Figure 4A). Whereas the Antigen 

Presentation cell state was enriched in OT samples from responders (R), the MES 

cells were significantly enriched in OT samples from non-responders (NR). The trend 

of increased abundance of Antigen Presentation cells in lesions from R compared to 

NR was already observed BT, but this difference was further enhanced at the OT time 

point (Figure 4A). This observation is consistent with previous findings showing that a 

subset of melanomas, which harbour tumour cells expressing MHC class II (HLA-DR) 

molecules, are characterized by an increased CD8+ tumour infiltrate and favourable 

response to anti-PD-1 therapy50. 

 In contrast, the enrichment of melanoma MES cells in the NR lesions was only 

observed OT (Wilcoxon-test p=0.015). Importantly, the presence of both MES and 

Antigen Presentation cell populations in the OT samples showed a high diagnostic 

ability for response prediction and, thereby, biomarker potential (Figure 4B), whereas 

none of the other melanoma cell states showed any significant association with 

response (Supplemental Figure S7B). 

  

TCF4 orchestrates multiple melanoma transcriptional metaprograms. 
TCF4 is a known EMT inducer that promotes tumour progression and cell 

survival, in various epithelial cancers51–54. In melanoma, TCF4 was shown to promote 

invasion55,56. In agreement with these observations, within the malignant 

compartment, TCF4 is both specifically expressed and transcriptionally active in MES 

cells (Supplemental Figure S3A,B and Figure 3D). Consistent with these findings, 

TCF4 expression was higher in the human TCGA samples harbouring the Verfaillie et 

al.36 invasive/mesenchymal-like (INV) compared to proliferative (PRO) melanoma 

signature, as well as in metastatic compared to primary lesions (Supplemental Figure 

S8A,B). TCF4 expression also inversely correlated with MITF expression in samples 

from the TCGA cohort (Supplemental Figure S8C). 

To assess the contribution of TCF4 in the establishment/maintenance of the MES 

transcriptional metaprogram, we performed bulk RNA-seq in a short-term melanoma 

MES line (MM099), following silencing of TCF4 expression. Genes downregulated 

upon TCF4 knockdown were involved in cellular movement, EMT, integrin signalling 
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and angiogenesis, thus establishing its role as a driver of the MES transcriptional 

program (Figure 5A,B). This was concomitant to an upregulation of a series of MITF 

target genes and genes from the MEL transcriptional program (Figure 5B). This 

observation was consistent with a previous report indicating that TCF4 can repress 

MITF in normal melanocytes57. However, whether TCF4 represses MITF in melanoma 

cells is unknown. To test this hypothesis, we overexpressed TCF4 in two different 

melanocytic melanoma cell lines (MM001 and MM011) and observed a 

downregulation of both MITF mRNA and protein levels as well as of its target genes 

(Figure 5C,D). These data indicated that, in addition to its function as a master 

regulator of the MES transcriptional program, TCF4 also actively suppresses the 

MITF-driven melanocytic transcriptional program. Importantly, silencing TCF4 in 

MM099 caused a dramatic decrease in the ability to invade in short-term in vitro 

migration assays (Supplemental Figure S8D).  

Consistent with the melanoma MES state being intrinsically resistant to MAPK 

therapeutics11, an inverse correlation between the sensitivity to BRAF- and MEK-

inhibitors and TCF4 expression was observed in the Cancer Cell Line Encyclopedia 

melanoma cell line cohort (Supplemental Figure S8E). Critically, silencing TCF4 

sensitized the human melanoma BRAFV600E-mutant invasive line MM099 to these 

inhibitors (Figure 5E). These data indicated that TCF4 contributes to the acquisition 

and/or maintenance of the mesenchymal-like phenotype and thereby to resistance to 

targeted therapy. 

Remarkably, many genes involved in immune response (antigen processing and 

presentation, activation of leukocytes, and interferon signalling) were upregulated 

upon TCF4 knockdown (Figure 5A,B). This included the transcription factor NLRC5, a 

master regulator of MHC class I and related genes58. Consistently, there was a strong 

enrichment of the Antigen Presentation and Interferon (IFN) signalling gene signatures 

among the genes upregulated upon TCF4 silencing. Together, these data indicated 

that TCF4 actively suppresses the melanoma MEL, Antigen Presentation and 

Interferon signalling gene expression programs. By doing so, TCF4 may directly 

promote immune cell evasion and/or resistance to immunotherapy. Indeed, immune 

cells often target melanoma cells because they express melanocytic antigens. By 

suppressing the antigen processing and presentation machinery, TCF4 may further 

protect dedifferentiated melanoma cells from T-cell killing. Consistent with this model, 

TCF4 silencing increased apoptotic cell death activation in a melanoma MES cell 
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culture exposed to HLA-matched peripheral blood mononuclear cells (PBMCs), which 

were pre-treated with a T-cell activating cytokine cocktail (Figure 5F). 

 

Targeting TCF4 expression through BET inhibition. 
TCF4 was shown to drive B cell lymphoma and blastic plasmacytoid dendritic 

cell neoplasm (BPDCN)54,59. In these studies, TCF4 expression was shown to be 

dependent on the bromodomain and extra terminal domain (BET) protein BRD4 

through its recruitment to a specific TCF4 enhancer region. Inhibition of BRD4 using 

the BET-degrader ARV-771 was shown to decrease TCF4 expression. Interestingly, 

bulk Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) 

revealed that the BRD4-binding enhancer region upstream from the TCF4 promoter is 

largely accessible in melanoma MES cells such as MM099 and MM057, but not in 

melanoma MEL cells such as MM001 and MM011 (Figure 6A). Exposure of the 

melanoma line MM057 to the BET-degrader ARV-771 decreased chromatin 

accessibility upstream of the TCF4 locus, including of one of the sites previously 

identified as a BRD4-bound enhancer region (Figure 6A). Consistently, this treatment 

led to a dose-dependent decrease in TCF4 expression (Figure 6B). Notably, the 

overall transcriptional reprogramming effect observed upon BET-inhibition was far 

more drastic in MES than in MEL cell lines (Figure 6C), indicating that the MES 

transcriptional program may be particularly dependent on BET epigenetic reader 

proteins.  

Furthermore, exposure to ARV-771 recapitulated most of the transcriptional 

changes observed upon TCF4 silencing (Figure 6D-F). Most genes from the MES 

signature were strongly downregulated, whereas genes from the MITF-dependent 

MEL signature were upregulated. Importantly, just like upon TCF4 knockdown, these 

transcriptional changes were accompanied by an increased sensitivity to BRAF- and 

MEK-inhibition (Figure 6G). Moreover, the antigen presentation program was also 

upregulated upon exposure to ARV-771 (Figure 6D). This observation raises the 

possibility that this compound may also be used to increase the immunogenicity of 

MES cells and thereby their sensitivity to ICB. 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.11.502598doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.11.502598
http://creativecommons.org/licenses/by/4.0/


 15 

Discussion  
In this study, we portrayed the cellular architecture of treatment-naïve skin and 

lymph node melanoma metastases, and thereby provide the field with a rich resource 

which may serve as the foundation for the creation of a comprehensive cell atlas of 

melanoma. 

We focused our attention on the malignant compartment and show that the 

melanoma transcriptional landscape is even more complex than previously assumed. 

We describe a series of recurrent cell states that are evolutionarily conserved and 

show that the spatial distribution of these distinct melanoma subpopulations is not 

random, suggesting that the tumour microenvironment directly contributes to this 

geographically organised transcriptomic heterogeneity. This is, for instance, illustrated 

by the proximity we describe between the Antigen Presentation cell population and T 

cells, which suggests that this particular transcriptional program may be acquired 

through an intercellular communication pathway established by T cells. In 

concordance with this hypothesis, we previously observed that engraftment of a 

homogeneous mouse melanocytic cell line into immune competent, but not into 

immunodeficient, mice resulted in the formation melanoma lesions harbouring a 

complex and heterogenous transcriptomic landscape that included the Antigen 

Presentation cell state32 (data not shown). Moreover, a cancer cell state that 

expresses both antigen processing and interferon response genes was recently 

shown to recur across multiple tumour types and to colocalize with T cells60. 

The functional contribution to tumour growth and/or metastatic spreading of 

these newly defined melanoma transcriptional states remain to be explored. The 

identification of these evolutionarily conserved states makes it possible to use the 

mouse as a model system for this, through lineage tracing and depletion experiments. 

Notably, using such approaches, we recently demonstrated that a population of MES 

cells present in primary tumours in minute amounts drives the metastatic process32. 

Importantly, our single-cell RNA-sequencing data made it possible to identify true 

malignant MES cells and develop a set of markers that unambiguously distinguish 

MES cells from CAFs in scRNA-seq datasets, as well as in situ. The method we 

describe herein is a critical step forward for the field, as it permits to directly assess 

the contribution of this critical cell population to various aspects of melanoma biology 

and map their position within the complex melanoma ecosystem. In addition, the gene 

signature established from our single-cell datasets may also, in theory, be used to infer 
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the proportion of MES cells from bulk transcriptomics data. However, although we 

have not tested the performance of our MES signature to predict the presence of these 

cells in bulk RNA-sequenced samples, we anticipate that, given the overall rarity of 

these cells in our melanoma samples, obtaining reliable deconvolution results may be 

very challenging. Such deconvolution analyses should therefore be performed with 

extreme caution. 

Previous studies indicated that melanoma de-differentiation may contribute to 

immune escape12,13. However, a clear association between melanoma MES and 

resistance to immune checkpoint inhibition is yet to be formally established. Our data 

provide evidence that these cells may contribute to primary resistance to ICB therapy 

and that their presence after one cycle of treatment is predictive for a lack of response. 

This observation indicates that (multiplex) analysis of an early on-treatment biopsy (2 

weeks after the first infusion of immune checkpoint inhibitors) may provide a predictive 

biomarker for robust stratification of patients into R and NR, and thus before NR 

patients are increasing their risk of developing treatment related adverse events. This 

observation validates our initial hypothesis that early on-treatment samples may be 

much more informative than baseline samples. It is, however, important to stress that 

the predictive value of the presence of MES cells needs to be firmly established in a 

larger population cohort before this concept can be exploited clinically.  

Although the presence of MES in the on-treatment samples is predictive of lack 

of response, their proportion remains overall relatively low (below 20% of all malignant 

cells for most samples) at this early time point. Additional studies will be needed to 

monitor the dynamics of this population over time and assess whether their proportion 

increases at later time points. However, this observation also suggests that these cells 

are not the only melanoma cells able to escape T cell killing. One interesting possibility 

is that the MES population may also contribute to primary resistance to ICB in a non-

cell autonomous manner, by promoting an immunosuppressive environment. In 

support of this possibility, emerging data indicate that cells harbouring overlapping 

phenotypes with melanoma MES cells, such as inflammatory fibroblasts and 

mesenchymal carcinoma cells, do secrete immunosuppressive factors such as 

CD7361. Moreover, it was shown that expression of the EMT TF ZEB1 in melanoma 

cells is associated with decreased CD8+ T cell infiltration and ZEB1 ectopic expression 

in melanoma cells impairs CD8+ T cell recruitment in syngeneic mouse models, 

resulting in tumour immune evasion and resistance to ICB therapy. Mechanistically, it 
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was shown that ZEB1 directly represses the secretion of T cell-attracting chemokines, 

including CXCL1062. 

We identified TCF4 (E2-2) as a key driver of the mesenchymal-like transcriptional 

program. Other TFs such as c-JUN/AP163, ZEB162, SOX964, TEADs36 and more 

recently PRRX132. have previously been identified as master regulators of this 

particular program. It will be thought-provoking to study how redundant and 

interconnected the activity of these TFs are.  

Critically, our data suggest that in addition to driving the MES transcriptional 

program and related phenotypes, TCF4 actively suppresses both the MEL and antigen 

presentation programs. By doing so, TCF4 may directly promote immune cell evasion 

and resistance to ICB therapy as melanocytic antigens are prime targets of the 

adaptive immune system. Moreover, by suppressing the antigen processing and 

presentation machinery, TCF4 may further reduce the immunogenicity of this 

dedifferentiated melanoma subpopulation. Together, these data identify TCF4 as a 

putative target to improve response to ICB therapy.  

A potential limitation of targeting TCF4 is that this TF is also expressed in other 

cell types. However, beside melanoma MES cells, TCF4 expression is the highest in 

pDCs, where it was shown to act as a major suppressor of their immunogenic 

function65. Therefore, manipulation of the TCF4 pathway in pDCs could represent a 

therapeutic opportunity to further boost antitumor immunity.  

Additionally, TFs are notoriously difficult to target pharmacologically. However, 

just like observed in BPDCN cells54,59, BET-inhibition recapitulated most of the 

transcriptional changes observed upon TCF4 silencing in melanoma MES cells. The 

use of BET protein inhibitors may therefore offer an alternative strategy to target this 

pathway. Mechanistically, the disruption of the TCF4-controlled transcriptional 

program by BET inhibitors can be explained either by the dependency of TCF4 

expression itself on the recruitment of BRD4 to the TCF4 promoter and/or by an 

important role of BDR4 in the recruitment of TCF4 to, at least some of, its target genes. 

Additional experiments will be required to further establish the TCF4-dependency of 

the effects observed upon BET-inhibition in melanoma MES cells and to discriminate 

between these two, not necessarily mutually exclusive, scenarios. 

The treatment of cancer with BET-inhibitors has been explored in early clinical 

trials66. Toxicity profiles of several generations of inhibitors showed that these agents 

can be given safely to patients. Unfortunately, these inhibitors have not yet been 
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broadly used in the clinic due to their modest anti-tumour activity when used as single 

agents. BET-inhibitors remain, however, attractive drugs for combinatorial treatments 

and when used in the appropriate clinical settings67,68. Our observation that BET-

inhibition sensitizes melanoma cells to BRAF- and MEK-inhibition, is in line with similar 

observations by other groups69–71, and offers one clinical context in which BET-

inhibitors may provide clinical benefit for BRAF-mutant melanoma patients 

(Supplemental Figure S9). Another attractive clinical context in which BET-inhibition 

could be positioned is in combination with ICB. We provide evidence that exposure of 

melanoma MES cells to the BET-inhibitor ARV-711, just like TCF4 silencing, 

unleashes the expression of antigen presentation machinery and HLA-genes. These 

data therefore offer a rationale to increase the immunogenicity of melanoma MES cells 

and warrant the further testing of BET-inhibition in combination with ICB to overcome 

primary resistance (Supplemental Figure S9). Notably, recent preclinical studies have 

supported this possibility69,72,73. Moreover, since emergence of the mesenchymal-like 

signature was shown to be prominent in patients who experience disease progression 

after first line immunotherapy17, one could envision that BET-inhibition could 

reinvigorate anti-tumour immune responses and overcome secondary resistance to 

ICB (Supplemental Figure S9).  

Lower efficacy was observed with ICB therapy when given as second-line 

treatment, after first-line targeted74–76. It has recently been proposed that this cross-

resistance phenomenon may be driven, at least partly, by changes in the tumour 

microenvironment induced by BRAF and MEK-inhibition, leading to a lack of functional 

CD103+ DCs, and consequently an ineffective T cell response77. Our findings may 

offer an alternative (but not mutually exclusive) explanation, invoking a cancer-cell 

intrinsic mechanism. It is well-established that melanoma MES cells are key drivers of 

tolerance and/or resistance to targeted therapy11. Likewise, we show that this 

population is enriched in (early on-treatment) lesions from non-responders to ICB, and 

therefore propose that MES cells may drive, at least partly, cross-resistance to these 

treatments. Importantly, we show that these cells are exquisitely sensitive to the 

BRAF/MEK/BET-inhibitors triple combination. This combination may therefore also 

offer an attractive treatment strategy for patients who do not respond to 

immunotherapy and those who develop resistance to targeted therapy through 

nongenetic mechanisms (Supplemental Figure S9).  
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Together, our data offer the rationale for the (pre-)clinical testing of BET-inhibition 

(or TCF4 targeting) as both a putative sensitizer to targeted therapy and ICB and for 

the treatment of patients that develop secondary resistance to these therapies. We 

argue, however, that the testing of these new combination treatment regimens should 

be accompanied by a careful selection of the models and patients. In this context, the 

method we describe herein, which allows for the unambiguous identification of 

melanoma MES cells in tumour biopsies, should be considered as a critical selecting 

or recruiting criteria. 
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Methods 
Patient biopsies 
Tumour biopsies were collected as part of a non-interventional prospective study 

investigating transcriptomic changes upon immune checkpoint inhibition (Prospective 

Serial biopsy collection before and during immune-checkpoint inhibitor therapy in 

patients with malignant melanoma; SPECIAL). While most patients (n=20) were 

treatment-naïve, patients with metastatic relapse were allowed prior systemic 

treatment in adjuvant setting (n=2). In addition, one patient had received Cisplatinum-

based neo-adjuvant chemotherapy for a metachronous non-small cell lung carcinoma 

eight months before inclusion. Written informed consent was obtained from all 

patients. All study procedures were in accordance with the principles of the Declaration 

of Helsinki, applicable Belgian law and regulations, and approved by the UZ Leuven 

Medical Ethical Committee (S62275). 

 

Tumour dissociation of human samples 
Fresh tumour tissue was collected in cold transport Dulbecco’s Modified Eagle 

Medium (DMEM, Invitrogen, Cat#61965025) on ice. To make a single cell solution, 

tumour fragments were rinsed in cold Dulbecco’s Phospho-Buffered Saline (DPBS) 

and mechanically and enzymatically dissociated. The tumour was minced with sterile 

scalpels and incubated 15 minutes in a heather-shaker at 37°C 800 rpm in 1,32 mL 

DMEM supplemented with 120 µL DNase I (10 mg/mL; Sigma-Aldrich, 

Cat#11284932001) and 60 µL collagenase P (50 ng/mL; Sigma-Aldrich, 

Cat#11249002001). The sample was diluted 1:2 in DPBS, centrifuged 5 min. at 300G 

at room temperature, incubated 5 min. in 500 µL red blood lysis buffer at room 

temperature, washed twice with DPBS supplemented with 0,04% bovine serum 

albumin and strained through a 35 µm nylon mesh. Cell concentration and viability 

was determined with acridine orange/propidium iodide staining (Westburg, Cat#LB 

F23001) on a LUNA-FL automated fluorescence counter.  

 

Single-cell RNA-sequencing 
Libraries for scRNA-seq were constructed using the 10X Genomics Chromium 

platform according to manufacturer’s instructions. Library construction was primarily 

done with the Chromium Single Cell 3ʹ GEM, Library & Gel Bead Kit v3 (10x genomics, 

Cat#1000092). Thirteen samples were processed using the Chromium Single Cell A 
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Chip Kit and 5’ Library & Gel Bead Kit (10x genomics, Cat#1000014). When comparing 

sequenced 3’ and 5’ gene expression libraries from the same tumour samples, we 

observed similar quality metrics. We opted for high target recovery (median 5000, 

range 1000-10000), keeping within the range of optimal input concentration per target 

recovery, as recommended by the manufacturer. In brief, cells were partitioned into 

Gel Bead-in-emulsions (GEMs) at limiting dilution, where lysis and reverse 

transcription occurred yielding uniquely barcoded full-length cDNA from poly-

adenylated mRNA. GEMs were subsequently broken, and the pooled fraction was 

amplified, followed by fragmentation, end repair and adaptor ligation of size selected 

fractions.  
All libraries were sequenced with single end reads on an Illumina NextSeq, HiSeq4000 

or NovaSeq6000 until sufficient saturation was reached (60% on average). The raw 

sequencing reads were processed by CellRanger (10x Genomics), human reference 

genome v. GRCh38.  

 

scRNA-seq data analysis 
Raw count matrices were analysed using R package Seurat v. 3.1.578. The matrices 

were filtered by removing cell barcodes with >1000 expressed genes, <7,500 

expressed genes and <30% of reads mapping to mitochondrial reads. Next, 

SCTransform was applied to each Seurat object for data normalization and 

transformation. DoubletFinder v. 2.0.283 was applied to each Seurat object (sample) 

separately assuming that the doublet rate in each sample was as indicated in the 10X 

Genomics website. Next, all the Seurat objects were merged, SCTransform was 

applied regressing out mitochondrial read percentage per cell. Subsequently, the data 

integration was performed using R package Harmony v. 1.040. After having the data 

normalized and integrated, cell cycle scoring was performed, data were filtered for 

singlets, and SCTransform was applied regressing out mitochondrial read percentage 

and cell cycle scores. This was followed by data integration of this subset as described 

above. The number of dimensions for clustering were chosen based on Harmony 

embeddings clustering. The cut-off was driven by identification of clear variation in 

embeddings across the cells. For cell type identification from the malignant, immune 

and stromal compartments we analysed the data including cells from both time points, 

but for the detailed characterisation of the treatment naïve samples we subset only for 

this time point.  
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Initial identification of the tumour microenvironment compartments  
To gain a global view on the components of the tumour microenvironment we used 

existing signatures acquired from Jerby-Arnon et al.22 to calculate gene set scores 

using R package AUCell v.1.6.131 for the immune, stromal and malignant 

compartments. By plotting the scores, we assigned each unsupervised cluster to one 

of these three compartments. 

 

CNV inference in human samples 
To distinguish malignant from normal cells we inferred copy number variation (CNV) 

based on scRNA-seq data using the R package HoneyBadger v. 0.179. The count 

matrix from the “RNA” assay of the integrated Seurat object of all cells was used as 

input. Immune cells were used as a reference for normal cells. They were defined 

based on the immune gene set from Jerby-Arnon et al.22, using an AUCell score cut-

off >0.15.The mean CNV score was calculated as below: 

CNV score = ∑ |$%&',)|)
*

 

where, G = gene, 𝑖 = cell. 

 

Identification and analysis malignant cells.  
Differential gene expression was run between globally classified malignant clusters 

(2,28,0,12,17,20,19) vs CAFs clusters (7,8) (Supplemental Figure S1A) using Seurat 

FindMarkers function (two-sided Wilcoxon test). Next, for each gene, the difference of 

the percentage of cells expressing this gene in the malignant clusters minus the CAFs 

clusters was calculated and the genes were sorted in descending order. The top 50 

genes were plotted on the global UMAP in order to identify the most specific and 

ubiquitously expressed ones within malignant clusters further called as Melanoma 

Score (MS).  

To identify malignant cells, three stringent steps of filtration were applied. Firstly, the 

data was subset based on the AUCell score of malignant gene set acquired from 

Jerby-Arnon et al.22 >0.11 or mean CNV score >0.15. Subsequently, cells that passed 

the first filtration step were filtered based on the MS >0.2 or mean CNV score >0.15. 

Finally, to remove any contaminating immune cells, we filtered out PTPRC (CD45) 
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cells. Lastly, samples with less than 10 remaining cells were removed from 

downstream analysis.  

The malignant cell subsets were subjected to SCTransform (regressing out 

mitochondrial read percentage and the cell cycle scores) and Harmony integration 

(grouping the variables by samples) followed by unsupervised Seurat clustering. The 

number of dimensions for clustering were chosen based on Harmony embeddings 

clustering – a cut-off was driven by identification of clear variation in embeddings 

across the cells. Number of clusters was chosen based on Silhouette29 scores 

measured at different resolutions and biological relevance of the marker genes per 

cluster. The marker genes of each unsupervised and semi-supervised cluster were 

identified using FindAllMarkers function in Seurat (two-sided Wilcoxon test). The final 

cluster annotations were based on the enriched pathways and terms of the top marker 

genes per cluster (top 100 genes) using an online tool Enrichr 

(https://maayanlab.cloud/Enrichr/). To understand the biological identity of the 

malignant clusters, we used databases such as Gene Ontology (GO), Reactome, 

OMIM Disease, MSigDB Hallmark 2020, Jensen Compartments, CellMarker 

Augmented, and CCLE Proteomics. Furthermore, AUCell scores of the functionally 

enriched marker genes per malignant mouse state (acquired from Karras et. al32), the 

top 100 marker genes of the malignant states, and the scores of various previously 

published melanoma signatures were averaged and plotted across the malignant 

clusters.  

To infer cell-cell interactions we used the Seurat object and run CellChat80 version 

1.1.3 applying 10 % truncated mean for average gene expression per cell group and 

minimum twenty cells required per cell. 

The percentages of the malignant clusters within the malignant compartment were 

calculated per sample and tested among various groups. For the two groups 

comparisons, the two-sided Wilcoxon test, for three or more groups, the Kruskal-Wallis 

test was used. Area Under the Receiver Operating Characteristics (AUROC) was used 

to estimate the response prediction. 

 

Gene regulatory network analysis 
SCENIC31 analysis was run with raw counts from the “SCT” assay of malignant cells 

50x. SCENIC uses gene regulatory network inference, followed by a refinement step 

using cis-regulatory information, to generate a set of refined regulons (i.e. TFs and 
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their target genes) in the scRNA-seq data. The Python implementation, (pySCENIC: 

https://github.com/aertslab/pySCENIC, version 0.9.19), was run using a Nextflow 

pipeline (https://github.com/aertslab/SCENICprotocol, version 0.2.0), which 

streamlined the main steps of gene regulatory network inference and refinement with 

pySCENIC, as well as the quantification of cellular activity, and visualization. The 

Nextflow pipeline also performed a standard analysis in parallel, using highly variable 

genes selected based on expression. Differentially activated TF regulons of each 

malignant cluster were identified by the two-sided Wilcoxon test (using Bonferroni 

correction for multiple tests) against all the cells of the rest of the clusters. 

 

Identification of the Minimal Lineage Gene signature (MLGs) 
To identify the MLGs we subset CAFs together with the Mesenchymal-like state and 

performed differential gene expression analysis between them. The top 50 genes were 

called the MLGs, from which four (SOX10, S100A1, MITF and CDH19), were selected 

for further validation by CODEX/mFISH (RNAscope). 

 

Validation of identified melanoma states in independent scRNA-seq dataset 
Transcript per Million (TPM) normalized the Jerby-Arnon et al.22 dataset was 

downloaded from the GEO portal (Accession number GSE115978). The TPM 

normalized dataset was used to generate a Seurat object. The cells with a number of 

genes > 1000 & < 7500 were selected for further analysis. Next, the AUCell score for 

the MS was calculated using the same set of genes as in the main cohort (EDNRB, 

MYO10, PLP1, ERBB3, SYNGR1). The malignant cells were subset based on an SMS 

score >0.1 and the criteria applied in the Jerby-Arnon et al.22 study. Additionally, cells 

positive for PTPRC were excluded. Next, the data was scaled regressing out the cell 

cycle scores and percentage of expressed mitochondrial genes, and integrated using 

Harmony.  

To validate the transcriptomic states identified in our dataset we performed label 

transfer of the malignant clusters in Seurat, using the following parameters: integration 

features = 3000, k.anchor = 20, and reduction = “pcaproject”. The prediction scores 

were plotted on the Harmony integrated UMAP. 
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Spatial transcriptomics  
Selected samples were processed for spatial transcriptomics using the 10X Genomics 

Visium platform. The analysis of these was approved by the Ethical Commission of 

the University Hospital of Leuven and approved by the review board (#S55760). 

Tumours were dissected, washed with 1x DPBS and snap-frozen in liquid nitrogen-

chilled isopentane. Frozen tumours were transferred to a cold tissue mould filled with 

chilled optimal cutting temperature compound (Tissue-Tek O.C.T. compound, Sakura 

Finetek Cat#4583). The mould was then immediately placed on dry ice. Tissue blocks 

were stored at −80°C in a sealed container. Both the tissue block and the proprietary 

Visium Spatial Gene Expression Slide (10X Genomics, Cat#PN-2000233) were 

equilibrated inside the cryostat for 30 min at -12 °C before sectioning. Sections were 

cut at a thickness of 10 µm and immediately placed onto the slide. Slides containing 

sections were stored at −80°C for a maximum of 24h before use.  

Fixation, staining, imaging, and construction of cDNA libraries was done according to 

the manufacturer’s instructions (Visium Spatial Gene Expression User Guide_Rev D; 

10x Genomics, CG000239) using the Visium Spatial Gene Expression Slide & 

Reagent Kit (10x Genomics, Cat#PN-1000187). Briefly, sections were fixed in chilled 

methanol for 30 min at −20 °C and stained with haematoxylin and eosin. Imaging was 

performed on a Nikon-Marzhauser Slide Express 2 whole-slide scanner at 10x 

magnification. After imaging, sections were permeabilized at 37 °C for 18 minutes. 

Permeabilization time was determined using the Visium Spatial Tissue Optimization 

Slide & Reagent Kit (10x Genomics, PN-1000193) following the Visium Spatial Tissue 

Optimization User Guide_RevA (10x Genomics, CG000238). After permeabilization, 

the on-slide reverse transcription reaction was performed at 53 °C for 45 min. Second 

strand synthesis was subsequently performed on-slide for 15 min at 65 °C. All on-slide 

reactions were performed in a thermocycler with a metal slide adapter plate. Following 

second strand synthesis, samples were transferred to tubes for cDNA amplification 

and clean-up. Library QC was assessed using an Agilent Technologies Bioanalyzer 

High Sensitivity kit (Agilent Technologies, Cat#5067-4626). 

Visium libraries were sequenced on Illumina NextSeq2000. The sequencing depth 

was chosen by determining the amount of 55µm spots that were covered by tissue, 

and this was multiplied by 50.000 reads. Raw sequencing files were processed with 

SpaceRanger (v1.1.0, 10x Genomics) to generate spatial gene expression matrices. 

Next, the data was analysed using the Seurat v. 4.1.081 spatial vignette in R v. 4.0.2.  
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Spots with spatial features >500 and percentage of mitochondrial reads either <3 or 

<5 were retained and the expression data was normalized using SCTransform. Firstly, 

the spatial distribution of the major tumour immune microenvironment (TIME) 

constituents such as malignant cells, T cells, B cells, macrophages, CAFs, and ECs 

was mapped using the label transfer function with CCA-based label transfer (k 

anchor=10). Furthermore, to identify true malignant spots, we leveraged copy number 

inference using HoneyBadger79. Bcell or EC spots with prediction score >0.8 were 

used as “normal” reference. Subsequently, we selected spots with a prediction score 

>0.7 for the malignant label and the mean CNV score (calculated as described above) 

>0.07 and annotated these as melanoma. Finally, for the malignant cell deconvolution, 

distance and co-localization calculations we used the CellTrek43 R package.  

 

Multiplex immunostaining followed by multiplex FISH 
Five µm FFPE tissue sections of selected samples sectioned 5 were cut and mounted 

on poly-L-lysine coated coverslips. Akoya Biosciences CODEX multiplex 

immunostaining (CODEX) and ACDbio RNAscope HiPlex v2 (12-plex) multiplex FISH 

(RNAscope) were each performed according to their respective manufacturer’s 

instructions (kits used are listed in Supplemental Table S8), and combined in 

sequence as previously described, with slight modifications82. 
In brief, coverslips were deparaffinized followed by heat-induced antigen retrieval in 

citrate buffer, pH 6. Next, they were stained with a combination of DNA-barcoded 

primary antibodies, including in-house conjugated antibodies (Supplemental Table 

S8), washed and post-fixed in ice-cold methanol. They were mounted on an Akoya 

Biosciences CODEX system for multiple cycle immunostaining and imaged using a 

Keyence microscope with Akoya Biosciences CODEX instrument manager and 

Keyence software. Secondary antibodies were fed to the instrument in a pre-prepared 

96-well plate. In total, 11 cycles of immunostaining (including 2 blanks with only 

nuclear staining) were run, consisting of DAPI nuclear staining, Atto550-, Cy5- and 

Alexa Fluor 750 fluorophores. Akoya Biosciences CODEX processor software 

performed automated image registration, autofluorescence and background 

subtraction. Cover slips were kept in storage buffer until RNAscope was performed.  
To prepare samples for RNAscope, samples were washed in ethanol for 2 min. and 

air dried for 5 min. in a 60°C oven. Target retrieval was followed by protease treatment. 

The 12-plex RNAscope assay consisted of 3 rounds (each round using 4 probes) of 
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probe hybridization, amplification, autofluorescence reduction, fluorophore 

hybridization, DAPI counterstaining, imaging, fluorophore cleavage and washing. 

Coverslips were imaged using VectraPolaris Automated Quantitative Pathology 

Imaging System. 
CODEX images were registered to RNAscope using the BigWarp plugin for ImageJ83 

The CODEX image stack was used as a fixed target to register the 3 RNAscope 

imaging rounds onto, using manually placed landmarks. This resulted in resampling 

of the RNAscope to target resolution. Next, regions of interest (ROIs) of 100 x 100 µm 

were delineated using QuPath Quantitative Pathology & Bioimage Analysis software84. 

In these ROIs, the autofluorescence channel of each RNAscope imaging round was 

subtracted from each respective fluorescent channel using the Image Calculator in 

ImageJ. Cells were segmented with the StarDist85 extension in QuPath, using the 

dsb2018_heavy_augment.pb pretrained model86.  

 
MILAN (mIHC) 
Multiplex immunofluorescent staining was performed according to the previously 

published MILAN protocol44. Immunofluorescence images were scanned using the 

Axio scan.Z1 slidescanner (Zeiss, Germany) at 10X objective with resolution of 0.65 

μm/pixel. All samples were stained simultaneously. Image acquisition order was 

distributed spatially and independently of patient replicates. The stains were visually 

evaluated for quality by digital image experts and experienced pathologists (FB, YVH, 

double-blind). Multiple approaches were taken to ensure data. On the image level, 

focus, presence of external artefacts and tissue integrity were reviewed. Regions that 

contained severely deformed tissues and artefacts were identified and excluded from 

downstream analysis. Antibodies that gave low confidence staining patterns by visual 

evaluation were excluded from the analysis. Image analysis was performed following 

a custom pipeline. Briefly, flat field correction was performed using a custom 

implementation of a previously described algorithm87. Then, adjacent tiles were 

stitched by minimizing the Frobenius distance of the overlapping regions. Next, 

images from consecutive rounds were registered following an algorithm previously 

described88. During this process, the first round was always used as a fixed image 

whereas all consecutive rounds were sequentially used as moving images. 

Transformation matrices were calculated using the DAPI channel and then applied to 

the rest of the channels. Registration results were visually inspected by domain 
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experts (FB, YVH). Samples with tissue folds showed significant misalignments and 

were manually segmented in different regions. Each region was independently re-

registered. Downstream analysis was independently performed for each annotated 

region. Next, tissue autofluorescence was subtracted using a baseline image with only 

secondary antibody. Finally, cell segmentation was applied to the DAPI channel using 

StarDist85. For every cell, topological features (X/Y coordinates), morphological 

features (nuclear size), and molecular features (Mean Fluorescence Intensity (MFI) of 

each measured marker) were extracted.  

For the cell Identification MFI values were normalized within each region to Z-scores 

as recommended in Caicedo et al86. Z scores were trimmed in the [0, 5] range to avoid 

a strong influence of possible outliers in downstream analyses. Single cells were 

mapped to known cell phenotypes using three different clustering methods: 

PhenoGraph89, FlowSom90, and KMeans as implemented in the Rphenograph, 

FlowSOM, and stats R packages. While FlowSom and KMeans require the number of 

clusters as input, PhenoGraph can be executed by defining exclusively the number of 

nearest neighbours to calculate the Jaccard coefficient. The number of clusters 

identified by PhenoGraph was then passed as an argument for FlowSom and KMeans. 

Clustering was performed exclusively in a subset of the identified cells (50,000) 

selected by stratified proportional random sampling and using only the 23 markers 

defined as phenotypic. For each clustering method, clusters were mapped to known 

cell phenotypes following manual annotation from domain experts (FMB, YVH, double-

blind). If two or more clustering methods agreed on the assigned phenotype, the cell 

was annotated as such. If all three clustering methods disagreed on the assigned 

phenotype, the cell was annotated as “not otherwise specified” (NOS). Annotated cells 

were used to construct a template that was in turn used to extrapolate the cell labels 

to the rest of the dataset. To that end, a UMAP was built by sampling 500 cells for 

each identified cell type in the consensus clustering. The complete dataset was 

projected into the UMAP using the base predict R function. For each cell, the label of 

the closest 100 neighbours was evaluated in the UMAP space and the label of the 

most frequent cell type was assigned.  

Melanoma cells were further segmented based on the expression of HLA-DR91. Here, 

we set a cut-off of Z=2 to differentiate between HLA-DR positive and HLA-DR negative 

melanoma cells.  
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For neighbourhood analysis, a quantitative analysis of cell-cell interactions was 

performed using an adaptation of the algorithm described in Schapiro, et al.92. A 

detailed description of the adapted implementation was previously published93. Briefly, 

for every cell, all the other cells that are located at a maximum distance d were 

counted. Then the tissue is randomized preserving the cytometry of the tissue as well 

as the X and Y coordinates of each cell but permutating the cell identities. This is 

repeated N times (here N=1000) which allows to assign an empirical p-value by 

comparing the number of counts observed in the real tissue versus the N random 

cases. We performed the described analysis for different values of the distance d (from 

10 to 100 µm with a step of 10 µm) to show the consistency of the reported results. 

Particularly here, the analysis was performed exclusively to evaluate whether CD3+ 

and CD8+ T cells (Tcys) were interacting more with HLA-DR positive or HLA-DR 

negative melanoma cells. Therefore, we only included melanoma subtypes in the 

randomization process while keeping all the other cell subtypes unchanged. To add 

an effect-size metric, we also calculated the ratio between the observed counts and 

the random counts. 

 
Cell culture 

The human melanoma cell cultures were derived from patient biopsies by the 

Laboratory of Oncology and Experimental Surgery (Prof. Dr. Ghanem Ghanem, 

Institute Jules Bordet, Brussels, Belgium). All cell lines (MM011, MM029, MM034, 

MM047, MM057, MM099, MM164) were grown in 5% CO2 at 37°C in F10 

supplemented with 10% FBS, 2.5% GlutaMAX and 1% penicillin/streptomycin. 

HEK293 FT cells were grown in DMEM with 10% FBS and 1% penicillin/streptomycin. 

Cells were tested for Mycoplasma contamination prior to performed experiments. 

 
Drugs 

Dabrafenib (Cat#HY-14660) and Trametinib (Cat#HY-10999) were purchased from 

MedChemExpress. ARV-771 (Cat#HY-100972) was purchased from Bioconnect. 

 
siRNA-Mediated Transient Genetic Inactivation 

Cells were transfected with the indicated specific short interfering RNA (siRNA) 

SMARTpools (Dharmacon, Cat# L-004594-00-0005 and Cat# D-001810-10-20) using 
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TransIT-X2 Transfection Reagent (Mirus) according to the manufacturer’s protocol. 

siRNAs were used at a final concentration of 50 nM.  

 
Lentiviral vector production 

HEK293 FT cells were transfected with dVPR and VSVG packaging plasmids using 

Lipofectamine 2000 reagent (ThermoFisher Scientific) according to the manufacturer’s 

instructions. 24 hours after transfection, medium was replaced with DMEM medium 

(Invitrogen) supplemented with 20% foetal bovine serum (FBS). Medium containing 

viral vectors was collected 48 and 72 hours after transfection. Viral vectors were 

filtered through a 0,45 nm syringe filter, aliquoted and stored at −80 °C. 

Inducible TCF4 overexpression was achieved using a Doxycycline-inducible vector 

system. Briefly, a TetR-T2A-NeoR insert was cloned inside a FUGW vector (Addgene 

Plasmid, Cat#14883). In a second plasmid, the expression of TCF4 was controlled by 

Doxycycline through a TetO-regulated CMV promoter. Both vectors were transduced 

in MM011 cells and selection was obtained with neomycin and puromycin respectively. 

Inducible TCF4 downregulation was achieved using a Doxycycline-inducible vector 

system. Briefly, the shRNA sequence targeting TCF4 was designed based on the 

sequence of the siRNA pool and cloned in a FH1 vector (Addgene Plasmid, 

Cat#164098). 

 
Bulk RNA-sequencing 

Approximately 2*105 cells were plated in a 6-well plate. For knockdown experiments, 

these were transfected with the described siRNA pool 24 and 72 hours after plating 

and collected 24 hours after the second transfection. For inducible TCF4 experiments, 

cells were treated with 2 ng/mL Doxycycline (Sigma-Aldrich, Cat# D9891) every 48 

hours and collected 96 hours after plating. For ARV-771 experiments, cells were 

treated with 50 nM ARV-771 (Bioconnect, Cat#HY-100972) 24 hours after plating and 

collected 96 hours after plating. RNA was extracted using the RNA NucleoSpin 

extraction kit (Macherey&Nagel) according to the manufacturer’s instructions. 

The RNA integrity was monitored using Bioanalyzer analysis. 5 ng of RNA per sample 

was reverse-transcribed and amplified using a modified version of the SMARTseq2 

protocol, previously described in Rambow et al.38. Prior to generating sequencing 

libraries using the NexteraXT kit (Illumina, Cat#FC-131-10), cDNA profiles were 

monitored using the Bioanalyzer. Sequencing was performed on a Illumina 
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Nextseq500 platform. Differential gene expression analyses were executed using the 

DeSeq2 pipeline. 

 
Geneset enrichment analysis 

Geneset enrichment analysis was performed using GSEA 4.1.0. Briefly, approximately 

3000 DEGs (si TCF4 vs si Ctrl) were ranked by log2FC and the overlap with the 

following gene sets was estimated (MsigDB ID: M5930, M983 and M518). 

 
Western blotting 

Harvested cell culture pellets were resuspended in protein lysis buffer (25 mM HEPES 

pH 7,5; 0,3 M NaCl; 1,5 mM MgCl2; 2 mM EDTA; 2 mM EGTA; 1 mM DTT; 1% Triton 

X-100; 10% glycerol; phosphatase/protease inhibitor cocktail), incubated on ice 

(10min) and centrifuged at 14000 rcf for 15 minutes at 4°C. Equal amounts of protein, 

quantified using aLife Technologies Qubit 2.0 instrument were run on 4-12% Bis-Tris 

Plus Bolt gels (ThermoFisher Scientific) and transferred to a nitrocellulose membrane 

with an iBlot dryblot system (ThermoFisher Scientific). Membrane blocking (5% 

milk/TBS-0,2%Tween) was followed by incubation with the appropriate primary 

antibodies and HRP-conjugated secondary antibody. Signals were detected by 

enhanced chemiluminescence on Amersham hyperfilm. Antibodies that were used are 

the following: 

Rabbit polyclonal anti-MITF Sigma-Aldrich Cat# HPA003259; RRID: 

AB_1079381 

Rabbit monoclonal anti-TCF4  Abcam Cat# ab217668; RRID: 

AB_2714172 

Rabbit monoclonal anti-GAPDH Cell Signaling Cat# 2118; RRID: 

AB_561053 

Goat polyclonal anti-Rabbit IgG-HRP Cell Signaling Cat# 7074; RRID: 

AB_2099233 

 
Colony formation assay 

Cells were grown to near confluency on 12-well plates and treated on the following 

day with 2 µg/mL Doxycycline (Sigma-Aldrich, cat# D9891) or vehicle. 48 hours after 

plating, cells were treated with the indicated drug combinations for four days. Cells 
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were washed once with DPBS, stained with crystal violet (1% crystal violet w/v, 35% 

methanol v/v) for 15 minutes, washed with DPBS again and rinsed with tap water. 

Three regions of interests were quantified using the ImageJ plugin ColonyArea94 to 

define the intensity percentage. Each sample was then normalized over the relative 

control well and statistical significance was assessed t-test (unpaired, two-tailed 

Student’s t-test). 

 
Co-culture experiments 

HLA-matched peripheral blood mononuclear cells (PBMCs) and MM099 cells were 

grown in 5% CO2 at 37°C for two days in RPMI 1640 medium supplemented with 10% 

FBS, 3 μg/mL anti-CD3 antibody (ThermoFisher Scientific, Cat#16-0038-85), 5 μg/mL 

anti-CD28 antibody (ThermoFisher Scientific, Cat#16-0289-85), 100 ng IL-2 

(ThermoFisher Scientific, Cat#PHC0027). 

TCF4 was silenced in MM099 cells as described above. Upon TCF4 knockdown, 

approximately 2000 MM099 cells per well were plated in a 96-well plate. Eight hours 

after plating, 10000 activated PBMCs per well were added, alongside aforementioned 

activating proteins and CellEvent™ Caspase-3/7 Green Detection Reagent (1:5000, 

ThermoFisher Scientific, Cat#C10423). Cells were imaged using the IncuCyte ZOOM 

System (Essen Bioscience) and automated apoptosis measurements were obtained 

based in images taken at 2-hour intervals, for the duration of the experiment. Three 

biological replicates were averaged and normalized over the last time point of the 

control and statistical significance was assessed (paired, two-tailed Student’s t-test). 

 
OmniATAC-seq 

Approximately 2*105 MM057 cells were plated in a 6-well plate and treated with ARV-

771 100 nM after 24 hours. 48 hours after plating, cells were collected. Nuclei of 

50,000 cells were isolated and an Omni-assay for transposase-accessible chromatin 

using sequencing (OmniATAC-seq) was performed as described previously95. After 

final amplification, samples were cleaned up with MinElute (QIAGEN) and libraries 

were prepareded using the KAPA Library Quantification Kit (supplier). Samples were 

sequenced on an IlluminaNextSeq 500 High Output chip. 

Briefly, reads were mapped to human genome (GRCh37) using STAR (2.7.1a-foss-

2018a). Resulting BAM files were cleaned for duplicates using Picard (2.21.8-Java-

1.8.0) and indexed. Mitochondrial reads were removed using SAMtools (1.9-
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20190828-foss-2018a) and BigWig files were created (deepTools/3.3.1-foss-2018a-

Python-3.7.4). ATAC-seq peaks were identified and visualized using MACS2 peak 

calling (2.1.2.1-foss-2018a-Python-2.7.16) with single-end BAMPE parameters. 

Finally, BED files were created from broadPeak files using BEDTools (2.28.0-foss-

2018a). 

 
RT-qPCR 

MM057 cells were plated and treated with the specified dose of ARV-771, as described 

above 48 hours after plating, cells were collected, resuspended in RA1 lysis buffer 

using the RNA NucleoSpin extraction kit (Macherey&Nagel) and processed according 

to manufacturer’s instructions. RNA was quantified using a ThermoScientific 

NanoDrop 1000 and 500 to 2000 ng was reverse transcribed with a High-Capacity 

cDNA Reverse Transcription Kit (Life Technologies). qPCRs were run using the 

SensiFAST probe No-ROX kit (Bioline, Cat#BIO-86005) on a Roche Life Science 

LightCycler 384. Data processing with Biogazelle Qbase+ 3.1 software relied on 

normalization with a minimum of two reference genes. RT-qPCR primer sequences 

are the following: 

hTCF4 Forward: ATGGCAAATAGAGGAAGCGG 

hTCF4 Reverse: TGGAGAATAGATCGAAGCAAG 

hACTB Forward: CTGGAACGGTGAAGGTGACA 

hACTB Reverse: AAGGGACTTCCTGTAACAATGCA 

hRPL13A Forward: CCTGGAGGAGAAGAGGAAAGAGA 

hRPL13A Reverse: TTGAGGACCTCTGTGTATTTGTCAA 

hSDHA Forward: TGGGAACAAGAGGGCATCTG 

hSDHA Reverse: CCACCACTGCATCAAATTCATG 

 
Proliferation assay 

Roughly 400 MM029 cells per well were plated in a 96-well plate and treated with 

ARV-771 300 nM and/or Dabrafenib 50 nM + Trametinib 10 nM after 24 hours. Cells 

were imaged using the IncuCyte ZOOM System (Essen Bioscience) and automated 

cell confluency measurements were made using images taken at 2 hour intervals, for 

the duration of the experiments. Five technical replicates were averaged and statistical 

significance was assessed (paired, two-tailed Student’s t-test). 
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TCGA SKCM data analysis 

The SKCM raw count matrix composed of 375 samples was downloaded from 

Firehose. Raw TCF4 counts were calculated per sample and samples were grouped 

based on their phenotype36. Furthermore, log2 transformed read counts of were 

compared in metastatic versus primary melanoma lesions. Correlation analysis 

between MITF and TCF4 mRNA levels in TCGA_SKCM was performed using 

cbioportal96,97. 

 
Matrigel invasion assay and quantification 

The invasive capacity of melanoma cells was determined by Matrigel transwell 

invasion assays using 0.8 mm BD BioCoatMatrigel Invasion Chambers (Corning, 

Cat#354480), according to manufacturer’s guidelines. Briefly, TCF4 expression was 

knocked down in MM099 cells as described above. Next, cells were starved overnight 

in FBS- and L-glutamine-deprived medium. Around 2*105 cells were plated in each 

chamber (coated with 25 μg Matrigel) in FBS-deprived medium, while 10% FBS- and 

2.5% L-glutamine-enriched medium was used in the wells placed in the lower 

chamber. Uncoated inserts were used as a control for proliferation. 24 hours after 

seeding, membranes were stained with crystal violet. 

Non-invading cells remaining on the upper surface of the chamber were removed by 

scrubbing with a cotton-tipped swab. Three to four randomly selected images were 

acquired per well and the surface cells were counted with ImageJ. The surface 

occupied by invading cells was calculated relative to the total surface of the 

membrane. Experiments included biological triplicates and technical duplicates. 

 
CCLE data analysis 

TCF4 read counts were plotted for skin_melanoma cell lines from the CCLE cohort98 

and correlated (Pearson correlation coefficient) with IC50s (μM) of BRAF- (PLX4720) 

and MEK- (AZD6244) inhibitors. 

 
Data availability  
Raw sequencing reads of all scRNA-seq have been deposited in the European 

Genome-phenome Archive (EGA) under study no. EGAS00001006488. Requests for 

accessing raw sequencing reads will be reviewed by the UZ Leuven-VIB data access 

committee. Any data shared will be released via a Data Transfer Agreement that will 
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include the necessary conditions to guarantee protection of personal data (according 

to European GDPR law). Processed data of the malignant treatment naïve subset and 

the spatial transcriptomic RNA-sequencing data are available upon request.  
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Figure 1: Refining the human melanoma transcriptomic landscape 
A, Study design, including timing of sample collection and processing methodologies.  

B, Uniform Manifold Approximation and Projection (UMAP) of malignant cells, 

containing 11 functionally annotated clusters. 

C, AUCell scores of the functionally enriched marker genes per malignant mouse state 

(acquired from Karras et. al32), averaged and plotted across the malignant human 

states. 

D, AUCell scores of the top 100 marker genes of the malignant states averaged and 

replotted across each state. 

E, AUCell scores of various previously published melanoma signatures averaged and 

plotted across each state. 

F, Alluvial plot intersecting each cell, represented in clusters based on CNV patterns 

and in the transcriptomic states. 
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Figure 2: Treatment-naïve melanoma ecosystem mapped spatially 
A, Spatial transcriptomics on three representative treatment naïve metastatic 

samples. Shown are malignant spots annotated per state. 

B, Heatmaps of the k-distance calculated between the query state and every other cell 

state (rows). Note that as the k-distance metric is not normalized to the number of 

cells, comparisons can only be made within rows.  

C, Correlation of the percentage of the Antigen Presentation state within the tumour 

compartment with the percentage of activated CD8+ T cells within the immune 

compartment for each scRNA-seq sample. 

D, Cell-cell interaction prediction from the scRNA-seq data between cells from the 

malignant and tumour immune microenvironment compartments, via MHC class I and 

II molecules. The width of the line linking cells indicates the probability strength. 

E, Neighbourhood analysis of the HLA-DR high and low expressing melanoma cells 

with CD8 T cells in treatment naïve samples (n = 10) from the MILAN data. X-axis: 

interaction distance considered for neighbourhood analysis (μm). Y-axis: interaction 

score (positive values indicate interaction, negative avoidance). 

F, Representative image of a clinical biopsy in which HLA-DR high, but not HLA-DR 

low, melanoma cells co-localise with the CD8+ immune infiltrate. 
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Figure 3: Identification and in situ mapping of melanoma MES cells 
A, AUCell score of the top 50 marker genes of the MES state identified by testing MES 

vs all other malignant states (left), and Minimal Lineage Genes signature (MLGs) 

identified by testing MES versus CAFs (right), plotted for CAFs and MES cells. 

B, Expression of four selected MLG marker genes in CAFs and MES cells. 

C, Expression of four selected MES marker genes in CAFs and MES cells. 

D, Expression of the marker genes from B and C across all malignant cell states.  

E, Combined mIHC and mFISH image of a representative treatment naïve lymph node 

metastasis. CD45, CD31 and TCF4 (white) protein stains are shown, whereas FISH 

of the four selected genes for the MLGs (MITF, SOX10, S100A1 and CDH19; red) and 

MES state (DCN, TCF4, THY1 and LUM; green) are combined (top). A colour-split of 

each four genes is shown (bottom). Nuclei of Mesenchymal-like cells co-expressing 

MLGs and MES genes are segmented based on DAPI staining (dark blue).  
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Figure 4: Antigen Presentation and MES states are associated with response 
to immunotherapy 

A, Percentage of Antigen Presentation and MES cells out of all malignant cells in each 

sample, compared between R and NR at both time points (two-sided Wilcoxon test). 

B, Area Under the Receiver Operating Characteristics (AUROC) curves for the 

percentage of Antigen-presenting and MES cells out of all malignant cells in the BT 

(left) and OT (right) samples. 
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Figure 5: TCF4 orchestrates multiple melanoma transcriptional programs 

A, GSEA analysis showing enrichment of gene sets related to EMT, antigen 

presentation, IFN signalling among the top DEGs upon silencing of TCF4 in MM099 

cells (bulk RNA-seq, n=2 biological replicates). NES, normalized enrichment score; 

FDR, false discovery rate.  

B, Corresponding heatmap of DEGs.  

C, Western blot analysis of TCF4, MITF and GAPDH expression in MM001 cells upon 

induction of TCF4 overexpression (OE). Expression in parental (non-induced, NI) cells 

is shown as control. 

D, Heatmap of differentially expressed genes in MM011 upon Doxycycline (Dox)  

-dependent induction of TCF4 expression (bulk RNA-seq, n=3 biological replicates).  

E, Colony formation assay performed with the melanoma MES cell line MM029, either 

left untreated (UT) or exposed to the BRAF- and MEK- inhibitors (Dabrafenib and 

Trametinib, respectively) at the indicated concentrations. TCF4 silencing was induced 

with Doxycycline (Dox). The non-induced (NI) cells are used here as control. Lower 

panel, quantification of ROIs (n=3 technical replicates), paired Student’s t-test, 

*p=0.0096, **p=0.0023). Error bars indicate mean ±SEM.  
F, Normalised dead cell counts in co-culture of MM099 with activated HLA-matched 

PBMCs upon silencing of TCF4 by siRNA (n=3 biological replicates, paired t-test, 

****p<0.0001). Line and filled area indicate mean ±SEM, respectively (n=6 technical 

replicates). Lower panel, representative IncuCyte images showing Caspase-3/7-

positive cells in purple. 
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Figure 6: TCF4 targeting through BET-inhibition  
A, ATAC-seq peaks indicating chromatin accessibility regions upstream the TCF4 

locus in MM057 control cells (DMSO) and following exposure to the BET-inhibitor 

ARV-771. The ATAC-seq profile of untreated MM099 and of two previously profiled39 

melanocytic MM line (MM001, MM011) is shown below. The previously reported BRD4 

binding site is framed59. 

B, RT-qPCR showing dose-dependent downregulation of TCF4 upon ARV-771 

treatment (n=3 technical replicates, Student’s t-test, **p<0.01, ***p<0.001). 

C, Number of up- or downregulated genes upon ARV-771 treatment in a panel of MM 

lines (bulk RNA-seq, n=2 biological replicates). MES, mesenchymal-like MM lines 

(MM047, MM099); MEL, melanocytic lines (MM034, MM164).  

D, Heatmap of selected panel of DEGs upon ARV-771 treatment in MM099 cells (bulk 

RNA-seq, n=2 biological replicates). 

E, Venn diagram showing the overlap between genes downregulated upon silencing 

of TCF4 and ARV-771 treatment in MM099 cells (bulk RNA-seq, n=2 biological 

replicates, hypergeometric test) 

F, GSEA analysis showing enrichment of gene sets of a panel of proliferative versus 

invasive MM lines for the 292 commonly regulated genes. PRO, Proliferative; INV, 

Invasive. 
G, Cell growth of MM029 cells upon treatment with BET inhibitor (ARV-771 300 nM), 

BRAF- and MEK-inhibitors (Dabrafenib 50 nM, Trametinib 10 nM) or a combination 

thereof. Error bars indicate mean ±SEM (n=6 technical replicates, paired Student’s t-

test, ****p<0.0001). 
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