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ABSTRACT 

Lymphocytes play a key role in immune surveillance of tumors, but our understanding of the 

spatial organization and physical interactions that facilitate lymphocyte anti-cancer functions is 

limited. Here, we used multiplexed imaging, quantitative spatial analysis, and machine learning 

to create high-definition maps of tumor-bearing lung tissues from a Kras/p53 (KP) mouse 

model and human resections. Networks of directly interacting lymphocytes (‘lymphonets’) 

emerge as a distinctive feature of the anti-cancer immune response. Lymphonets nucleate 

from small T-cell clusters and incorporate B cells with increasing size. CXCR3-mediated 

trafficking modulates lymphonet size and number, but neoantigen expression directs 

intratumoral localization. Lymphonets preferentially harbor TCF1+/PD1+ progenitor CD8 T 

cells involved in responses to immune checkpoint blockade (ICB). Upon treatment of mice with 

ICB therapy or a neoantigen-targeted vaccine, lymphonets retain progenitor and gain cytotoxic 

CD8 T-cell populations, likely via progenitor differentiation. These data show that lymphonets 

create a spatial environment supportive of CD8 T-cell anti-tumor responses.  

 

Keywords: multiplexed imaging; systems biology; computational biology; temporal inference; 
spatial analysis; spatio-temporal analysis; spatial correlation; CyCIF; fluorescence microscopy; 
neoplasms; adenocarcinoma of lung; lung neoplasms; immunotherapy; cancer vaccines; 
immune checkpoint inhibitors; Programmed Cell Death 1 Receptor; animal models; pathology; 
molecular pathology. 
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INTRODUCTION 

During cancer progression, immune cells proliferate, adapt, and migrate in an attempt to 

impede tumor spread (Hanahan, 2022; Nirmal et al., 2022). Tumor cells respond by inducing 

programs that suppress immune cell function and migration (Bailey et al., 2021). Detailed 

characterization of the functional states of immune cells and their spatial organization relative 

to tumor cells is needed to identify the features of anti-tumor immunity (Pelka et al., 2021). One 

way to accomplish this is using the analytical methods and computational approaches that 

constitute highly multiplexed spatial profiling, an emerging field that seeks to provide 

quantitative descriptions of i) the identities and molecular characteristics of immune, tumor and 

stromal cells, ii) the physical and chemical factors that influence the spatial organization of 

these cell types, and iii) how spatial features change over time and space and in response to 

therapy (Baertsch et al., 2022; Bodenmiller, 2016; Lewis et al., 2021).  

Genetically engineered mouse models (GEMMs) of cancer represent an important tool 

for studying the effects of genetic and chemical perturbations on tumors to better understand 

mechanisms of oncogenesis and therapy (DuPage and Jacks, 2013; Yap et al., 2021). Tumors 

in GEMMs are initiated de novo from single transformed cells, and their development 

recapitulates many histological and molecular features of human cancer (Kersten et al., 2017). 

Importantly, the kinetics of tumor growth in immunocompetent GEMMs allows for interactions 

between tumor and immune cells that are more relevant to human disease than transplant 

cancer models. GEMMs can also be sampled longitudinally over the course of tumor 

progression and following treatment with immunotherapies (Yap et al., 2021). By contrast, 

human tumors are typically studied at intermittent time points dictated by clinical necessity.  
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The Kras/p53-mutant (KP) model of lung adenocarcinoma, which includes several 

variants, is prototypical of GEMMs having many of the features of human cancer. In the KP 

model, tumorigenesis is synchronously initiated in multiple cells by intratracheal delivery of 

lentiviruses containing Cre recombinase into KrasLSL-G12D/+;p53fl/fl animals (DuPage et al., 2009; 

Johnson et al., 2001). This gives rise to ~10-15 tumor nodules per 2-dimensional lung cross-

section that progress from hyperplasia to adenoma to adenocarcinoma over the course of 1-5 

months. Because these tumors have a much lower rate of somatic mutations than human lung 

cancers, they are not highly immunogenic (McFadden et al., 2016). To overcome this 

limitation, CD8 T-cell neoantigens can be introduced by way of the tumor-initiating lentiviruses. 

In the LucOS variant of the KP model, the SIINFEKL (SIIN) epitope derived from chicken 

ovalbumin and the synthetic peptide SIYRYYGL (SIY) are expressed as a fusion to luciferase 

in tumor cells (DuPage et al., 2011). Conventional single-marker IHC analysis of tumor-bearing 

lung tissue from KP LucOS versus control (KP Cre) mice has shown expression of LucOS 

substantially increases the number of tumor-infiltrating CD8 T cells in early adenomas. 

However, despite the engagement of immunosurveillance mechanisms, tumor growth 

rebounds within weeks with a concomitant decline in the CD8 T-cell response (DuPage et al., 

2011).  

It is well established that dissociative single-cell methods such as single-cell RNA-

sequencing (scRNA-seq), cytometry by time of flight (CYTOF), and multiparameter 

fluorescence activated cell sorting (FACS) can provide deep insight into tumorigenesis and 

immunosurveillance in GEMMs (Liu et al., 2021). However, these methods lack detailed 

information on cell-cell interactions, the position of immune cell populations and tumor cells 

relative to one another, and the roles played by tissue structures. Positional information can be 
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obtained from conventional histology (using hematoxylin and eosin stains; H&E) and IHC but 

such approaches do not provide sufficient molecular information to precisely identify and 

phenotype cells. Deep spatial profiling has recently become possible through the use of highly-

multiplexed antibody-based tissue imaging methods such as MxIF, CODEX, 4i, mIHC, MIBI, 

IMC, and cyclic immunofluorescence (CyCIF) (Angelo et al., 2014; Gerdes et al., 2013; Giesen 

et al., 2014; Goltsev et al., 2018; Gut et al., 2018; Lin et al., 2018; Tsujikawa et al., 2017).  

In this study, we used multiplexed tissue profiling methods to examine the spatial 

features of tumor-immune interactions in KP LucOS lung tumors, including when chemokine-

mediated trafficking was modulated as well as when tumors were treated with a neoantigen-

targeted vaccine or immune checkpoint blockade (ICB) therapy. Intratumoral lymphocyte 

networks (lymphonets) were identified as key components of the neoantigen-directed immune 

response against early lesions. Critically, these networks harbor stem-like, progenitor CD8 T 

cells that have previously been associated with therapeutic response to ICB (Philip and 

Schietinger, 2022). Lymphonets were similarly abundant across early-stage human lung 

cancer resections and structurally distinct from tertiary lymphoid structures (TLS), much larger 

B-cell rich lymphoid structures that have been strongly associated with prognosis and 

response to immunotherapy (Schumacher and Thommen, 2022). These data establish 

generally useful methods for spatial analysis of GEMMs and identify lymphonets as 

components of functional T-cell responses in early tumor lesions and following 

immunotherapy. 

RESULTS 
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Spatial analysis of the KP GEMM tumor-immune microenvironment by multimodal data 
integration 

To generate high content spatial maps of tumor and immune cell interactions in KP lung 

tumors under multiple biologically informative conditions, KP mice were exposed to different 

tumor-initiating lentiviruses via intratracheal delivery and treated with immune therapies 

(Figure 1A). Six to nine weeks after tumor initiation, H&E staining, mRNA in situ hybridization 

(ISH) and 24-plex CyCIF (Table S1) (Lin et al., 2018) were performed on serial whole-slide 

sections (~1 cm2) of formalin-fixed paraffin embedded (FFPE) tissue containing 2 or 3 lung 

lobes. Histopathological annotation of H&E images provided data on the position of tumor 

nodules and normal anatomic structures, including large and mid-sized airways as well as 

blood vessels (Figure S1A). RNA in situ hybridization (ISH) provided information on critical 

chemokines (e.g., CXCL9 and CXCL10) that are difficult to image in tissue using antibodies. 

For CyCIF, a 24-plex antibody panel was developed that included lineage-specific transcription 

factors such as Nkx2-1 (also referred to as TTF-1) and the intermediate filament protein pan-

cytokeratin (Pan-CK), both of which mark epithelial/tumor cells, and vimentin (Vim), which 

marks all mesenchymal cells, as well as surface markers expressed on specific lymphoid and 

myeloid cell types (CD45, CD3e, B220, NKp46, CD11b, CD11c, Ly6G, CD103) (Figures 1B-

1D, and S1B). These immune markers made it possible to delineate cell types with increasing 

depth, separating lymphoid and myeloid lineages, and subdividing them into T-cell, B-cell, 

natural killer (NK)-cell, neutrophil, dendritic cell, alveolar macrophage, and tumor-associated 

macrophage (TAM) populations (Figure 1D, see Figure S1C for a classification dendrogram). 

Additional markers (CD4, CD8, and Foxp3) made it possible to distinguish T helper (Th), T 

cytotoxic (Tc), and T regulatory (Treg) cell populations, and functional markers were used to 

define their cell state, including Ki-67 (proliferation), cytotoxicity markers granzyme B (GzmB) 
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and perforin (Prf), inhibitory receptors PD1 and TIM3, and the T-cell transcription factor 

(TCF1), a key regulator of T-cell function and differentiation (Figures 1C, 1D and S1C). 

The resulting data were analyzed using several computational approaches. For CyCIF, 

images were stitched and registered and then segmented to identify single cells (typically 

~100,000 to 500,000 cells per sample/mouse) and staining intensities quantified at the single-

cell level; for mRNA ISH, foci were identified, and their density quantified, and the data were 

registered to CyCIF data from serial sections (see Methods). Distance metrics were used to 

characterize the position of cells relative to the boundary between tumor nodules and non-

neoplastic lung tissue (i.e., the tumor edge) and to blood vessels (Figure 1B). The positions of 

single cells were then used to identify interacting cells in physical proximity and to create 

‘graphs’ of interacting cell “networks'' (Figure 1B). 

Tumor neoantigen expression reorganizes the immune landscape in KP lung cancer 

We first profiled immune responses triggered by the LucOS CD8 T-cell neoantigens at a 

time point characterized by a transition between a functional and dysfunctional CD8 T-cell 

response (Burger et al., 2021; DuPage et al., 2011; Schenkel et al., 2021). At this time point (8 

weeks after lentiviral infection), the tumor burden in KP LucOS mice is significantly lower than 

KP Cre mice (Figure 2A). However, the introduction of immunogenic CD8 T-cell neoantigens 

resulted in only modest differences in immune cell composition when lung tissue was 

examined as a whole (i.e., both tumor and non-tumor compartments together). For example, 

the numbers of neutrophils and B cells were slightly higher in KP LucOS whole lungs as 

compared to KP Cre lungs whereas Treg cells and dendritic cells were slightly lower, but these 

differences did not reach statistical significance (Figures 2B-2D). 
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By contrast, when tumor areas were examined separately from non-neoplastic areas, 

the density of all lymphocyte subsets (Tc, Th, Treg, and B cells) was significantly higher in 

LucOS tumors as compared to Cre tumors, an increase of 3.3 to 8-fold (Figures 2B-2D). 

Increased infiltration of LucOS tumors was observed even for Treg cells that were less 

abundant in KP LucOS as compared to KP Cre lung as a whole (>3-fold higher in LucOS 

versus Cre tumors) (Figure 2D). Both NK (myeloid lineage marker-defined, see Figure S1C) 

and dendritic cells were also significantly increased within LucOS tumors but not in whole lung 

tissues (Figures 2C, 2D and S2A). Notably, the ratio of Tc cells to Treg cells was significantly 

increased in LucOS tumors (5.8-fold; and to a lesser extent in non-tumor tissue) (Figure S2B), 

a hallmark of a more immune permissive tumor microenvironment (TME) (Facciabene et al., 

2012). Additionally, Tc cells inside tumors were enriched for expression of the cytotoxicity-

associated marker Prf and the inhibitory receptors PD1 and TIM3, suggestive of a greater 

functional anti-tumor response moving toward exhaustion (Figure 2E). Interestingly, FACS 

analysis of T-cell populations from dissociated tumor-bearing lung lobes from the same mice 

was consistent with the whole lung area analysis; no significant changes in Tc, Th or Treg 

populations were observed, but trends toward increased Tc cells and decreased Treg cells 

resulted in an increased Tc/Treg ratio (Figure S2C). Hence, we find that whole lung area 

analysis of T cells by dissociative techniques does not fully capture tumor-specific phenotypes. 

To determine the effect of neoantigen expression on the spatial distribution of immune 

cells relative to blood vessels and the tumor margin, we combined CyCIF with anatomical 

annotations from H&E images (Figures 2F and S1A). In both Cre and LucOS samples, we 

observed lymphocytes accumulated near blood vessels, a pattern of perivascular accumulation 

that is also observed in human tumors (Figure 2G) (Pullamsetti et al., 2017). Lymphocytes in 
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KP Cre animals were excluded from tumors, whereas in KP LucOS animals, the lymphocytes 

breached the tumor boundary and infiltrated into the tumor (Figures 2B, 2G and 

2H). Moreover, the degree of infiltration by different types of lymphocytes (i.e., B, CD4 Th, CD8 

Tc, Treg cells) was highly positively correlated in individual tumor nodules (Figure 2I), 

suggesting coordinated infiltration into tumors. In contrast, most types of myeloid cells were 

evenly distributed in the normal lung tissue, without evidence of perivascular accumulation. 

Myeloid cells were more abundant at the tumor margin but did not infiltrate into tumors in either 

KP Cre or KP LucOS mice with the exception of dendritic cells, which readily infiltrated the 

tumor in the KP LucOS model with spatial patterns similar to lymphocytes (Figures 2D, 2H 

and 2I). Tumor exclusion was particularly evident in the case of neutrophils, which were 

substantially more abundant in KP LucOS than KP Cre lungs (Figure 2H). 

Neoantigen expression is associated with intratumoral localization of lymphocyte 
networks (‘lymphonets’) 

The co-occurrence of different types of lymphocytes in KP LucOS tumors (Figure 2I) 

prompted us to look for evidence of lymphocyte cell-cell interactions. We applied the Visinity 

method recently developed by our group (Warchol et al., 2022) to interactively identify and 

quantify spatial arrangements among cells in whole-slide tissue images (see Methods). This 

method organizes cells into a 2-dimensional (2D) embedding based on the cell types within a 

neighborhood of defined diameter (50 µm in this analysis); cells close to each other in this 

representation are surrounded by similar cell types (Figure 3A). When applied to the nearly 

~2.6 million cells in the combined datasets from Cre and LucOS mouse lungs, the shared 

embedding space revealed a clear separation of neighborhood composition associated with 

normal lung and tumor (Figures S3A-S3C). Notably, the lymphoid population accumulated in 
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two areas of the plot (clusters) at the intersection of normal and tumor neighborhoods and 

encompassed both B and T cells (Figures 3B and S3A-S3C), quantitatively demonstrating the 

spatial coordination of lymphocytes within cellular neighborhoods. 

To characterize these T- and B-cell clusters, we generated graphs of cell-cell 

interactions by performing Delaunay Triangulation (Delaunay, 1934; Liebling and Pournin, 

2012) (Figures 3C-3D; see Methods for computational details) on each specimen individually. 

We identified lymphocyte cell-cell networks that ranged from small clusters of less than ten 

lymphocytes to well over one-hundred lymphocytes that were in direct contact (Figures 3C, 

3D; Figure 3D depicts examples of lymphonets ranging in size from 8 to 204 cells). Across KP 

Cre and LucOS mice, a minority of lymphocytes were organized into lymphonets (defined as ≥ 

6 lymphocytes connected by direct cell-cell contacts; mean 15.5% ± 6.8% standard deviation 

(Figure S3D). We detected an average of ~77 lymphonets per mouse lung lobe with an 

average of 17 cells per network. Analysis of lymphonet composition indicated that Th and B 

cells were the core structural components of lymphonets; over 60% of individual lymphonets 

had a majority of either Th or B cells (34% and 27%, respectively) in contrast to 5% having a 

majority of Tc cells and 8% containing a majority of Treg cells (Figure S3E). The fraction of B 

and T cells was strongly correlated with lymphonet size, with small lymphonets being enriched 

in T cells and large lymphonets being enriched in B cells (Figure 3E). Notably, lymphonets 

having fewer than 16 cells were almost exclusively composed of T cells and the frequency of B 

cells increased linearly after this threshold (Figure 3F). This relationship between network size 

and cell composition suggests that lymphonets nucleate from a core of T cells and 

subsequently grow by recruiting B cells. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.11.503237doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.11.503237
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

While the overall number and size of lymphonets did not change substantially with 

neoantigen expression (KP Cre vs KP LucOS) across the lung tissues (Figures 3G and 3H), 

lymphonets in KP LucOS contained significantly more Tc cells and significantly fewer Treg 

cells compared to lymphonets in KP Cre lungs (Figure 3I). In addition, neoantigen expression 

dramatically relocalized lymphonets relative to histopathological features (Figure 3J): in KP 

LucOS lungs, the majority of lymphonets were located inside tumors whereas in KP Cre mice 

most lymphonets were located outside of tumors, with a substantial fraction residing within 20 

µm of a major blood vessel (Figure 3J). These findings reveal a strong correlation between 

neoantigen expression and lymphonet formation inside tumors. 

CXCR3 ligands modulate lymphonet formation and size but not intratumoral localization 

The recruitment of activated Th and Tc cells to the TME is mediated in part by binding 

the CXCL9 and CXCL10 chemokines (and also CXCL11 in human) to the CXCR3 receptors on 

T cells (Metzemaekers et al., 2017; Mikucki et al., 2015). Given that small lymphonets 

predominantly contained T cells (Figures 3E, 3F), we hypothesized that CXCR3-mediated 

recruitment of T cells may contribute to the nucleation of lymphonets. Because CXCL9 and 

CXCL10 levels are tightly controlled at a transcriptional level (Ellis et al., 2010), and antibodies 

suitable for imaging cytokines in tissue are not available, we measured their distribution using 

RNA ISH (Figures 1A, 1B, and 4A). In total, the levels of Cxcl9 and Cxcl10 mRNA in lung 

tissue were modestly increased in LucOS compared with Cre mice, but the changes were not 

statistically significant (Figures 4B and S4A). However, in KP LucOS (but not KP Cre) mice, 

Cxcl9 mRNA expression was strongly localized within tumors, and both T and B cell 

localization was strongly spatially correlated with Cxcl9 and Cxcl10 expression (Figures 4C, 

S4A and S4B). In contrast, chemokine expression did not correlate with non-lymphocyte 
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immune cells, such as neutrophils or tumor-associated macrophages (Figure 4C). Notably, the 

T and B cells that were spatially correlated with chemokine expression in LucOS mice were 

present within lymphonets (Figures 4D and 4E). 

To test whether CXCR3 ligands promote lymphonet formation, we used CRISPR-

activation to ectopically express Cxcl10 in KP Cre tumors (Figure 4F, see Methods); 38-fold 

induction of Cxcl10 mRNA levels was achieved (Figures 4G and 4H). Lymphonet number and 

size increased significantly in the lung (Figures 4I and 4J) and involved recruitment of B cells 

and all T cell subsets (Figure 4K). Lymphonets were more proximal to blood vessels in KP 

mice over-expressing Cxcl10 as compared to control KP Cre mice but remained markedly 

excluded from the inside of tumors (Figure S4C). These data show that expression of Cxcl10 

in the TME can promote the formation and growth of lymphonets but that additional 

neoantigen-dependent mechanisms are required for lymphonet localization to tumors.  

Spatial analysis reveals dynamic shifts in Tc cell states with immunotherapy treatments  

To investigate the role played by lymphonets in anti-tumor Tc responses, we first 

assayed Tc function based on their expression of cytotoxic effectors (GzmB, Prf), checkpoint 

receptors (PD1 and TIM3), the TCF1 transcription factor, and the proliferation marker Ki-67. 

KP LucOS mice were exposed to one of two immunotherapy regimens previously shown to 

improve the anti-tumor functionality of the Tc response (Burger et al., 2021): (i) therapeutic 

vaccination (Vax) against the SIIN and SIY neoantigens, and (ii) antibody-mediated 

PD1/CTLA-4 immune checkpoint blockade (ICB) (Figure S5A). For Vax, KP LucOS mice were 

injected subcutaneously with SIIN and SIY 30-mer peptides and cyclic-di-GMP as an adjuvant 

at 6 weeks post-tumor initiation followed by a booster at 8 weeks and then sacrificed at 9 

weeks. For ICB therapy, a mixture of anti-PD1 and anti-CTLA-4 antibodies or, as a control, 
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isotypes controls were administered by injection into the peritoneal cavity starting at 8 weeks 

post-tumor initiation (a total of three doses spaced three days apart: day 0, 3 and 6 of week 8) 

and then the mice were sacrificed, also at 9 weeks after tumor initiation.  

The resulting data were analyzed using Palantir, an algorithm that uses 

multidimensional expression data to align single cells along differentiation trajectories, thereby 

capturing continuity in cell states and stochasticity in cell fate determination (Setty et al., 2019). 

Three predominant CD8 T-cell states (S1 to S3, Figures 5A and S5B) were identified in both 

Vax and ICB mice and gated using a supervised method typical of FACS data analysis (see 

Methods). S1 had high levels of TCF1 expression and no expression of markers of 

activation/exhaustion (i.e., PD1, TIM3) or cytotoxicity (i.e., GzmB, Prf) and thus corresponded 

to a naïve T cell state (Figures 5B and S5C). S2 had high expression of GzmB and/or Prf and 

the proliferation marker Ki-67, indicative of a proliferative, cytotoxic T cell state. S3 had low 

expression of GzmB, Prf, and Ki-67 and high expression of the inhibitory receptors PD1 and 

TIM3, denoting an exhausted T cell state. These three states were interconnected by cells – 

about one-third of the total – having transitional phenotypes (T1, T2, T3) in which the 

expression of multiple markers was graded and mixed (Figures 5A, 5B, and S5B-S5C). Using 

this division of cell types and states, we examined shifts in CD8 T-cell function induced by the 

two immunotherapy regimens.  

In the untreated LucOS cohorts, the majority of Tc cells were naïve (S1), but Vax and 

ICB protocols shifted cells into cytotoxic (S2) and exhausted (S3) states (Figures 5C and 

S5D). In the Vax cohort, the cytotoxic (S2) population split into two groups distinguished by the 

levels of PD1 and TIM3 expression (S2A and S2B in Figures 5A-5C): the S2A state had low 

PD1/TIM3 expression and appeared highly cytotoxic, expressing high levels of both GzmB and 
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Prf whereas cells in the S2B state expressed high levels of PD1/TIM3 cells and expressed 

GzmB at relatively lower levels. In the phenotypic landscape, cells in the S2B state were 

adjacent to the exhausted (S3) population, suggesting S2B may represent a cell state on the 

verge of exhaustion/dysfunction. In the ICB cohort, the S2 state did not split and resembled the 

PD1/TIM3high GzmBlow state of S2B Vax cells (Figures S5B-S5D). These data suggest that 

Vax is substantially more effective than ICB in generating a highly cytotoxic and proliferative 

effector state lacking markers of exhaustion. 

Functionally distinct Tc cell states are spatially segregated in the tumor 
microenvironment 

To characterize the spatial distribution of the CD8 T-cell states relative to tumor cells, 

we split the Palantir phenotypic landscape depending on whether the immune cells (i) resided 

inside tumors, (ii) were proximal (< 50 µm) to the edge of tumors, or (iii) were distal to tumors 

(>50 µm away from tumor edges) (Figures 5D-5E and S5E-S5G). Strikingly, we found that the 

highly cytotoxic S2A state that was unique to Vax mice was present distal to tumors (Figures 

5D and 5E), whereas the cytotoxic/early-exhausted S2B (Vax) and S2 (ICB) states were 

enriched inside tumors (Figures 5D, 5E, S5E-S5F). The exhausted S3 population in both Vax 

and ICB mice was found proximal to tumor edges, indicating that this dysfunctional state is 

associated with exclusion from tumors (Figures 5D, 5E, and S5F-S5G). These findings show 

that the spatial segregation of different functional states of CD8 T cells is altered in an 

immunotherapy-specific manner both within tumors and surrounding normal tissue.  

Neither the Vax nor ICB protocols significantly changed the fraction (~30%) of CD8 T 

cells that displayed transitional phenotypes (T1-T3; Figures 5C and S5D). In Vax, T2 cells 

were both spatially enriched inside tumors (Figure 5E) and were dramatically enriched for cells 
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co-expressing TCF1 and PD1 (between 8- and 200- fold increase above other states, Figure 

5F), similar to T1 and T2 states in ICB (Figure S5H). TCF1+ PD1+ CD8 T cells have recently 

been shown to play a critical role in driving therapeutic responses to ICB therapy in both mice 

and humans (Philip and Schietinger, 2022). Such cells are in a progenitor-like state and are 

induced to differentiate into cells having cytotoxic function in response to treatment (Kurtulus et 

al., 2019; Siddiqui et al., 2019). The findings from our combined spatial and phenotypic 

analysis suggest that TCF1+ PD1+ progenitor CD8 T cells are enriched in specific transitional 

states that efficiently traffic into tumors and can establish residence within the tumor bed. 

TCF1+ PD1+ progenitor CD8 T cells reside within intratumoral lymphonets 

We next used the data from the Vax-treated LucOS mice to investigate how lymphonets 

intersect with the phenotypic landscape of Tc cells. While Vax treatment did not substantially 

change the overall size, number, or localization of lymphonets (Figures S6A-S6B), Vax 

increased lymphonet association of CD8 T cells but not other T cell subsets (Figures 6A-6B, 

and S6C). Remarkably, the TCF1+ PD1+ progenitor CD8 T cell state was the most highly and 

significantly enriched state in lymphonets (Figure 6C, KS p-value = 10-3). Across the Vax 

cohort the total number of Tc cells in lymphonets was linearly correlated with the number of 

TCF1+ PD1+ cells (Figure 6D). Consistent with this, the CD8 T-cell compartment of 

lymphonets was predominantly comprised of the transitional T2 state containing TCF1+ PD1+ 

progenitor cells (Figures 6E-6F and S6D); this was true of lymphonets both inside and outside 

of tumors, however, cells in the T2 state were mostly found within tumors (Figures 5D and 

5E). Lymphonets were similarly enriched for the transitional phenotypes containing TCF1+ 

PD1+ cells in the ICB cohort (i.e., T1 and T2, Figures 6G-6H and S6E). Notably, the only CD8 

T-cell state that increased in lymphonets following Vax or ICB treatment was the cytotoxic S2 
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state (S2B for Vax and S2 for ICB, Figures 6E-6H). Thus, after treatment, cytotoxic cells 

colocalized with TCF1+ PD1+ progenitor CD8 T cells in lymphonets. Given that TCF1+ PD1+ 

progenitor cells give rise to cytotoxic Tc cells in tumors (Siddiqui et al., 2019), these data 

suggest that lymphonets are the site of differentiation of progenitor cells into cytotoxic cells in 

response to immunotherapy. 

Lymphonets enriched for TCF1+ PD1+ progenitor CD8 T cells are abundant in early-
stage human lung adenocarcinoma 

We used a panel of CyCIF-qualified antibodies to characterize the features of 

lymphonets in 14 whole slide sections of early-stage human lung adenocarcinoma (Table S2), 

to parallel the early-stage tumors studied in the KP LucOS GEMM. We performed sequential 

clustering of ~7.8 million cells from these images to identify tumor and stromal cells (Figure 

7A, Lv1) and to computationally isolate immune cells (~3.4 million cells) for further cell-type 

calling (Figure 7A, Lv2-Lv4). The samples had highly variable fractions of each of the cell 

types and lymphocyte subtypes (Figure 7B). In histopathologically-annotated tumor areas, we 

identified many lymphonets per sample, and they varied substantially in size. Similar to 

lymphonets in mice, the vast majority of these networks in human tumors were small (Figures 

7C and 7D), and the fraction of B cells was positively correlated to lymphonet size (Figure 7E). 

Notably, only a few of these lymphocyte networks were similar to the organized aggregates of 

T and B cells that are known as tertiary lymphoid structures (TLS, Table S3) (Schumacher and 

Thommen, 2022), as scored by pathology review (see Methods). These findings suggest that 

the anti-cancer immune response in both human and early-stage mouse lung cancer is 

characterized by a preponderance of smaller lymphocyte networks. Similar to the KP mouse 

tumors, in the human lung tumors, T cells were prevalent in smaller lymphonets. Uniquely to 

human samples, the fraction of CD8 T cells decreased as lymphonets increased in size, being 
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replaced by CD4 Th cells (Figure 7E). A positive spatial correlation between tumor cell major 

histocompatibility class I (MHC I) expression and lymphonets was observed (Figure 7F), 

suggesting lymphonet organization in early-stage human lung cancer may be regulated by 

CD8 T-cell antigen presentation. A negative spatial correlation was observed between tumor 

cells expressing PD-L1 and lymphonets (Figure 7F), suggesting that PD-L1 may support the 

exclusion of lymphonets. Similar to Figure 5, we profiled Tc cells with functional markers and 

used Palantir to identify the TCF1 and PD1 co-expressing population of progenitor CD8 T 

cells. While Tc cells were present both outside and inside of lymphonets, TCF1+ PD1+ 

progenitor cells were largely restricted to lymphonets (Figure 7G) and became increasingly 

enriched as lymphonet size increased (Figure 7H). Altogether, these findings reveal that 

lymphonets as defined in the KP GEMM model are found in abundance in human lung 

adenocarcinomas and may similarly support progenitor CD8 T-cell maturation.  

DISCUSSION 

Recent advances in single-cell and multiplexed spatial analysis of tissues are driving 

large scale inter-institutional and international efforts to systematically characterize the spatial 

organization of human tumor and immune cells during cancer development and in response to 

therapy (Rajewsky et al., 2020; Rozenblatt-Rosen et al., 2020). Recurrent spatial features of 

human cancers are being identified, for example i) active immune surveillance of proliferating 

tumor cells by cytotoxic T cells (Gaglia et al., 2022; Launonen et al., 2022), ii) chemokine-

organized tumor-immune architecture (Nirmal et al., 2022; Pelka et al., 2021), and iii) and cell-

cell interactions involved in generating extracellular metabolites such as adenosine, an 

immunosuppressive purine metabolite of ATP hydrolysis by the CD39 and CD73 ectoenzymes 

(Coy et al., 2022). These early insights into the tissue cellular neighborhoods and cellular 
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architectures of human cancer tissues have revealed a pressing need for experimental and 

analytical approaches to investigate the mechanistic underpinnings of the anti-cancer immune 

response. 

Cancer GEMMs are a natural complement to analysis of human tumor samples 

because they provide a highly physiological and tractable experimental system for deep 

mechanistic study of the regulators of the tumor-immune microenvironment (Connolly et al., 

2022; Dhainaut et al., 2022; Wroblewska et al., 2018). However, substantial method 

development is required to perform high-dimensional spatial characterization of the tumor-

immune interactions in these models. In this study, we describe an approach for spatial 

interrogation of the immune microenvironment of genetically engineered mouse models 

(GEMMs) of cancer by imaging mRNA and protein expression and integrating this information 

with pathology-annotations of tissue landmarks acquired from conventional H&E stains. This 

work shows that the composition, functional states, and spatial organization of the immune 

response to neoantigen expression and immune therapies can be efficiently mapped using 

multi-marker measurements from whole lung mouse tissues. The CyCIF panels and the 

computational analysis pipelines used here are available in the public domain and can be 

applied across distinct cancer histologies using conventional microscopes and widely available 

reagents (Lin et al., 2018; Schapiro et al., 2022a, 2022b). We expect that the antibodies and 

analysis methods developed in this effort can also be adapted for use with other multiplexed 

imaging methods that are in use to acquire multiplexed tissue images.  

Spatial characterization of the KP GEMM of lung cancer revealed striking differences 

that are induced by tumor neoantigen expression. These changes in the immune landscape 

were observed in the tumor areas but were not identified when analyzing entire lung areas, 
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underscoring the limitations of whole-tissue dissociative methods for faithfully capturing 

localized or tumor-specific phenotypes. Comparison of immunogenic (KP LucOS) versus non-

immunogenic (KP Cre) tumor-bearing lungs revealed no significant differences in immune cell 

composition across whole lung areas but pronounced differences in lymphocyte and dendritic 

cell localization to tumors. KP LucOS tumors heavily recruited T and B cells in a coordinated 

manner and formed lymphoid networks ranging from as few as 6 cells to upwards of hundreds 

of cells that we termed lymphonets, predominantly composed of Th cells and B cells, and 

harboring ICB-responsive progenitor TCF1+ PD1+ CD8 T cells. The ability to introduce genetic 

and therapeutic perturbations in the KP GEMM allowed us to interrogate the regulation of 

lymphonet formation and the role of lymphonets and the spatial segregation of CD8 T cell 

subsets in coordinating anti-tumor immunity. 

Multiparametric analysis of key functional Tc cell markers in KP LucOS tumors using the 

Palantir algorithm defined three major Tc cell states, naïve (S1), cytotoxic (S2), and 

dysfunctional/exhausted (S3), and characterized the flux through these states and connecting 

transitional phenotypes (T1-T3) in response to immunotherapies. Neoantigen vaccination 

(Vax) and anti-PD1/anti-CTLA-4 immune checkpoint blockade (ICB) shifted Tc cells from the 

naïve S1 state to the S2 and S3 states. These differentiated functional states were connected 

by cells exhibiting intermediate transitional phenotypes (T1-T3). TCF1+ PD1+ cells that have 

been described as giving rise to cytotoxic and exhausted CD8 T-cell populations in response 

to ICB therapy (Philip and Schietinger, 2022) occupied the intratumoral transition states and 

were tightly associated with lymphonets both before and after immunotherapy treatment. After 

therapy, S2 cells colocalized with TCF1+ PD1+ cells in lymphonets, consistent with progenitor 

cells seeding the S2 population. Notably, vaccination resulted in two S2 populations (highly 
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cytotoxic S2A T cells marked by high expression of GzmB, and cytotoxic/early-exhausted S2B 

T cells marked by low expression of inhibitory receptors) that were spatially segregated; only 

the S2B population localized to tumors and lymphonets while the S2A population was present 

outside of tumors. The exhausted/dysfunctional T cells (S3) were excluded just outside of the 

tumor margin. We hypothesize that in contrast to the S2B (and ICB S2 populations), S2A cells 

are not derived from intratumoral TCF1+ PD1+ cells and instead seed directly from the 

periphery. Upon entering tumors, S2A cells may pass through the S2B state before they 

become terminally exhausted (S3). Consistent with this, we previously reported that 

vaccination acutely promotes substantial peripheral CD8 T-cell expansion rather than 

expanding the existing CD8 T-cell populations in the lung by flow cytometric analysis (Burger 

et al., 2021). In contrast to Vax, ICB induced only the intratumoral S2B-like S2 state associated 

with TCF1+ PD1+ progenitor cells, and this may help to explain the central role of progenitor 

cells in driving ICB response in mice and humans. 

Compartmentalized and structured rather than mixed organization of lymphocytes with 

respect to tumors has previously been correlated with tumor control (Keren et al., 2018), 

particularly the formation of tertiary lymphoid structures (TLS) observed across multiple cancer 

types (Colbeck et al., 2017; Schumacher and Thommen, 2022). TLS are aggregates of 

immune cells with cellular composition and organization resembling secondary lymphoid 

organs, with fully mature TLS generally described as having B- and T-cell zones and germinal 

centers, containing follicular dendritic cells, and being vascularized by high endothelial venules 

(HEVs). The presence of TLS is predictive of better patient survival and response to immune 

checkpoint blockade and vaccine immunotherapies across multiple cancer types (Cabrita et 

al., 2020; Helmink et al., 2020). However, it remains unclear whether TLS directly facilitate 
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anti-tumor immune responses or are merely evidence of a prior immune response with 

potential for reinvigoration by immunotherapy. Characterization of dynamic changes within TLS 

over time or with therapy is difficult to investigate in humans and studies in mice have been 

limited due to the absence of TLS formation in most transplantable tumor models (Fridman et 

al., 2022). In the KP LucOS model, we previously described the formation of mature TLS 

peritumorally around 20 weeks post-tumor initiation (Joshi et al., 2015), a time-point correlated 

with loss of a functional anti-tumor CD8 T-cell immunity and lack of response to anti-PD1/anti-

CTLA-4 ICB therapy (Burger et al., 2021; DuPage et al., 2011; Schenkel et al., 2021). In 

comparison to these TLS, the lymphonets we observed (at 9 weeks post-tumor initiation) in 

conjunction with functional CD8 T-cell responses were localized inside tumors and were less 

structured, lacking distinct T- and B-cell zones and significant association with dendritic cells. It 

is possible that some lymphonets represent precursors to the TLS observed later during tumor 

progression. Further spatial profiling of the tumor microenvironment longitudinally between 9- 

and 20-weeks post-tumor initiation could shed light on this possibility and identify factors 

regulating a shift from lymphocyte structures supporting CD8 T-cell immunity to those having 

bystander or immunosuppressive function.  

Consistent with our observation in mice that intratumoral lymphonets harbor TCF1+ 

PD1+ progenitor CD8 T cells, we found that TCF1+ PD1+ cells were also localized to 

lymphonets in human lung cancer resections. Similarly, localization of stem-like cells (defined 

as CXCR5+ TCF1+) to intratumoral lymphocyte ‘niches’ has been previously reported in 

human renal cell carcinoma, where the ‘niches’ were proposed to support generation of 

cytotoxic T cells (Jansen et al., 2019). These niches were not mature TLS and instead were 

defined by lymphocyte aggregation around MHC II-expressing cells, presumably marking 
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regions rich in antigen presenting cells. Interestingly, we did not find a correlation between 

MHC II expression and lymphonets of any size in human lung cancer or a significant 

association of dendritic cells with lymphonets in mouse or human. However, MHC I expression 

level was correlated with lymphonets in human tumors; this may suggest that antigen 

presentation to CD8 T cells is necessary for lymphonet formation and/or that lymphonets 

promote MHC I upregulation (perhaps through T cell secretion of IFNɣ). Consistent with this 

observation, lymphonets in the mouse were found intratumorally only with expression of 

LucOS neoantigens and these lymphonets were significantly associated with cells expressing 

IFNɣ-induced chemokines (i.e., CXCL9 and CXCL10). Interestingly, we observed that ectopic 

expression of CXCL10 was able to increase the size and number of lymphonets in Cre mice 

lacking neoantigen expression. Pelka et al. recently reported a significant association between 

formation of “immune hubs” enriched in T lymphocytes (similar to the lymphonets reported 

here) and expression of CXCR3 ligands during a productive anti-tumor immune response to 

mismatch repair deficient (MMRd) human colorectal cancer (Pelka et al., 2021). Our findings 

provide mechanistic evidence suggesting CXCR3 ligands actively promote the formation of 

lymphocyte niches correlated with productive anti-tumor immunity; however, localization of 

these cell networks inside tumors depends on neoantigen expression or associated factors. 

Lymphonets in KP LucOS mice were predominantly composed of Th and B cells, with 

the fraction of B cells increasing with lymphonet size in both mouse and human. Notably, an 

association of B-cell gene signatures with better patient survival and response to ICB therapy 

has been found with remarkable frequency across many cancer types (Fridman et al., 2022). 

Interestingly, however, B cells in cancer have been demonstrated to have both pro- and anti-

tumorigenic functions. For example, B regulatory (Breg) cells contribute to tumor-promoting 
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inflammation and suppression of anti-tumor T-cell responses, while antibody-producing plasma 

cells (frequently associated with TLS) are more commonly associated with tumor control 

(Fridman et al., 2022). Future spatial proteomics studies with additional markers of B-cell 

states paired with spatial transcriptomics in the KP GEMM could clarify the function of B cells 

and Th cells in lymphonets and how they might support TCF1+ PD1+ progenitor CD8 T-cell 

function. Given that antigen is necessary for nucleation of lymphonets inside KP lung tumors 

and MHC I expression is associated with lymphonets in human lung cancer, one hypothesis is 

that B cells regulate CD8 T cells and support Th-cell function through their role as antigen 

presenting cells (Bruno et al., 2017). 

Limitations of this study 

One challenge with this study was that the antibody panel we qualified was largely 

focused on phenotyping effector T-cell states, but additional antibodies will be needed to 

adequately characterize other important T-cell populations (i.e., resident memory, T follicular 

helper cells) as well as the diversity of tumor-associated myeloid cells that can be monitored 

using scRNA-seq methods (Leader et al., 2021). Use of emerging spatial transcriptomics 

methods may soon facilitate deeper phenotyping of some immune cell states and expand the 

range of cytokines and chemokines that can be simultaneously profiled (Dhainaut et al., 2022). 

Another challenge was that the MHC-peptide tetramers that are commonly used to identify 

antigen-specific T cells in FACS analysis are not active in FFPE tissue sections, thus, we were 

not able to detect and quantify the CD8 T cells that are specific for SIIN and SIY CD8 T-cell 

antigens. Being that many lymphonets largely comprise Th cells, additional analysis will be 

needed to understand the role of diverse neoantigens on lymphonets as well as the effects of 

CD8 T-cell antigens with different MHC affinity (Burger et al., 2021). Depleting immune 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.11.503237doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.11.503237
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

populations (Hiam-Galvez et al., 2021) will also be useful for dissecting the contributions of 

individual cell types on lymphonets formation and function. An additional limitation is that 

multiparametric measurements permit the inference of dynamic properties, but they do not 

allow the direct visualization of transitions over time in the way that intravital imaging methods 

permit (Jain et al., 2002; Mueller et al., 2021); however, such microscopy methods image 

relatively restricted regions of tissue over short windows of time in small numbers of animals 

and the methods are prone to motion artifacts when applied to lung tissues. A considerable 

limitation of the current work is the limited availability of software and computational methods 

for processing and analyzing multiplexed tissue images. While our study leverages recent tool 

development and presents an analysis framework for quantifying networks of lymphocytes, the 

analysis of whole-slide high-plex tissue images is still at an early stage. Releasing full 

resolution Level 3 images and spatial feature tables (Schapiro et al., 2022a, 2022b) derived 

from the high-plex images from our study should accelerate tool and method development and 

advance the use of these tools for mechanistic studies of mouse models of cancer. 
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FIGURE LEGENDS 
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Figure 1. Spatial analysis of the KP GEMM tumor-immune microenvironment by 
multimodal data integration 
(A) Schematic of the KP GEMM of lung cancer, treatments, and multi-modality data integration 

and analysis. (B) Representative images acquired from a tumor nodule from the KP LucOS 

GEMM (expressing immunogenic neoantigens) showing H&E staining, a multiplexed CyCIF 

image of immune and tumor markers (DNA stain blue), RNAScope™ in situ hybridization for 

Cxcl9 and Cxcl10 (DNA stain blue), a map showing distance of each cell from the tumor edge 

(‘tumor boundary’), a map of cell type annotations, and a ‘graph’ map of physically interacting 

cells generated by Delaunay Triangulation showing the spatial organization of interacting 

cellular networks in and around tumor nodules. H&E, CyCIF and RNAScope™ images were 

acquired from serial sections. Maps of cells were derived from the CyCIF data. (C) Single cell 

gallery of lineage, cell state, and functional markers from representative, CyCIF images of the 

KP LucOS GEMM. (D) Sequential clustering of processed CyCIF imaging data using the 

marker combinations outlined in Figure S1C to define immune, epithelial tumor, and stromal 

cell populations. Rows represent individual cells. 

Figure 2. Tumor neoantigen expression reorganizes the immune landscape in KP lung 
cancer 
(A-B) Representative H&E (A) and CyCIF (B) images of KP Cre versus KP LucOS 

(neoantigen-expressing) tumors and quantification of normal and tumor cell number (n = 5 

mice per group, bar = mean). (C) Log2 fold ratio of cell-type densities between LucOS and Cre 

in whole lung areas and tumor areas (n = 5 mice per group, color represents two tailed t-test p-

value). (D) Cell density measurements for indicated immune cell types in whole lung areas and 

tumor areas (n = 5 mice per group, bar = mean). (E) Log2 fold ratio between LucOS and Cre of 

density CD8 T-cell positive for single phenotypic markers indicated (right, inside tumor areas; 

left, outside tumor areas, n = 5 mice per group). (F) Representative image of pathology 

annotation of H&E showing tumor, airway, and blood vessel. (G) Probability density plots of T-

cell spatial frequency relative to blood vessels and tumor boundaries in Cre and LucOS mice 

(n = 5 mice per group, mean +/- SEM). (H) Probability density plots of the frequency of 

indicated cell types from tumor boundaries in Cre and LucOS mice (n = 5 mice per group, 

mean +/- SEM). (I) Plot of tumor-by-tumor spatial correlation values within LucOS tumor 

nodules for indicated immune cell types (n = 29 tumors). 
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Figure 3. Neoantigen expression is associated with intratumoral localization of 
lymphocyte networks (‘lymphonets’) 
(A) Schematic diagram of neighborhood quantification using Visinity. Each cell within a given 

sample is assigned to a unique neighborhood. The neighborhood is defined as all cells within a 

specified radius to the reference cell. A feature vector is calculated based on this 

neighborhood which represents the weighted presence of each cell type within the given 

neighborhood. Groups of similar neighborhood vectors correspond to spatial patterns. (B) 

Neighborhood embedding generated by Visinity analysis of KP Cre and KP LucOS lung tissue 

with distinct regions highlighted that correspond to immune neighborhoods enriched in normal 

lung regions (green arrow) and others enriched in areas of tumor (black arrow). (C) CyCIF 

images and corresponding graphic maps of interacting immune populations identified by 

Delaunay Triangulation in KP LucOS lung tissue. (D) Examples of lymphonets of different 

sizes. (E) Lymphonet composition by cell type across various network sizes. Left proportion of 

B and T cells. Right, proportion of T-cell subtypes within T cell compartment (mean +/- 25th 

percentile). (F) Scatter plot of number of B cells per network versus the total size of 

lymphonets. (G) Histogram of the number of lymphonets identified per mouse of indicated size 

in Cre and LucOS lung tissue. (H) Fraction of B and T lymphocytes and (I) T-cell subsets in 

lymphonets in Cre versus LucOS (n = 5 mice per group, bar = mean). (J) Left, density plots of 

lymphonets by distance from closest blood vessel (y-axis) and tumor (x-axis) in KP Cre and KP 

LucOS cohorts. Right, scatter plot lymphonets used to generate density plot (dot size 

represents the lymphonet size; n = 5 mice per group).  

Figure 4. CXCR3 ligands modulate lymphonet formation and size but not intratumoral 
localization 
(A) CyCIF and RNAScope™ in situ hybridization images from serial sections of a 

representative KP LucOS tumor nodule with cell type/state calls as indicated. (B) Percent of 

total cells expressing Cxcl9 and Cxcl10 mRNA in Cre versus LucOS lung tissue (n = 4 mice 

per group, bar = mean). (C-D) Kernel density probability density functions of the distance of the 

indicated immune cell populations (C) or T and B cells (D) in or out of lymphonets from Cxcl9 

and Cxcl10 mRNA-expressing cells in Cre and LucOS. (E) Spatial correlation of Cxcl9 or 

Cxcl10 mRNA-expressing cells and lymphonets in Cre and LucOS (n = 4 mice per group, bar = 

mean). (F) Schematic of lentiviral system to deliver dRNAs and HSF1/p65 activation complex 
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for CRISPR-a of Cxcl10 in KP Cas9 mice. (G) Representative images of RNA in situ 

hybridization for Cxcl9 and Cxcl10 mRNAs using RNAscope™ in KP Cre versus KP Cxcl10-

activated tumor nodules. (H) Percent of total cells expressing Cxcl9 or Cxcl10 mRNA in KP 

Cre versus KP Cxcl10 lung tissue (n = 4 mice per group, bar = mean). (I) Number of 

lymphonets per mouse in KP Cre, KP LucOS, and KP Cxcl10 (n = 5 mice per group, bar = 

mean). (J) Histogram of the mean number of lymphonets per mouse of indicated size in KP 

Cre and KP Cxcl10 (n = 5 mice per group). (K) Plots of the fraction of indicated lymphocyte 

populations within lymphonets in KP Cre and KP Cxcl10 (n = 5 mice per group, bar = mean). 

Figure 5. Spatial analysis reveals dynamic shifts in Tc cell states and localization with 
immunotherapy treatments  
(A) Palantir projection of Tc populations in KP LucOS mice treated with a SIINFEKL (SIIN) and 

SIYRYYGL (SIY) long-peptide vaccine (Vax) or PBS (Ctrl) (n = 104 cells sampled from n = 8 

and 7 mice per treatment, see Figure S5A for treatment schematic). The expression levels of 

the indicated markers are mapped to color (normalized between 0.1 and 99th percentile). Tc 

states defined by multiparameter measurements are indicated at the extremes of the 

representation (S1, S2A, S2B, and S3) connected by transitional phenotypes (T1-T3) shown in 

the schematic to the right. (B) Normalized fluorescence units for each of the markers in the 

indicated Tc cell states and transitions (mean +/- 25th percentile). (C) Heat map of Tc cell 

densities in Palantir projections for Ctrl and Vax groups (n = 104 cells per treatment). Right, 

stacked bar graph of the fraction of Tc cells in each state and transition. (D) Heat map of Tc 

densities in Palantir projections for KP LucOS mice following Vax separated by distance from 

tumor boundary (distal: >50 µm from the tumor boundary; proximal: <50 µm from the tumor 

boundary; and inside tumor). (E) Spatial frequency of Tc cell states and transitions from tumor 

boundaries (Vax). (F) Percent of Tc cells that are TCF1+ PD1+ in each Tc cell state. 

Figure 6. TCF1+ PD1+ progenitor CD8 T cells reside within intratumoral lymphonets 
(A) Proportion of T-cell subtypes in lymphonets (Ctrl n = 7, Vax n = 8 mice, mean + SD, same 

KP LucOS cohort as Figure 5). (B) Number of cell T-cell subtypes present in lymphonets (bar 

= mean of n = 7 and 8 mice). (C) Pairwise enrichment analysis of marker co-expression in Tc 

cells in Ctrl and Vax groups (KS p-value *p =0.05, **p = 0.01,***p = 103,****p = 104. (D) Scatter 

plot of Tc cells present in lymphonets versus TCF1+ PD1+ cells in both Ctrl and Vax groups 
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(dotted line, linear regression, R2 = 0.81). (E) Heat map of cell densities of tumor-localized Tc 

cells present outside and inside lymphonets in Palantir projections for Vax-treated cohort (n = 

3,736 and 806 cells, respectively). (F) Enrichment of tumor-localized Tc cells in lymphonets for 

Ctrl (n = 7) and Vax (n = 8) mice. (G) Heat map of cell densities of tumor-localized Tc cells 

present outside and inside lymphonets in Palantir projections for anti-PD1 and anti-CTLA4 

treated (ICB) cohort (n = 6 mice per group, n = 4,276 and 1,041 cells respectively). (H) 

Enrichment of tumor-localized Tc cells in lymphonets for Ctrl and ICB mice (n = 6 mice per 

group). 

Figure 7. Lymphonets enriched for TCF1+ PD1+ progenitor CD8 T cells are abundant in 
early-stage human lung adenocarcinoma 
(A) Sequential clustering of immune, epithelial tumor, stromal and ‘other’ cell populations (Lv1); 

the immune cells were further clustered into lymphoid and myeloid cells (Lv2) and immune 

subsets (Lv3 and Lv4: Treg, CD4 Th, CD8 Tc, B, CD68+ macrophages, CD163+ 

macrophages). Rows represent individual cells. 7.8 x106 cells are plotted from n = 14 human 

lung adenocarcinomas (Table S2). Immune clusters are shown in the heat map at the right. (B) 

Horizontal stacked bar graphs of cell type fractions (Lv1-2) and lymphocyte subtype fractions 

(Lv3-Lv4). (C) Representative images of H&E, CyCIF, and maps of lymphonets colored to 

indicate size in two examples of human adenocarcinoma. Top, exemplar case of tumor 

presenting overwhelmingly with small lymphonets (n<64 cells). Bottom, exemplar case of 

tumor presenting with large lymphonets (n>64 cells). (D) Histogram of the mean number of 

lymphonets per sample (n = 14) binned by lymphonet size (5 to >65 cells). (E) Composition of 

lymphonets by cell type (B vs. T; CD8 Tc vs. CD4 Th vs. CD4 Treg) across different network 

sizes (mean +/- 25th percentile). (F) Spatial cross-correlation of lymphonets and expression of 

indicated markers (n = 14 samples, bar = mean). (G) Heat map of density of total CD8 T cells 

in and out of lymphonets of different sizes, and density of TCF1+ PD1+ CD8 T cells in Palantir 

projection from 14 human lung adenocarcinomas (n = 104 cells sampled from n = 14 samples). 

(H) Spatial correlation of TCF1+ PD1+ CD8 T cells to lymphonets binned by lymphonet size; 

individual gray lines represent data from single human lung cancers (n = 14) and black line is 

the mean ± standard deviation. 
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STAR METHODS 

Human Tissue 
Formalin fixed paraffin embedded (FFPE) tissue samples of human lung adenocarcinoma 

were retrieved from the archives of the Brigham and Women’s Hospital Department of 

Pathology following approval of the research study by the Partners Healthcare Institutional 

Review Board at Brigham Health, Boston, MA, USA (Excess tissue, discarded tissue protocol 

number 2018P001627). All appropriate ethical guidelines were followed for this study. 

Mice 
Lung adenocarcinomas were initiated in KrasLSL-G12D/+; p53fl/fl (KP) on a C57BL/6 background 

through intratracheal installation of lentiviruses expressing Cre recombinase (DuPage et al., 

2011). KP mice crossed to Rosa26LSL-Cas9-GFP-Csy4 (Ng et al., 2020) and the Rosa26LSL-tdTomato 

were used for CRISPR/Cas9-mediated gene activation of Cxcl10. Mice were between 8 and 14 

weeks of age at the time of lentiviral infection. Males and females were used equally across all 

experimental arms. All studies were performed under an animal protocol approved by the 

Massachusetts Institute of Technology (MIT) Committee on Animal Care. Mice were assessed 

for morbidity according to guidelines set by the MIT Division of Comparative Medicine and 

were humanely sacrificed prior to natural expiration. Information about each mouse experiment 

is provided in Table S4. 

Lentiviral Tumor Induction 
To initiate lung tumors, KP mice were injected intratracheally (i.t.) with 2.5 x 104 PFU of 

lentivirus containing Cre recombinase and model neoantigens as previously described 

(DuPage et al., 2009, 2011). Details of the lentivirus production can be found below. Mice were 

randomized post-infection for immunotherapy trials. 

Lentiviral Constructs 
Lentiviral constructs containing Cre recombinase with or without LucOS antigens (Lenti-Cre 

and Lenti-LucOS) were previously described (DuPage et al., 2011). The Lenti-Cre design was 

modified by Gibson cloning to create Lenti-SAM-Cre for CRISPR/Cas9-mediated gene 

activation. A U6 promoter and an activator guide RNA cloning cassette were added upstream 

and inverted from the Pgk promoter driving Cre. The cloning cassette contains BsmBI 
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restriction sites for the addition of a 15-nucleotide “dead” guide RNA (dRNA) to mediate gene 

activation rather than cutting by catalytically active Cas9 (Dahlman et al., 2015). The cassette 

appends the dRNA with stem-loops containing MS2-binding aptamers as previously described 

(Konermann et al., 2015). “SAM” transcriptional activation components from p65 (NFkB) and 

Hsf1 were fused with the MS2 RNA binding protein (Dahlman et al., 2015; Konermann et al., 

2015) and cloned in tandem with Cre, separated by a P2A self-cleaving peptide. For in vitro 

validation of dRNA activity, Lenti-SAM-Cre was modified to replace Cre with a Puromycin 

selection gene (Lenti-SAM-Puro). 

Cxcl10 Dead Guide RNA Screening 
Short guide RNA (sgRNA) sequences targeting the promoter region of Cxcl10 (up to 200 

nucleotides upstream of the TSS) were selected using the Feng Zhang lab (Broad Institute of 

MIT and Harvard) online SAM Cas9 activator design tool (no longer operational). The 20 

nucleotide sgRNA sequences were shortened to 15-nucleotide dead RNAs (dRNAs) to recruit 

Cas9 to the promoter region but prevent DNA cleavage by Cas9. The first nucleotide was 

amended to a G if it did not occur naturally to optimize expression from the U6 promoter. The 

dRNAs were screened for their relative ability to activate Cxcl10 expression in the 1233 KP 

lung adenocarcinoma cell line. Briefly, oligonucleotides were generated with BsmBI restriction 

site overhangs (see Key Resources Table) and annealed to create the double-stranded 

dRNAs for cloning into Lenti-SAM-Puro. 293FS* viral packaging cells were transfected in a 6-

well plate format with the dRNA-containing Lenti-SAM-Puro constructs (1.5 µg) and psPAX2 

(0.75 µg) and VSV-G (0.25 µg) helper plasmids to generate lentivirus. The lentiviral 

supernatant was collected through a 0.45 µm filter 48 hrs post-transfection and added 1:1 to 

1233 KP Cas9 cells plated at 25,000 cells/well the day before. Polybrene was added to 

improve transduction efficiency at 4 µg/ml. Puromycin was added 48 hrs later to select for cells 

expressing the construct. Cells were expanded (under Puromycin selection) and plated in 

triplicate in 12-well plates at 200,000 cells/well to generate supernatant containing secreted 

Cxcl10. The supernatant was collected 72 hrs later and Cxcl10 protein was quantified using a 

Cxcl10 ELISA (R&D systems) according to the manufacturer’s protocol. The dRNA that 

resulted in the greatest production of Cxcl10 (GACAAGCAATGCCCT) was cloned into Lenti-

SAM-Cre and used to generate large-scale lentivirus for in vivo studies. A non-targeting dRNA 

shortened from an sgRNA targeting tdTomato (CGAGTTCGAGATCGA; (Sánchez-Rivera et 
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al., 2014) was used a negative control. dRNA sequences and oligonucleotides are listed in the 

key resources table. 

Lentivirus Production for In Vivo Instillation 
Lentivirus was produced by transfection of 293FS* viral packaging cells in 15 cm plates with 

lentiviral constructs (10 µg), VSV-G (2.5 µg) and psPAX2 (7.5 µg) viral packaging plasmids, 

and Mirus TransIT LT1 (MirusBio; 60 µl). Lentiviral supernatant was harvested, passed through 

a 0.45 um filter, and concentrated by ultracentrifugation at 25,000 rpm for 2 hrs at 4°C 48- and 

72-hrs post-transfection. Viral titers were determined by measuring Cre activation of GFP 

expression in GreenGo 3TZ cells as previously described (Sánchez-Rivera et al., 2014). 

Anti-PD-1/Anti-CTLA-4 Therapy 
KP LucOS mice were treated for one week starting at 8 wks post-tumor initiation with 

InvivomAb anti-PD1 (29F.1A12; BioXCell) and InvivomAb anti-CTLA4 (9H10; BioXCell) or 

isotype controls (Rag IgG2a, 2A3; Syrian Hamster, polyclonal; BioXCell). Mice received 200 µg 

of each antibody i.p. at day 0, followed by 200 µg anti-PD-1 and 100 µg anti-CTLA-4 (or 

isotype controls at the same concentrations) on days 3 and 6. Mice were sacrificed for 

endpoint analysis on day 7. 

Neoantigen Vaccination 
KP LucOS mice were vaccinated s.c. at the tail-base with 30 amino acid long peptides 

containing SIINFEKL and SIYRYYGL (10 nmol; New England Peptide) and cyclic-di-GMP 

adjuvant (0.25 mg/ml; Invitrogen) at 6 wks post-tumor initiation. An equivalent booster dose 

was given 2 wks later, and the mice were sacrificed at 9 wks post-tumor initiation for endpoint 

analysis. All doses were delivered in two 50 µL boluses and control mice received PBS. The 

long peptide sequences used were: SMLVLLPDEVSGLEQLESIINFEKLTEWTS and 

GRCVGSEQLESIYRYYGLLLKERSEQKLIS (New England Peptide). 

Mouse Lung Tissue Processing for Histology and H&E Staining 
Tumor-bearing lung lobes were collected into 4% paraformaldehyde in PBS and incubated 

overnight with shaking at 4°C. Tissue was transferred into 70% ethanol and subsequently 

paraffin embedded and sectioned (4 µm) onto Fisherbrand Superfrost Plus Microscope Slides 

(ThermoFisher Scientific). After drying, slides for RNAScope™ were stored at 4°C until use. 
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Hematoxylin and eosin (H&E) stain was performed with a standard method by the Hope 

Babette Tang Histology Facility at the Koch Institute at MIT. 

Tissue-Based Cyclic Immunofluorescence (t-CyCIF) Staining and Imaging 
FFPE sections were prepared and stained with a 24-plex antibody panel according to the 

previously described t-CyCIF protocols (Burger et al., 2021; Gaglia et al., 2022; Lin et al., 

2018) (see Table S1). This CyCIF panel has been validated across many different sample 

types in accordance with standards defined by our group (Du et al., 2019). 

Baking and Dewaxing 

To prepare samples for antibody staining, slides were automatically baked at 60°C for 30 min, 

dewaxed at 72°C in BOND Dewax Solution, and antigen retrieval was performed at 100°C for 

20 min in BOND Epitope Retrieval Solution 2 (ER2) by the Leica Bond RX machine.  

Pre-Staining Background Reduction 

After slides were baked and dewaxed, they were photobleached by immersing them in 

bleaching solution (4.5% H2O2, 20 mM NaOH in PBS) with LED light exposure for 2 x 45 min 

to reduce autofluorescence. 

To mitigate non-specific antibody binding, slides were washed for 3 x 5 min with 1X PBS and 

then incubated overnight with secondary antibodies (anti-rat, anti-mouse, and anti-rabbit) 

diluted in 150 μL of Odyssey Blocking Buffer (1:1000) at 4°C in the dark. Slides were 

subsequently washed 3x with 1X PBS before photobleaching them again for 2 x 45 min.  

Antibody Staining, Slide Mounting, and Imaging 

For each round of t-CyCIF, samples were incubated overnight at 4°C in the dark with Hoechst 

33342 (Dilution: 1:10,000; Thermo Fisher Scientific, cat# 62249) for nuclear staining along with 

either primary conjugated antibodies or primary unconjugated antibodies diluted (see Table S1 

for antibody information) in 150 μL of Odyssey Blocking Buffer (LI-Cor, Cat# P/N 927–40003). 

Incubation with primary unconjugated antibodies was followed by secondary antibody 

incubation at room temperature for 2 hrs in the dark.  

Post staining, slides were washed for 3 x 5 min, mounted with 24 x 50 mm coverslips using 

200 μL of 70% glycerol, and then dried. Once coverslipped, slides were manually imaged on 

the IN Cell Analyzer 6000 or automatically on the RareCyte Cytefinder II HT using the following 
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channels: UV, cy3, cy5, and cy7 (Binning: 1 x 1; Objective: 20×; Numerical Aperture: 0.75; 

Resolution: 0.325 μm/pixel). Image exposures were optimized for each channel to avoid signal 

saturation and kept constant for each sample 

To demount, slides were placed in containers of 1X PBS and heated in a water bath for 1 hr. 

Before additional antibody staining, slides are photobleached for 2 x 45 min to deactivate the 

fluorophores and washed 3 x 5 min in 1X PBS. 

RNA In Situ Hybridization 

RNAScope™ was performed as per manufacture’s suggested protocol (Advanced Cell 

Diagnostics, Inc.) using the LS Multiplex Reagent Kit (cat# 322800) and probes RNAscope® 

2.5 LS Probe- Mm-Cxcl9 (cat #: 489348) and RNAscope® 2.5 LS Probe- Mm-Cxcl10-C3 (cat 

#: 408928-C3). 

Quantification and Statistical Analysis  
Information on the sample size and the statistics are included in the figure legends. Statistical 

tests used are Pearson correlation, two-sided t-test, and non-parametric Kolmogorov–Smirnov 

(KS) two-sided test as specified in the figure legends and are performed with MATLAB built-in 

functions. Significance was defined as a p-value of less than 0.05.  

Image Processing and Single-Cell Quantification 
The image processing of both plate-based and tissue cyclic immunofluorescence was 

organized in the following steps, each of which is described in detail below:  

- the software ASHLAR is used to stitch, register, and correct for image acquisition 

artifacts (using the BaSiC algorithm). The output of ASHLAR is a single pyramid ome.tiff 

file for each region imaged;  

- the ome.tiff file is re-cut into tiles (typically 5000 x 5000 pixels) containing only the 

highest resolution image for all channels. One random cropped image (250 x 250 

pixels) per tile is outputted for segmentation training (using Fiji);  

- the ilastik software is trained on the cropped images to label, nuclear, cytoplasmic, and 

background areas. The output of the Ilastik processing is a 3-color RGB image with 

label probabilities;  
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- the RBG probability images are thresholded and watershed in MATLAB to segment the 

nuclear area. The cytoplasmic measurements are derived by dilating the nuclear mask;  

- single-cell measurements are extracted for each channel (cell pixel median and mean 

for both nuclear and cytoplasmic area) as well as morphological measurements of area, 

solidity, and cell coordinates location.  

 

BaSiC 

The BaSiC ImageJ plugin tool was used to perform background and shading correction of the 

original images (Peng et al., 2017). The BaSiC algorithm calculates the flatfield, the change in 

effective illumination across an image, and the darkfield, which captures the camera offset and 

thermal noise. The dark field correction image is subtracted from the original image, and the 

result is divided by the flatfield image correction to obtain the final image. 

ASHLAR 

Alignment by Simultaneous Harmonization of Layer/Adjacency Registration (ASHLAR) is used 

to stitch together image tiles and register image tiles in subsequent layers to those in the first 

layer (Muhlich et al., 2021). For the first image layer, neighboring image tiles are aligned to one 

another via a phase correlation algorithm that corrected for local state positioning error. A 

similar method is applied for subsequent layers to align tiles to their corresponding tile in the 

first layer. ASHLAR outputs an OME-TIFF file containing a multi-channel mosaic of the full 

image across all imaging cycles. Full codes available at: 

https://github.com/labsyspharm/ashlar.  

ilastik  

ilastik is a machine learning based bioimage analysis tool that is used to obtain nuclear and 

cytoplasmic segmentation masks from OME-TIFF files (Berg et al., 2019). For increased 

processing speed, randomly selected 250 x 250 pixel regions from the original OME-TIFF are 

used as training data. ilastik’s interactive user interface allows the user to provide training 

annotations on the cropped regions. Users are presented with a subset of the channels 

stacked images and label pixels as either nuclear area, cytoplasmic area, or background area. 

The annotations are used to train non-linear classifiers that are applied to the entire image to 

obtain probability masks describing the probabilities of each pixel belonging to the nuclear, 
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cytoplasmic, or background area. A MATLAB (version 2018a) script uses these masks to 

construct binary masks for nuclear and cytoplasmic area.  

Single Cell Segmentation and Quantification 

Using ilastik’s Pixel Classification workflow, a random forest classifier is trained for each 

experimental dataset based on manual annotations of nuclear, cytoplasmic, and background 

regions within the CroppedData. Batch processing is subsequently performed by the classifier 

on the FullStacks, generating .tif probability maps for nuclei, background, and cytoplasm.  

Cell nuclei are segmented through thresholding maps based on nuclear, cytoplasm, and 

background probabilities and performing water shedding on them using MATLAB. Cytoplasmic 

segmentation masks are produced by dilating nuclear segmentation masks radially by 3 pixels 

and then excluding the segmented nuclear area.  

Median nuclear and cytoplasmic marker expression, centroid coordinates, area (nuclear and 

cytoplasmic), and solidity are quantified for each segmented cell using MATLAB’s regionprops 

function and outputted as a single “Results.mat” file for each FFPE slide. All MATLAB scripts 

used for segmentation and quantification can be found here: https://github.com/santagatalab. 

Data analysis workflow  
The data analysis is divided in a set of pre-processing steps in which data from different 

tissues is i) log2-transformed and aggregated together, ii) filtered for image analysis errors, 

and iii) normalized on a channel-by-channel basis across the entire data from a single 

experiment. All the steps are performed in MATLAB.  

Data aggregation 

The image processing workflow outputs one ome.tiff image and one data file (.mat) for each 

tissue area imaged. The data matrices from each .mat file are concatenated into a single 

matrix for each metric measured (median/mean, nuclear/cytoplasmic) into a single structure 

(“AggrResults”). The morphological data (i.e., area, solidity, and centroid coordinates) is 

concatenated into a single structure (“MorpResults”), which also contains the indexing vector 

to keep track of the tissue of origin within the dataset.  

Data filtering 
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Single cells are filtered to identify and potentially exclude from subsequent analysis errors in 

segmentation and cells lost through the rounds of imaging. Two types of criteria are used to 

filter cells: morphological criteria based on cell object segmented area, which are applied to all 

the rounds for the cell object, and DAPI-based criteria which are applied to the DAPI 

measurement for each imaging round. The latter corrects for cell loss during cycling and 

computational misalignment, which are both round specific.  

Morphological filtering criteria are: 

- nuclear area within a user-input range;  

- cytoplasmic area within a user-input range;  

- nuclear object solidity above a user-input threshold. 

 

DAPI-based criteria are: 

- nuclear DAPI measurement above a user-input threshold;  

- ratio between nuclear and cytoplasmic DAPI measurement above a user-input 

threshold; 

 

The filter information for the criteria is allocated to a logical (0-1) structure ‘Filter’, which is used 

to select the cells to analyze in the further analysis by indexing. The threshold selection is 

dataset dependent and is performed by data inspection. The values used in each dataset are 

available with the codes used for data analysis in the Synapse.org repository syn30715952.  

Data normalization 

Each channel distribution is normalized by probability density function (pdf) centering and 

rescaling. The aim is to center the distribution of the log2 fluorescent signal at 0 and rescale 

the width of the distribution to be able to compare across channels. The data is first log-

transformed (base 2). The standard normalization is performed using a 2-component Gaussian 

mixture model, each model capturing the negative and the positive cell population. If the 2-

component model fails to approximate the channel distribution, two other strategies are 

attempted: i) a 3-component model is used assuming the components with the two highest 

means are the negative and positive distribution (i.e., discarding the lowest component) or ii) 

the user selects a percentage ‘x’ of assumed positive cells and a single Gaussian distribution 
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fit is performed on the remainder of the data to capture the negative distribution. The single 

Gaussian fit is then used as the lower component in a 2-component model to estimate the 

distribution of the positive population. The strategy chosen for each channel in each dataset is 

available in the code section of the Synapse.org repository syn30715952.  

The “add_coeff” is defined as the intersection of the negative and positive distributions. The 

“mult_coeff” is defined as the difference between the mean of the negative and positive 

distributions. The full distribution is normalized by subtracting the add_coeff and dividing by the 

mult_coeff. The normalization is performed on the nuclear and cytoplasmic single-cell, single-

channel distributions individually.  

The data preprocessing workflow is performed on all datasets. The individual analyses used in 

the paper are performed only in selected datasets as follows. 

Cell type classification 

Cell type classification is performed hierarchically on the filtered, normalized expression data. 

Each cell is evaluated based on marker expression and then assigned to cell types in a 

layered fashion according to the dendrogram schematic in Figure S1C, with each successive 

layer being more specific than the previous one. A cell is considered to be positive for a marker 

if its median expression is above 0. Cell types are defined in the dendrogram by the presence 

or exclusion of multiple markers using “&&” and “||” operators representing “AND” and “OR” 

logic respectively. If multiple marker conditions must be met to assign a cell type, these marker 

conditions are grouped using parentheses. If a cell is “positive” for two markers that are 

expected to be mutually exclusive, the marker that is expressed at a higher value takes 

precedence as long as the difference in expression surpasses a user-defined threshold.  

Multimodal Data Integration  

H&E, RNAScope™ and CyCIF images are rescale and registered using the open-source 

software elastix (Klein et al., 2010) using non-shearing global transformation. The CyCIF 

images are used as the fixed images in elastix. To integrate the CyCIF and histological data, 

H&Es are annotated for tumors, blood vessels, and airways by a trained pathologist. The 

elastix registration is used to overlay the pathology annotation onto the CyCIF single cell 

coordinates and then to calculate the distance from tumor boundaries and blood vessels. 
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RNAscope foci detection 

Custom spot detection scripts (https://github.com/Yu-AnChen/wsi-fish) are used to identify 

RNAScope™ foci and quantify their intensity. Each RNAScope™ dot is assigned as belonging 

to the closest cell based on the segmented area. A cell is considered Cxcl positive if it is 

assigned at least two RNA foci and if the cumulative RNAScope™ dot intensity of all the dots 

assigned to the cell exceed a preset threshold (based on the positive tail of the single cell 

distribution). 

Lymphonet definition 

The single cell centroids are tessellated using the Delaunay Triangulation using a custom 

script in MATLAB (https://github.com/santagatalab) to obtain a 2D graph, setting a maximum 

edge length of 16.25 microns (50 pixels). Using conventional graph operations, the graph 

edges are then filtered to include only connection between lymphocytes (Lv3 of cell type 

dendogram), after which connected subgraphs of length greater than 5 are than defined as 

“lymphonets”. 

Palantir algorithm and CD8 T cell state definition 

The algorithm Palantir (Setty et al., 2019) was adapted to CyCIF data by bypassing the initial 

dimensionality reduction applied to single-cell RNA-seq data and using the CyCIF channel 

information as the dimensionality reduction output. The Python Jupiter Notebooks used to run 

the Palantir analyses can be found at https://github.com/santagatalab. The CD8 T-cell 

phenotypic states S1-S3 and T1-T3 were obtained using a flow cytometry manual gating 

approach combining Palantir point density and marker intensity. The gating was performed in 

MATLAB using the “Flow Cytometry GUI for Matlab” by Nitai Steinberg (2022) available at 

https://www.mathworks.com/matlabcentral/fileexchange/38080-flow-cytometry-gui-for-matlab, 

MATLAB Central File Exchange. 

Spatial Correlation Analysis 

Spatial correlations Cxy(r) were computed as the Pearson correlation between a cell of group 

X and its kth nearest neighbor of group Y, for their respective variables x and y. A value of Cxy 

(r) was computed for each k up to 100, and a distance r was assigned to each k as the 

average distance between kth nearest neighbors. More detail can be found in Gaglia et al., 

2022. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.11.503237doi: bioRxiv preprint 

https://github.com/Yu-AnChen/wsi-fish
https://github.com/santagatalab
https://github.com/santagatalab
https://doi.org/10.1101/2022.08.11.503237
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 
 

Visinity - Visual Spatial Neighborhood Analysis 
To visually explore the spatial neighborhoods within these data, we use the Visinity (Warchol 

et al., 2022), a scalable system for visual analysis in whole-slide multiplexed tissue imaging 

data. This system supports the analysis of recurrent cellular spatial neighborhoods across 

cohorts of specimens. Visinity is an open-source project 

(https://github.com/labsyspharm/visinity), with a JavaScript client for browser-based 

visualization and a Python server for efficient and scalable backend computation.  

Quantifying Cellular Neighborhoods 

Visinity quantifies the spatial neighborhood for each cell in terms of the types of cells that 

surround it (for Visinity the information contained in level 4 (Lv4) was used as the cell type 

information). More specifically, this process is as follows: 

A ball-tree index structure is constructed using nuclei centroids of each segmented cell in a 

specimen, which allows for O(n + k) range queries, where n is the number of cells and k is the 

number of points within this range. We use the scikit-learn (Pedregosa et al., 2011) 

implementation of this data structure. 

With the ball-tree, we identify neighboring cells within a 50 μm radius of each cell.  

We create feature vectors representing the neighborhood of each cell. Vectors are 1 x n, 

where n is the number of cell types. Columns in this vector correspond to the presence of a 

specific cell type. We linearly weight each cell in a neighborhood by its distance from the 

center so that cells just at the edge of the neighborhood radius contribute the least and sum 

these weights by cell type.  

We repeat this process for every cell across all specimens, L1 normalizing the vectors. Each 

vector, which represents the neighborhood of an individual cell, is a row in a matrix 

representing all cells across all specimens.  

We create a 2D embedding of this matrix using UMAP (McInnes et al., 2018) with the 

parameters n_neighbors = 50, min_dist = 0.1. Points close to each other in this embedding 

space represent cells with similar spatial neighborhoods 
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We display this embedding as an interactive scatterplot. Selecting regions in this embedding 

highlights the corresponding cells within the tissue image and we visualize the cell types that 

compose the selected neighborhood with a parallel coordinates plot. 

Visinity supports both confirmatory and exploratory analysis, allowing users to detect spatial 

neighborhood patterns in a semi-automated manner and visually query across specimens for 

specific cellular neighborhoods. This workflow and the system as a whole are described in 

detail in Warchol et al., 2022. 

 

SUPPLEMENTAL TABLES TITLES 

Table S1: CyCIF Antibody Information 

Table S2: Human samples information 

Table S3: Lymphonets and Tertiary Structures in Human Lung Adenocarcinoma 

Table S4: Mouse Experiment Information 

 

SUPPLEMENTAL INFORMATION 

Figure S1. Multiplexed tissue imaging and cell type calling in the KP genetically 
engineered mouse model of cancer 
(A) Representative image of H&E-stained section with pathology annotations indicated. (B) 

Representative multiplexed CyCIF images (whole lung lobe and single tumor inset) of tumor 

and immune markers from whole FFPE sections of KP LucOS tumor-bearing lung. (C) Cell 

type calling dendrogram for CyCIF image analysis; first immune, epithelial, and ‘other’ cell 

types were identified (Level 1, Lv1; shown in heat map of all cells), and then the immune cells 

were further clustered into lymphoid cells and myeloid cells (Level 2; Lv 2) and immune cell 

subtypes (Level 3 and Level 4; Lv3, Lv4: Treg, CD4 Th, CD8 Tc, B cells, NK cells (lymphoid 

marker-defined, ‘NK-L’), alveolar macrophages, dendritic cells, NK cells (myeloid marker-

defined, ‘NK-M’), neutrophils, and tumor associated macrophages (CD11b+CD11c-). 
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Figure S2. Spatial analysis of immune cell-type composition in KP LucOS versus Cre 
tumor-bearing lung 
(A) Log2 fold ratio of cell-type densities between LucOS and Cre in areas outside tumor (n = 5 

mice per group, color represents two tailed t-test p-value). (B) Ratio of CD8 Tc to Treg cell 

density measurements outside and inside of annotated tumor areas in LucOS versus Cre mice 

(n = 5 mice per group, bar = mean). (C) T-cell numbers in LucOS versus Cre mice calculated 

by flow cytometric analysis of dissociated tumor-bearing lung tissue (n = 5 mice per group, bar 

= mean). 

Figure S3. Characterization of lymphocyte networks 
(A) Neighborhood embedding generated by the Visinity algorithm displaying all cells. (B) 

Density plots of normal and tumor cells in Visinity embedding of KP LucOS and KP Cre lung 

tissue. (C) Visinity plots, black dots are cells in lymphonets. Arrows indicate Visinity cluster 

enriched in lymphonets, and pie charts summarize the composition and fraction of each cluster 

derived from LucOS and Cre and from tumor and normal tissues. (D) Plot of fraction of cells in 

lymphonets for LucOS and Cre together (n = 10 mice, 5 per group, bar = mean). (E) Fraction 

of lymphonets with indicated single-cell type majority for LucOS, Cre, and combined (n = 5 

mice per group). 

Figure S4. Spatial analysis of Cxcl10 overexpression on lymphonets 
(A) Map of all cells colored by distance to nearest Cxcl9 mRNA positive cell measured by 

RNAScope™ in situ hybridization in KP Cre and KP LucOS lung tissue. (B) Spatial 

autocorrelation of Cxcl9 and Cxcl10 mRNA-expressing cells using Ripley’s L function (‘Ripley’s 

clustering index’) in KP Cre and KP LucOS mice (n = 4 mice per group, bar = mean). (C) Left, 

density plots of lymphonets by distance from closest blood vessel (y-axis) and tumor (x-axis) 

for KP Cxcl10 cohort. Right, scatter plot lymphonets used to generate density plot (dot size 

represents the lymphonet size (n = 5 mice per group). 

Figure S5. Multiparametric analysis of Tc functional states after anti-PD1/anti-CTLA4 
immune checkpoint blockade (ICB) 
(A) Schematic of treatment of KP LucOS mice with a SIIN and SIY long-peptide vaccine or 

anti-PD-1/anti-CTLA4 immune checkpoint blockade therapy. (B) Palantir projection of Tc 

populations in KP LucOS mice treated with anti-PD1/anti-CTLA4 immune checkpoint blockade 
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(ICB) or isotype control antibodies (Ctrl) (n = 104 cells sampled from n = 6 per treatment, see 

S5A for treatment schematic). The expression levels of the indicated markers are mapped to 

color. Tc states defined by multiparameter measurements are indicated at the extremes of the 

representation (S1, S2, and S3) connected by transitional phenotypes (T1-T3) shown in the 

schematic to the right. (C) Plot of the normalized fluorescence units for each of the markers in 

the indicated Tc cell states and transitions. (D) Heat map of Tc cell densities in Palantir 

projections for Ctrl and ICB groups (n = 104 cells per group). Stacked bar graph of the fraction 

of Tc cells in each state and transition. (E) Heat map of Tc cell densities in Palantir plots for KP 

LucOS following PBS treatment (Ctrl, vaccine cohort) separated by distance from tumor 

boundary (distal: >50 µm from the tumor boundary; proximal: <50 µm from the tumor 

boundary; and inside tumor, n = 104 cells). (F) Heat map of Tc densities in Palantir projections 

for KP LucOS mice following Ctrl or ICB treatment separated by distance from tumor boundary 

as in E (n = 104 cells per treatment). (G) Frequency of Tc cell states and transitions from tumor 

boundaries in ICB cohort. (H) Plot of the percent of Tc cells that are TCF1+ PD1+ in each Tc 

cell state in ICB cohort. 

Figure S6. Characterization of lymphonets after vaccine and immune checkpoint 
blockade immunotherapies 
(A) Plot of the number of cells in lymphonets and the average number of lymphonets in KP 

LucOS mice without treatment (Ctrl) or treated with vaccination (Vax) (n = 7 and 8 mice, bar = 

mean). (B) Kernel density probability density function of lymphonet spatial frequency relative to 

the tumor boundary for Ctrl (n = 7) and Vax (n = 8) mice. (C) Plot of the fraction of lymphonets 

comprised of T and B cells as a function of lymphonet size in Ctrl and Vax mice (mean +/- 25th 

percentile). (D-E) Heat map of cell densities of non-tumor Tc cells present outside and inside 

lymphonets in Palantir projections for Vax (D, n = 14,480 and 978 cells) and ICB-treated (E, n 

= 13,948 and 735 cells) cohorts. 

RESOURCE AVAILABILITY 

Data and code availability 

Datasets generated and the corresponding analysis used in all figures will be made available 

in the Synapse.org repository (www.synapse.org/#!Synapse:syn30715952/wiki/617734). 

Multiplexed images of a mouse lung specimen (KP LucOS can be viewed in Minerva Story 
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(Hoffer et al., 2020; Rashid et al., 2022) an interpretive guide for interacting with multiplexed 

tissue imaging data https://tinyurl.com/mouseprofiling. Imaging data is available from the 

corresponding authors on request. MATLAB codes used to perform the t-CyCIF processing 

and analysis are available on GitHub: https://github.com/santagatalab. Code for analysis of 

recurrent cellular spatial neighborhoods using the Visinity algorithm (Warchol et al., 2022) is 

available on GitHub: https://github.com/labsyspharm/visinity. 

 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
InVivoMAb PD1 BioXCell Clone 29F.1A12; 

Cat# BE0273; 
RRID: 
AB_2687796 

InVivoMAb CTLA4 BioXCell Clone 9H10; Cat# 
BE0131; RRID: 
AB_10950184 

InVivoMAb rat IgG2a BioXCell Clone 2A3; Cat# 
BE0089; RRID: 
AB1107769 

InVivoMAb polyclonal Syrian Hamster IgG BioXCell Cat# BE0087; 
RRID: 
AB_1107782 

t-CyCIF: anti-mouse TTF1 Abcam Clone EPR595(2); 
Cat# ab206726; 
RRID: 
AB_2857980 

t-CyCIF: anti-mouse B220 (CD45R) ThermoFisher 
Scientific 

Clone RA3-6B2; 
Cat# 41-0452-80; 
RRID: 
AB_2573598 

t-CyCIF: anti-mouse CD45 BioLegend Clone 30-F11; 
Cat# 103123; 
RRID: AB_493534 

t-CyCIF: anti-mouse FOXP3 ThermoFisher 
Scientific 

Clone FJK-16s; 
Cat# 11-5773-82; 
RRID: AB_465243 

t-CyCIF: anti-mouse CD4 ThermoFisher 
Scientific 

Clone 4SM95; 
Cat# 41-9766-82; 
RRID: 
AB_2573637 
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t-CyCIF: anti-mouse CD8α Cell Signaling 
Technology 

Clone D4W2Z; 
Cat# 98941; RRID: 
AB_2756376 

t-CyCIF: anti-mouse CD103 R&D Systems Clone Polyclonal; 
Cat# AF1990; 
RRID: 
AB_2128618 
 

t-CyCIF: anti-mouse CD11c Cell Signaling 
Technology 

Clone D1V9Y; 
Cat# 97585; RRID: 
AB_2800282 
 

t-CyCIF: anti-mouse CD11b Abcam Clone EPR1344; 
Cat# ab204471; 
RRID: 

t-CyCIF: anti-mouse Nkp46 R&D Systems Clone Polyclonal; 
Cat# FAB2225F-
025; RRID: 

t-CyCIF: anti-mouse CD3e Cell Signaling 
Technology 

Clone D4V8L; 
Cat# 99940; RRID: 
AB_2755035 
 

t-CyCIF: anti-mouse Ki-67 Cell Signaling 
Technology 

Clone D3B5; Cat# 
12075; RRID: 
AB_2728830 
 

t-CyCIF: anti-mouse PD-L1 Cell Signaling 
Technology 

Clone D5V3B; 
Cat# 
64988s; RRID: 
AB_2799672 

t-CyCIF: anti-mouse PD-1 Cell Signaling 
Technology 

Clone D7D5W; 
Cat# 61237; RRID: 
AB_2799604 

t-CyCIF: anti-mouse Granzyme B Cell Signaling 
Technology 

Clone E5V2L; 
Cat# 44153; RRID: 

t-CyCIF: anti-mouse Perforin Cell Signaling 
Technology 

Clone E3W4I; 
Cat# 31647; RRID: 
AB_2857978 

t-CyCIF: anti-mouse TIM-3 Cell Signaling 
Technology 

Clone D3M9R; 
Cat# 83882; RRID: 
AB_2800033 

t-CyCIF: anti-mouse Ly6G eBioscience Clone 1A8-Ly6G; 
Cat#: 12-9668-82; 
RRID: 
AB_2572720 

t-CyCIF: anti-mouse TCF1 Cell Signaling 
Technology 

Clone C63D9; 
Cat# 6709; RRID: 
AB_2797631 
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t-CyCIF: anti-mouse Vimentin Cell Signaling 
Technology 

Clone D21H3; 
Cat# 9854; RRID: 
AB_10829352 

t-CyCIF: anti-mouse αSMA Cell Signaling 
Technology 

Clone D4K9N; 
Cat# 76113; RRID: 

t-CyCIF: anti-mouse F4/80 Cell Signaling 
Technology 

Clone D2S9R; 
Cat# 70076; RRID: 
AB_2799771 
 

t-CyCIF: anti-mouse Pan-Keratin ThermoFisher 
Scientific 

Clone AE1/AE3; 
Cat# 53-9003-82; 
RRID: 
AB_1834350 

t-CyCIF: anti-mouse PCNA Abcam Clone PC10; Cat# 
ab201674; RRID: 

Bacterial and virus strains  
   
   
   
   
   
Biological samples   
Human formalin fixed paraffin embedded tissue samples 
from lung adenocarcinoma cases 
 

Partners Healthcare 
Institutional Review 
Board at Brigham 
Health, Boston, MA, 
USA 

Excess tissue, 
discarded tissue 
protocol number 
2018P001627 

   
   
   
   
Chemicals, peptides, and recombinant proteins 
SMLVLLPDEVSGLEQLESIINYEKLTEWTS New England Peptide Custom 
SMLVLLPDEVSGLEQLESIINFEKLTEWTS peptide New England Peptide Custom 
Cyclic-di-GMP Invitrogen Cat# tlrl-nacdg 
Mirus TransIT LT1 Mirus Bio Cat# MIR 2300 
Polybrene Infection Reagent Millipore Cat# TR-1003-G 
   
   
   
   
Critical commercial assays 
Mouse CXCL10/IP-10/CRG-2 DuoSet ELISA R&D Systems Cat# DY466-05 
Fisherbrand Superfrost Plus Microscope Slides ThermoFisher 

Scientific 
Cat# 12-550-15 

   
   
   
Deposited data 
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Experimental models: Cell lines 
293FS* viral packaging cell line This paper Available upon 

request 
GreenGo 3TZ for lentiviral titering  Available upon 

request 
1233 KP lung adenocarcinoma  Available upon 

request 
   
   
Experimental models: Organisms/strains 
Mouse: B6.129S4-Krastm4Tyj/J Jackson Laboratories  Jackson Laboratories Stock No: 008179 
Mouse: B6.129P2-Trp53tm1Brn/J Jackson Laboratories  Jackson Laboratories Stock No: 008462 
Mouse: Rosa26LSL-Cas9-GFP-Csy4 
 

Ng et al., 2020 Available upon 
request 

   
   
   
Oligonucleotides 
Cxcl10 dRNA Oligo 1: CACCGACAAGCAATGCCCT Sigma-Aldrich N/A 
Cxcl10 dRNA Oligo 2: AAACAGGGCATTGCTTGTC Sigma-Aldrich N/A 
Tomato dRNA Oligo 1: CACCCGAGTTCGAGATCGA Sigma-Aldrich N/A 
Tomato dRNA Oligo 2: AAACTCGATCTCGAACTCG Sigma-Aldrich N/A 
   
Recombinant DNA 
Plasmid: Lenti-Cre DuPage et al., 2011 Addgene Cat# 
Plasmid: Lenti-LucOS  DuPage et al., 2011 Addgene Cat# 

22777 
Plasmid: Lenti-SAM-Puro This paper Addgene Cat# 
Plasmid: Lenti-SAM-Cre This paper Addgene Cat# 
   
Software and algorithms 
Aperio ImageScope  
 

Leica Biosystems Version 12 
https://www. 
leicabiosystems.com 

ImageJ 
 

NIH https://imagej.nih.go
v/ij/ 

ImageJ BaSiC Plugin Peng et al., 2017 https://www.helmholt
z-muenchen.de/icb/ 
research/groups/mar
r-lab/software/basic/ 
index.html 
 

ASHLAR The Python Package 
Index; Muhlich et al. 
2021 

https://pypi.org/proje
ct/ashlar/ 
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ilastik Berg et al., 2019 https://www.ilastik.or
g/download.html 

Visinity Warchol et al. 2022 https://github.com/la
bsyspharm/visinity. 

Other 
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SUPPLEMENTAL TABLES 

Table S1: CyCIF Antibody Information 

Target Name Source Identifier 
TTF1 Abcam Clone EPR595(2); Cat# ab206726; RRID: 

AB_2857980 
B220 (CD45R) ThermoFisher Scientific Clone RA3-6B2; Cat# 41-0452-80; RRID: AB_2573598 

CD45 BioLegend Clone 30-F11; Cat# 103123; RRID: AB_493534 
FOXP3 ThermoFisher Scientific Clone FJK-16s; Cat# 11-5773-82; RRID: AB_465243 

CD4 ThermoFisher Scientific Clone 4SM95; Cat# 41-9766-82; RRID: AB_2573637 
CD8α Cell Signaling Technology Clone D4W2Z; Cat# 98941; RRID: AB_2756376 
CD103 R&D Systems Clone Polyclonal; Cat# AF1990; RRID: AB_2128618 

 
CD11c Cell Signaling Technology Clone D1V9Y; Cat# 97585; RRID: AB_2800282 

 
CD11b Abcam Clone EPR1344; Cat# ab204471; RRID: 
Nkp46 R&D Systems Clone Polyclonal; Cat# FAB2225F-025; RRID: 
CD3e Cell Signaling Technology Clone D4V8L; Cat# 99940; RRID: AB_2755035 

 

K-i67 Cell Signaling Technology Clone D3B5; Cat# 12075; RRID: AB_2728830 
 

PD-L1 Cell Signaling Technology Clone D5V3B; Cat# 
64988s; RRID: AB_2799672 

PD-1 Cell Signaling Technology Clone D7D5W; Cat# 61237; RRID: AB_2799604 
Granzyme B Cell Signaling Technology Clone E5V2L; Cat# 44153; RRID: 

Perforin Cell Signaling Technology Clone E3W4I; Cat# 31647; RRID: AB_2857978 
TIM-3 Cell Signaling Technology Clone D3M9R; Cat# 83882; RRID: AB_2800033 
Ly6G eBioscience Clone 1A8-Ly6G; Cat#: 12-9668-82; RRID: 

AB_2572720 
TCF1 Cell Signaling Technology Clone C63D9; Cat# 6709; RRID: AB_2797631 

Vimentin Cell Signaling Technology Clone D21H3; Cat# 9854; RRID: AB_10829352 
αSMA Cell Signaling Technology Clone D4K9N; Cat# 76113; RRID: 
F4/80 Cell Signaling Technology Clone D2S9R; Cat# 70076; RRID: AB_2799771 

 
Pan-Keratin ThermoFisher Scientific Clone AE1/AE3; Cat# 53-9003-82; RRID: AB_1834350 

PCNA Abcam Clone PC10; Cat# ab201674; RRID: 
 

Table S2: Human samples information 

Case Age 
(yrs) Sex Pathology 

AJCC 8th 
Edition 
Stage 

Size 
(cm) Side Site Histologic 

type Grade Treatment 

1 68 F Lung 
Adenocarcinoma pT1b pNx 1.3 Right Lower 

lobe 
acinar 

predominant 

G2: 
Moderately 

differentiated 
None 

2 56 F Lung 
Adenocarcinoma pT1cN2 2.3 Left Upper 

lobe 
solid 

predominant 
G3: Poorly 

differentiated None 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.08.11.503237doi: bioRxiv preprint 

http://antibodyregistry.org/AB_2128618
http://antibodyregistry.org/AB_2800282
https://doi.org/10.1101/2022.08.11.503237
http://creativecommons.org/licenses/by-nc-nd/4.0/


50 
 

3 60 M Lung 
Adenocarcinoma pT1bN0 1.4 Right Lower 

lobe 
acinar 

predominant 
G3: Poorly 

differentiated None 

4 66 M Lung 
Adenocarcinoma pT2a pN0 2.2 Left Upper 

lobe 
acinar 

predominant 

G2: 
Moderately 

differentiated 
None 

5 73 F Lung 
Adenocarcinoma pT2a pN0 2.2 Left Upper 

lobe 
solid 

predominant 
G3: Poorly 

differentiated None 

6 73 F Lung 
Adenocarcinoma pT1a pN0 1 Right Lower 

lobe 
acinar 

predominant 

G2: 
Moderately 

differentiated 
None 

7 73 M Lung 
Adenocarcinoma pT1cpN0 2.2 Left Upper 

lobe 
acinar 

predominant 

G2: 
Moderately 

differentiated 
None 

8 63 F Lung 
Adenocarcinoma pT1bN0 1.2 Right Upper 

lobe 
papillary 

predominant 

G2: 
Moderately 

differentiated 
None 

9 79 M Lung 
Adenocarcinoma pT2a pN0 2.1 Left Upper 

lobe 
acinar 

predominant 

G2: 
Moderately 

differentiated 
None 

10 53 F Lung 
Adenocarcinoma pT3pN2 1.9 Right Upper 

lobe 
solid 

predominant 
G3: Poorly 

differentiated None 

11 66 F Lung 
Adenocarcinoma pT1bN0 1.7 Right Lower 

lobe 
acinar 

predominant 

G2: 
Moderately 

differentiated 
None 

12 66 F Lung 
Adenocarcinoma pT1bN0 1.3 Left Lower 

lobe 
papillary 

predominant 

G2: 
Moderately 

differentiated 
None 

13 59 M Lung 
Adenocarcinoma PT3N0M1b 2 Right Upper 

lobe 
solid 

predominant 
G3: Poorly 

differentiated None 

14 70 F Lung 
Adenocarcinoma PT1cN0 2.9 Right Upper 

lobe 
acinar 

predominant 

G2: 
Moderately 

differentiated 
None 

 

 

Table S3: Lymphonets and Tertiary Structures in Human Lung Adenocarcinoma 

 Lymphonet number (by size)  
CASE <10 cells 11-30 31-64 65-1000 >1000 TLS 

1 1944 1009 151 133 18 n/a 
2 1317 525 83 64 12 12 
3 583 215 41 34 3 5 
4 3052 1256 132 80 2 7 
5 3679 1505 240 175 3 12 
6 1487 658 115 68 1 4 
7 1328 563 124 97 0 1 
8 1581 773 158 154 8 36 
9 2844 1347 214 121 12 18 

10 1385 771 193 117 4 9 
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11 1666 946 187 118 10 12 
12 832 379 74 43 3 8 
13 2629 1420 253 114 6 13 
14 859 503 103 94 6 66 

 

Table S4: Mouse Experiment Information 

Expt # 
Viral 

Construct Treatment # mice 
Imaging 
modality 

1 Cre none 5 CyCIF 
1 LucOS none 5 CyCIF 
1 Cre+Cxcl10a none 5 CyCIF 
2 Cre none 5 RNAScope™ 
2 LucOS none 5 RNAScope™ 
2 Cre+Cxcl10a none 5 RNAScope™ 

3 LucOS 
PBS 

(control) 6 CyCIF 
3 LucOS ICB 6 CyCIF 

4 LucOS 
PBS 

(control) 7 CyCIF 
4 LucOS Vax 8 CyCIF 
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Figure S2
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