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Abstract 

Natural and experimental genetic variants can modify DNA loops and insulating boundaries to tune 
transcription, but it is unknown how sequence perturbations affect chromatin organization genome-wide. 
We developed an in silico deep-learning strategy to quantify the effect of any insertion, deletion, 
inversion, or substitution on chromatin contacts and systematically scored millions of synthetic variants. 
While most genetic manipulations have little impact, regions with CTCF motifs and active transcription 
are highly sensitive, as expected. However, our analysis also points to noncoding RNA genes and several 
families of repetitive elements as CTCF motif-free DNA sequences with particularly large effects on 
nearby chromatin interactions, sometimes exceeding the effects of CTCF sites and explaining interactions 
that lack CTCF. We anticipate that our available disruption tracks may be of broad interest and utility as a 
measure of 3D genome sensitivity and our computational strategies may serve as a template for biological 
inquiry with deep learning. 
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Introduction 
The human genome gives rise to its own organization in the nucleus, where the folding of chromatin into 
intricate and hierarchical structures can be reflective and instructive of cell state [1]. Sequence itself 
contains the information to create some chromatin features. Binding of CTCF proteins to DNA motifs 
blocks the extrusion of DNA by motor proteins to create topologically associating domains (TADs) 
spanning hundreds of megabases [2–5]. These dynamic structures permit interaction of elements within 
their boundaries and limit interaction with elements outside to tune gene expression [6,7]. However, 
recent reports reveal CTCF may not be the only factor involved, as some contacts remain after CTCF 
depletion, and interactions across megabases are not affected [8,9]. How exactly sequence informs 
structure ranging from the highest levels of genome organization—chromosome territories and 
compartments—to the level of individual enhancer-promoter interactions, still remains unclear.    

Current approaches relating genome sequence to folding either leverage natural genetic variation 
or experimentally manipulate particular loci to test specific hypotheses. Applying chromatin capture to 
genetically diverse individuals revealed single nucleotide variants associated with loss or gain of 
chromatin contact [10]. Large structural variants are also rare at domain boundaries in healthy humans 
but not in patients with autism or developmental delay [11]. To understand the mechanisms  underlying 
these associations, experimental studies have engineered chromatin contact in cells and mice with 
synthetic tethering [12] and CRISPR systems [13–15] and measured their effects on genome folding and 
expression of genes such as Hbb and Vcan. Findings in these individual loci may not apply genome-
wide and could overlook mechanisms without known precedent. Here, we propose combining the 
genome-wide power of population genetics with the precision seen in experimental studies. We develop 
a strategy which leverages deep learning to comprehensively screen the human genome for key 
regulators of 3D genome folding. 

Whereas previous machine learning approaches required domain experts to select the most 
relevant features, deep learning allows patterns to be learned directly from the data without expert input. 
Deep learning models perform well in predicting enhancer activity [16,17], transcription factor binding 
[18], gene expression [19], and genome folding [20,21] from sequence, with newer models increasing 
scale and incorporating epigenetic assays to provide cell type-specific context [22–24]. We can probe 
these models as computational oracles to predict the behavior of DNA sequence at scales intractable 
experimentally [25]. Models have been applied to predict the impact of structural variants on human 
genome folding [20,26], confirm the importance of CTCF through computational mutagenesis [20], and 
resurrect the folding of Neanderthal genomes [27]. These early reports show that many highly disruptive 
perturbations lack CTCF or annotated regulatory elements, hinting that there may be sequences that 
encode information needed for genome folding left to uncover.  

Here, we leverage Akita [20], a convolutional neural network trained to predict genome folding 
from sequence, to develop a computational method that performs unbiased and targeted in silico 
mutagenesis experiments at scale. Applying this approach to a human foreskin fibroblast cell line 
(HFFc6) with high-resolution micro-C data for model training, we discover wide variability in how 
robust genome folding is to sequence perturbations across loci. Investigation of sensitive loci reveals 
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both known motifs, like CTCF, and understudied modulators of 3D genome folding, including 
transposon and RNA gene clusters. Our genome-wide screen reveals a diverse vocabulary of DNA 
elements that collaborate with CTCF to orchestrate TAD-scale chromatin organization.  

Results 

Genome-wide deletion screen reveals high variability in 3D genome folding 

To measure sequence importance to chromatin organization, we developed a deep-learning scoring 
strategy to computationally introduce modifications into the human reference genome and predict their 
impact on genome folding with Akita [20]. Given a ~1-megabase (Mb) DNA sequence, this model 
accurately produces a chromatin contact map at ~2-kilobase (kb) resolution, where TADs and DNA 
loops are visible. We quantify the impact of a centered sequence variant, which we call disruption, as the 
log mean squared difference between the predicted contact frequency map for the 1-Mb sequence with a 
sequence alteration compared to that of the reference sequence. If a variant dramatically rearranges how 
the genome is predicted to fold, we infer that the original sequence could regulate chromatin contacts. In 
this study, we perform a variety of genome-wide sensitivity screens across millions of genetic 
perturbations, including targeted and unbiased deletions, insertions, and substitutions ranging from 1 
base pair (bp) to 500,000 bp (Fig. 1a). In contrast to in vivo genetic perturbations, our approach enables 
precise and flexible genome editing at scale.  

We first leveraged this strategy to assess all 5-kb deletions tiled across the genome for their 
impact on folding in HFFc6 cells (n=574,187). Deletions are highly variable, and around half produce 
changes to chromatin contact maps that are noticeable by eye (Fig. 1b). Some sequence deletions 
completely rearrange the boundary structure of contact maps, some result in small focal changes (e.g., 
gain or loss of a loop anchor), and some produce no change at all, suggesting the chromatin structure is 
robust to sequence manipulation (Fig. 1c). As expected, regions of the genome with many CTCF motifs 
are particularly sensitive while regions with no motifs are perturbation-resilient (Fig. 1d). In sum, 62.1% 
of the most sensitive sequences (top decile of scores) fall within 5 kb of CTCF-bound distal enhancers, 
compared to only 7.3% of the most robust sequences (bottom decile of scores), establishing that our 
approach identifies known genome folding mechanisms (Fig. 2a).  

Perturbing epigenetically active regions disrupts genome folding 

Disruption scores are also correlated with chromatin compartment, as measured by the first eigenvector 
of the experimental HFFc6 micro-C contact matrix (Pearson’s r = 0.522, P < 1 x 10-300, n = 11,413; Fig. 
1e) [28]. The mean disruption score within gene-rich and open A compartments is 14.6% higher than in 
compact, inactive B compartments. High gene density and GC content are associated with peaks in 
disruption as well (Fig. 1d, Fig. S1a-c). Using HFFc6 total RNA-Seq [29], we quantified transcription 
in each 5-kb window and observed a strong correlation with disruption scores (Pearson’s r = 0.366, P < 
1 x 10-300, n = 11,413). Other genomic features associated with active chromatin are also more frequent 
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Figure 1: In silico deletion screen indicates the impact of sequence perturbation on 3D genome folding is highly 
variable. a. We quantify how important DNA sequence is to genome folding by introducing whole-genome and targeted  
deletions, insertions, and point mutations and comparing the predicted Hi-C contact maps to maps predicted from the 
reference sequence. We score disruption as the log mean squared difference of the perturbed map relative to the reference 
map (MSE). Variants with high disruption scores are inferred to contribute to 3D genome folding. b. A genome-wide tiled 5-kb 
deletion screen produces a distribution of sequence importance with log(MSE) between -10 and -1 for the HFFc6 cell type. c. 
Genome-wide screens capture a range of disruption scores; some sequences do not change predicted genome folding (left 
panel), some produce small focal changes (middle panel), and others dramatically rearrange boundaries (right panel).  d.  The 
rolling average of disruption and compartment score across a 60-Mb region of chromosome 4. Peaks correspond to regions 
sensitive to perturbation, while valleys indicate regions robust to perturbation. Yellow shading highlights genomic regions with 
relatively few CTCF motifs. These regions have low disruption scores, suggesting that their perturbation has little effect on 
genome folding. e.  Sensitivity to disruption correlates strongly with compartment score, as measured by the first eigenvector 
of HFFc6 micro-C.  

in the most sensitive sequences, including distal and proximal enhancers and promoters (Fig. 2a). In 
sum, it is difficult to perturb inactive chromatin and easy to perturb active chromatin.  

The correlation between many of these features reflects an inherent challenge in disentangling 
which are causal and which are reflective of genome folding (Fig. S1c). Indeed, regions that are in A 
compartments, contain CTCF binding sites, and are actively transcribed are also the most sensitive (Fig. 
2b). The effect of CTCF holds within both A and B compartments (Fig. S2), indicating that it is directly 
associated with sensitive 5-kb bins and is not just a proxy for A compartments. However, both 
transcription and compartment are more impactful individually than the presence of CTCF motifs, 
suggesting additional rules govern which CTCF sites are in use and which are redundant or 
decommissioned. Overall, our findings suggest that independent mechanisms at epigenetically active 
regions may collaborate to coordinate genome folding.   
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Figure 2: Transcription and CTCF are key modulators of 3D genome folding. a. Overlap between top 1% (most 
disruptive; dark blue) or bottom 1% (least disruptive; light blue) 5-kb sequence deletions and ENCODE candidate cis-
regulatory elements, quantified as the proportion of deletions with overlap. Each deletion may overlap with more than one 
regulatory element. b.  Average disruption score across genomic regions overlapping with CTCF ChIP-seq peaks, A 
compartments, and/or actively transcribed sequences.  c. Single base-pair mutagenesis screen of a 600-bp segment 
surrounding the transcription start site (TSS) of the most highly transcribed genes in HFFc6 (n=1,789).  d-e. Mean disruption 
score of transcribed genes, stratified by expression level decile (colors), and separated into those whose TSS region overlaps 
(d) versus does  not overlap (e) with CTCF sites. f-g. Average disruption score of each base at TSS regions with (f) and 
without (g) a CTCF motif overlap, stratified by expression decile (colors), along with average CTCF motif density and CTCF 
ChIP-seq. Metaplots (upper right) show the average change in contact for the 100 TSSs with the most significant disruption 
scores.  

Transcriptionally active regions modulate folding alongside CTCF 

Elevated disruption scores in gene-dense A compartments motivated us to carefully investigate 
transcription start sites (TSS). CTCF binding is essential for activity of some promoters [8], and 
emerging work reveals RNA polymerase II and transcription may separately influence 3D genome 
folding [30,31]. To test this hypothesis, we evaluated all single-nucleotide mutations in the 300 base 
pairs (bp) on either side of the TSS of the 1,789 highest expressed protein coding genes in HFFc6 [29] 
and compared disruption scores to expression level in regions where CTCF motifs are present or absent 
(Fig. 2c). Regardless of CTCF, disruption scales with gene expression (Fig. 2d,e). In regions flanking a 
CTCF motif, we observe a strong peak in disruption directly upstream of the TSS (Fig. 2f, Fig. S3). The 
periodic pattern is more detailed than underlying CTCF motifs and more precise than a sum of CTCF 
ChIP-Seq peaks around the TSS. Metaplots of the average change in contact reveal that mutations 
weaken boundaries at the TSS. Our analysis points to a presence of CTCF at the promoters of highly 
expressed genes, where some CTCF motifs are selectively bound and some are not. We note that even 
when no CTCF is present, disruption is still slightly elevated upstream of the TSS of highly transcribed 
genes (Fig. 2g, Fig. S3). Active transcription may provide an alternate means of stabilizing DNA-DNA 

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2022. ; https://doi.org/10.1101/2022.08.11.503410doi: bioRxiv preprint 

https://paperpile.com/c/rDSDDQ/QfBR
https://paperpile.com/c/rDSDDQ/mndE+T3WC
https://paperpile.com/c/rDSDDQ/89vq
https://doi.org/10.1101/2022.08.11.503410
http://creativecommons.org/licenses/by-nc/4.0/


interactions in TSS devoid of CTCF sites through uncharacterized mechanisms, like transcriptional 
machinery, nascent RNA, or recruited regulatory RNA.  

Figure 3: Regions with repetitive elements are sensitive to sequence perturbation. a. Mean disruption scores of tiled 5-
kb deletions across a 100-Mb region of chromosome 7. Tracks below the plot illustrate the density of CTCF motifs, genes, and 
Alu elements. b. Mean difference in disruption scores between windows containing at least one repetitive element and 
windows containing none, stratified by family. c. Disruption scores of 5-kb deletions stratified by the number of Alu elements, 
tRNAs, L1 LINE elements, and CTCF motifs they contain. 

Transposon clusters modulate genome folding independently of CTCF  

At the chromosome scale, we observed clusters of Alu elements and some other repetitive elements 
alongside peaks in disruption scores, motivating us to explore their role in 3D genome folding (Fig. 3a). 
DNA and RNA transposons replicate and insert themselves into DNA, and constitute over 50% of the 
human genome [32,33]. They are rich in transcription factor binding sites [34–36], suggesting that some 
may have been evolutionarily repurposed as regulatory elements. Growing evidence indicates they 
provide a source of CTCF motifs across the genome and serve as both loop anchors and insulators [37–
39]. To measure the impact of different families of repetitive elements on 3D genome sensitivity, we 
compared disruption of 5-kb windows containing repetitive elements to those with none. Several 
families exhibit greater sensitivity to perturbation than CTCF containing regions (e.g., Alu, SVA, 
scRNA, srpRNA; Fig. 3b). Disruption scores of repetitive elements are not correlated with mappability, 
indicating that poor micro-C read mapping in model training data does not bias this result (Fig. S4, 
Supplemental Note). As with CTCF [40], regions with higher numbers of Alu elements are more 
disruptive upon deletion: the disruption score of 5-kb windows with 5 or more Alu elements is 9.88% 
higher than that of windows with no elements (P < 1.54 x 10-291; Fig. 3c). This clustering effect holds  
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Figure 4: Repetitive element deletions impact genome folding. a. Strategy to individually delete over 1 million elements 
from the RepeatMasker database. b. Representative examples from chromosome 2 showing how the deletion of a hAT-Tip100 
element, an ERV1 element and an Alu element in silico significantly alter  contact maps. Single elements are predicted to 
disrupt genome folding. c. Distribution of disruption scores across each repetitive element family (n = 1,164,108). The 
distribution of disruptions from 100,000 CTCF deletions (positive control) and 100,000 100-bp random deletions (negative 
control) are shown in yellow. The median size in base pairs of deleted elements for each family is shown on the right. d.  The 
top 10% most disruptive elements across the screen by repetitive element family. Most elements do not overlap a CTCF motif 
or a region actively transcribed in the HFFc6 cell line. e. Average changes in contact maps for the top 100 elements per family. 
f. Phenotypic rescue. We showcase a 138-bp MER91B hAT-Tip100 element whose deletion produces a loss of a boundary. 
Inserting a random size-matched sequence and a CTCF motif does not change the disturbed contact map, but introducing an 
MER91B element from the same family restores the original genome folding.  

across many repetitive elements, including MIR and L2 LINE elements, as well as across most small, 
non-coding RNA genes (Fig. 3c). Many families, like L1 LINE elements, show no correlation at all, and  
trends are consistent across both A and B compartments, hinting that clustering is family specific  (Fig. 
3c, Fig. S5).  

To investigate the contribution of repetitive elements independently of flanking sequence, we 
next individually deleted over 1 million elements in the RepeatMasker interspersed repeat database (Fig. 
4a). Overall, many elements create large-scale boundary shifts, with some causing increases and others 
decreases in contact frequency (Fig. 4b). Deletions of almost all families are more disruptive than 
random deletions, and deletions of families such as Alu, small RNAs, SVA, and hAT-Charlie are on par 
with or exceed deletions of CTCF sites across the genome (Fig. 4c). Disruption is moderately correlated 
with size, but many highly disruptive element families are relatively small and cause unexpectedly large 
disruptions given their length (Fig. S1d-e, Fig. 4c). For example, deletion of tRNAs, scRNAs, srpRNAs, 
and snRNAs–all under 130 bp on average–drastically alter genome folding on average. 

We next explored possible mechanisms of repetitive elements in genome folding. Causality is 
challenging to untangle since each repetitive element can contain features with known associations to 
chromatin organization. First, the lengths of repeat clusters are roughly similar to clusters of CTCF 
motifs at TAD boundaries (Fig. 4c). Second, several repeat families are known to harbor CTCF motifs 
[41]. Third, some repeats have a strong GC bias (e.g., Alu GC% > 50%), potentially allowing them to 
establish compartments [42,43]. Finally, repetitive elements collectively account for a large amount of 
total nuclear transcription [32]. To dissect the contributions of CTCF and active transcription versus 
other features of repetitive elements, we quantified overlap of these two annotations with repetitive 
elements with the highest disruption scores.  Only 5.86% of the 10% most disruptive elements contain a 
CTCF motif while 13.55% are actively transcribed (Fig. 4d), so a majority overlap neither. Disruptive 
repetitive element deletions are enriched at distal enhancers that are not CTCF bound (Fig. S5d). These 
findings hint that repetitive elements may aid in chromatin loop extrusion independently and in 
collaboration with CTCF and transcription.   

To understand the folding phenotypes of element deletions, we next averaged the changes in 
contact frequency for the top-scoring elements of each family (Fig. 4e). ERVK elements behaved like 
CTCF sites: their deletion led to a strong and centered loss of a chromatin boundary. Other repeat 
families created an off-diagonal gain in contact, as seen with Alu and hAT-Charlie, dispersed focal  
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disruption, as with non-coding RNAs, and stripes, as with SVA elements. To demonstrate that the 
model is internally consistent, we performed a phenotypic rescue, where we deleted an individual hAT-
Tip100 element to produce a large change in contact and attempted to restore the original folding pattern 
with a different sequence (Fig. 4f). While introducing random DNA or a CTCF motif did not recreate 
the original contact, inserting a related MER91B hAT-Tip100 element did. We conclude that repetitive 
element families are associated with distinct chromatin contact map features, and elements within a 
family are functionally interchangeable.  

Insertion of repetitive elements leads to distinct folding phenotypes 

Our deletion experiments do not distinguish between repetitive elements that collaborate with CTCF to 
weaken or strengthen nearby TAD boundaries and those that separately create chromatin contact. To 
isolate the effects of repetitive elements, we next designed in silico insertion experiments. We first 
engineered a “blank canvas” with no predicted structure by depleting a randomly generated 1 Mb DNA 
sequence of all CTCF-like motifs (Fig. 5a, Fig. S6). We then developed a pipeline to insert one or more 
copies of any query sequence into this 1 Mb and quantify newly arising chromatin contacts. We easily 
recreated a division closely resembling a TAD boundary by inserting multiple copies of the canonical 
CTCF motif (Fig. 5b), validating this approach in creating chromatin contact phenotypes.  
 After introducing the 1,000 most disruptive repetitive elements in our deletion screen into a 
blank canvas, we find a majority also changed contact with insertion, including 80.3% of Alu elements 
and 86.0% of ERVK elements (Fig. 5c). Additional copies strengthened impact, and fewer copies were 
needed to induce a chromatin boundary compared to the CTCF motif (Fig. S7). Clustering the insertion 
maps revealed hAT/MIR insertions produced distinct folding patterns from ERV/SVA element insertions 
(Fig. 5d). Alu elements consistently produced focal changes at the site of insertion that appear unlike 
CTCF-like boundaries. Curiously, repetitive elements seem to produce two distinct modifications to 3D 
structure upon insertion. Some elements create CTCF-like domain boundaries which increase in strength 
as more elements are inserted (Fig. 5f). Other elements, like the Alu family, create star-like partitions 
which increase in size with more element insertions. Insertions of tRNA genes did not create new 
boundaries, suggesting that their effect on 3D genome folding may be context dependent.  

Some repetitive elements harbor CTCF motifs and overlap with CTCF ChIP-Seq peaks, strongly 
suggesting that the model predicted their importance because they contain CTCF binding sites. To test 
this hypothesis, we performed saturation mutagenesis across a number of high scoring repetitive 
elements (Fig. 5e). Screening an ERVK element, for example, revealed that the single nucleotides  
predicted to have the highest importance for contacts lie directly at the center of a CTCF binding site  
(Fig. 5e). Overall, the closer a sequence is to matching the canonical CTCF motif, the larger the  
predicted impact of its insertion (Fig. S8). Still, most of the elements that produced contact changes had 
no CTCF overlap, and the 5 to 50-bp motifs within these elements with the greatest impact did not 
resemble CTCF motifs (Fig. 5e, Fig. S9). Therefore, insertions support the hypothesis that repetitive 
elements contain sequence determinants of 3D genome folding beyond CTCF motifs. 
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Figure 5: In silico insertion screen reveals repetitive elements can induce different boundary types. a. Insertion screen 
strategy. For each of the 1,000 most disruptive elements, up to 100 individual copies (green) are inserted 100 bp apart 
centered in a 1-Mb random DNA sequence depleted of CTCF sites. b. The map predicted from the CTCF-depleted random 
sequence (left panel) provides a blank canvas against which we can measure the impact of insertions. A CTCF site insertion 
into the middle of the sequence produces boundaries in the predicted maps (right panel). Disruption is measured as the mean 
squared difference between the blank map and the predicted post-insertion map. c. Distribution of disruption scores across 
repetitive element insertions (n = 14,514). The score distributions of 10,000 100-bp random insertions (negative control) and of 
10,000 CTCF motif insertions (positive control) are shown. d. t-SNE visualization of all predicted maps from repetitive element 
insertions with an disruption score above -5.5. Predicted maps are colored by element family. e. We highlight three repetitive 
elements which are highly disruptive both when deleted and inserted. We overlay overlapping annotated CTCF motifs and 
CTCF sites confirmed by ChIP-Seq in HFFc6 cells. We also show  the disruption score of each nucleotide across the element 
following single base pair in silico mutagenesis, highlighting the motif within the repetitive element responsible for the 
element’s high disruption score. f. We observe two primary classes of insertions: CTCF-like boundary insertions are common 
across ERVK and ERV1 elements and star-like insertions are common across SVA and Alu elements. 

Necessary vs Sufficient: A 60 bp segment of Charlie7 is sufficient to induce a CTCF-like boundary 

Mutating individual nucleotides can be enough to disturb protein binding and profoundly impair 3D 
folding. By contrast, creating a boundary, loop, or domain from scratch is more challenging, and it is 
fundamentally unclear what minimum sequence is sufficient. We next extended our screening approach 
to explore which subsequences can produce the de novo contact of a full element.  
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Figure 6: In silico investigation of sequence features necessary and sufficient for repetitive element Charlie7 to create 
a boundary. a. We insert every JASPAR motif into a CTCF-depleted random sequence, as well as  14,514 repetitive 
elements, and rank them according to their disruption score. 85% of the most impactful insertions (score > -5.5) do not overlap 
a CTCF motif. b. We generate CTCF motif variants with frequencies sampled from the CTCF motif position weight matrix 
(PWM) and insert them into the random reference sequence (n = 326,177), finding that 0.50% of motifs produce stronger 
predicted boundaries when inserted than the CTCF consensus sequence. These ‘super motifs’ share Ts at positions 8 and 12. 
c. We investigate a 367-bp disruptive Charlie7 hAT-Charlie element which does not overlap a CTCF motif or ChIP-Seq peak. 
Shown in the top row are the experimental micro-C contact map around the locus of the Charlie7 insertion, the  map of the 
locus predicted by Akita, and the predicted map following the deletion of the entire element. Shown in the bottom row are the 
predicted maps after insertion into the reference, CTCF-depleted  sequence of the Charlie7 element (left), a version of the 
element with a shuffled sequence (middle) and a random sequence of equal length (right). d. We shuffle each 10-bp 
subsequence along the element to determine which one  is necessary to produce the boundary seen from introducing the 
whole element. e. We introduce 100-bp segments scanning the entire element into the reference sequence and find that none 
is sufficient to produce a strong boundary. f.  A DNA sequence matching the GC content of Charlie7’s first 307 bp combined 
with the last 60 bp is sufficient to recreate a boundary. Right panel: The first 307 bp of Charlie7 was replaced with randomly 
generated sequence across a range of GC content. 
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First, we examined CTCF motifs. Fudenberg et al. mutated all motifs in the JASPAR transcription factor 
database and determined that CTCF and CTCFL are most sensitive to sequence perturbation [20]. To 
complement this work, we inserted all motifs into a blank map. We find that CTCF and CTCFL are the 
transcription factor motifs best able to induce genome folding independently of any surrounding 
genomic context, followed by HAND2, Ptf1A, and YY2 (Fig. 6a).  Sampling and inserting motifs from 
the CTCF position weight matrix, we found that the consensus sequence creates a stronger boundary 
than 99.50% of CTCF variants (Fig. 6b). A small minority of CTCF super-motifs with a T at positions 8 
and 12 outperformed the canonical motif, hinting that the most commonly bound CTCF motifs may not 
be the most strongly insulating ones.  

Next we dissected Charlie 7, a 367-bp AT-rich (29% GC) hAT-Charlie element on chromosome 
11. Deleting Charlie 7 eliminates chromatin interactions (Fig. 5c; Fig. 6c). Inserting twenty tandem 
copies of Charlie 7 creates a CTCF-like boundary, despite no subsequence resembling a CTCF motif. 
This boundary could not be reproduced by inserting a shuffled Charlie7 sequence or a random sequence 
of the same length. We therefore shuffled individual 10-bp segments of Charlie 7 to destroy local 
sequence grammar before reinserting the element into the blank canvas. Shuffling the final 60 bp had the 
same effect as shuffling the entire element, revealing that this end of the element is necessary for 
boundary creation (Fig. 6d). We then created sliding windows of 10 bp, 50 bp, and 100 bp along the 
element and inserted each subsequence into the blank canvas. No individual subsequence was sufficient 
to reproduce the effect of the entire element (Fig. 6e). However, shuffling the first 307 bp while 
maintaining the last 60 bp intact did create a strong boundary. Since the GC content of Charlie7 is 
unusually low, we next replaced parts of the element with random GC-matched sequence. A length-
matched sequence with a GC content below 30% and the final 60 bp of the Charlie7 element was 
sufficient to create a boundary (Fig. 6f). Completely random insertions with a GC content below 30% 
and above 60% are also highly impactful (Fig. S10). Based on these in silico experiments, we conclude 
that GC content along with sequence syntax could be critical for the insulating behavior of Charlie7. 
Looking across all disruptive retrotransposons, we identify several families with very extreme average 
GC content (Fig. S10), suggesting the intriguing hypothesis that abrupt shifts in GC content resulting 
from repetitive element insertions into genomic DNA contribute to genome folding.  

Discussion 
In summary, we present a whole-genome, unbiased survey of the sequence determinants of 3D 

genome folding using a flexible deep-learning method for scoring the effect of genetic variants on local 
chromatin interactions. Our study utilized synthetic mutations ranging from large deletions tiled across 
hundreds of megabases down to single-nucleotide perturbations within sequence motifs. Leveraging the 
high throughput of this in silico screening strategy, we showed 3D genome organization is sensitive to 
perturbations in A/B compartment, GC content, CTCF motif density, and active transcription. We 
identified clusters of transposons and RNA genes important for 3D genome folding, as modulating their 
sequences disrupts chromatin contacts on par with or more than modulating CTCF sites. Many of the 
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repetitive elements with the largest effects on 3D genome folding when deleted and inserted do not 
contain CTCF and have not previously been implicated in chromatin architecture. 

This study contributes to a growing body of evidence showing that transposable elements 
modulate genome folding [44] and replication timing [45]. It has long been hypothesized that 
transposons may have been evolutionarily co-opted as regulatory elements [35,36]. Most transposable 
elements are epigenetically decommissioned [46], but functional escape can change genome 
conformation [47]. We observe both loss and gain of contact upon transposable element deletion, 
supporting the idea that these elements can both establish new boundaries by installing CTCF-like 
motifs and inhibit ancient CTCF binding sites to block contact [37]. Our results are also consistent with 
previous findings that specific MIR elements and tRNAs can serve as insulators [48,49], while Alu and 
hAT provide loop anchors [50,51], and hint that repetitive elements may work in tandem [42]. We are 
curious to test coordination of transposable elements as shadow loop anchors, theorized by Choudhary 
et al. to act as redundant regulatory material supporting CTCF [37]. We anticipate that comparing 
disruption to element age and species divergence will help to understand the evolutionary mechanisms 
of transposable element deprogramming and selection in gene regulation.   
 Although we did not focus on CTCF specifically, a similar targeted in silico approach could 
directly address why the majority of CTCF motifs are not active [52,53], and if methylation sensitivity 
of CTCF motifs containing CpGs tunes folding specificity [54]. In our insertion experiments, we use a 
fixed and arbitrary gap between motifs. We anticipate future in silico experiments will refine the spacing 
and orientation rules of neighboring and redundant CTCF elements and reveal how CTCF coordinates 
with flanking proteins and transposable elements.  

It is important to emphasize that our in silico strategy, while previously demonstrated to be 
highly accurate [20], is a screening and hypothesis-generating tool. Model predictions, especially those 
that implicate novel sequence elements or mechanisms, will require experimental validation. We view 
this as a strength of our approach, not a weakness. Our ability to test millions of mutations efficiently 
and in an unbiased manner enables us to develop hypotheses and prioritize genomic loci that would not 
otherwise have been considered for functional characterization. It is now a high priority to apply 
massively parallel reporter assays, epitope devices, and genome engineering to explore how hAT, MIR, 
ERV and SVA elements function in the context of 3D genome folding. We advocate for deep learning as 
a powerful strategy for driving experimental innovation which can be used iteratively with wet lab 
technologies to accelerate discovery.  

Our conclusions rest heavily upon the Akita model, which only considers a limited genomic 
window. Future work could apply the approach presented here with other deep-learning models to test 
the robustness of our findings and potentially discover additional sequence features missed in our work. 
Our study is also limited by the quality of the hg38 reference genome, and we anticipate that extending 
to the new telomere-to-telomere human genome assembly will enable a better understanding of near-
identical repetitive elements [33]. Finally, in order to leverage the best quality data currently available, 
we only made predictions for one cell type, HFFc6, but features of the 3D genome can be cell-type 
specific [55]. As very high-resolution and single-cell measurements of chromatin contacts, gene 
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expression, and epigenetic states are generated for more cell types, it will be exciting to search for 
sequences that are necessary and sufficient for chromatin contacts in each cell type and to explore how 
variable these sequence determinants are across cellular contexts.  

In our investigation, we develop a toolkit of in silico experimental strategies, including: unbiased 
and targeted deletion screens, phenotypic rescue, insertions into synthetic sequence, sampling around 
known sequence motifs, and sequence contribution tracks across tens of basepairs to megabases.  We 
hope that the variety of experiments profiled here may serve as a template for foundational biological 
research with deep learning. We also anticipate that our released disruption tracks will provide useful 
annotations for genome sensitivity and yield further insights into chromatin biology. In sum, our work 
highlights the potential of deep learning models as powerful tools for biological hypothesis generation 
and discovery in regulatory genomics. 

Methods 
Akita model and datasets 
Throughout this analysis,  we use the published convolutional neural network Akita to predict 
log(observed/expected) chromatin contact maps from ~1 Mb (1,048,576 bp) of real, altered, or synthetic 
DNA sequence[20] (https://github.com/calico/basenji/tree/master/manuscripts/akita). All 
types of mutations, including deletions, insertions, inversions and substitutions, may be scored as long as 
they are smaller than 1 Mb. Akita’s predictions have been shown to mirror experimental results with 
deletions across scales of thousands of base pairs (bp) to single nucleotides. Fudenberg et al. originally 
trained Akita across six cell-types simultaneously, and we made all predictions in this work in the cell-
type with the highest resolution of training data, human foreskin fibroblasts (HFFc6). The experimental 
Micro-C maps from HFFc6 [28] are used in visualizations. All epigenetic and transcriptomic data were 
generated in HFFc6 and downloaded from public repositories. The source of all public data, including 
Micro-C, ATAC-Seq, RNA-Seq, ChIP-Seq, and compartment calls, can be found in Data Table 1. All 
analyses use the hg38 genome build. We downloaded centromere locations from UCSC Table Browser 
[56].  
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Data Table 1 

Pipeline for computing 3D genome folding disruption scores 
The location of deletions and insertions are centered such that the start position of the variant is always 
introduced halfway through the 1-Mb sequence at 219 bp. For deletions, we pull additional sequence 
from the right to pad the input to 220 bp.  We remove sequences from our analysis which overlap 
centromeres [59], ENCODE blacklisted regions [60], and regions with an N content greater than 5%. 
Evaluating predictions on GPU (NVIDIA GeForce GTX 1080 Ti, NVIDIA TITAN Xp, NVIDIA 
GeForce RTX 2080 Ti) decreased the time per variant from 1.58 seconds to 262 ms, on average. 
 We score disruption as the log of the mean squared error between reference and perturbed maps. 
Mean squared error captures large-scale contact map changes, and has been used previously to rank 
predictions [20]. Pearson/Spearman correlation is also an appropriate choice [27].  

Mass deletion screens 
Along with controls, we perform the following large-scale deletion screens: 

1. 5 kb, whole genome (n = 562,743).  
2. 10,000 (10k) random CTCF deletions. CTCF locations are pulled from JASPAR 2022 [61]. 
3. 10k 100-bp random deletions. Start locations are randomly sampled from the genome. 
4. Randomly sized deletions, ranging from 1 bp to 100 kb (n = 41,207).   Start locations are 

randomly sampled from the genome. 
5. RepeatMasker database deletions (n = 1,164,107) [62]. RepeatMasker downloaded from UCSC 

Table Browser. We exclude ambiguous elements (containing ‘?’ in the label). We initially sample 
10,000 elements per family or up to the total number of elements in the family, whichever is less. 
Thereafter, we randomly sample from the database. 

6. TSS deletions. (n = 1,073,329 mutations across 1,789 genes).   
A full summary as well as the location of these results can be found in Supplementary Table 1.  

Genomic tracks 
We smoothed the disruption scores of 5-kb deletions with a rolling average of 50 bp to create disruption 
tracks (Fig. 1d, Fig. 3a). We additionally visualize the density of the following elements at 5-kb 
resolution: 

1. Reference genes, hg38, GENCODE v39 [63], downloaded from UCSC Table Browser.  

Datatype Source Accession No.

Micro-C, HFF 4DN, Krietenstein et al. 2020[28] 4DNESWST3UBH

RNA-Seq, HFF ENCODE [29], GEO:GSE188028 ENCFF262XNE, ENCFF381OAF

ChIP-Seq, CTCF, HFF ENCODE, Lou et al., 2020[57] ENCFF465OQP 

ATAC-Seq, HFF 4DN, Oksuz et al., 2021[58] 4DNESMBA9T3L

Compartment, HFF 4DN, Oksuz et al., 2021[58] 4DNES9X112GZ
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2. ENCODE hg38 v3 candidate cCREs, ENCODE Project [29] , downloaded from UCSC Table 
Browser. 

3. CTCF motifs (MA0139.1), JASPAR 2022 [61], downloaded from http://expdata.cmmt.ubc.ca/
JASPAR/downloads/UCSC_tracks/2022/hg38/.  

4. ATAC-Seq peaks in HFFc6 [58]. 
5. Alu, L1, and L2 elements, RepeatMasker database, v. 4.1.2 [62], downloaded from UCSC Table 

Browser. 

Overlap with compartment, ENCODE cCREs, CTCF, and transcribed genes 
We used pre-computed compartment scores generated from the HFFc6 Micro-C dataset originally 
employed for training Akita [28]. To calculate the overlap between disruption scores for 5-kb deletions 
and compartment scores generated at 50-kb resolution, we merged both measures by genomic location, 
filled missing disruption values with linear interpolation, and calculated the overlap across A 
compartments with a compartment score greater than 0 and B compartments with a compartment score 
less than 0.  
 We intersected deleted windows and transposable elements with ENCODE cCREs using 
bioframe [64] to calculate the percentage overlap. We use the same strategy to calculate overlap with 
JASPAR CTCF motifs, ATAC-Seq peaks, and transcribed elements. When quantifying transcription of 
repetitive elements unannotated as genes, we calculated overlap with RNA-seq BigWigs, summed 
across both strands.  

Mappability 
Per nucleotide mappability was measured using 24-kmer multi-read mappability, where mappability is 
the probability that a randomly selected read of length k in a given region is uniquely mappable [65]. 
Mappability tracks were downloaded from the Hoffman lab (https://bismap.hoffmanlab.org). In this 
study, mappability averaged across 5 kb deletions, repetitive element families, and Alu element types in 
a 100 Mb subset of chromosome 1 from 100 Mb to 200 Mb.  

In silico mutagenesis at the TSS 
We examined behavior at the TSS using in silico mutagenesis. We individually randomly mutated each 
nucleotide 300 bp upstream to 300 bp downstream of the top 1,789 highest expressed protein coding 
genes via total RNA-Seq and quantified the MSE between mutated and reference predicted maps. We 
observed that 1,015 genes fell in A compartments, while 63 fell in B compartments. To produce tracks in 
Fig. 2f-g, we averaged the disruption of each nucleotide by position and smoothed using a rolling 
average of 20 bp. We used the same strategy across select repetitive elements to identify which 
nucleotides most contribute to entire-element disruption scores (Fig. 5e). To create metaplots, we 
selected the highest scoring nucleotide change for each gene, and filtered all genes with a maximum 
disruption score above -7. We then averaged the difference between reference and perturbed maps for 
these genes. 
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Repetitive elements 
Repetitive element density was calculated as the number of elements across the entire RepeatMasker 
database overlapping each 5-kb genomic bin. We quantified enrichment as the log fold change of the 
mean disruption across 10% of genomic windows per family compared to all windows. To create 
metaplots, we average the difference between maps for the top 100 repetitive element deletions per 
family, along with CTCF deletions.  

Phenotypic Rescue  
We profiled the following elements in our proof-of-concept phenotype rescue screen: 

1. A MER91B hAT-Tip100 element at position chr2:98412915-98413053.  
SWA score: 392, Divergence: 27%. Disruption from reference = -2.65.  

2. A size-matched 138-bp random DNA sequence.   
Disruption from deletion  = -2.55.  

3. The canonical CTCF motif (TGGCCACCAGGGGGCGCTA).  
Disruption = -2.68.  

4. A MER91B element at position chr12:51824097-51824219.  
SWA score: 245, Divergence: 20.9%. Disruption = -5.28.  

Insertion Screens 
CTCF depletion: We created a simulated Hi-C contact map without structure as a blank canvas for 
insertion experiments. We first generated a random DNA sequence of length 220 bp. By chance, 
predicted maps from random sequence will contain some above background contact frequencies. To 
remove all structure, we incremented across this sequence one nucleotide at a time with a 12-bp sliding 
window. For each position, we computed the edit distance to the consensus CTCF motif. If the edit 
distance fell below a set threshold, we inserted a random DNA sequence of length 12 until the 
subsequence was sufficiently different from CTCF. Experimenting with edit distances, we found that a 
distance of 7 produces predicted maps which lack structure but do not result in artificial model 
predictions (Fig. S6). We call this a “blank canvas” 1-Mb sequence.  

CTCF insertion: We inserted the CTCF motif into the blank canvas and predicted expected contact 
frequencies with Akita. We quantify insertion impact as the log mean squared error between the 
predicted maps of the blank canvas and the insertion. If more than one motif was added, the insertions 
were centered and separated by an arbitrary 100 bp. To sample the CTCF motif, we drew frequencies 
from the CTCF position weight matrix [61]. To create a baseline, we inserted 5,000 CTCF motifs drawn 
from locations in the genome. Sequence motifs were visualized with a python port of the seqLogo 
package [66,67]. 

Repetitive element insertions: We selected the top 1,000 most disruptive repetitive elements per family 
by the deletion screen to insert back into the blank canvas sequence. We inserted both the forward and 
reverse complement of each sequence, and selected the direction with the highest score. For an initial 
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screen, we inserted all elements 100x with 100-bp spacing. As an additional baseline, we inserted 1,000 
201-bp randomly generated sequences, as the median repetitive element size in our insertion screen was 
201 bp. To perform clustering with t-SNE, we decreased the resolution of the 448x448 pixel maps to 
100x100 pixels and flatten them to 1D vectors before clustering. 

Additional genomic tracks: In Fig. 5e, we visualized CTCF ChIP-Seq and CTCF motif locations in the 
element’s original genomic context. Along with deleting the entire element, we performed mutagenesis 
to a random nucleotide across the length of the element to create a ‘disruption track’ of nucleotides most 
sensitive to perturbation. We highlight the most sensitive bases.  

JASPAR Insertions: We inserted the forward and reverse complement of each JASPAR motif [61] into 
CTCF-depleted sequence with 100-bp spacing (n = 842). JASPAR motifs were pulled and coordinated 
with pyJASPAR  [68]. 

Code and Data Availability 
Disruption results are available at: github.com/keiserlab/3d-genome-disruption-paper  

Supplemental Note  
One concern is sequence mappability potentially confounding model training. Repetitive elements are, 
by nature, highly conserved and present inherent difficulties assigning multi-mapped reads. Before 
training the model, large gaps were excluded from the training dataset and missing Hi-C bins were 
linearly interpolated [20]. If repetitive elements were systematically removed or imputed, the model may 
behave unreliably when predicting unseen repetitive element sequences. 

To investigate this confounder, we examined how sequence mappability compares to disruption score 
(Fig. S4). In general, we observe no correlation between deletions of 5-kb windows and mappability, 
indicating that poorly mappable sequences do not have unusually high or low disruption scores. 
Mappability of individual elements is also uncorrelated with disruption.  

We do find that Alu elements have particularly low sequence mappability and particularly high predicted 
importance. Many Alu elements are still active and recently inserted into DNA, and therefore have high 
sequence similarly, presenting a challenge in mapping. It is also possible that the highly conserved 
nature of recent Alu elements contributes to their utility in shaping the 3D genome. The correlation with 
mappability is expected and may or may not indicate a bias; it is difficult to disentangle these two 
possibilities easily. Relatively low negative correlation between disruption score and mappability for 
individual elements within the Alu class suggests that many of the highly disruptive Alus are not in 
regions of low mappability.   
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Supplementary Figures 

Supplementary Figure 1: Disruption is correlated with GC content and deletion size.  a. Disruption scores 
across the 5 kb whole-genome deletion screen compared to compartment score, as defined as the first 
eigenvector of the experimental micro-C contact matrix in HFFc6. b. GC Content across the 5-kb screen 
compared to disruption score. c. Disruption scores across a deletion screen of random sized genomic segments 
ranging from 1 bp to 1,000 bp across chromosome 17 (n = 2,000). d. Disruption scores across a deletion screen 
of random sizes ranging from 1 bp to 100,000 bp across chromosome 1 (n = 39,207).  
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Supplementary Figure 2: CTCF Enrichment in A and B Compartments. CTCF-bound regions are enriched 
within the top 1% most disruptive 5 kb regions compared to the bottom 1% in both A compartments (a) and B 
compartments (b). 
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Supplementary Figure 3: Transcription tracks. Individual single-nucleotide disruption tracks around the TSS of 
highly expressed genes which overlap CTCF (top) and do not overlap CTCF (bottom). The location of the TSS is 
marked in red. 
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Supplementary Figure 4: Disruption and Mappability. Comparison of multi-read mappability at 
chr1:100Mb-200Mb and disruption scores. a. Average mappability by repetitive element family. b. Average 
mappability by repetitive element type. c. Average mappability of 5-kb deleted genome windows. d-f. Average 
mappability of repetitive element types within the Alu, tRNA, and L1 LINE families.   
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Supplementary Figure 5: Repetitive elements vary across compartment and regulatory region. a-b. 
Disruption by repetitive element count within 5 kb genomic windows, by compartment. c. Percent of 
each sampled repetitive element family found within the A compartment, as defined by the first 
eigenvector of experimental micro-C in HFFc6.  d. Overlap of top 10% most disruptive repetitive 
elements by the deletion screen stratified by overlap with ENCODE candidate regulatory elements 
(cCREs). 
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Supplementary Figure 6: Edit distance thresholds for blank canvas map creation. We create a blank map to 
insert elements by predicting genome folding of random DNA sequence. The original map, by chance, contains 
spurious structure, so we deplete the sequence of any subsequence within a given edit distance of CTCF. An 
aggressive threshold (e.g. 4) does not produce a biologically plausible sequence, while a permissive threshold 
(e.g. 9) leaves structure. We select a threshold of 7.  
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Supplementary Figure 7: Motif insertion strength. Impact of increasing the number of CTCF and random 12-
bp sequence insertions into a blank map. Insertions are separated by 100 bp randomly generated DNA sequence. 
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Supplementary Figure 8: Similarity of impactful insertions to CTCF. Number of nucleotides of inserted 
repetitive elements matching the consensus CTCF motif versus element disruption score (top). Elements were 
scanned one nucleotide at a time to calculate the edit distance of all 12-bp subsequences to CTCF. 12 indicates 
that the element contains a perfect CTCF motif match. 1 indicates the element contains no subsequences 
matching the CTCF motif. Motifs more similar to CTCF are higher scoring. Number of nucleotides of inserted 
repetitive elements matching the CTCF motif, by family (bottom).  Only elements with a disruption score above -7 
(red threshold) are shown below.  
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Supplementary Figure 9: Impact of repetitive element insertions with and without CTCF. Disruption scores 
across all repetitive element insertions into a blank, CTCF-depleted map, striated by overlap of the original 
element with an annotated JASPAR CTCF motif.  
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Supplementary Figure 10: GC content of impactful insertions. a. GC content of disruptive repetitive elements 
with a MSE greater than -5 upon insertion into a blank map. b. Disruption caused by insertion of  randomly 
generated 5-kb DNA sequences with GC percentages ranging from 0% to 100%. c. Disruption produced by 
random insertions into a blank map ranging from GC percentages from 0% to 100% and lengths from 1 bp to 5 
kb. 
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Supplementary Data Table 1 

Filename n Type Context Description

5kb_deletions.csv 562,744 deletion original
Tiled 5kb deletions across the genome.

random_sized_deletions_100kb.csv 39,207 deletions original
Random deletions between 1 and 100kb 
from chromosome 1.

random_sized_deletions_1kb.csv 2,000 deletions original
Random deletions between 1 and 1kb from 
chromosome 17.

RepeatMasker_deletions.csv 1,164,108 deletions original
Deletions from the RepeatMasker 
database.

CTCF_motif_insertions.csv 991 insertion blank
Sampled CTCF JASPAR motifs inserted 
into blank map.

CTCF_PWM_sampling_insertions.csv 326,177 insertion blank
Sampled CTCF PWM inserted into blank 
map.

random_20bp_insertions.csv 236,119 insertion blank
Random 20bp sequences inserted into 
blank map.

CTCF_consensus_motif_insertions.csv 1000 insertion blank

CTCF consensus sequence inserted into 
blank map (different random sequence 
spacing).

random_201bp_insertions.csv 1000 insertion blank
Random DNA sequence inserted into blank 
map.

all_motif_insertions.csv 842 insertion blank
JASPAR motif insertions into blank map.

RepeatMasker_insertions.csv 14514 insertion blank
RepeatMasker element insertions into 
blank map.

tss_mutagenesis.csv 1,073,334 mutagenesis original
Random single nucleotide mutagenesis 
around the TSS.
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