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Tie2, at the edge of the cluster. Thus, these systems probably maintain their 569 

inflammasome-inducing activity, which may contribute to their pathogenic potential. 570 

  571 

Figure 8: T6SS3-like systems are found in pathogenic marine bacteria 572 

T6SS3-like gene clusters. Genes are represented by arrows indicating the direction 573 

of transcription. Locus tags are denoted above; encoded proteins and known 574 

domains are denoted below for V. proteolyticus. A dashed line denotes a gap 575 

containing genes that are not shown. 576 

 577 

  578 
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Discussion 579 

T6SSs are sophisticated molecular machines that are used by Gram-negative 580 

bacteria to inject toxic effector proteins into neighboring cells. Even though most 581 

T6SSs studied to date mediate interbacterial competition by injecting antibacterial 582 

effectors into neighboring bacteria, few T6SSs were found to target eukaryotes 583 

(Bröms et al., 2010; Clemens et al., 2018; Jiang et al., 2014; Monjarás Feria and 584 

Valvano, 2020; Pukatzki et al., 2007; Rosales-Reyes et al., 2012; Sana et al., 2015; 585 

Wang et al., 2009). In this work, we describe T6SS3, a functional T6SS in the marine 586 

bacterium V. proteolyticus, which induces inflammasome-mediated cell death 587 

(known as pyroptosis) upon phagocytosis. We show that this T6SS-mediated 588 

pyroptotic cell death is dependent on the delivery at least two novel effectors, and 589 

that it involves the activation of the NLRP3 inflammasome, leading to the processing 590 

and release of Caspase-1, IL-1β, and GSDMD. Two other T6SS effectors were 591 

previously reported to indirectly affect inflammasome activation: EvpP from 592 

Edwardsiella tarda was shown to inhibit the NLRP3 inflammasome by targeting the 593 

MAPK-Jnk pathway (Chen et al., 2017), whereas TecA from Burkholderia 594 

cenocepacia deamidates Rho GTPases, leading to activation of the pyrin-595 

inflammasome (Aubert et al., 2016). Here, we describe for the first time, to the best 596 

of our knowledge, not one but two T6SS effectors that lead to activation of the 597 

NLRP3 inflammasome. 598 

Remarkably, we found that in the absence of GSDMD, the canonical gasdermin 599 

activated during pyroptosis, an alternative NLRP3-dependent inflammasome cell 600 

death cascade, which includes Caspase-3 (but not Caspase-8) and GSDME, can be 601 

induced by this T6SS3. Since IL-1 release is one of the most ancient and 602 

conserved immune mechanism (Dinarello, 2018), it is impotent to understand how 603 
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the mammalian immune system evolved to induce several backup mechanisms to 604 

ensure its activation. Even in the case of GSDMD inhibition, which may occur if 605 

GSDMD is targeted by the pathogen (Luchetti et al., 2021), a conserved mechanism 606 

including the activation of Caspase-3 and GSDME in a NLRP3 inflammasome-607 

dependent manner will result in the secretion of this proinflammatory cytokine. 608 

Notably, a recent study independently reported a similar compensation mechanism 609 

in the absence of GSDMD via chemical or Salmonella-induced NLRP3 610 

inflammasome activation that also included Caspase-8 activation (Zhou and Abbott, 611 

2021). In contrast, we were unable to detect Caspase-8 activation in our system. 612 

Notably, a recent study independently reported a similar compensation mechanism 613 

in the absence of GSDMD via chemical or Salmonella-induced NLRP3 614 

inflammasome activation; the reported mechanisms also included Caspase-8 615 

activation (Zhou and Abbott, 2021). In contrast, we were unable to detect Caspase-8 616 

activation in our system. Therefore, we propose that the cascade revealed in our 617 

work involves direct Caspase-3 activation by Caspase-1, as was previously 618 

suggested for Aim2 inflammasome in the absence of Caspase-8 (Sagulenko et al., 619 

2018). 620 

In the battle between mammalian cells and pathogens, the immune response 621 

mechanism that is activated plays a central role in the host’s ability to fight-off 622 

infections. Inflammasome activation (and pyroptotic cell death), which is an ancient 623 

innate immune mechanism, is activated by numerous inputs and cellular stresses 624 

(Lamkanfi and Dixit, 2014; Schroder and Tschopp, 2010). Nevertheless, the 625 

immunological consequences of inflammasome activation by pathogens remain 626 

enigmatic. Often it is a useful mechanism that enables the host to eliminate infection 627 

either by inducing inflammation or by killing infected cells; however, in certain 628 
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scenarios, inflammasome activation can be exploited by the pathogen, and it 629 

provides it with an advantage against the immune system (Man et al., 2017). Indeed, 630 

we observed a T6SS3-mediated growth advantage to V. proteolyticus during 631 

BMDMs infection when phagocytosis, which is generally used by the immune cell to 632 

eliminate the bacteria, was functional. Future investigations will determine whether 633 

T6SS3-induced pyroptosis is beneficial to the bacterium or to the host during in vivo 634 

infection. 635 

Although mammals are probably not the natural target for the V. proteolyticus 636 

T6SS3, nor are they the evolutionary driving force for the activity of the effectors Tie1 637 

and Tie2, immune responses similar to the ones described here (e.g., cell death 638 

mechanisms) are found in marine animals that are in direct contact with pathogenic 639 

vibrios (e.g., arthropods and fish). Indeed, Vibrio coralliilyticus was recently 640 

described to activate Caspase-3, leading to cleavage of GSDME and cell death in 641 

corals (Jiang et al., 2020), while a Caspase-1 homolog was previously described in 642 

Artemia sinica (Chu et al., 2014). Since NLR proteins, such as NLRP3, are less 643 

conserved in marine animals, we hypothesize that the target of Tie1 and Tie2 is 644 

upstream of NLRP3, and therefore the conservation between mammalian cells and 645 

marine animals lies in their ability to sense the effect of Tie1 and Tie2 activity as a 646 

danger signal that activates cell death pathways. Moreover, since we find 647 

homologous T6SS clusters that carry Tie1 and Tie2 homologs in other bacteria, 648 

including human pathogens, this T6SS and these effectors may contribute to the 649 

virulence of some bacteria. Finally, the probable horizontal transfer of this anti-650 

eukaryotic T6SS between marine bacteria may also contribute to the emergence of 651 

new pathogenic Vibrio strains. 652 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2022. ; https://doi.org/10.1101/2022.08.11.503615doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.11.503615
http://creativecommons.org/licenses/by/4.0/


34 
 

Here, we also shed light on the regulation of T6SS3. We found that similar to 653 

T6SS in other bacteria, both T6SS1 and T6SS3 in V. proteolyticus are repressed by 654 

H-NS. Importantly, we demonstrated that Ats3, which appears to be conserved also 655 

in the homologous T6SS clusters found in other bacteria, is an activator of T6SS3 656 

but not of T6SS1. When over-expressed, Ats3 activated T6SS3 even more 657 

dramatically than the deletion of hns1. Interestingly, the Ats3-induced T6SS3 658 

activated NLRP3 independent cell death in BMDMs, which had different kinetics than 659 

the NLRP3-mediated cell death. This result suggests that upon hyper-activation, 660 

T6SS3 can induce different cell death mechanisms. 661 

In conclusion, we describe T6SS3, an anti-eukaryotic T6SS in V. proteolyticus, 662 

and we identify two novel anti-eukaryotic effectors. We also decipher the mechanism 663 

of cell death, which is induced by the two effectors in primary macrophages. 664 

Nevertheless, future studies will address the question regarding the activity and 665 

target of the two effectors, and they will determine how these effectors activate the 666 

inflammasome. Moreover, it remains to be determined whether inflammasome-667 

induced cell death is beneficial to the host or to the bacterium during infection. 668 
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Material and Methods 688 

 689 

Reagents 690 

Unless otherwise stated, all cell culture reagents were purchased from Biological 691 

Industries, Beit-Haemek, Israel. Lipopolysaccharides (LPS) of Escherichia coli 692 

O111:B4 were purchased from Sigma-Aldrich (#L3024). Propidium Iodide (PI) was 693 

purchased from Sigma-Aldrich (#P4170). Vx765 and MCC950 and ELISA kits were 694 

purchased from Invitrogen. HRP-conjugated secondary antibodies were purchased 695 

from Jackson ImmunoResearch Labs (West Grove, PA, USA). Cytochalsin D (1233) 696 

was purchased from Tocris.  697 

Mice: C57BL/6 (wild-type [WT]), NLRP3tm1Bhk/J, MLKL KO, NLRP1 KO and 698 

GSDMD KO mice were bred under specific pathogens free conditions in the animal 699 

facility at Tel Aviv University. Experiments were performed according to the 700 

guidelines of the Institute’s Animal Ethics Committees. 701 

Cell culture: Bone marrow (BM) cells from mice were isolated by flushing femurs 702 

and tibias with 5 mL PBS supplemented with 2% (v/v) heat-inactivated fetal bovine 703 

serum (FBS) Gibco (Thermo Fisher Scientific, Waltham, MA, USA). The BM cells 704 

were centrifuged for 5 minutes at 400 x g and then resuspended in Dulbecco's 705 

Modified Eagle Medium (DMEM) (Sartorius, 01-052-1A) supplemented with 10% 706 

(v/v) FBS and 15% L929 conditional medium (L-con). Bone marrow-derived 707 

macrophages (BMDMs) were obtained by 7 days differentiation as previously 708 

described (Trouplin et al., 2013). 709 

Bacterial strains and media: For a complete list of strains used in this study, see 710 

Supplemental Table S1. Vibrio proteolyticus and its derivatives, as well as V. 711 

parahaemolyticus, were grown in Marine Lysogeny Broth (MLB; Lysogeny broth 712 
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supplemented with NaCl to a final concentration of 3% [w/v]) or on MLB agar plates 713 

(supplemented with 1.5% [w/v] agar) at 30°C. Media were supplemented with 714 

kanamycin (250 μg/mL) or chloramphenicol (10 μg/mL) when appropriate to maintain 715 

plasmids. Escherichia coli were grown in 2xYT broth (1.6% [w/v] tryptone, 1% [w/v] 716 

yeast extract, and 0.5% [w/v] NaCl) or Lysogeny broth (LB) at 37°C. Media were 717 

supplemented with kanamycin (30 μg/mL) or chloramphenicol (10 μg/mL) when 718 

appropriate to maintain plasmids. To induce the expression of genes from pBAD 719 

plasmids, 0.1% (w/v) L-arabinose was included in the media. 720 

Plasmid construction: For a complete list of plasmids used in this study, see 721 

Supplemental Table S2. Primers used for amplification are listed in Supplemental 722 

Table S3. For arabinose-inducible expression, the coding sequences (CDS) of 723 

tssL3, ats3, tie1 and tie2 were amplified from V. proteolyticus genomic DNA. 724 

Amplicons were inserted into the multiple cloning site (MCS) of pBAD/Myc-HisKan 725 

using the Gibson-assembly method (Gibson et al., 2009). The constructed plasmids 726 

were transformed into E. coli DH5  α (λ-pir) competent cells using electroporation. 727 

Plasmids were conjugated into V. proteolyticus using tri-parental mating. Trans-728 

conjugants were selected on MLB agar plates supplemented with appropriate 729 

antibiotics to maintain the plasmids. 730 

Construction of bacterial deletion strains: For in-frame deletions of V. 731 

proteolyticus genes, 1 kb sequences upstream and downstream of each gene or 732 

region to be deleted were cloned into pDM4, a CmROriR6K suicide plasmid (O’Toole 733 

et al., 1996) using restriction digestion and ligation. These pDM4 constructs were 734 

transformed into E. coli DH5α (λ-pir) by electroporation, and then transferred into V. 735 

proteolyticus via conjugation. Trans-conjugants were selected on MLB agar plates 736 

containing chloramphenicol (10 μg/mL). The resulting trans-conjugants were grown 737 
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on MLB agar plates containing sucrose (15% [w/v]) for counter-selection and loss of 738 

the SacB-containing pDM4. Deletion was confirmed by PCR. 739 

Bacterial growth assays: Overnight-grown cultures of V. proteolyticus were 740 

normalized to an OD600 = 0.01 in MLB media and transferred to 96-well plates (200 741 

µL per well). For each experiment, n = 3. Cultures were grown at 30°C or 37°C in a 742 

BioTek EPOCH2 microplate reader with continuous shaking at 205 cpm. OD600 743 

readings were acquired every 10 minutes. Experiments were performed at least 744 

three times with similar results. 745 

Bacterial swimming assays: Swimming media plates were prepared with Lysogeny 746 

broth containing 20 g/L NaCl and 3 g/L Agar. When necessary to induce the 747 

expression of genes from a plasmid, 0.1% (w/v) L-arabinose was included in the 748 

media. V. proteolyticus strains that were grown overnight on an MLB plate were 749 

picked and then stabbed into the swimming plates using a toothpick (n = 3). Plates 750 

were incubated at 30°C for 8–16 h. Swimming was assessed by measuring the 751 

diameter of the spreading bacterial colony. The experiments were performed three 752 

times with similar results. 753 

Infection experiments: BMDMs were washed three times using PBS and then 754 

seeded at a final concentration of 3.5*104 cells/mL in triplicate in 1% FBS and 755 

penicillin–streptomycin-free DMEM. BMDMs were pre-incubated with LPS (100 756 

ng/mL, 3 h), and then infected with V. proteolyticus at MOI 5. When used, 757 

inflammasome inhibitors Vx765 (25 μM) and MCC950 (2 μM) were added 30 758 

minutes prior to infection. For phagocytosis inhibition assay, cytochalasin D (final 759 

concentration 5 μM) was added 30 minutes prior to infection. More specifically, 760 

overnight cultures of V. proteolyticus strains were washed and normalized to 761 

OD600=0.016 (5 MOI) in DMEM without antibiotics. Bacteria were added to wells 762 
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containing the BMDMs, and plates were centrifuged for 5 minutes at 400 x g. Plates 763 

were inserted into the IncucyteZOOM (Essen BioScience) for incubation at 37°C and 764 

for monitoring cell death, as detailed below. 765 

Live cell imaging: Plates containing BMDMs were placed in IncucyteZOOM and 766 

images were recorded every 10–30 minutes. The data were analyzed using the 767 

IncucyteZoom2016B analysis software and then exported to the GraphPad Prism 768 

software. Normalization was performed according to the maximal PI-positive object 769 

count to calculate the percentage of dead cells (Isherwood et al., 2011). 770 

Immune response immunoblot analyses: Cells were collected and pelleted by 771 

centrifugation for five minutes at 400 x g (4°C). Next, the cells were lysed by adding 772 

denaturing (2X) Tris-Glycine SDS Sample Buffer supplemented with 5% (v/v) β-773 

mercaptoethanol. Lysates were loaded onto any -kD gradient ExpressPlus™ Page 774 

precast gels (GenScript). Proteins were transferred onto a nitrocellulose membrane 775 

(Bio-Rad), and Ponceau S staining was performed routinely to evaluate the loading 776 

accuracy. Membranes were blocked with 5% (w/v) skim milk in Tris-Buffered 777 

Saline(TBS) for 1-2 h, and then probed overnight with primary antibodies (all 778 

antibodies were diluted 1:1000, unless noted otherwise): mouse-NLRP3 (AdipoGen; 779 

cryo-2), pro and mature mouse-IL-1β (R&D Systems; AF-401-NA), pro and cleaved 780 

mouse Caspase-1 (Santa Cruz; sc- 514) (Adipogen; AG-20B-0042-C100), pro and 781 

cleaved mouse-GSDMD (Abcam; ab209845), pro and cleaved mouse-GSDME 782 

(Abcam, ab215191), cleaved Caspase-3 (Cell Signaling, 9661S) and Caspase-8 783 

(R&D; AF1650). Relevant horseradish peroxidase-conjugated secondary antibodies 784 

were applied for at least 1 h. Membranes were washed four times in TBS containing 785 

0.1% (v/v) Tween 20 (TBST) between antibody incubations. Antibodies were diluted 786 

in TBST containing 5% (w/v) skim milk. Immunoblots were visualized using an ECL 787 
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kit (Bio-Rad) in an ODYSSEY Fc (Li-COR) equipped with Image Lab software. All 788 

images were cropped for presentation; full-size images will be presented upon 789 

request. 790 

Protein secretion assays: V. proteolyticus isolates were grown overnight in MLB 791 

broth supplemented with antibiotics to maintain plasmids, if needed. Cultures were 792 

normalized to OD600 = 0.18 in 5 mL MLB with appropriate antibiotics and 0.05% (w/v) 793 

arabinose, when required. Cultures were grown for 5 h at 30 °C. After 5 h, for 794 

expression fractions (cells), 0.5 OD600 units were collected, and cell pellets were 795 

resuspended in (2X) Tris-Glycine SDS sample buffer (Novex, Life Sciences). For 796 

secretion fractions (media), culture volumes equivalent to 10 OD600 units were 797 

filtered (0.22 µm), and proteins were precipitated using deoxycholate and 798 

trichloroacetic acid (Bensadoun and Weinstein, 1976). Cold acetone was used to 799 

wash the protein precipitates twice. Then, protein precipitates were resuspended in 800 

20 μL of 10 mM Tris-HCl pH = 8, followed by the addition of 20 μL of (2X) Tris-801 

Glycine SDS Sample Buffer supplemented with 5% (v/v) β-mercaptoethanol. Next, 802 

0.5 μL of 1 N NaOH was added to maintain a basic pH. Expression and secretion 803 

samples were boiled and then resolved on any-kD gradient Mini-PROTEAN or 804 

Criterion™TGX Stain-Free™ precast gels (Bio-Rad). Expression and secretion were 805 

evaluated using western blot with specific, custom-made antibodies against VgrG1 806 

(described previously(Li et al., 2017)), and Hcp3, Tie1, or Tie2 (polyclonal antibodies 807 

raised in rabbits against peptides: CQKHNYELEGGEIKD, CVNIGKKYTDFTEDEL, 808 

and STPLGKAVDIPVEKC, respectively). Tie2, Hcp3 and VgrG1 antibodies were 809 

used at 1:1000 dilution, and Tie1 antibodies were used at 1:5000 dilution. Protein 810 

signals were visualized in a Fusion FX6 imaging system (Vilber Lourmat) using 811 
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enhanced chemiluminescence (ECL) reagents. Equal loading was assessed using 812 

trihalo compounds’ fluorescence of the immunoblot membrane.  813 

Bacterial competition assays: Attacker and prey strains were grown overnight in 814 

appropriate broth (MLB for V. proteolyticus and 2xYT for E. coli) with the addition of 815 

antibiotics when maintenance of plasmids was required. Competition assays were 816 

performed as previously described (Salomon et al., 2013). Briefly, bacterial cultures 817 

were normalized to OD600 = 0.5 and were mixed at a 4:1 ratio (attacker:prey). 818 

Triplicates of mixtures were spotted (25 µL) on MLB agar plates containing 0.1% 819 

(w/v) arabinose, and incubated for 4 h at 30°C. Prey colony forming units (CFU) 820 

were calculated after the cultures from t=0 h and t=4 h were collected and grown on 821 

selective media plates. The assay was performed three times with similar results, 822 

and the results from representative experiments are shown. 823 

Bacterial count quantification: BMDM infection experiments were performed as 824 

described above. Bacterial counts were assessed at the time of infection (t=0 h) and 825 

3.5 h post infection (t=3.5 h). To recover bacteria, triton X-100 was added directly 826 

into the experiment wells to a final concentration of 1%, and the plate was incubated 827 

for 15 minutes at 37°C. The media were collected from the wells, and 10-fold serial 828 

dilutions were spotted onto selective media plates. CFU counts were determined 829 

after overnight incubation of the plates at 30°C. The assay was preformed three 830 

times with similar results. 831 

Identification of T6SS3-homologous clusters: T6SS3-like clusters were identified 832 

by searching for homologs of the V. proteolyticus TssM3 protein sequence using 833 

BLAST (Stephen F.Altschul, Warren Gish, Webb Miller, Eugene W.Myers, 1990). 834 

The genomic neighborhoods of randomly selected homologs were then manually 835 
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examined, and representative clusters with similar genetic composition were chosen 836 

for presentation. 837 

Statistical analysis: Date were analyzed using GraphPad prism 9. Data are 838 

presented as the mean ± standard deviation (SD). Comparisons was performed 839 

using RM one-way ANOVA, followed by Sidak’s multiple comparison test or RM two-840 

way ANOVA, followed by Tukey’s multiple comparison test, unless otherwise is 841 

indicated. Statistical significance was considered at P < 0.05. 842 

 843 

Supplemental Table S1. A list of bacterial strains used in this study. 844 

Strain name Genotype Source 

Vibrio proteolyticus 

ATCC 15338 

Wild-type ATCC 

T6SS1- Vibrio proteolyticus ATCC 15338 

ΔtssG1 

(Ray et al., 2017) 

T6SS3- Vibrio proteolyticus ATCC 15338 

ΔtssL3 

This study 

Δvprh Vibrio proteolyticus ATCC 15338 

Δvprh 

(Ray et al., 2016) 

Δvprh/T6SS1- Vibrio proteolyticus ATCC 15338 

Δvprh/ΔtssG1  

This study 

Δvprh/T6SS3-  Vibrio proteolyticus ATCC 15338 

Δvprh/ΔtssL3 

This study 

Δvprh/Δhns1 Vibrio proteolyticus ATCC 15338 

Δvprh/ Δhns1 

This study 

Δvprh/Δhns1/T6SS1- Vibrio proteolyticus ATCC 15338 

Δvprh/Δhns1/ΔtssG1  
This study 

Δvprh/Δhns1/T6SS3- Vibrio proteolyticus ATCC 15338 

Δvprh/Δhns1/ΔtssL3  

This study  

Δvprh/Δhns1/Δtie1 Vibrio proteolyticus ATCC 15338 

Δvprh/Δhns1/Δtie1 

This study  
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Δvprh/Δhns1/Δtie2 Vibrio proteolyticus ATCC 15338 

Δvprh/Δhns1/Δtie2  

This study  

Δvprh/Δhns1/Δtie1/Δtie2 Vibrio proteolyticus ATCC 15338 

Δvprh/Δhns1/Δtie1/Δtie2 

This study  

V. para V. parahaemolyticus RIMD 2210633 

ΔtdhAS derivative (strain POR1) 

(Park et al., 2004) 

Escherichia coli XL-1 

blue 

XL-1 Blue Purchased from 

Addgene 

 845 

Supplemental Table S2. A list of plasmids used in this study.  846 

Plasmid 

name 

Description  Comments Source 

pDM4 a CmR and oriVR6K-

containing suicide vector 

Used as a 

backbone to 

construct plasmids 

for gene deletions 

in Vibrio  

(O’Toole et al, 

1996) 

 

pDM4:vprh pDM4 containing 1 kb 

upstream and 1 kb 

downstream of vprh in 

its MCS 

Used to delete vprh 

in V. proteolyticus 

(Ray et al., 

2016) 

pDM4:hns1 pDM4 containing 1 kb 

upstream and 1 kb 

downstream of hns1 in 

its MCS 

Used to delete hns1 

in V. proteolyticus  

This study 

 

pDM4:tssG1 pDM4 containing 1 kb 

upstream and 1 kb 

downstream of tssG1 in 

its MCS 

Used to delete 

tssG1 in V. 

proteolyticus 

(Ray et al., 

2017) 

pDM4:tssL3 pDM4 containing 1 kb 

upstream and 1 kb 

downstream of tssL3 in 

Used to delete 

tssL3 in V. 

proteolyticus 

This study 
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its MCS 

pDM4:tie1 pDM4 containing 1 kb 

upstream and 1 kb 

downstream of the 

region corresponding to 

nucleotides 485-584 of 

tie1 in its MCS  

Used to delete a 

100 bp region and 

inactivate tie1 in V. 

proteolyticus 

This study 

pDM4:tie2 pDM4 containing 1 kb 

upstream and 1 kb 

downstream of tie2 in its 

MCS 

Used to delete tie2 

in V. proteolyticus 

This study 

pBAD/Myc-

HisKan 

pBR322 ori-containing 

plasmid harboring a 

KanR cassette, araC, 

and an MCS following a 

Pbad promoter 

Used as a 

backbone to 

construct plasmids 

for arabinose-

inducible gene 

expression  

(Salomon et al., 

2013) 

pTssL3 pBAD/Myc-HisKan 

containing the tssL3 

ORF in its MCS, in 

frame with a C-terminal 

Myc-His tag 

Used for arabinose-

inducible 

expression of TssL3 

This study  

pAts3 pBAD/Myc-HisKan 

containing the ats3 ORF 

in its MCS, not fused to 

a C-terminal tag 

Used for arabinose-

inducible 

expression of Ats3 

This study 

pTie1 pBAD/Myc-HisKan 

containing the tie1 ORF 

in its MCS, not fused to 

a C-terminal tag 

Used for arabinose-

inducible 

expression of Tie1 

This study 

pTie2 pBAD/Myc-HisKan 

containing the tie2 ORF 

in its MCS, not fused to 

Used for arabinose-

inducible 

expression of Tie2 

This study 
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a C-terminal tag 

pTie1-2 pBAD/Myc-HisKan 

containing the ORFs of 

tie1 and tie2 in its MCS, 

not fused to a C-terminal 

tag 

Used for arabinose-

inducible 

expression of Tie1 

and Tie2, together 

This study 

pBAD33.1 p15A ori-containing 

plasmid carrying a CmR 

gene, araC, and an MCS 

following a Pbad 

promoter. 

Used for selection 

in competition 

assay 

Purchased from 

Addgene; 

(Chung and 

Raetz, 2010) 

 847 

Supplemental Table S3. A list of primers used in this study.  848 

Primer name Sequence (5’-3’) Description  

VprHNS1_UP_F_

SacI 

CAGCGAGCTCAAGACACTGGA

CACGGTAG 

Used to amplify 1 kb 

upstream of hns1 to 

construct pDM4:hns1 VprHNS1_UP_R_

BamH 

CAACGGATCCGACCATTCCTAT

GAATTTAATAAAGTC 

VprHNS1_DN_F_

BamHI 

CACCGGATCCTCGTAAGATTGG

TTTAAAAAAGG 

Used to amplify 1 kb 

downstream of hns1 to 

construct pDM4:hns1 VprHNS1_DN_R_

SalI 

CAACGTCGACCTATCGTTACCT

GTGCAAC 

VprTssL3_UP_F_

SpeI 

CACCACTAGTTGAAGACAGCC

GTTTGCG 

Used to amplify 1 kb 

upstream of tssL3 to 

construct  pDM4:tssL3 VprTssL3_UP_R_

HindIII 

CAACAAGCTTAACTACCTACCT

GATCAC 

VprTssl3_DN_F_

HindIII 

CAGGAAGCTTTATGATCAAAAA

AATTCTTG 

Used to amplify 1 kb 

downstream of tssL3 to 

construct  pDM4:tssL3 VprTssL3_DN_R_

SphI 

CAACGCATGCCCGGTTTTCACG

CCCGATG 

VPR_ Tie1 CAAAGAGCTCGCGCAGACTTA Used to amplify 1 kb 
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_SacI_UP_F CGTTAAG upstream of nucleotide 

455 in tie1 to construct 

pDM4:tie1 

VPR_ Tie1 

_XbaI_Up_R 

CACCTCTAGATTTTGTAGAATC

GTTCGCCCTGG 

VPR_ Tie1 

_XbaI_DN_F 

CACCTCTAGATGAGCTGGGCAT

CAAGGCTGG 

Used to amplify 1 kb 

downstream of nucleotide 

584 in tie1 to construct 

pDM4:tie1 

VPR_Tie1 

_SalI_DN_R 

CAAAGTCGACTTTGCAAATTTT

GCAGCAAACG 

VPR_Tie2_UP_F_

SacI 

CATTGAGCTCACGGCCGGTGA

ATTTAACG 

Used to amplify 1 kb 

upstream of tie2 to 

construct pDM4:tie2 VPR_Tie2_UP_R

_HindIII 

CAACAAGCTTAGGCCTTTCCTT

TTTATTAACGTG 

VPR_Tie2_DN_F

_HindIII 

CACGAAGCTTTCCTTGCCAACA

TAGCGG 

Used to amplify 1 kb 

downstream of tie2 to 

construct pDM4:tie2 VPR_Tie2_DN_R

_SalI 

CAGCGTCGACAATCTATAACAC

TCACCG 

tssL3_F_pBADfix GCTAACAGGAGGAATTAACCAT

GGCAGGACTTTTTAACG 

Used to amplify tssL3 to 

construct pTssL3 

tssL3_R_pBADfix TTTTGTTCGGGCCCAAGCTTTT

TCTGCGCTCTTCTTATCG 

Tie1_F_pBADfix GCTAACAGGAGGAATTAACCAT

GATAAATGATTTACAAAATGCC 

Used to amplify tie1 to 

construct pTie1and 

pTie1-2 

Tie1_R_pBADfix 

 

TTTTGTTCGGGCCCAAGCTTGA

ATGTGCTCAGAATGTCCTGC 

Used to amplify tie1 to 

construct pTie1  

Tie2_F_pBADfix TTTTGTTCGGGCCCAAGCTTTC

ACGCGGCTTCCGGGTGTG 

Used to amplify tie2 to 

construct pTie2 

Tie1_Tie2_R_pBA

Dfix 

TTTTGTTCGGGCCCAAGCTTCG

CGGCTTCCGGGTGTGGAGGCA

GTAC 

Used to amplify tie2 to 

construct pTie2 and 

pTie1-2 

Ats3_F_pBADfix GCTAACAGGAGGAATTAACCAT

GGAAAGAAAATCTATAACACTC 

Used to amplify Ats3 to 

construct pAts3 

Ats3_R_pBADfix TTTTGTTCGGGCCCAAGCTTTT

AGCGCTGATAGCGTTTG 
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 849 

Resource availability: 850 

 851 

Lead Contact:  852 

Further information and requests for resources and reagents should be directed to 853 

and will be fulfilled by the lead contact, Motti Gerlic (mgerlic@tauex.tau.ac.il). 854 

 855 

Materials availability  856 

Materials are available from the authors upon reasonable request. 857 

 858 

Data and code availability  859 

Data are, available from the authors upon reasonable request. This study did not 860 

generate new codes. 861 

 862 

   863 
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Supplemental information 864 

Supplemental Figures 865 

  866 

 867 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2022. ; https://doi.org/10.1101/2022.08.11.503615doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.11.503615
http://creativecommons.org/licenses/by/4.0/


49 
 

Supplemental Figure 1 (Related to Figure 3): T6SS3 activates the NLRP3 868 

inflammasome in BMDMs  869 

(a) PI uptake was assessed using real-time microscopy (IncucyteZOOM). The data 870 

are another depiction of the results shown in the experiment described in main 871 

Figure 3a. (b) The expression (cells) and secretion (media) of VgrG1 and Hcp3 from 872 

V. proteolyticus strains were detected by immunoblotting using specific antibodies. 873 

Loading control (LC) is shown for total protein lysate. An arrow denotes the expected 874 

band size of Hcp3. (c-d) NLRP3, Caspase-1, GSDMD, and IL-1β were detected in 875 

BMDM lysates (c) and supernatants (d) from experiments described in main Figure 876 

3e-f by immunoblotting (the number on the right side of each blot denotes the blot 877 

number). (e) Cell supernatants from experiments described in main Figure 3e-f were 878 

collected 3 hours post infection. TNFα secretion was measured using a commercial 879 

ELISA kit. (f) Growth of V. proteolyticus strains in MLB or DMEM media 880 

supplemented with 0.05% arabinose at 30°C, measured as absorbance at 600 nm 881 

(OD600). The data shown in (a-b, f) and (c-d) are a representative experiment out of 882 

n≥3 and two independent experiments, respectively. Statistical comparisons in (e) 883 

were performed using RM two-way ANOVA, followed by Turkey’s multiple 884 

comparison test. The results are shown as the mean ± SD of 3 independent 885 

experiments; significant differences were considered as P<0.05. 886 

   887 
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  888 

Supplemental Figure 2 (Related to Figure 5): Activation of T6SS3 by Ats3 is 889 

sufficient to induce the NLRP3 inflammasome 890 

(a) PI uptake was assessed using real-time microscopy (IncucyteZOOM). The data 891 

are another depiction of the results shown in the experiment described in main 892 

Figure 5d-g. (b) NLRP3, Caspase-1, GSDMD, and IL-1β were detected in BMDM 893 
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lysates by immunoblotting. Arrows denote the expected band size. The samples 894 

were taken from the experiment described in main Figure 5d-g. (c) Growth of V. 895 

proteolyticus strains, used in main Figure 5, in MLB or DMEM media supplemented 896 

with 0.05% arabinose at 30°C, measured as absorbance at 600 nm (OD600). (d) 897 

Swimming motility of V. proteolyticus strains, measured as migration of a soft-agar 898 

plate supplemented with 0.1% arabinose after overnight incubation at 30°C. The 899 

data are shown as the mean ± SD of 3 biological repeats. Statistical comparison was 900 

preformed using RM one-way ANOVA, follow by Turkey’s multiple comparison test.   901 
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Supplemental Figure 3 (Related to Figure 6): V. proteolyticus T6SS3 activity 903 

requires phagocytosis 904 

(a-b) Approximately 3.5*104 wild-type and Nlrp3-/- BMDMs were seeded into 96-well 905 

plates in 6 replicates and were primed using LPS (100 ng/mL) for 3 hours prior to 906 

infection with V. proteolyticus strains at MOI 5. (a-b) PI uptake was assessed using 907 

real-time microscopy (IncucyteZOOM) and then graphed as the AUC of the 908 

percentage of PI-positive cells normalized to the number of cells in the wells. 909 

Parental, V. proteolyticus ∆vprh+pAts3; V. para, V. parahaemolyticus RIMD 2210633 910 

∆tdhAS derivative. (c) Growth of V. proteolyticus strains used in main Figure 6a-e in 911 

DMEM media at 37°C, measured as absorbance at 600 nm (OD600). Arabinose 912 

(0.05% w/v) was added to induce expression from the plasmid. Where indicated, 5 913 

µM cytochalasin D were added to cells 45 minutes prior infection to inhibit 914 

phagocytosis. The data in (a-c) are shown as the mean ± SD, and are a 915 

representative experiment out of n=3 independent experiments. 916 

 917 
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 918 

Supplemental Figure 4 (Related to Figure 7): Two T6SS3 effectors are 919 

necessary and sufficient to induce pyroptotic cell death  920 

(a-d) Approximately 3.5*104 wild-type and Nlrp3-/- BMDMs were seeded into 96-well 921 

plates in 6 replicates and were primed using LPS (100 ng/mL) for 3 hours prior to 922 

infection with V. proteolyticus strains at MOI 5. (a) PI uptake was assessed using 923 
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real-time microscopy (IncucyteZOOM) and then graphed as the AUC of the 924 

percentage of PI-positive cells normalized to the number of cells in the wells. (b) Cell 925 

supernatants from experiments described in (a) were collected 3 hours post 926 

infection. IL-1β and TNFα secretion were measured using commercial ELISA kits. (c-927 

d) NLRP3, Caspase-1, GSDMD, and IL-1β were detected in BMDM lysates (c) and 928 

supernatants (d) by immunoblotting. Arrows denote the expected band size. (e) The 929 

expression (cells) and secretion (media) of VgrG1 and Hcp3 from V. proteolyticus 930 

strains were detected by immunoblotting using specific antibodies. Loading control 931 

(LC) is shown for total protein lysate. (f-h) Growth of V. proteolyticus strains, used in 932 

(a-d) and in main Figure 7c-g, in MLB or DMEM media (in h, 0.05% arabinose was 933 

added at t=0 h to induce expression from the plasmid) at 30°C, measured as 934 

absorbance at 600 nm (OD600). (g) Motility of V. proteolyticus used in (a-d). 935 

Swimming motility of V. proteolyticus strains, measured as migration on a soft-agar 936 

plate after overnight incubation at 30⁰C. Statistical comparisons in (a-b) and (g) were 937 

performed using RM one-way ANOVA, followed by Dunnett's multiple comparison 938 

test. The results are shown as the mean ± SD of 3 independent experiments; a 939 

significant difference was considered as P<0.05. The results in (c-h) are of a 940 

representative experiment out of n≥2 independent experiments with similar results. 941 

 942 

  943 
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