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ABSTRACT 

The applicability domain of machine learning models trained on structural fingerprints for the pre-

diction of biological endpoints is often limited by the lack of diversity of chemical space of the train-

ing data. In this work, we developed similarity-based merger models which combined the outputs of 

individual models trained on cell morphology (based on Cell Painting) and chemical structure (based 

on chemical fingerprints) and the structural and morphological similarities of the compounds in the 

test dataset to compounds in the training dataset. We applied these similarity-based merger models 

using logistic regression models on the predictions and similarities as features and predicted assay 

hit calls of 177 assays from ChEMBL, PubChem and the Broad Institute (where the required Cell 

Painting annotations were available). We found that the similarity-based merger models outper-

formed other models with an additional 20% assays (79 out of 177 assays) with an AUC>0.70 com-

pared with 65 out of 177 assays using structural models and 50 out of 177 assays using Cell Painting 

models. Our results demonstrated that similarity-based merger models combining structure and cell 

morphology models can more accurately predict a wide range of biological assay outcomes and fur-

ther expanded the applicability domain by better extrapolating to new structural and morphology 

spaces. 
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INTRODUCTION 
 

The prediction of bioactivity, mechanism of action (MOA)1, safety and toxicity2 of compounds us-

ing only chemical structure is challenging given that such models are limited by the diversity in the 

chemical space of the training data.3 The chemical space of this data on which the model is trained is 

used to define the applicability domain of the model.4 Among the various ways to calculate a 

model’s applicability domain, Tanimoto similarity for chemical structure is commonly used as a 

benchmark similarity measure for compounds. Tanimoto distance-based Boolean applicability has 

been previously used to improve the performance of classification models.5 Expanding the applica-

bility domain of structural models will improve the reliability of a model to predict endpoints for 

new compounds. One way to achieve this would be to incorporate hypothesis-free high-throughput 

data, such as cell morphology6, bioactivity data7 or predicted bioactivities8,9 in addition to structural 

models.10 This then has the potential to improve predictions for compounds structurally distant from 

the training data. This is because compounds having similar biological activity may not always have 

a similar structure; however, they may show similarities in the biological response space.11 Recently, 

using Chemical Checker signatures derived from processed, harmonized and integrated bioactivity 

data, researchers demonstrated that similarity extends well beyond chemical properties into biologi-

cal activity throughout the drug discovery pipeline (from in vitro experiments to clinical trials).12 

Hence the use of biological data could significantly help predictive models that have often been 

trained solely on chemical structure.10 

In recent years, relatively standardized hypothesis-free cell morphology data can now be obtained 

from the Cell Painting assay.13 Cell Painting is a cell-based assay that, after a given chemical or ge-

netic perturbation, uses six fluorescent dyes to capture a snapshot of the cellular morphological 

changes induced by the aforementioned perturbation. The six fluorescent dyes allow for the visuali-

zation of eight cellular organelles, which are imaged in five-channel microscopic images. The mi-

croscopic images are typically further processed using image analysis software, such as Cell Pro-

filer14, which results in a set of circa 1700 morphological numerical features per cell. These numeri-

cal features representing morphological properties such as shape, size, area, intensity, granularity, 
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and correlation, among many others, are considered versatile biological descriptors of a system.6 

Previous studies have shown Cell Painting data to be predictive of a wide range of bioactivity and 

drug safety-related endpoints such as the mechanism of action15, cytotoxicity16, microtubule-binding 

activity17, and mitochondrial toxicity18. Recently, it has also been used to identify phenotypic signa-

tures of PROteolysis TArgeting Chimeras (PROTACs)19 as well as to determine the impact of lung 

cancer variants20. Thus, Cell Painting data can be expected to contain a signal about the biological 

activity of the compound perturbation,6 and in this work, we explored how best to combine Cell 

Painting and chemical structural models for the prediction of a wide range of biological assay out-

comes. 

From the modeling perspective, several ensemble modeling techniques have been proposed to 

combine predictions from individual models.21 One way to achieve this is an ensembling method 

shown in Figure 1a, referred to as a soft-voting ensemble in this work. This method computes the 

mean of predicted probabilities from individual models and thus provides equal weight to individual 

model predictions. However, soft-voting ensemble models when combining two individual models 

give equal importance to each model.21 This implies that if a model predicts a higher probability for 

a compound to be active and another model predicts the same compound to be inactive but with a 

lower probability, the first model prediction is considered final without considering the individual 

model’s reliability. As shown in Figure 1b, another way to combine predictions from different mod-

els is via model stacking where the predictions of the individual models are used as features to build 

a second-level model (referred to as a hierarchical model in this work). Hierarchical models have 

previously been used by integrating classification and regression tasks in predicting acute oral sys-

tematic toxicity in rats.22 The applicability range of predictions can be estimated by (i) the Random 

Forest predicted class estimates23 (referred to as predicted probabilities in this study) and (ii) using 

the similarity of the test compound to training compounds (which in turn approximates the reliability 

of the prediction).24  The hypothesis of the current work is hence that using the similarity of the test 

compound to training compounds in individual feature spaces and predicted probabilities of individ-

ual models built on those feature spaces can improve the model performance. 
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The various ways of fusing structural models with models trained on cell morphology were re-

cently exploited by Moshkov et al.27 who used chemical structures and cell morphology data (from 

the Cell Painting assay) to predict the compound activity of 270 anonymised bioactivity assays from 

academic screenings in the Broad Institute. They used a late data fusion (by using a majority rule on 

the prediction scores similar to soft-voting ensembles) to merge predictions for individual models. 

The late data fusion models were able to predict 31 out of 270 assays with AUC>0.9, compared with 

16 out of 270 assays for models using only structural features. This showed that fusing models built 

on two different feature spaces that provide complementary information were able to improve the 

prediction of bioactivity endpoints. Previous work has also shown that combinations of descriptors 

can significantly improve prediction for MOA classification25,26,15 (using gene expression and cell 

morphology data), cytotoxicity16, mitochondria toxicity18 and anonymised assay activity27 (using 

chemical, gene expression, cell morphology and predicted bioactivity data), prediction of sigma 1 

(σ1) receptor antagonist28 (using cell morphology data and thermal proteome profiling), and even 

organism-level toxicity29 (using chemical, protein target and cytotoxicity qHTS data). Thus, the 

combination of models built from complementary feature spaces can expand a model’s applicability 

domain by allowing predictions in new structural space.30 

In this work, we explored merging predictions of assay hit calls from chemical structural models 

with predictions from another model using Cell Painting data for 88 assays from public datasets 

from PubChem and ChEMBL (henceforth referred to as public dataset, assay descriptions released 

as Supplementary Data 1) and 89 anonymised assays from the Broad Institute27 (henceforth referred 

to as Broad Institute dataset, assay descriptions released as Supplementary Data 2). Cell Painting 

data, in general, may be assumed to be only highly predictive of the cell-based assay. However, in 

this study, we did not specifically select assays where this relation was obvious, as that would make 

our comparisons significantly favour the Cell Painting assay. In this work, we simply compare the 

two feature spaces, and for this, we use a wide range of assays (as mentioned above) while also later 

interpreting which feature spaces work better for which particular assays. That being noted, the Cell 
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Painting assay is being constantly investigated for signals in not just in vitro assays but also in vivo 

effects; recent studies have established a signal for lung cancer20 and drug polypharmacology31.  

 

From the modelling perspective, as shown in Figure 1c, we merged predictions using a logistic re-

gression model that not only takes the predicted probabilities from individual models but also the 

test compound’s similarity to the active compounds in the training data in different feature spaces. 

That is, the models are also provided with the knowledge of how morphologically/structurally simi-

lar the test compound is to other active compounds in the training set. Here we emphasise using 

similarity-based merger models to improve the applicability domain of individual models (predicting 

compounds that are distant to training data in respective feature spaces) and the ability to predict a 

wider range of assays with the combined knowledge from the chemical structure and biological de-

scriptors from Cell Painting assay.  
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RESULTS AND DISCUSSIONS 

The 177 assays used in this study are a combination of the public dataset and anonymised assays 

from a Broad Institute dataset where required Cell Painting annotations were available (see Methods 

section for details). The public dataset comprising 88 assays (with at least 100 compounds) was col-

lected from Hofmarcher et al38 and Vollmers et al40 (see Supplementary Data 1 for assay descrip-

tions) for which Cell Painting annotations were available from the Cell Painting assay46. The Broad 

Institute dataset comprises 89 assays (as shown in Supplementary Data 2 for assay descriptions). We 

trained individual Cell Painting and structural models for all 177 assays. We used two baseline mod-

els for comparison, namely a soft-voting ensemble and a hierarchical model. Finally, we compared 

the results from the individual models and baseline ensemble models to the similarity-based merger 

models.  

 

Similarity-based merger models outperform other baseline models 

As shown in Figure 2, we found that similarity-based merger models performed with significantly 

improved AUC-ROC (mean AUC 0.66 using similarity-based merger models,) compared with Cell 

Painting models (mean AUC 0.62 using, p-value from paired t-test of 5.6×10-4) and structural mod-

els (mean AUC 0.64, p-value from paired t-test of 7.3×10-3) for 171 out of the 177 assays (all models 

for the remaining 6 assays have AUC<0.50, hence any improvement is insignificant as the models’ 

performance remains worse than random). Figure S1 shows that similarity-based merger models sig-

nificantly improved Balanced Accuracy and F1 scores compared with individual models. Overall, 

similarity-based merger models outperform other models in predicting bioactivity endpoints.  

As shown in Figure 3, 79 out of 177 assays achieved AUC>0.70 with the similarity-based merger 

model, followed by hierarchical models for 55 out of 177 assays. Structural models achieved 

AUC>0.70 in 65 out of 177 assays while for the Cell Painting models, this was the case in 50 out of 

177 assays. Further 25 assays out of 177 were predicted with AUC>0.70 with all methods while only 

12 out of 177 assays did not achieve AUC>0.70 with similarity-based merger models but did with 

the other models. When considering balanced accuracy, 51 out of 177 assays achieved a balanced 
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accuracy > 0.70 with similarity-based merger models compared with 44 out of 177 assays for soft-

voting ensemble models, as shown in Figure S2.  

Comparing performance for the Cell Painting and structural models by AUC individually (Figure 

S3) we observed that structural models and Cell Painting models were complementary in their pre-

dictive performance; while 96 out of 177 assays achieve a higher AUC with structural information 

alone, 81 out of 177 assays achieve a higher AUC using morphology alone as shown in Figure S3a. 

Hierarchical models outperform soft-voting ensembles for 106 out of 177 assays as shown in Figure 

S3b. Finally, the similarity-based merger model achieved a higher AUC score for 124 out of 177 as-

says compared with 52 out of 177 with hierarchical models and 132 out of 177 assays compared 

with 45 out of 177 with soft-voting ensembles as shown in Figures S3c and S3d. This shows that the 

similarity-based merger model was able to leverage information from both Cell Painting and struc-

tural models to achieve better predictions in assays where no individual models were found to be 

predictive thus indicating a synergistic effect. 

We next looked at the performance at the individual assay level (as shown in Supplementary Data 

3) as indicated by the AUC scores. We looked at 162 out of 177 assays where either the similarity-

based merger model or the soft-voting ensemble performed better than a random classifier (��� �

0.50) We observed that for 127 out of 177 assays (individual changes in a performance recorded in 

Figure S4), the similarity-based merger models improved performance compared with the soft-

voting ensemble (with the largest improvement recorded at 65.1%) and a decrease in performance 

was recorded in 35 out of 177 assays (largest decrease recorded at -58.0% in performance). Further 

comparisons of AUC performance in Figure S5 show that similarity-based merger models improved 

AUC compared with both structural models and Cell Painting models. This improvement in AUC 

was independent of the total number of compounds in the assays as shown in Figure S6. Thus, we 

conclude that the similarity-based merger model outperformed individual models by combining the 

rich information contained in cell morphology and structure-based models more efficiently than 

baseline models. 
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Similarity-based merger models expand the applicability domain compared with individual 

models  

We next determined how individual and similarity-based merger model predictions differ with 

compounds that were structurally or morphologically similar/dissimilar to active compounds in the 

training set. We looked at predictions for each compound from the Cell Painting and structural mod-

els over the 177 assays and grouped them based on their morphological and structural similarity to 

active compounds in the raining set respectively. We observed, as shown in Figure S7, that similar-

ity-based merger models correctly classified a higher proportion of test compounds which were less 

similar morphologically to active compounds in the training data. Further, as the structural similarity 

of test compounds with respect to active compounds in the training set increased, the structural mod-

els correctly classified a higher proportion of compounds while similarity-based merger models cor-

rectly classified test compounds with both low and high structural similarity. For example, out of 

360 compounds with a low structural similarity between 0.20 to 0.30, models using chemical struc-

ture correctly classified 56.2% of compounds while similarity-based merger models correctly classi-

fied a much greater 63.6% of compounds. At the same time, out of 1,525 compounds with higher 

structural similarity between 0.90 to 1.00, models using chemical structure correctly classified 

75.5% of compounds compared with the similarity-based merger models that correctly classified 

75.2% of compounds. This shows that the similarity-based merger model correctly predicted a larger 

proportion of compounds over a wide range of structural and morphological similarities to the train-

ing set, hence demonstrating an increase in the applicability domain.  

For clarity of the reader, this is further illustrated in Figure S8 as in the case of a particular assay, 

namely 240_714 from the Broad Institute, a fluorescence-based biochemical assay. Here, the struc-

tural model correctly predicted toxic compound activity when they were structurally similar to the 

training set. The Cell Painting model performed better over a wide range of structural similarities but 

was often limited when morphological similarity was low. The similarity-based merger models 

learned and adapted across individual models from local regions in this structural versus morpho-

logical similarity space in a manner best suited to compounds in that region to correctly classify a 
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wider range of active compounds with lowered structural and morphological similarities to the train-

ing set. 

 

Comparison of Performance at Gene Ontology Enrichment level  

We next analysed the assays (and associated biological processes) where the Cell Painting model, 

the structural model, and the similarity-based merger model were most predictive and therefore if 

there was complementary information present in both feature spaces. Results presented here are from 

the PubChem dataset comprising 88 assays as the Broad Institute dataset is not annotated with com-

plete biological metadata, which renders some of the more detailed analysis downstream not viable. 

Figure 4a shows a protein-protein network (annotated by genes) from the STRING database la-

belled by the model performance where the respective individual model was better predictive (or 

otherwise equally predictive, which includes cases where different models are better predictive over 

multiple assays related to the same protein target). We found meaningful models (AUC > 0.50) were 

achieved for 27 out of 34 gene annotations when using the Cell Painting and for 25 out of 34 gene 

annotations using the structural model. Of these, the Cell Painting models were better predictive for 

25 out of 32 gene annotations (mean AUC= 0.65) compared with the structural models which were 

better predictive for 23 out of 32 gene annotations (mean AUC=0.56). We next compared the hierar-

chical model to the similarity-based merger model for 35 gene annotations where either model 

achieved AUC>0.50. The hierarchical model performed with higher AUC (mean AUC= 0.57) for 

only 4 out of 34 gene annotations compared with the similarity-based merger model which was bet-

ter predictive for 23 out of 34 gene annotations (mean AUC=0.60). Thus, we observed that similar-

ity-based merger models performed better over a range of assays (over 23 out of 34 gene annota-

tions) capturing a wide range of biological pathways.  

Cell Painting models performed better than structural models for assays associated with 6 gene 

annotations: ATAD5, FEN1, GMNN, POLI and STK33 (with an average AUC = 0.64 for Cell Paint-

ing models compared with AUC = 0.48 for structural models). These gene annotations were associ-

ated with molecular functions of ‘GO:0033260 Nuclear DNA replication’ and ‘GO:0006260 DNA 
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replication’ which are processes resulting in morphological changes, which were captured by Cell 

Painting. Among gene annotations associated with the assays better predicted by structural models 

are TSHR, TAAR1, HCRTR1 and CHRM1 (with an average AUC = 0.70 for structural models 

compared with an AUC = 0.63 for Cell Painting models). These gene annotations are associated with 

the KEGG pathway of ‘neuroactive ligand-receptor interaction’ and the Reactome pathway of 

‘amine ligand-binding receptors’ which were captured better by chemical structure. Hence, we see 

that Cell Painting models perform better on assays capturing morphological changes in cells or cellu-

lar compartments such as the nucleus, while structural models work better for assays associated with 

a ligand-receptor activity. In addition, the KEGG term ‘amine ligand-binding receptors’ is defined 

on the chemical ligand level explicitly, making the classification of compounds falling into this cate-

gory from the structural side easier. The similarity-based merger models hence combined the power 

of both spaces and were predictive for assays affecting morphological changes (average AUC= 0.58 

for the similarity-based merger model) as well as related to the ligand-receptor binding activity (av-

erage AUC= 0.78 for similarity-based merger model). 

This is further illustrated in Figure 4b which shows enriched molecular and functional pathway 

terms from ClueGO44 for the 34 gene annotations available. Both Cell Painting models and struc-

ture-based models were limited to predicting with AUC>0.70 only 33% of gene annotations associ-

ated with only two pathways, namely, transcription coregulator binding and positive regulation of 

blood vessel endothelial cell migration pathways. On the other hand, similarity-based merger models 

predicted 25-67% gene annotations associated with multiple pathways with an AUC>0.70. These 

pathways included transcription coregulator binding, positive regulation of blood vessel endothelial 

cell migration pathways, positive regulation of smooth muscle cell proliferation and G protein-

coupled receptor signalling pathways among others. Hence this underlines the utility of similarity-

merger models across a range of biological endpoints.  

 

Comparison of Performance by Readout and Assay type 
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Results presented here are from the Broad Institute dataset comprising 89 assays (as shown in 

Supplementary Data 3) which were released with only information about assay type and readout type 

(for details see Supplementary Data 2 and Figure S9); we analysed the Cell Painting, structural and 

similarity-based merger model as a function of those.  

As shown in Figure 5, Cell Painting models perform significantly better with a relative 8.8% in-

crease in AUC with assays measuring luminescence (mean AUC = 0.72) compared with assays 

measuring fluorescence (mean AUC = 0.66) while structural and similarity-based merger model 

show no significant differences in performances. The better predictions in the case of luminescence-

based assays, which are readouts specifically designed to answer a biological question, and can be 

related to the use of a reporter cell line and a reagent that based on the ATP content of the cell, is 

converted to a luciferase substrate which leads to a cleaner datapoint. 32 On the other hand, Cell 

Painting is an unbiased high-content imaging assay that takes into consideration the inherent hetero-

geneity in cell cultures where we visualise cells (often even measuring at a single cell level), con-

trary to a luminescence assay where one measures the average signal of a cell population. Further 

Cell Painting models performed significantly better with a relative 18.1% increase in AUC for cell-

based assays (mean AUC = 0.72) compared with biochemical assays (mean AUC = 0.61). This 

might be due to also the Cell Painting assay being a cellular assay, hence also implicitly including 

factors such as membrane permeability in measurements. Further, most similarity-based merger 

models outperform baseline models over assay and readout types as shown in Figures S10 and S11. 

Overall, Cell Painting models can hence be considered to provide complementary information to 

chemical structure regarding cell-based assays, which was particularly beneficial for the significant 

improvement in the performance of similarity-based merger models. 

 

Limitations of this work 

One limitation of the study design is having to balance unequal data classes by under-sampling. 

Here, the data was therefore initially under-sampled to a 1:3 ratio of majority to minority class to 

build a similarity-based merger model, which leads to some loss of experimental data. Further, after 
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splitting the dataset into training and test datasets, the training data needs to contain enough samples 

spread across the structural versus morphological similarity map for the models to work well. This 

was ensured by a random split; other splitting strategies such as scaffold-based splitting may not al-

low the use of the second-level models as the chemical/biological space of the test data will vary 

significantly from the training data. Finally, the current study design is also affected by methodo-

logical limitations.33,34 In the current study design, the explicit definition of similarity of a compound 

in chemical and morphological space, which although used here for better interpretability, could 

have been possible via different ways of learning the data directly, for example using Bayesian in-

ference.35 

From the side of feature spaces, Cell Painting data is derived from U2OS cell-based assays which 

are usually different from the cell lines used in measuring the activity endpoint. However previous 

work has shown that Cell Painting data is similar across different cell lines and the versatile informa-

tion present was universal, that is, the genetic background of the reporter cell line does not affect the 

AUC values for MOA prediction.36 Thus Cell Painting data can be used to model different assays 

with different cell lines. Future studies will also benefit from larger datasets, such as the JUMP-CP 

consortium.37  
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CONCLUSIONS 

Predictive models that use chemical structures as features are often limited in their applicability 

domain to compounds which are structurally similar to the training data. To the best of our knowl-

edge, this is the first paper which uses both similarity and predictions from chemical structural and 

cell morphology feature spaces to predict assay activity. Our results should have clear implications 

for similarity-based merger models (that are shown to be comparatively better than baseline soft-

voting ensembles and hierarchical models) and can be used to predict bioactivity over a wide range 

of small compounds. In this work, we developed similarity-based merger models to combine two 

models built on complementary feature spaces of Cell Painting and chemical structure and predicted 

assay hit calls from 177 assays (88 assays from the public dataset and 89 assays from a dataset re-

leased by the Broad Institute) for which Cell Painting data were available.  

We found that Cell Painting and chemical structure contain complementary information and can 

predict assays associated with different biological pathways, assay types, and readout types. Cell 

Painting models achieved higher AUC better for cell-based assays and assays related to biological 

pathways such as DNA replication. Structural models achieved a higher AUC for biochemical and 

ligand-receptor interaction assays. The similarity-based merger models, combining information from 

the two feature spaces, achieved a higher AUC for cell-based (mean AUC=0.77) and biochemical 

assays (mean AUC=0.70) as well as assays related to both biological pathways (mean AUC=0.58) 

and ligand-receptor based pathways (mean AUC=0.74). Further, the similarity-based merger models 

outperformed all other models with an additional 20% assays with AUC>0.70 (79 out of 177 assays 

compared with 65 out of 177 assays using structural models). We also showed that the similarity-

based merger models correctly predicted a larger proportion of compounds which are comparatively 

less structurally and morphologically similar to the training data compared with the individual mod-

els, thus being able to improve the applicability domain of the models.  

In conclusion, the similarity-based merger models greatly improved the prediction of assay out-

comes by combining high predictivity of fingerprints in areas of structural space close to the training 

set with better generalizability of cell morphology descriptors at greater distances to the training set. 
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On the practical side, Cell Painting assay is a single screen-based hypothesis-free assay that is inex-

pensive compared with dedicated assays. Being able to use such an assay for bioactivity prediction 

will greatly improve the cost-effectiveness of such assays. Similarity-based merger models used in 

this study can hence improve the performance of predictive models, particularly in areas of novel 

structural space thus contributing to overcoming the limitation of chemical space in drug discovery 

projects. 
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METHODS 

Bioactivity Datasets 

We retrieved drug bioactivity data as binary assay hit calls for 202 assays and 10,570 compounds 

from Hofmarcher et al38 who searched ChEMBL39 for assays for which cell morphology annotations 

from the Cell Painting assay were available as shown in Figure S12. We further added binary assay 

hit calls from another 30 assays not included in the source above from Vollmers et al40 who searched 

PubChem41  assays for overlap with Cell Painting annotations. Additionally, we used 270 ano-

nymised assays (with binary endpoints) from the Broad Institute27 as shown in Figure S12b. This 

dataset, although not annotated in with biological metadata, comprises assay screenings performed 

over 10 years at the Broad Institute and is representative of their academic screenings.  

Gene Ontology Enrichment of Bioactivity Assays 

From the public dataset of 88 assays used in this study where detailed assay data was available, 37 

out of 88 assays where experiments used human-derived cell lines were annotated to 34 protein tar-

gets. Next, we determined using the STRING database42, we annotated all 34 protein targets with the 

associated gene set and further obtained a set of Gene Ontology terms associated with the protein 

target. We used Cytoscape43 v3.9.1 plugin ClueGO44 to condense the protein target set by grouping 

them into functional groups to obtain the associated significance (using the baseline ClueGO p-value 

≤0.05) molecular and functional pathway terms. In this manner, we associated individual assays with 

molecular and functional pathways for further evaluation of model performances.  

Cell Painting Data 

The Cell Painting assay used in this study, from the Broad Institute, contains cellular morphologi-

cal profiles of more than 30,000 small molecule perturbations.45,46 The morphological profiles in this 

dataset are composed of a wide range of feature measurements (share, area, size, correlation, texture 

etc. as shown in a demonstrative table in Figure S12a). While preparing this dataset, the Broad Insti-

tute normalized morphological features to compensate for variations across plates and further ex-

cluded features having a zero median absolute deviation (MAD) for all reference cells in any plate.13 

Following the procedure from Lapins et al, we subtracted the average feature value of the neutral 
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DMSO control from the particular compound perturbation average feature value on a plate-by-plate 

basis.15 For each compound and drug combination, we calculated a median feature value. Where the 

same compound was replicated for different doses, we used the median feature value across all doses 

that were within one standard deviation of the mean dose. Finally, after SMILES standardisation and 

removing duplicate compounds using standard InChI calculated using RDKit48, we obtained 1783 

median Cell Painting features for 30,404 unique compounds (available on Zenodo at 

https://doi.org/10.5281/zenodo.7589312). 

Overlap of Datasets 

For both the public and Broad dataset, as shown in Figure S12b (step 1) we used MolVS47 stan-

dardizer based on RDKit48 to standardize and canonicalize SMILES for each compound which en-

compassed sanitization, normalisation, greatest fragment chooser, charge neutralisation, and 

tautomer enumeration described in the MolVS documentation47. We further removed duplicate com-

pounds using standardised InChI calculated using RDKit48. 

Next, for the public dataset, we obtained the overlap with the Cell Painting dataset using standard-

ised InChI Figure S12b (step 2). From this, we removed assays which contained less than 100 com-

pounds for the minority class with Cell Painting datasets (which were difficult to model due to lim-

ited data) as shown in Figure S12b (step 3). For each assay, as shown in Figure S12b (step 4)the ma-

jority class (most often the negative class) was randomly resampled to maintain a minimum 3:1 ratio 

with the minority class to ensure that models are fairly balanced. Finally, we obtained the public as-

say data for a sparse matrix of 88 assays and 9,876 unique compounds (see Supplementary Data 1 

for assay descriptions). Similarly, for the Broad dataset, out of 270 assays provided, as shown in 

Figure S12b, we removed assays that contained less than 100 compounds and randomly resampled 

to maintain a minimum 3:1 ratio with the minority class, resulting in a Broad Institute dataset as a 

sparse matrix of 15,272 unique compounds over 89 assays (see Supplementary Data 2 for assay de-

scriptions). Figure S13 shows the distribution of the total number of compounds for 177 assays used 

in this study. Both datasets are publicly available on Zenodo at 

https://doi.org/10.5281/zenodo.7589312). 
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Structural Data 

We generated Morgan Fingerprints of radius 2 and 2048 bits using RDKit48 used as binary chemical 

fingerprints in this study (as shown in a demonstrative table in Figure S12a). 

 

Feature Selection  

Firstly, we performed feature selection to obtain morphological features for each compound. From 

1,783 Cell Painting features, we removed 55 blocklist features that were known to be noise from 

Way et al.49 For the compounds in the public assays, we further removed 1,012 features which had a 

very low variance below a 0.005 threshold using the scikit-learn50 variance threshold module. Next, 

similar to the feature section implemented in pycytominer51, we obtained the list of features such that 

no two features correlate greater than a 0.9 Pearson correlation threshold. For this, we calculated all 

pairwise correlations between features and removed the 488 features with the highest pairwise corre-

lations. Finally, we removed another 44 features if their minimum or maximum absolute value was 

greater than 15 (using the default threshold in pycytominer51). Hence, we obtained 184 Cell Painting 

features for 9,876 unique compounds for the dataset comprising public assays. Analogously, for the 

Broad Institute dataset, we obtained 191 Cell Painting features for 15,272 unique compounds (both 

datasets are available on Zenodo at https://doi.org/10.5281/zenodo.7589312). 

Next, we performed feature selection for the structural features of Morgan fingerprints. For the 

public assays, we removed 1,891 bits that did not pass a near-zero variance (0.05) threshold since 

they were considered to have less predictive power. Finally, we obtained Morgan fingerprints of 157 

bits for 9,876 unique compounds. Analogously, for the Broad Institute dataset, we obtained Morgan 

fingerprints of 277 bits for 15,272 unique compounds (both datasets are available on Zenodo at  

https://doi.org/10.5281/zenodo.7589312 ). 

Chemical and Morphological Similarity 

We next defined the structural similarity score of a compound as the mean Tanimoto similarity of 

the 5 most similar active compounds. The morphological similarity score of a compound was calcu-

lated as the median Pearson correlation of the 5 most positively correlated active compounds.  
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Model Training 

For each assay, the data was split into training data (80%) and held out test data (20%) using a strati-

fied splitting based on the assay hit call. First, on the training data, we performed 5-fold nested 

cross-validation keeping aside one of these folds as a test-fold, on the rest of the 4 folds. We trained 

separate models, as shown in Figure 1c step (1) and step (2), using Morgan fingerprints (157 bits for 

the public dataset; 277 bits for the Broad Institute dataset) and Cell Painting data (184 features for 

the public dataset, 191 features for the Broad Institute dataset) respectively for each assay. In this 

inner fold of the nested-cross validation, we trained separately, Random Forest models on the rest of 

the 4 folds with Cell Painting and Morgan fingerprints. These models were hyperparameter opti-

mised (with parameter spaces as shown in Supplementary Data 4) using cross-validation with shuf-

fled 5-fold stratified splitting. For hyperparameter optimisation, we used a randomized search on hy-

perparameters as implemented in scikit-learn 1.0.150. This optimisation method iteratively increases 

resources to select the best candidates, using the most resources on the candidates that are better at 

prediction.52 The hyperparameter optimised model was used to predict the test fold. To account for 

threshold balancing of Random Forest predicted probabilities (which is common in an imbalanced 

prediction problem), we calculated on the 4 folds, the Youden's J statistic53 (J = True Positive Rate – 

False Positive Rate) to detect an optimal threshold. The threshold for the highest J statistic value was 

used such that the model would no longer be biased towards one class and give equal weights to sen-

sitivity and specificity without favouring one of them. This optimal threshold was then used for the 

test-fold predictions, and this was repeated 5 times in total for both models using Morgan finger-

prints and Cell Painting features until predictions were obtained for the entire training data in the 

nested cross-validation manner. As the optimal thresholds for each fold were different, the predicted 

probability values were scaled using a min-max scaling such that this optimal threshold was adjusted 

back to 0.50 on the new scale. Further for each test-fold in the cross-validation, as shown in Figure 

1c step (3) and step (4), we also calculated the chemical and morphological similarity (as described 

above in the “Chemical and Morphological Similarity” section) for each compound in this test-fold 
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with respect to the active compounds in the remaining of the 4 folds. This was also repeated 5 times 

in total until chemical and morphological similarity scores were obtained for the entire training data. 

Finally, on the entire training data, two Random Forest models were trained with Cell Painting and 

Morgan fingerprints with hyperparameter-optimised (in the same way as above using 5-fold cross-

validation). This was used to predict the held-out data, as shown in Figure 1c step (5) (with threshold 

balancing performed from cross-validated predicted probabilities of the training data). We calculated 

the chemical and morphological similarity of each compound in the held-out data compared with all 

active compounds in the training data and these were recorded as the chemical and morphological 

similarity scores respectively of the particular compound in the held-out dataset as shown in Figure 

1c step (6). The predicted probability values were again adjusted using a min-max scaling such that 

this optimal threshold was 0.50 on the new scale. 

Similarity-based merger model 

The similarity-based merger models presented here combined individual scaled predicted prob-

abilities from individual models trained on Cell Painting and Structural data and the morphological 

and structural similarity of the compounds with respect to active compounds in the training data. In 

particular, for each assay, we evaluated the similarity-based merger model on the held-out data using 

information from the training data only to avoid any data or model leakage. We trained a Logistic 

Regression model (with baseline parameters of L2 penalty, an inverse of regularization strength of 1 

and balanced class weights) on the training data which uses the Cell Painting and Morgan finger-

prints models’ individual scaled predicted probabilities and the structural and morphological similar-

ity scores (with respect to other folds in the training data itself) as features and the endpoint as the 

assay hit call of the compound, as shown in Figure 1c step (7). Finally, this logistic equation was 

used to predict the assay hit call of the held-out compounds (which we henceforth call the similarity-

based merger model prediction) and an associated predicted probability (which we henceforth call 

similarity-based merger model predicted probability), as shown in Figure 1c step (8). There is no 

leak of any held-out data assay hit call information but only its structural similarity and morphologi-
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cal similarity to the active compounds in the training data, which can be easily calculated for any 

compound with a known structure. 

Baseline Models 

For baseline models, we used two models, namely a soft-voting ensemble21 and a hierarchical 

model22. The soft-voting ensemble, as shown in Figure 1a, combines predictions from both the Cell 

Painting and Morgan fingerprints models using a majority rule on the predicted probabilities. In par-

ticular, for each compound, we averaged the re-scaled predicted probabilities of two individual mod-

els, thus in effect creating an ensemble with soft-voting. We applied a threshold of 0.50 (since pre-

dicted probabilities from individual models were also scaled to the optimal threshold of 0.50 as de-

scribed above) to obtain the corresponding soft-voting ensemble prediction. 

 For the hierarchical model, as shown in Figure 1b, we fit a baseline Random Forest classifier (hy-

perparameter optimised for estimators [100, 300, 400, 500] and class weight balancing using strati-

fied splits and 5 fold cross validations as implemented in scikit-learn50) on the scaled predicted prob-

abilities for the entire training data from both individual the Cell Painting and Morgan fingerprints 

models (obtained from the nested-cross validation). We used this hierarchical model to predict the 

activity of the held-out test set compounds which gave us the predicted assay hit call (and a corre-

sponding model predicted probability) which we henceforth call the hierarchical model prediction 

(and a corresponding hierarchical model predicted probability). 

Model evaluation 

We evaluated all models (both individual models, soft-voting ensemble, hierarchical and similar-

ity-based merger model) based on precision, sensitivity, F1 scores of the minority class, specificity, 

balanced accuracy, Matthew’s Correlation Coefficient (MCC) and Area Under Curve- Receiver Op-

erating Characteristic (AUC) scores. 

Statistics and Reproducibility  

A detailed description of each analysis' steps and statistics is contained in the methods section of 

the paper. Statistical methods were implemented using the pandas Python package.54 Machine learn-

ing models, hyperparameter optimisation and evaluation metrics were implemented using scikit-
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learn50, a Python-based package. We have released the datasets used in this study which are publicly 

available at Zenodo (https://doi.org/10.5281/zenodo.7589312). We released the python code for the 

models which are publicly available on GitHub 

(https://github.com/srijitseal/Merging_Bioactivity_Predictions_CellPainting_Chemical_Structure_Si

milarity).  
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FIGURES 

 
Figure 1: Schematic Representation of workflow in this study to build (a) hierarchical models 

where the predictions of the individual models are used as features to build a second-level model, 

and (b) soft-voting ensemble models that compute the mean of predicted probabilities from indi-

vidual models and (c) the similarity-based merger model. The similarity-based merger model 

combined predicted probabilities from individual models and the morphology and structural simi-

larity of compounds to active compounds in training data. 

 

Figure 2: Distribution of AUC of all models, Cell Painting, Morgan Fingerprints, baseline models 

of a soft-voting ensemble, hierarchical model, and the similarity-based merger model, over 171 

assays (out of 177 assays). An assay was considered for a paired significance test only if the bal-

anced accuracy was >0.50 and the F1 score was >0.0 for at least one of the models. 

 

Figure 3: (a) Number of assays predicted with an AUC above a given threshold. (b) Distribution 

of assays with AUC > 0.70 common and unique to all models, Cell Painting, Morgan Fingerprint, 

baseline models of a soft-voting ensemble, hierarchical model, and the similarity-based merger 

model, over all of the 177 assays used in this study.  

 

Figure 4: (a) STRING gene-gene interaction networks for 34 Genes annotations associated with 

37 assays in the public dataset labelled by the model which was better predictive compared with 

the other models and a random classifier with an AUC>0.50 (b) Molecular and functional path-

way terms related to the 37 assays using the Cytoscape43 v3.9.1 plugin ClueGO44 labelled by per-

centage of gene annotations where an AUC>0.70 was achieved by the Cell Painting, structural 

and similarity-based merger models. 
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Figure 5: AUC performance of models using Cell Painting, structural models, and similarity-

based merger model for 89 assays in the Broad Institute dataset based on readout type (fluores-

cence and luminescence) or the assay type (cell-based and biochemical). Further details are 

shown in Figures S10 and S11. 
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