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Abstract

A common approach in biomechanical analysis of running technique is to average data from several gait
cycles to compute a ‘representative mean.’ However, the impact of the quantity and selection of gait cycles on
biomechanical measures is not well understood. We examined the effects of gait cycle selection on kinematic
data by: (i) comparing representative means calculated from varying numbers of gait cycles to ‘global’
means from the entire capture period; and (ii) comparing representative means from varying numbers of gait
cycles sampled from different parts of the capture period. We used a public dataset (n = 28) of lower limb
kinematics captured during a 30-second period of treadmill running at three speeds (2.5m·s-1, 3.5m·s-1 and
4.5m·s-1). ‘Ground truth’ values were determined by averaging data across all collected strides and compared
to representative means calculated from random samples (1,000 samples) of n (range = 5—30) consecutive
gait cycles. We also compared representative means calculated from n (range = 5—15) consecutive gait cycles
randomly sampled (1,000 samples) from within the same data capture period. The mean, variance and range
of the absolute error of the representative mean compared to the ‘ground truth’ mean progressively reduced
across all speeds as the number of gait cycles used increased. Similar magnitudes of ‘error’ were observed
between the 2.5m·s-1 and 3.5m·s-1 speeds at comparable gait cycle numbers — where the maximum errors
were < 1.5 degrees even with a small number of gait cycles (i.e. 5-10). At the 4.5m·s-1 speed, maximum
errors typically exceeded 2-4 degrees when a lower number of gait cycles were used. Subsequently, a higher
number of gait cycles (i.e. 25-30) was required to achieve low errors (i.e. 1-2 degrees) at the 4.5m·s-1 speed.
The mean, variance and range of absolute error of representative means calculated from different parts of the
capture period was consistent irrespective of the number of gait cycles used. The error between representative
means was low (i.e. < 1.5 degrees) and consistent across the different number of gait cycles at the 2.5m·s-1

and 3.5m·s-1 speeds, and consistent but larger (i.e. up to 2-4 degrees) at the 4.5m·s-1 speed. Our findings
suggest that selecting as many gait cycles as possible from a treadmill running bout will minimise potential
‘error.’ Analysing a small sample (i.e. 5-10 cycles) will typically result in minimal ‘error’ (i.e. < 2 degrees),
particularly at lower speeds (i.e. 2.5m·s-1 and 3.5m·s-1). Researchers and clinicians should consider the
balance between practicalities of collecting and analysing a smaller number of gait cycles against the potential
‘error’ when determining their methodological approach. Irrespective of the number of gait cycles used, we
recommend that the potential ‘error’ introduced by the choice of gait cycle number be considered when
interpreting the magnitude of effects in treadmill-based running studies.

Introduction

Collecting and analysing biomechanical data is frequently used to examine running technique. A common
methodological approach is to average data from several gait cycles to compute a given biomechanical measure.
Calculating this ‘representative mean’ is thought to be representative of the individuals broader running
technique. Given the inherent variability in human movement [1], the quantity and selection of gait cycles
used to create this ‘representative mean’ appears an important choice in accurately quantifying an individuals
running gait. However, the number of gait cycles used in biomechanical studies of running varies across the
literature [2]. Further, very rarely (if ever) is the decision process underpinning the quantity and selection of
gait cycles explained.
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It is possible to collect a large number of gait cycles during biomechanical testing, especially during
treadmill running. Enabling a participant to settle into a steady gait rhythm may better represent a habitual
running pattern. While the collection of a large number of gait cycles can be relatively easy, it is important
to give consideration to the analysis of this data. Inflated data cleaning (e.g. labelling and gap filling motion
capture data) and analysis (e.g. processing frames via inverse kinematics) time occur when processing a
running trial that uses many gait cycles. Similarly, trials with many gait cycles require greater data storage
access due to larger file sizes. An additional consideration is which gait cycles are selected from within a
capture period. Studies often perform an extended capture period where additional gait cycles are collected
around those used for analysis (e.g. [4]). The impact of this gait cycle selection on biomechanical outcome
measures is yet to be investigated. Better understanding of the impact of gait cycle selection on biomechanical
outcome measures may help optimise data collection and analysis practices.

Oliveira and Pirscoveanu [2] examined the typical number of gait cycles used in running biomechanics
studies. On average, 12 gait cycles were used to generate biomechanical outcome measures, though very
few of these studies (5 out of 56) used more than 10 cycles [2]. The impact of sample size (i.e. 10 to 40
runners) and number of gait cycles (i.e. 5 to 40 steps) used on biomechanical outcome measures (i.e. foot
contact time, loading rate, peak vertical ground reaction force, peak braking force, running speed, and foot
contact angle) was also examined [2]. The authors found that greater than 10 strides are typically required to
achieve stable biomechanical measures in runners and collecting at least 25 strides will increase the likelihood
of achieving stability in the range of biomechanical measures examined [2]. These findings are specific to
overground running and the set of biomechanical measures analysed. Treadmill running is often used in
research [5], and it is plausible that the required number of gait cycles required to achieve stability may be
different to overground running. Further, Oliveira and Pirscoveanu [2] did not examine lower limb kinematic
variables commonly reported in gait biomechanics studies. These kinematic variables can be presented as
both ‘zero-dimensional’ (0D; e.g. peak values) and ‘one-dimensional’ (1D; e.g. time-normalised kinematic
waveform) variables [6]. Analyses of these common kinematic variables in both their 0D and 1D forms may
provide valuable insight into the number of gait cycles required in biomechanical research. Lastly, Oliveira
and Pirscoveanu’s [2] analyses were driven by understanding data stability and statistical significance between
two running conditions (i.e. ‘normal’ vs. ‘silent’ running). A different approach focused on understanding the
magnitude of ‘error’ introduced by analysing different numbers of gait cycles can further our understanding
of how gait cycle selection practices impact biomechanical outcome measures. Specifically, understanding the
potential ‘error’ introduced by selecting a different number of gait cycles can aid in interpreting the legitimacy
of an effect (i.e. could small effects be due to the set of gait cycles selected).

We sought to extend our current understanding of how the quantity and selection of gait cycles impact
lower limb kinematic measures from a 30-second data capture period of treadmill running. First, we examined
the magnitude of ‘error’ introduced in the representative mean compared to the entire bout of treadmill
running when the number of gait cycle samples is varied. Second, we examined the potential variation
introduced in the representative mean when sampling a set number of gait cycles from different parts of the
capture period.

Methods

Dataset

We used the public dataset of treadmill running biomechanics from Fukuchi et al. [7]. The specifics of this
dataset can be found in the associated paper [7]. Briefly, this dataset contains lower-extremity kinematics and
kinetics of 28 regular runners (27 male, 1 female; age = 34.8 ± 6.7 years; height = 176.0 ± 6.8 cm; mass = 69.6
± 7.7 kg; running experience = 8.5 ± 7.0 years; running pace = 4.1 ± 0.4 min/km) [7]. Running kinematics
were collected using a 12-camera 3D motion capture system (Raptor-4, Motion Analysis, Santa Rosa, CA,
United States) and ground reaction force (GRF) data via an instrumented dual-belt treadmill (FIT, Bertec,
Columbus, OH, United States) [7]. Participants ran on the treadmill at three speeds in order (2.5m·s-1,
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3.5m·s-1 and 4.5m·s-1), during which a three-minute accommodation period was provided followed by a
30-second data collection period [7].

We processed the raw experimental data from Fukuchi et al. [7] using OpenSim 4.0 [8]. Segment geometry
of a generic musculoskeletal model of the pelvis and lower limb provided by Lai et al. [9] were scaled for
each participant using their static calibration trial, which was also used as a reference for adjusting marker
positions on the model. Lower limb joint angles were calculated using filtered (10Hz low-pass 4th order
Butterworth) marker trajectory data within inverse kinematics analysis. GRF data were filtered using the
same cut-off frequency and filter. The filtering procedures reflected those originally performed by Fukuchi et
al. [7]. Foot strike and toe-off events were determined when the vertical GRF crossed a 20N threshold, also
in line with the original work [7].

Data Analysis

Kinematic variables common to gait biomechanics studies (i.e. hip flexion/extension, hip adduction/abduction,
hip internal/external rotation, knee flexion and ankle plantarflexion/dorsiflexion) were extracted from the
right limb for all participants. Data between consecutive foot strikes were extracted and time-normalised
to 0-100% of the gait cycle. The time-normalised 1D curves were used in subsequent 1D analyses, while a
set of peak variables (hip flexion, hip adduction, hip internal rotation, knee flexion, ankle dorsiflexion) were
calculated and extracted for the 0D analyses.

To examine how the number of gait cycles used impacts the representative kinematic mean (i.e. aim 1),
we determined ‘ground truth’ values to compare to for the 0D and 1D kinematic variables by calculating
the mean from all available gait cycles in the 30-second capture period of treadmill running. This value
was thought to be the ‘most representative’ of each participants average running kinematics and was not
influenced by the selection of a subset of gait cycles. We then iteratively calculated mean values across
the kinematic variables using a range (n = 5 — 30) of gait cycles from the data capture period. For each
iteration, a random sample of n consecutive gait cycles were extracted and used to calculate a representative
kinematic mean. We then compared this representative kinematic mean to the ‘ground truth’ value for the
respective variable to determine the ‘error’ that gait cycle number selection could introduce.

To examine how sampling gait cycles from different sections of the capture period impacts the representative
kinematic mean (i.e. aim 2), we iteratively calculated representative kinematic means using a range (n = 5 —
15) of randomly sampled consecutive gait cycles from different parts of the capture period. A smaller range
of gait cycles was required for this analysis to avoid sharing gait cycles between the calculated means. For
each sampling iteration, we randomly sampled n consecutive gait cycles from two non-overlapping parts of
the capture period. We then compared the calculated representative kinematic means between the two parts
to determine the ‘error’ or variation that selection of gait cycles from different parts of the capture period
could introduce.

We quantified ‘error’ in a similar fashion across both aims. For 0D variables, the absolute difference
between the representative mean and ‘ground truth’ (i.e. aim 1) or two representative means (i.e. aim 2) was
recorded in each sampling iteration. For 1D variables, the absolute difference between the representative
mean and ‘ground truth’ (i.e. aim 1) or two representative means (i.e. aim 2) at each point across the
time-normalised gait cycle were calculated, and the peak difference recorded. The random sampling process
for each n of gait cycles was repeated 1,000 times for each participant at each running speed — and the
‘error’ values collated to present descriptive statistics (i.e. mean ± standard deviation [SD], median, range,
inter-quartile range) for each gait cycle number across the kinematic variables and running speeds.
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Results

How does the number of gait cycles used impact the representative kinematic mean?

For the peak 0D kinematic variables, the mean, variance and range of the absolute error of the representative
kinematic mean compared to the ‘ground truth’ mean progressively reduced as the number of gait cycles used
increased (see Figures 1, 2 and 3). Similar magnitudes of ‘error’ were observed between the 2.5m·s-1 and
3.5m·s-1 speeds across the 0D kinematic variables at comparable gait cycle numbers — where the maximum
errors were less than 1 degree even when using a small number of gait cycles. The maximum errors at the
4.5m·s-1 speed typically exceeded 1-2 degrees, particularly for peak hip and knee joint angles when a lower
number of gait cycles were used. Subsequently, a much higher number of gait cycles (i.e. 25-30) were required
at 4.5m·s-1 to achieve a similar magnitude of error seen at the slower running speeds. The larger ‘error’
values observed at 4.5m·s-1 were driven by a bimodal distribution — whereby certain sampling iterations
within the same biomechanical measure could produce relatively higher versus lower errors (see Figure 3).
The exception to this difference at the higher speed was for peak ankle dorsiflexion, where similarly low ‘error’
values and ranges (i.e. < 0.5 degrees) were observed across all speeds.

We observed near identical characteristics of the mean, variance and range of the peak absolute error of
the representative kinematic mean compared to the mean from all gait cycles for the 1D kinematic variables
(see Figures 4, 5 and 6). As with the 0D variables, the potential ‘error’ reduced as the number of gait cycles
increased, and similarly low magnitudes of ‘error’ (i.e. < 1 degree) were at the 2.5m·s-1 and 3.5m·s-1 speeds.
Larger ‘errors’ exceeding 1-2 degrees with lower gait cycle numbers were present at the 4.5m·s-1 speed (with
the exception of ankle dorsi/plantarflexion), with this again driven by a more bimodal distribution of samples
(see Figure 6).

How does the selection of gait cycles impact the representative kinematic mean?

The mean, variance and range of the absolute error (or variation) of the representative kinematic mean
compared to the mean from all gait cycles for the peak 0D kinematic variables remained relatively consistent
irrespective of the number of gait cycles used when sampling from different parts of the capture period (see
Figures 7, 8 and 9). At the 2.5m·s-1 and 3.5m·s-1 speeds, the variation in peak kinematic variables was
always less than 1.5 degrees. However, peak knee flexion had the potential for larger variation compared to
the remaining kinematic variables (see Figures 7 and 8). While the potential variation between gait cycle
samples was consistent with increasing gait cycle numbers at the 4.5m·s-1 speed, a higher mean and range of
potential variation (i.e. up to 2-4 degrees) was evident across the peak kinematic variables (with the exception
of peak ankle dorsiflexion). As in the previous analyses, we observed a bimodal distribution of the samples at
the 4.5m·s-1 speed (see Figure 9).

We observed similar characteristics for the mean, variance and range of the absolute error (or variation) of
the representative kinematic mean compared to the mean from all gait cycles for the 1D kinematic variables
when sampling gait cycles from different parts of the capture period (see Figures 10, 11 and 12). The potential
variation remained low (i.e. < 1.5 degrees) and consistent across the different number of gait cycles at the
2.5m·s-1 and 3.5m·s-1 speeds (see Figures 10 and 11). The potential variation remained consistent but
increased in magnitude (i.e. up to 2-4 degrees), and shifted to a bimodal distribution at the 4.5m·s-1 speed
(see Figure 12). In contrast to the 0D variables, this shift was evident in all 1D kinematic variables (including
ankle dorsi/plantarflexion).
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Figure 1: Absolute error in peak kinematic variables (i.e. zero-dimensional [0D]) when running at 2.5m·s−1 using a subset
of gait cycles versus all gait cycles from the 30-second treadmill bout. Darker points and solid lines equate to the mean ±
standard deviation. Horizontal lines within boxes equate to the median value, boxes indicate the 25th to 75th percentile, and
dashed whiskers indicate the range. Shaded violins are included to illustrate the distribution of values. FLEX — flexion; EXT —
extension; ADD — adduction; ABD — abduction; IR — internal rotation; ER — external rotation; DF — dorsiflexion; PF —
plantarflexion.
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Figure 2: Absolute error in peak kinematic variables (i.e. zero-dimensional [0D]) when running at 3.5m·s−1 using a subset
of gait cycles versus all gait cycles from the 30-second treadmill bout. Darker points and solid lines equate to the mean ±
standard deviation. Horizontal lines within boxes equate to the median value, boxes indicate the 25th to 75th percentile, and
dashed whiskers indicate the range. Shaded violins are included to illustrate the distribution of values. FLEX — flexion; EXT —
extension; ADD — adduction; ABD — abduction; IR — internal rotation; ER — external rotation; DF — dorsiflexion; PF —
plantarflexion.
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Figure 3: Absolute error in peak kinematic variables (i.e. zero-dimensional [0D]) when running at 4.5m·s−1 using a subset
of gait cycles versus all gait cycles from the 30-second treadmill bout. Darker points and solid lines equate to the mean ±
standard deviation. Horizontal lines within boxes equate to the median value, boxes indicate the 25th to 75th percentile, and
dashed whiskers indicate the range. Shaded violins are included to illustrate the distribution of values. FLEX — flexion; EXT —
extension; ADD — adduction; ABD — abduction; IR — internal rotation; ER — external rotation; DF — dorsiflexion; PF —
plantarflexion.
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Figure 4: Peak absolute error in kinematic variables across the gait cycle (i.e. one-dimensional [1D]) when running at 2.5m·s−1

using a subset of gait cycles versus all gait cycles from the 30-second treadmill bout. Darker points and solid lines equate to the
mean ± standard deviation. Horizontal lines within boxes equate to the median value, boxes indicate the 25th to 75th percentile,
and dashed whiskers indicate the range. Shaded violins are included to illustrate the distribution of values. FLEX — flexion;
EXT — extension; ADD — adduction; ABD — abduction; IR — internal rotation; ER — external rotation; DF — dorsiflexion;
PF — plantarflexion.
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Figure 5: Peak absolute error in kinematic variables across the gait cycle (i.e. one-dimensional [1D]) when running at 3.5m·s−1

using a subset of gait cycles versus all gait cycles from the 30-second treadmill bout. Darker points and solid lines equate to the
mean ± standard deviation. Horizontal lines within boxes equate to the median value, boxes indicate the 25th to 75th percentile,
and dashed whiskers indicate the range. Shaded violins are included to illustrate the distribution of values. FLEX — flexion;
EXT — extension; ADD — adduction; ABD — abduction; IR — internal rotation; ER — external rotation; DF — dorsiflexion;
PF — plantarflexion.
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Figure 6: Peak absolute error in kinematic variables across the gait cycle (i.e. one-dimensional [1D]) when running at 4.5m·s−1

using a subset of gait cycles versus all gait cycles from the 30-second treadmill bout. Darker points and solid lines equate to the
mean ± standard deviation. Horizontal lines within boxes equate to the median value, boxes indicate the 25th to 75th percentile,
and dashed whiskers indicate the range. Shaded violins are included to illustrate the distribution of values. FLEX — flexion;
EXT — extension; ADD — adduction; ABD — abduction; IR — internal rotation; ER — external rotation; DF — dorsiflexion;
PF — plantarflexion.
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Figure 7: Absolute error in peak kinematic variables (i.e. zero-dimensional [0D]) when running at 2.5m·s−1 using a two
comparative subsets of gait cycles from the 30-second treadmill bout. Darker points and solid lines equate to the mean ±
standard deviation. Horizontal lines within boxes equate to the median value, boxes indicate the 25th to 75th percentile, and
dashed whiskers indicate the range. Shaded violins are included to illustrate the distribution of values. FLEX — flexion; EXT —
extension; ADD — adduction; ABD — abduction; IR — internal rotation; ER — external rotation; DF — dorsiflexion; PF —
plantarflexion.
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Figure 8: Absolute error in peak kinematic variables (i.e. zero-dimensional [0D]) when running at 3.5m·s−1 using a two
comparative subsets of gait cycles from the 30-second treadmill bout. Darker points and solid lines equate to the mean ±
standard deviation. Horizontal lines within boxes equate to the median value, boxes indicate the 25th to 75th percentile, and
dashed whiskers indicate the range. Shaded violins are included to illustrate the distribution of values. FLEX — flexion; EXT —
extension; ADD — adduction; ABD — abduction; IR — internal rotation; ER — external rotation; DF — dorsiflexion; PF —
plantarflexion.
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Figure 9: Absolute error in peak kinematic variables (i.e. zero-dimensional [0D]) when running at 4.5m·s−1 using a two
comparative subsets of gait cycles from the 30-second treadmill bout. Darker points and solid lines equate to the mean ±
standard deviation. Horizontal lines within boxes equate to the median value, boxes indicate the 25th to 75th percentile, and
dashed whiskers indicate the range. Shaded violins are included to illustrate the distribution of values. FLEX — flexion; EXT —
extension; ADD — adduction; ABD — abduction; IR — internal rotation; ER — external rotation; DF — dorsiflexion; PF —
plantarflexion.
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Figure 10: Peak absolute error in kinematic variables across the gait cycle (i.e. one-dimensional [1D]) when running at 2.5m·s−1

using two comparative subsets of gait cycles from the 30-second treadmill bout. Darker points and solid lines equate to the
mean ± standard deviation. Horizontal lines within boxes equate to the median value, boxes indicate the 25th to 75th percentile,
and dashed whiskers indicate the range. Shaded violins are included to illustrate the distribution of values. FLEX — flexion;
EXT — extension; ADD — adduction; ABD — abduction; IR — internal rotation; ER — external rotation; DF — dorsiflexion;
PF — plantarflexion.
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Figure 11: Peak absolute error in kinematic variables across the gait cycle (i.e. one-dimensional [1D]) when running at 3.5m·s−1

using two comparative subsets of gait cycles from the 30-second treadmill bout. Darker points and solid lines equate to the
mean ± standard deviation. Horizontal lines within boxes equate to the median value, boxes indicate the 25th to 75th percentile,
and dashed whiskers indicate the range. Shaded violins are included to illustrate the distribution of values. FLEX — flexion;
EXT — extension; ADD — adduction; ABD — abduction; IR — internal rotation; ER — external rotation; DF — dorsiflexion;
PF — plantarflexion.
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Figure 12: Peak absolute error in kinematic variables across the gait cycle (i.e. one-dimensional [1D]) when running at 4.5m·s−1

using two comparative subsets of gait cycles from the 30-second treadmill bout. Darker points and solid lines equate to the
mean ± standard deviation. Horizontal lines within boxes equate to the median value, boxes indicate the 25th to 75th percentile,
and dashed whiskers indicate the range. Shaded violins are included to illustrate the distribution of values. FLEX — flexion;
EXT — extension; ADD — adduction; ABD — abduction; IR — internal rotation; ER — external rotation; DF — dorsiflexion;
PF — plantarflexion.
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Discussion

Biomechanical studies of running often use a subset of gait cycles from a running bout or capture period,
and average across these cycles to calculate an individual’s representative mean. We examined the impact of
the quantity and selection of gait cycles from within the a capture period on the magnitude of ‘error’ in lower
limb kinematic measures during a continuous bout of treadmill running. We found that including a greater
number of gait cycles to calculate the representative kinematic mean reduces the magnitude and range of
potential ‘error.’ The potential error using a small number of gait cycles (i.e. n = 5-10) was low (i.e. typically
< 1 degree) when running at 2.5m·s-1 and 3.5m·s-1, and hence we noted an effect of diminishing returns
(i.e. limited improvement in error reduction above 5-10 gait cycles) by including more gait cycles at these
slower speeds. Using a similarly low number of gait cycles did slightly inflate potential ‘error’ (i.e. 1-4 degrees)
when running at 4.5m·s-1. We also found small magnitudes of ‘error’ in representative kinematic means
across all running speeds when selecting gait cycles from different parts of the capture period, and these
remained relatively consistent irrespective of the number of gait cycles used.

We found that the ‘error’ between the representative kinematic means and the associated ‘ground truth’
values progressively reduced with an increasing number of gait cycles. Using a greater number of gait cycles
equated to using a higher proportion of data that were used to create the ‘ground truth’ — hence this result
is not surprising. More noteworthy is the scale of ‘error’ when using a reduced number of gait cycles (i.e. n =
5-10) and the diminishing effect of using a larger number (i.e. n > 15) of gait cycles. We typically observed
that the maximum ‘error’ or variation with respect to the ‘ground truth’ was less than one degree, even at
the lowest number of gait cycles used when running at the 2.5m·s-1 and 3.5m·s-1. This error increased
up to three degrees at 4.5m·s-1. Reducing the potential ‘error’ compared to the ground truth appeared to
be the main effect of increasing the number of gait cycles used. However, the reduction in potential error
typically plateaued and a diminished benefit observed when using above 15-20 gait cycles. These patterns
were consistent across both the 0D and 1D kinematic data. The notion of diminishing returns above 15-20 gait
cycles contrasts with the findings of Oliveira and Pirscoveanu [2] — whereby data stability was not achieved
in most runners using this number of gait cycles. Clear differences between our study and this existing
work [2] were the metrics used to define ‘error’ or stability, the biomechanical measures analysed (i.e. joint
kinematics vs. mostly kinetic variables), and the use of treadmill (including a 3-minute familiarisation period)
versus overground running. The latter may represent an important distinction, whereby the familiarisation
period combined with the more continuous approach of treadmill running led to participants settling into a
more stable rhythm during the data capture period. Forrester [10] performed a series of simulations using
a similar sequential analysis technique to Oliveira and Pirscoveanu [2] to determine the number of trials
required for biomechanical measures with generic means and standard deviations. This work [10] proposed
that nine (± 8) trials were required to achieve stability of the mean, which is more in line with our findings
of diminishing returns in ‘error’ at 15-20 gait cycles. The mean and variation of the biomechanical outcome
measure being examined likely plays a role in the potential ‘error.’ We saw the largest potential ‘errors’ in hip
and knee flexion when using a smaller number of gait cycles and this is not surprising given these measures
had the largest means and standard deviations within the dataset [7].

Despite the potential for diminishing returns, our data suggests that researchers can minimise the
potential ‘error’ in representative kinematic means by using more gait cycles. A simplistic recommendation
from our analyses would be to use as many gait cycles as possible. However, this ignores the practical
considerations of storing, cleaning and processing larger biomechanical data files. Certain circumstances, such
as a large participant sample or timely computational measures (e.g. muscle forces derived from optimisation
approaches), may make using 20+ gait cycles impractical. Our recommendation is to balance the practical
considerations against the potential ‘error’ or variation in the data that can be tolerated. Consideration
should be given to the accuracy of the measure, or size of the effect researchers or clinicians are interested in
measuring. For example, using less than ten gait cycles to explore a small effect (i.e. < 1-2 degrees) in 1D hip
or knee flexion continua may be unwise, as the potential variation in the calculated means could exceed the
magnitude of the effect of interest. Our data suggests that the smaller the expected effect or magnitude of
effect of interest, the greater number of gait cycles necessary for the analyses.
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We observed relatively small variations (i.e. < 1.5 degrees) between representative kinematic means
calculated from gait cycle samples extracted from different parts of the 2.5m·s-1 and 3.5m·s-1 capture
periods, while these slightly increased (i.e. 2-4 degrees) when examining the 4.5m·s-1 speed. This magnitude
of variation remained consistent irrespective of the total number of gait cycles used. These findings suggest
that once the number of gait cycles used for analysis is selected, the selection of these from within a capture
period will introduce a small, but consistent amount of ‘error.’ The inherent variability in human movement
[1] is the likely and potentially unavoidable cause of this variation. We randomly sampled differing sections
of the capture period as part of our analyses, and at-times this generated near zero variation between the
two representative means. Without further inspection of our data, we cannot confirm what generated the
reduced variation — but we hypothesise that the samples with minimal to no variation likely stemmed from
using sections of the capture period in close proximity to one another. We also cannot determine which
section of the running bout is more representative or ‘accurate,’ as we only compared between samples and
did not extend this comparison to the ‘ground truth’ values. Our data can only be used to infer the potential
magnitude of variation expected when using gait cycles from different parts of a 30-second capture period.
The magnitude of this variation appears to be driven by the scale of the mean and standard deviation of the
measure (i.e. kinematic measures with higher means and standard deviations incur a greater magnitude of
variation). It is also plausible that greater variation could be seen during longer capture periods than that
used in the present study (i.e. 30-seconds) or when comparing gait cycles from capture periods separated by
a longer time period (e.g. two capture periods at either end of a 5+ minute running bout). The dataset we
used did not allow for these analyses to be conducted, yet present relevant avenues for further research on
this topic. The practical implications of these findings once again relate to the confidence we can have in
measuring an effect on lower limb kinematics during treadmill running. If our observed effect does not exceed
the typical variation seen when sampling from different parts of the capture period, there is a possibility that
the observed effect is simply noise due to the gait cycles sampled.

Running at 4.5m·s-1 induced greater ‘error’ relative to the ‘ground truth’ and between representative
means from different parts of the capture period compared to running at 2.5m·s-1 and 3.5m·s-1. There are
various potential reasons for these results. Faster running speeds induce larger means and standard deviations
across kinematic variables [7], particularly in hip and knee flexion where more dramatic increases in ‘error’
were observed. We propose that the larger means and standard deviations at higher speeds introduce a
greater magnitude of variation across gait cycles. An increase in gait speed could also be considered a changed
task constraint on the running movement [11], and this change in constraint could have affected the role and
magnitude of variability at certain joints. Movement variability may help explain the greater potential for
‘error’ when sampling from different gait cycles at different running speeds. The changed task constraint, and
greater kinematic means and standard deviations with increased running speed [7] may engender expectations
of a consistent increase in potential ‘error’ with increased running speed. It is therefore surprising that the
increase in ‘error’ or variation was inconsistent, and most evident and prominent when only when running at
4.5m·s-1 speed. Within the dataset examined, participants ran for a three minute accommodation period at
each speed, following which data were collected over a 30 second period [7]. The order of running conditions
(i.e. 2.5m·s-1, 3.5m·s-1, 4.5m·s-1) was kept consistent for each participant [7]. It is possible that these
experimental procedures (i.e. running at the fastest speed towards the end of the running period) could have
introduced some fatigue when running at 4.5m·s-1. Running in a fatigued state can increase biomechanical
variability [13], while also altering running kinematics compared to a non-fatigued state [16]. If fatigue was
present during the final bout of running, it could have resulted in greater kinematic variability or a change in
running kinematics during the 30 second period of data collection. Alternatively, fatigue may have begun to
set in within the final 30 seconds of the run — potentially inducing a change in running kinematics within
the period where data were collected. This latter explanation may explain the bimodal distribution in ‘error’
we observed in the 4.5m·s-1 running bout, whereby larger ‘errors’ may have been observed with gait cycles
from earlier versus later parts of the 30 second capture period. Given we did not explicitly consider the
sections where gait cycles were sampled from, this notion is speculative. It should also be noted that studies
examining changes in running biomechanics with fatigue [16] have used more intense and longer duration
exercise protocols that what participants experienced in our study. Despite the lack of understanding around
the potential mechanism, our study demonstrates a need to consider gait cycle sampling practices when
running at faster speeds, and potentially when fatigue is present.
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It is important to note that the measurement ‘error’ or variation based on gait cycle selection were small
compared to other established sources of error during biomechanical data collection and analysis [28]. The
magnitude of ‘error’ in the present study is eclipsed by the errors or variation introduced by soft-tissue
artefact associated with skin-mounted markers [20], different joint coordinate systems [23] or gait models
[24], kinematic algorithm choice [25], tester experience [27], or different measurement approaches (i.e. marker
vs. marker-less) [28]. The number of gait cycles used for analysis is likely less important when considering
the size of a measured effect against the potential ‘error’ or variation introduced by other methodological
decisions. Future research should also better define practically meaningful effects for biomechanical outcome
measures. Using similar methods to those in other fields for defining the smallest effect size of interest [29]
may help inform whether the magnitude of errors are acceptable for practical use and interpretation.

Our results must be considered with respect to the limitations in our approach. We only examined
conditions where n consecutive gait cycles were sampled from a 30-second capture period during a continuous
bout of treadmill running at three set speeds. Different results might be expected with non-consecutive
selection of samples from the capture period, or under different running conditions (e.g. outdoor overground
running; slower or faster speeds). We also focused on peak and 1D waveform data of lower limb kinematic
variables. Other biomechanical outcome measures (e.g. joint moments, estimates of muscle activation and
forces) may incur variable magnitudes of ‘error’ or variation with respect to gait cycle selection. We inferred
‘error’ via comparison to values calculated from all gait cycles in the running bout (i.e. our ‘ground truth’
value). Although we deemed this the best approach within our study, it is important to acknowledge that
these values may still not represent the individuals exact or true running kinematics. Lastly, we investigated
kinematic measures at a univariate joint level. Our findings are therefore not applicable to studies examining
covariance or dynamics across joints during gait.

Conclusions

We identified the range of potential ‘error’ or variation in lower limb kinematics associated with the
quantity and selection of gait cycles used from a data capture period of continuous treadmill running. Our
findings suggest that including as many gait cycles as possible from the running bout will minimise ‘error.’
However, the error associated with only a small sample of gait cycles (i.e. 5-10 gait cycles) was typically quite
small (< 3 degrees) when running at 2.5m·s-1 and 3.5m·s-1. Larger potential ‘errors’ or variation were
observed when analysing kinematic variables with larger means and standard deviations, and when running
at faster speeds (i.e. 4.5m·s-1). Researchers and clinicians should balance the benefits of a reduction in
potential ‘error’ with the challenges of collecting, processing and analysing a large number of gait cycles when
determining their methodological approach. We recommend that the potential ‘error’ or variation introduced
by the quantity and selection of gait cycles be considered when interpreting effects from treadmill-based
running studies. Specifically, researchers must consider the magnitude of potential ‘error’ against the identified
effects between groups or following an intervention.
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