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Abstract

High-throughput sequencing provides sufficient means for determining genotypes of clinically important
pharmacogenes that can be used to tailor medical decisions to individual patients. However,
pharmacogene genotyping, also known as star-allele calling, is a challenging problem that requires
accurate copy number calling, structural variation discovery, variant calling and phasing within each
pharmacogene copy present in the sample.
Here we introduce Aldy 4, a fast and efficient tool for genotyping pharmacogenes that utilizes combinatorial
optimization for accurate star-allele calling across different sequencing technologies. Aldy 4 adds support
for long reads and ships with a novel phasing model and improved copy number and variant calling
models.
We compare Aldy 4 against the current state-of-the-art star-allele callers on a large and diverse set of
samples and genes sequenced by various sequencing technologies, such as whole-genome and targeted
Illumina sequencing, barcoded 10X Genomics and PacBio HiFi. We show that Aldy 4 is the most accurate
star-allele caller with near-perfect accuracy in all evaluated contexts. We hope that Aldy remains an
invaluable tool in the clinical toolbox even with the advent of long-read sequencing technologies.
Availability: Aldy 4 is available at https://github.com/0xTCG/aldy.

1 Introduction
The rapid development of high-throughput sequencing (HTS) technologies
has ushered in the era of precision medicine that aims to tailor medical
decisions at the individual level (Hamburg and Collins, 2010). A key
component of precision medicine is pharmacogenomics which studies
the associations between the individual genotypes of clinically important
genes (also known as pharmacogenes) and individual variation in
drug response (Weinshilboum and Wang, 2017). While the HTS data
theoretically provides sufficient means to accurately genotype any gene in a
given individual, genotyping of many pharmacogenes remains practically
challenging (Twesigomwe et al., 2020). One of the key challenges is the
fact that many pharmacogenes of vital clinical importance—most notably
the CYP2D6 gene, whose genotype impacts up to 25% of clinically
prescribed drugs (Ingelman-Sundberg, 2004)—are highly polymorphic,
and furthermore located next to the highly similar pseudogenes due to being
located within segmental duplications (Ingelman-Sundberg, 2004). These
pharmacogenes are also subject to various copy number and structural
changes, e.g. through a fusion event between a gene and its pseudogene,
possibly due to the instability of the segmental duplication region wherein
they reside (Sezutsu et al., 2013). These issues need to be carefully and
comprehensively accounted for before the genotyping process, in order

to obtain accurate results. Lastly, alleles of many pharmacogenes are not
defined through a single nucleotide variant (SNV), but through a complete
gene haplotype. Thus the exact functional impact of an allele can only be
determined through phasing, or haplotyping, of the whole genic region.
In the pharmacogenomics community, haplotyping is commonly known
as star-allele calling (Robarge et al., 2007), owing to the fact that most of
the known pharmacogenetic haplotypes are assigned a unique star-allele
identifier.

Standard tools for genotyping HTS datasets, such as Genome Analysis
Toolkit (GATK) (McKenna et al., 2010; Poplin et al., 2017), cannot be used
for star-allele calling because they are unable to haplotype the whole genic
regions and assign correct star-alleles. General-purpose computational
phasing tools, such as HapCUT2 (Edge et al., 2017) and HapTree-
X (Berger et al., 2020), are also inadequate for calling star-alleles: these
tools are either designed for phasing diploid organisms and thus cannot
phase regions that underwent significant copy number changes, or cannot
handle fusions and other structural variations. Furthermore, the distance
between allele-defining variants is often too large and, as a result, many
alleles cannot be phased with short-read sequencing data. On the other
hand, statistical phasing tools, such as BEAGLE (Browning et al., 2021)
or Eagle (Loh et al., 2016), also do not handle the presence of fusions
and structural variations. Thus most of the star-allele calling was— and
still is— being done by various custom primer-specific PCR and array
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assays (Numanagić et al., 2015), mostly due to their price and speed,
despite calls generated by these assays being often limited in breadth and
scope (Pratt et al., 2010; Fang et al., 2014).

A number tools have been recently developed to address the challenge
of accurate star-allele calling (Caspar et al., 2020). Cypiripi (Numanagić
et al., 2015), the first tool specifically designed for this purpose, supported
calling CYP2D6 star-alleles from Illumina WGS data. Cypiripi was
followed by Aldy (Numanagić et al., 2018), Stargazer (Lee et al., 2019),
Astrolabe (Twist et al., 2016), StellarPGx (Twesigomwe et al., 2021)
and Cyrius (Chen et al., 2021). These tools aggregate the data from the
existing star-allele databases, such as PharmVar (Gaedigk et al., 2018),
and use it to call star-alleles directly from HTS data. Some of these
tools, such as Aldy and Stargazer, are also able to detect copy number
changes and fusions with a high level of accuracy. However, the majority
of these tools target only a small set of pharmacogenes (typically CYP2D6
and other cytochrome P450 genes) and are tuned for short-read HTS
data generated by the Illumina whole-genome sequencing (WGS), whole-
exome sequencing (WES) and (in some cases) targeted sequencing panels
such as PGRNseq (Gordon et al., 2016).

In recent years, we have witnessed a slow but steady shift
toward third-generation HTS technologies such as PacBio and Oxford
Nanopore (De Coster et al., 2021). These technologies produce
significantly longer reads (typically measured in tens of kilobases) than
Illumina reads (measured in tens of basepairs). While they were initially
dismissed in clinical settings due to the high cost of sequencing and high
error rates, these technologies are making a resurgence thanks to the recent
improvements in terms of accuracy and cost. For example, PacBio HiFi
sequencing offers up to 25 kbp-long reads with a 99.5% accuracy rate (Hon
et al., 2020). Unfortunately, not many tools are able to correctly use the
data generated by these technologies for calling pharmacogenomic star-
alleles due to the different assumptions and biases as compared to the
standard Illumina short-read data. Star-allele callers are also unable to
make use of the long-range information within long reads for better phasing
of allele-defining variants.

Here we present Aldy 4, the next iteration of Aldy software that
addresses the aforementioned challenges. Aldy 4 completely revamps
its original star-allele calling pipeline and adds support for long-read
technologies such as PacBio HiFi. The changes include an alignment
correction module that addresses various biases and errors common during
the alignment of long reads to the pharmacogenomic regions. It also
provides a novel star-allele calling pipeline that incorporates the long-
range phasing information from long reads into the star-allele calling
model. Finally, Aldy 4 brings support for 20 new pharmacogenes, provides
an easy interface for adding the support for other pharmacogenes, adds
an application programming interface (API) for easy incorporation of
pharmacogenomic calling within the existing pipelines, and brings various
other improvements to the original pipeline. We compare Aldy 4 against
other popular star-allele callers such as Cyrius (Chen et al., 2021),
StellarPGx (Twesigomwe et al., 2021), Stargazer (Lee et al., 2019), and
Astrolabe (Twist et al., 2016) and Aldy 3 (Numanagić et al., 2018) on 20
pharmacogenes and four sequencing technologies (Illumina WGS, 10X
Genomics, PacBio HiFi, and PGRNseq v.3) and show that its accuracy
is better than or equal to that of the other tools. We also demonstrate that
Aldy has minimal impact on system resources, typically needing only a few
minutes to genotype and phase a sample without requiring the expensive
pre-processing steps such as variant calling. We hope that Aldy will remain
a crucial tool in the pharmacogenomics toolbox even with the advent of
long-read sequencing technologies.

2 Methods
The goal of Aldy is to reconstruct the exact sequence content (or
haplotype) of each gene copy of a given pharmacogene from a high-
throughput sequencing (HTS) data sample and assign a star-allele to each
reconstructed haplotype present in the dataset. This process is subsequently
referred to as star-allele calling.

In order to accurately call star-alleles, it is necessary to consult a
database of known star-alleles that contains the exact sequence content
of each pharmacogene allele. Suppose that a pharmacogene G harbors
variants M =

{
m1, ...,m|M|

}
, where any m ∈ M is a single

nucleotide polymorphism (SNP) or a small indel. Depending on their
impact on the gene G, these variants are either functional or silent. The
reference allele of G, typically known as *1 star-allele, is an allele that
harbors no variants at all. Any other star-alleleSi is defined by the subset of
known variantsM that distinguish its sequence content from the reference
*1 allele.

In some genes, such as CYP2D6, star-allele identifiers are also assigned
to fusions and other pseudogene-induced structural changes that affect the
pharmacogene. For this reason, we need to extend the definition of star-
alleles to also include their structural configuration. This configuration
describes whether a pharmacogene is wholly present in the genome,
deleted, or is a gene-pseudogene hybrid. The set of valid configurations
is denoted as G. Note that each structural configuration can induce many
distinct star-alleles depending on the choice of mutations fromM. Thus,
we can formally define a star-allele Si as a tuple (gi, Ai) where gi ∈ G
and Ai ⊆ M. The star-allele database is formally a collection of
all known structural configurations, mutations and known star-alleles
(G,M, {S1, S2, . . . }) where Si = (gi, Ai) such that gi ∈ G and
Ai ⊆M.

To call star-alleles of a given pharmacogene from the given sequencing
sample, Aldy needs to perform the following steps:

• analyze the aligned HTS reads in BAM/CRAM format and resolve
incorrectly aligned reads;

• detect structural configurations by calling copy number changes and
gene-pseudogene fusions; and

• use the read alignments from BAM/CRAM to call star-alleles and
phase the gene.

2.1 BAM/CRAM analysis

Aldy begins by taking a SAM, BAM or CRAM file (Li et al., 2009)
generated by a read aligner (e.g. BWA (Li and Durbin, 2009), pbbm2 1 or
minimap2 (Li, 2018)). It is recommended to post-process these files with
the GATK’s “Best Practices” pipeline (Van der Auwera et al., 2013) (the
local indel realignment step is especially helpful for the subsequent variant
calling). Aldy extracts the relevant variants that are present in a given
pharmacogene from the alignment file, as well as coverage information
needed for the copy number and structural variation detection step. It also
collects phasing information from long reads, barcoded fragments and
paired-end fragments where available.

The original version of Aldy relied on the assumption that read
alignments produced by the off-the-shelf aligner are mostly correct. While
this assumption holds for short paired-end Illumina reads, it breaks for long
reads such as PacBio HiFi reads. For example, if a sample harbors a gene
duplication and if the highly similar pseudogene is located immediately
next to this gene, any long read spanning two duplicated copies of the
gene will get its second half incorrectly aligned to the pseudogene because
the reference genome does not contain two copies of the gene in question
(Figure 1). The correct alignment would perform a split mapping and align

1 https://github.com/PacificBiosciences/pbmm2
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CYP2D6 CYP2D7

CYP2D6 CYP2D6 CYP2D7

Donor genome
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Aligned PacBio long read

PacBio long read

Fig. 1. An example of an incorrect long read alignment to the reference genome. If a donor genome (above) contains two copies of CYP2D6 pharmacogene, any long read (gray rectangle)
that spans both copies will get aligned to the reference genome (below) that contains only a single CYP2D6 copy. However, this read will get its second half (containing CYP2D6 sequence)
incorrectly aligned to the CYP2D7 pseudogene due to the high sequence similarity between these genes. The final result is the over-abundance of coverage in the pseudogene region as
compared to the CYP2D6 region (an IGV coverage plot is shown above the reference genome).

the second half again to the pharmacogene. These incorrect alignments
are even more problematic in the presence of gene fusions: any read that
spans a gene-pseudogene fusion breakpoint will not be split-mapped but
incorrectly aligned to either pharmacogene or its pseudogene.

Aldy 4 resolves this problem by splitting any long read that spans the
gene-pseudogene boundary into shorter gene-level chunks and aligning
each chunk independently. Each chunk is guaranteed to span only one gene
(either pharmacogene or a pseudogene) and thus avoid being misaligned
in the manner described above. Aldy 4 performs a further split-mapping of
each chunk that spans a potential fusion breakpoint to determine whether a
read originates from a fusion event or not (a read is said to originate from a
fusion event if its split-mapping alignment score is lower than the original
alignment score).

Unlike previous versions, Aldy 4 considers base quality scores and read
mapping qualities when calling the allele-specific variants. This ensures
that the low-quality variants in noisy and low-coverage samples are filtered
out before the star-allele calling.

2.2 Copy number and structural variation analysis

In a typical scenario, a sample contains only two parental copies of
a pharmacogene of interest for which star-alleles need to be called.
This is true for most of the pharmacogenes of interest. However, a
few major pharmacogenes do not follow this pattern and are prone to
various copy number changes and structural events. The most notable
example is that of the CYP2D6 gene, perhaps the most important of all
pharmacogenes (Ingelman-Sundberg, 2004), whose copies can undergo
whole gene deletions, duplications and hybrid fusions (where a copy begins
with the CYP2D6 sequence but switches to the pseudogene CYP2D7
sequence at a given breakpoint, or vice versa) (Kramer et al., 2009).
Each copy—fusions included—yields its own star-allele. Thus, in order to
correctly call star-alleles of such genes, it is necessary to correctly detect
the total number of available gene copies as well as the configuration (i.e.,
structure) of each copy.

Each gene copy can be described by its structural configuration
represented as a binary vectorg ∈ G that indicates the presence or absence
of genic regions in a given configuration (Figure 2). Because each star-
allele is defined by a matching structural configuration, such configurations
must be found before the star-alleles can be accurately called. The size of
the configuration vector depends on the number of gene segments that
define various structural configurations. For example, the CYP2D6 gene
is divided into r = 20 segments that correspond to its exons, introns
and flanking regions, because all structural variations are described at the
level of whole exons and introns (Kramer et al., 2009). The total length
of the CYP2D6 configuration vector is 2r (i.e. 40) because the vector also

includes segments from the neighboring CYP2D7 pseudogene. This vector
can encode any known CYP2D6 structural configuration: for example, a
single CYP2D6 copy (r ones followed by r zeros), a single CYP2D7
copy (r zeros followed by r ones), CYP2D6–2D7 fusion in intron 1 (one
followed by r − 1 zeros, in turn followed by a 0 and r − 1 ones) and
so on. Once these vectors are established, any complex configuration
within CYP2D locus can be represented as an aggregate of individual
configuration vectors (see Figure 2 for details).

In a sequenced sample, we only observe the aggregate coverage vector
cn that describes the number of reads covering each genomic loci of
interest within the sample. The goal of Aldy is to find a set of configuration
vectors{g1, . . . ,gn} ⊆ Gwhose sum is closest to the observed aggregate
coverage.2 As there might be many such sets, Aldy only looks for the most
parsimonious solution: a solution that selects the minimal number of such
vectors. This problem, previously dubbed as the Copy Number Estimation
Problem (CNEP) (Numanagić et al., 2018), can be efficiently solved via
integer linear programming (ILP) as follows.

Assume that a gene G is segmented into 2r regions. Let G =

{g1, . . . ,g|G|} stand for the set of the available configuration vectors,
where gi = [gi,1, . . . ,gi,2r] and gi,j ∈ {0, 1} for any i and j. Let cn
be the aggregate coverage vector observed from HTS data. We introduce
a binary variable zi for each gi that indicates if gi is a part of the solution
or not. We can model the objective—minimization of difference between
the observed aggregate coverage and predicted solution—as follows:

min
2r∑
j=1

∣∣∣∣∣∣cnj −
|G|∑
i=1

zigi,j

∣∣∣∣∣∣ .
While this model performs well on WGS and targeted data (Numanagić

et al., 2018), it is rather sensitive to deviations from the expected coverage
distribution. It can also not properly handle the cases where the normalized
aggregate coverage is not stable or uniform. 3 Thus, Aldy 4 improves the
original CNEP formulation by introducing additional optimization terms.
This is done by modifying the original objective term and extending it with
two additional terms, resulting in a three-term optimization objective.

The first term is the same as the original CNEP objective, but
focuses only on the regions associated with the pharmacogene (and not

2 For the sake of clarity, here we present an idealized version where each
structural configuration can be selected only once. In practice, Aldy allows
selecting the same configurations multiple times.
3 For targeted panels with non-uniform coverage distributions, aggregate
coverage can be “normalized” by dividing it by the coverage of the control
sample if it is stable across different samples. Aldy does this automatically
for known targeted panels.
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e1 i1 e2 i2 REP

CYP2D6
e1 i1 e2 i2 REP

CYP2D7
......

vCYP2D6     = [  1    1     1     1    ...    1          0     0    0     0    ...    0  ]
vCYP2D7     = [  0    0     0     0    ...    0          1     1    1     1    ...    1  ]
vCYP2D6*13 = [  1    1     0     0    ...    0          0     0    1     1    ...    1  ]

CYP2D6 CYP2D7
CYP2D6      CYP2D6*13

(a)

(b)

CYP2D6 CYP2D7

CYP2D6

cn = [  3    3     2     2    ...    2          1     1    2     2    ...    2  ] 
      = vCYP2D6 + vCYP2D6 + vCYP2D7 + vCYP2D6*13

CYP2D6
      CYP2D6*13

alignment

Donor genome

Reference genome

Fig. 2. (a) An example database of CYP2D6 structural configurations containing three such configurations (vCYP2D6 , vCYP2D7 and vCYP2D6∗13). Regions on top of which the
configurations were defined (i.e., e1 , i1 etc.) are shaded with lighter color. (b) Sample decomposition of the aggregate coverage vector cn, observed after aligning the reads originating
from the donor genome (above) to the reference genome (below). As can be seen, cn can be expressed as the sum of 4 structural configuration vectors from the database.

its pseudogene):

o1 =

r∑
j=1

∣∣∣∣∣∣cnj −
|G|∑
i=1

zigi,j

∣∣∣∣∣∣ .
The second term of the objective function considers the interaction

between the pharmacogene and the corresponding pseudogene region
by considering the changes between their respective region coverage.
For example, if the coverage of the exon 2 in CYP2D6 is 3 and in
CYP2D7 is 2, the resulting region coverage difference would be 1.
This difference can be further normalized (in this case, divided by 3).
Using normalized differences allows us to handle samples in which the
observed aggregate coverage (cn) varies between the regions due to
various sequencing and alignment biases. Despite region-specific coverage
variation, the relative abundances between the matching gene-pseudogene
regions remain constant. This term can formally be expressed as:

o2 =

r∑
j=1

∣∣∣∣∣∣cnj − cnj+r

νj
−
|G|∑
i=1

zi
gi,j − gi,j+r

νj

∣∣∣∣∣∣ .
Here νj = max{cnj , cnj+r}+ 1 is the normalization factor.

The final term of the objective function ensures that the ILP solver
selects the most parsimonious solution:

o3 =

|G|∑
i=1

µizi.

µi is parsimony parameter (by default set to 1/|G|). However, some
unlikely configurations, such as left fusions, will have higher parsimony
scores to reflect the observation that such configurations are rare (Sim
et al., 2012).

Aldy 4’s modified CNEP model uses an ILP solver to minimize sum
of these three terms o1 + o2 + o3. These solutions are passed to the later
steps that will decide the best overall solution.

2.3 Star-allele calling

Aldy now proceeds by assigning the exact star-allele identifier to each of
the n structural configurations obtained in the previous step. As stated in

Section 2, a star-allele Si is defined as a tuple (gi, Ai), where gi ∈ G
and Ai ⊆ M. The star-allele assignment problem can also be modelled
through the ILP as follows.

Let us indicate the presence of star-allele Si with a binary variable ai.
Our goal is to select a set of star-alleles S1, . . . , Sn such that (1) the set of
the structural configurations that describes selected star-alleles is identical
to the set the structural configurations from the previous step, and (2) the
difference between predicted and observed coverage for each mutationm
(denoted as cov(m)) is minimized. In other words, we want to minimize

∑
m∈M

∣∣∣∣∣∣cov(m)−
∑

i: m∈Ai

ai

∣∣∣∣∣∣ .
While conceptually simple, this model does not account for cases

where database definitions are incomplete or incorrect. To account for
these cases, we must allow the model to alter star-allele definitions if
needed. Aldy thus introduces new binary variables pi,m and qj,m that
indicate if a mutation m is to be “removed” from the star-allele Si (while
being present in the database definition Ai), or “added” to it (while being
absent in Ai). Then it attempts to minimize the following expression for
each mutation m:

em =

∣∣∣∣∣∣cov(m)−

 ∑
i:m∈Ai

aipi,m +
∑

i:m/∈Ai

aiqi,m

∣∣∣∣∣∣ .
As ai, pi,m and qi,m are all binary variables, their product can be
expressed as a set of linear constraints.

The minimization objective can be expressed as:

min
∑

m∈M
em +

∑
i

ai

[∑
m

αi,m(1− pi,m) +
∑
m

βi,mqi,m

]
.

Parameters αi,m and βi,m are penalties for adding or removing the
mutationm from allele Si. A novel mutation is less common than missing
mutation, so generally we use αi,m = 2 and βi,m = 1 for any i and
m (Numanagić et al., 2018). Note that not all mutations are the same:
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as functional mutations can fundamentally alter the behavior of a star-
allele (and thus change its designation), we disallow removing functional
mutations from any star-allele and allow adding novel functional mutations
to the allele if and only if no other assignment is possible. This is done by
setting the corresponding αi,m to a very large value.

The star-allele calling model also enforces other constraints: each
functional mutation must be expressed by at least one allele, and each
structural configuration must be expressed by at least one allele compatible
with it. Finally, Aldy performs two rounds of star-allele calling for
improved accuracy. In the first round, Aldy only considers functional
mutations and identifies all star-allele combinations that explain the present
functional mutations. Aldy then uses the second round to refine the calls
from the first round by considering the silent mutations as well. It finally
selects the star-allele with the best refinement score as the final call.

The formulation Aldy 4 uses for this step remains similar to the original
model used in the older versions of Aldy. The single major difference is
the change in the first (functional star-allele calling) round: Aldy 4 can
now call star-alleles that contain novel functional mutations—a common
case when gene databases are incomplete—if no other call can be made.

2.4 Read-based phasing

The above-described model essentially performs a variant of statistical
phasing: it utilizes the database knowledge to select the most likely
haplotypes that best explain the given observations from the data. While
performing well in practice (Numanagić et al., 2018), there are nevertheless
cases when the aforementioned model produces multiple equally-likely
calls. It is also unable to assign a novel mutation to a particular star-allele
unambiguously. Finally, in sporadic cases, the above model can produce
incorrect results. These challenges can be resolved with long reads that
provide long-range phasing information. Aldy 4 newly incorporates the
handling of long-range phasing information to the star-allele calling model
as follows.

Suppose that we are given z fragments R1, . . . , Rz , each fragment
being defined by a set of mutations that it spans:Rj = {m1, ..., } ⊆ M.
Each sequenced fragment originated from a single star-allele, and can thus
be assigned to one of the star-alleles in the dataset. We can control this
assignment by introducing a binary variable fi,j that is set if and only if
a fragment Rj is assigned to Si. Clearly,

∑
i fi,j must be one for every

Rj because each fragment originates from a single allele.
Ideally, we want to assign aRj toSi only if such an assignment agrees

with the star-allele sequence as much as possible. In other words, we want
to minimize the number of disagreements between allele Si and fragment
Rj . Thus, the total disagreement of an assignment can be expressed as
follows:

ei,j =
∑

m∈Rj

(1− pi,m − qi,m) +
∑

m∈R̄j

(pi,m + qi,m) ,

where R̄j denotes the set of mutations that are not present in read Rj but
are spanned by it.

The total phasing error can be expressed as
∑

i,r fr,ier,i. This
expression can be added to the objective function of the star-allele
calling model. Although the expanded version of this expression contains
quadratic terms, each quadratic term is a product of two binary variables
and, as such, can be trivially linearized.

As a final remark, note that the number of binary variables in the
phasing model is dependent on the total number of present reads and alleles.
In some cases, it can exceed half a million variables, making the overall
model very costly to solve. The model can be significantly improved by
using a smaller random sample of fragments, where the size of the random
sample depends on the number of present reads and alleles.

2.5 Limitations

Aldy uses ILP solvers to solve the presented models. While ILP solving is
NP-hard even when restricted to the models mentioned above (Numanagić
et al., 2018), all these models are solvable in practice in less than a
minute thanks to the state-of-the-art integer programming solvers utilized
by Gurobi (Gurobi Optimization, LLC, 2022) or CBC (Forrest et al., 2018)
solvers.

In some rare instances, Aldy cannot unambiguously call star-alleles
from short-read datasets due to the read length limitations and lack of
strand information. In these cases, Aldy will report all possible solutions.
In some cases, this might be misleading; for example, a *68+*4/*5 call
can be reported as *68/*4 (where *5 stands for deletion allele). However,
both calls are functionally identical and should be treated as equal (as we
do below). Aldy also makes heavy use of the existing star-allele databases
to call star-alleles and fusion breakpoints. While it can handle cases where
the database is incomplete or lacking, it can theoretically report incorrect
results if a present allele is wildly divergent from any allele in the database.

Finally, Aldy 4’s detection of structural configurations is highly
dependent on the stability of coverage across different sequencing runs.
While this is not a significant issue for short-read WGS and targeted
sequencing panels, the coverage might vary more than expected in PacBio
samples. For this reason, Aldy 4 brings support for the exploration of a
broader solution space when needed to account for potential noise.

3 Results
We have compared Aldy 4 (with PharmVar v5.1.15) against Astrolabe
v0.8.7.2 (Twist et al., 2016), StellarPGx v1.2.5 (Twesigomwe et al., 2021),
Stargazer v1.0.8 (Lee et al., 2019) and Cyrius v1.1.1 (Chen et al., 2021).
We also compared Aldy 4 against the previous version of Aldy, Aldy
v3.3 (Numanagić et al., 2018). The comparisons were done on a sizeable
GeT-RM set of publicly available samples and genes for which genotyping
panel validations were available (Pratt et al., 2010, 2016a; Gaedigk
et al., 2019). These samples were sequenced with three technologies: (1)
PGRNseq v.3 Illumina-based pharmacogene-targeted panel (Gordon et al.
(2016); 137 samples), (2) Illumina whole-genome sequencing (WGS; 70
samples), and (3) 10X Genomics sequencing (95 samples). In addition to
these samples, we also ran Aldy on the set of 45 Coriell samples sequenced
by PacBio HiFi pharmacogene-targeted panel (Portik et al., 2021; Kingan
et al., 2022) and validated by Scott et al. (2021).

Aldy 4 and other tools were run on the following 20 genes: CYP1A1,
CYP1A2, CYP2A13, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19,
CYP2D6, CYP2F1, CYP2J2, CYP2S1, CYP3A4, CYP3A5, CYP3A7,
CYP3A43, CYP4F2, DPYD, SLCO1B1, and TPMT. While Aldy 4 also
supports additional 15 genes, their evaluation was omitted because we did
not have the ground truth panel data for these genes. Note that not every tool
supports all of these genes: as a rule of thumb, Stargazer, Aldy 3 and Aldy
4 provide the broadest support, while the other tools are geared towards a
small subset of these genes (typically CYP genes, such as CYP2D6 and
CYP2C19).

The available ground truth data is obtained through genotyping panels
and assays designed to detect only the common major star-alleles (i.e.,
alleles defined solely by functional variants). These panels often cannot
call minor star-alleles (i.e., alleles defined by non-functional variants and
functionally indistinguishable from the major star-alleles), as well as less
common alleles. The low resolution of the available ground-truth data
and the differences in database specifications between the different tools
necessitated a few accommodations within the evaluation process for the
sake of fairness. First, we updated ground truth calls that missed the
presence of less common variants and alleles. Updates were only done
if there was a consensus between the star-allele calling tools that differed

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.11.503701doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.11.503701
http://creativecommons.org/licenses/by-nc-nd/4.0/


i
i

“output” — 2022/8/12 — 4:48 — page 6 — #6 i
i

i
i

i
i

6 Hari et al.

from the ground truth data and if an updated call extended the validated
allele definition (i.e., if the mutations defining the validated allele also
form a part of the consensus definition). Note that a similar approach was
used in Numanagić et al. (2018). Each updated call was further manually
inspected to ensure that the variants missing from the ground truth calls are
indeed present and not sequencing artifacts. In rare instances, it was hard
to precisely distinguish the presence of the variant, especially if the variant
allele frequency (VAF) was too low (alleles with lower VAFs are sometimes
caused by the sequencing or read alignment bias, especially in the presence
of pseudogenes, and are typically validated through Sanger sequencing).
Samples with such variants were marked as “Need Validation” (Table 1).
For such samples, calls that either used or ignored such ambiguous variants
were deemed “correct”. Second, we have followed the common strategy
employed in clinical studies (Ly et al., 2022) by only comparing the
major star-allele calls and ignoring the minor star-allele designations.
In other words, only the phasing of functional variants was considered;
non-functional and silent variants that do not alter the functionality of an
allele were ignored (i.e., a *1A/*2B minor star-allele call was treated as a
functionally equivalent *1/*2 major star-allele call 4).

Where possible, we used the CYP2D8 region as the copy number
neutral region; exceptions include Aldy 4 using F1 region for the PacBio
data. Some tools, such as Astrolabe and Stargazer, relied on VCF files;
where needed, VCFs were generated by bcftools (Li et al., 2009).

All results were obtained on machines with Intel Xeon E5-2680v4
and 8260 CPUs. Each evaluated tool genotypes a single gene in a single
sample within a few minutes, regardless of the sequencing technology
used. However, note that Aldy 4 only needs BAM/CRAM to run; other
tools often require VCF or GDF files that can take significant time to
generate.

Overall, the best accuracy on short-read datasets (PGRNseq v.3,
Illumina WGS and 10X Genomics) was achieved by Aldy 4 (98.04%),
followed by Aldy 3 (96.93%), Astrolabe (84.56%), Cyrius (82.63%),
StellarPGx (81.69%) and Stargazer (73.82%).

3.1 PGRNseq v.3

Aldy 4, Aldy 3, Stargazer and Astrolabe were run on 137 PGRNseq
v.3 targeted sequencing (Gordon et al., 2016) samples from the GeT-RM
collection. PGRNseq v.3 targets common pharmacogenes and sequences
them at high depths (up to 1000× per loci).

Note that we could not get either Stargazer or Astrolabe to run on
targeted sequencing data natively; for that reason, we used VCF files as
an input for these tools. Because of the limited nature of VCF files, these
tools were unable to call copy number changes and fusions on this dataset.5

We have omitted the comparison with StellarPGx as it does not support
targeted sequencing data.

As can be seen in Table 1, Aldy 4 identifies nearly all of the alleles in
all genes correctly—more than the other two tools—with a total accuracy
of 96.7%. In some cases (e.g., failed cases in the genes CYP1A1 and
CYP2B6), no caller was able to call correct star-alleles because the
PGRNseq panel did not sequence the variant of interest (e.g., a non-exonic
downstream variant rs4646903 that defines CYP1A1*2A was not covered
by the panel at all).

On this dataset, Aldy 4’s performance is only marginally better than
Aldy 3. This is expected as neither of the model updates unique to Aldy 4

4 Major star-alleles are typically distinguished by the number (e.g., *1
functionally differs from *2). Minor star-alleles are typically distinguished
by a letter (e.g., *2A and *2B harbor different silent variants despite sharing
common functional variants).
5 While Stargazer has a mode for targeted data, we were unable to get
good results with it.

applies to the high-quality PGRNseq dataset with stable coverage. Minor
changes are mostly due to the differences in the variant calling (e.g., Aldy
4’s incorporation of quality scores and mapping qualities).

3.2 Illumina WGS

We have run all tools on 70 Illumina HiSeq-sequenced WGS samples from
the GeT-RM sample collection. These samples were sequenced with an
average depth of roughly 30×. The details are also available in Table 1.

Here, Aldy 4 again calls nearly all star-alleles correctly and genotypes
more samples than the competition for every considered gene. The only
exception is CYP2D6, where Cyrius genotypes one sample (NA21781)
more than Aldy 4. In this case, Aldy 4 identifies the *2 allele as *65;
however, the *65 allele extends the *2 allele with a single SNP (rs1065852),
and it is unclear if this allele is indeed a *2 or a *65.

Aldy 4 and other tools were able to correctly call alleles defined by
intronic and downstream variants across the genes on this data. Note that
the main reason behind the Stargazer’s lower accuracy on this dataset
was copy number calling: while Stargazer often identified the star-allele
correctly, it would often call them more times than needed (e.g., *1/*2+*2
instead of *1/*2).6

Note that Astrolabe used a modified CYP4F2 database whose allele
nomenclature differed from the other databases. Thus, we have omitted
comparison with Astrolabe on CYP4F2 for the sake of consistency. We also
observed a large number of mismatches in SLCO1B1 across all tools due
to the incomplete panel validation and inconsistent database specifications
used by various tools.

Finally, the improvements in the copy number model and more
sensitive variant calling in Aldy 4 account for a few improved calls on
more complex CYP2D6 and CYP2A6 samples.

3.3 10X Genomics

We have run all tools on 95 GeT-RM samples sequenced by a 10X
Genomics WGS sequencer. The average depth of sequencing was roughly
40×. Because several important pharmacogenes reside within repeated
regions of the human genome, we used EMA aligner (Shajii et al., 2018)
in density-based optimization mode for improved alignment of the 10X
reads to the reference genome (hg19). The comparison details are available
in Table 1.

Although the 10X Genomics protocol uses Illumina HiSeq for
sequencing, the read coverage is not as uniform as it is in an average
Illumina WGS sample. 10X-specific biases also result in quite a few
misaligned reads compared to the WGS data. For this reason, the overall
allele calling accuracy is lower than the WGS dataset; this is especially
evident in Stargazer, where the accuracy of its copy number detection
module is even lower than in WGS data.

However, Aldy 4 still correctly calls the majority of alleles (with
95.9%) accuracy, especially when compared to the other tools. The
most challenging genes for all tools were CYP2A6 and CYP2D6. Aldy’s
accuracy is lower in these genes, primarily due to the occasional copy
number mismatch (due to the coverage unevenness) and sequencing
artifacts (where many mis-identified variants were either an artifact or
were under-sequenced). Note that Aldy 4 benefited from the novel phasing
module that was able to successfully utilize 10X Genomics barcodes to
link long-distance variants together. Finally, we observe the significant
improvements over Aldy 3 in CYP2D6 and CYP2A6 samples on this
dataset due to an improved copy-number model that better handles noisy
coverage and ambiguous variants (a common case in 10X Genomics

6 Note that Aldy only calls copy numbers and fusions on genes that are
known to harbor such changes; otherwise, it assumes that two copies are
present.
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Table 1. Summary of the star-allele calls generated by six tools (Aldy 4, Aldy 3, StellarPGx, Stargazer, Astrolabe and Cyrius) on 137 GeT-RM samples sequenced
by three different technologies. Bold results indicate the best tool for a given gene. Some tools do not support all genes; those cases are indicated with a dash (—).
Checkmark (4) indicates the call that matches the updated validation panel star-allele call; a cross-mark (6) indicates the mismatch. Number of updated panel
calls, as well as the calls that need further validation (marked with N.V.), is indicated at the beginning. Note that the total number of samples varies across genes and
technologies due to the availability of sequencing data and ground truth validation. Detailed results are available at https://github.com/0xTCG/aldy.

PGRNseq v.3
Aldy 4 Aldy 3 Stargazer Astrolabe

Gene Updated N.V. 4 6 4 6 4 6 4 6

CYP2D6 1 0 134 3 135 2 68 69 71 66
CYP2A6 11 4 137 0 132 5 117 20 —
CYP1A1 31 0 78 18 79 17 78 18 —
CYP1A2 1 0 96 0 96 0 96 0 —
CYP2A13 20 0 96 0 96 0 96 0 —
CYP2B6 36 5 135 2 134 3 118 19 —
CYP2C8 5 0 137 0 137 0 137 0 135 2
CYP2C9 1 0 137 0 137 0 120 17 128 9
CYP2C19 3 0 137 0 137 0 128 9 137 0
CYP2F1 16 7 — — — —
CYP2J2 1 0 96 0 96 0 85 11 —
CYP2S1 4 0 93 3 94 2 93 3 —
CYP3A4 0 0 137 0 137 0 128 9 —
CYP3A5 0 0 137 0 137 0 107 30 —
CYP3A7 7 0 96 0 96 0 45 51 —
CYP3A43 10 0 87 9 87 9 87 9 —
CYP4F2 11 0 137 0 137 0 124 13 137 0
DPYD 46 0 137 0 136 1 64 73 —
SLCO1B1 23 11 127 10 125 12 123 14 110 27
TPMT 0 0 137 0 137 0 137 0 137 0
Accuracy 98.06% 97.80% 84.24% 89.16%

Illumina WGS 10X Genomics
Aldy 4 Aldy 3 StellarPGx Stargazer Astrolabe Cyrius Aldy 4 Aldy 3 StellarPGx Stargazer Astrolabe Cyrius

Gene 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6

CYP2D6 68 2 63 7 65 5 50 20 43 27 70 0 73 22 57 38 54 41 44 51 51 44 62 33
CYP2A6 70 0 68 2 67 3 58 12 — — 69 26 42 53 81 14 34 61 — —
CYP1A1 66 0 66 0 — 64 2 — — 88 1 89 0 — 56 33 — —
CYP1A2 66 0 66 0 66 0 66 0 — — 89 0 89 0 89 0 77 12 — —
CYP2A13 66 0 66 0 — 59 7 — — 89 0 89 0 — 64 25 — —
CYP2B6 69 1 69 1 68 2 56 14 — — 94 1 94 1 61 34 61 34 — —
CYP2C8 70 0 70 0 — 58 12 68 2 — 94 1 95 0 — 64 31 93 2 —
CYP2C9 70 0 70 0 70 0 54 16 67 3 — 95 0 95 0 94 1 54 41 92 3 —
CYP2C19 69 1 69 1 69 1 67 3 70 0 — 94 1 95 0 62 33 65 30 95 0 —
CYP2F1 65 1 — 0 66 0 66 — — 89 0 — 0 89 0 89 — —
CYP2J2 66 0 66 0 — 51 15 — — 89 0 89 0 — 58 31 — —
CYP2S1 66 0 66 0 — 65 1 — — 89 0 89 0 — 76 13 — —
CYP3A4 70 0 70 0 70 0 49 21 — — 95 0 95 0 91 4 51 44 — —
CYP3A5 69 1 69 1 68 2 46 24 — — 95 0 95 0 87 8 53 42 — —
CYP3A7 66 0 66 0 — 54 12 — — 89 0 88 1 — 49 40 — —
CYP3A43 66 0 66 0 — 55 11 — — 88 1 88 1 — 66 23 — —
CYP4F2 70 0 70 0 66 4 57 13 26 44 — 94 1 95 0 88 7 49 46 36 59 —
DPYD 70 0 70 0 — 28 42 — — 95 0 94 1 — 30 65 — —
SLCO1B1 67 3 67 3 — 63 7 62 8 — 88 7 87 8 — 71 24 81 14 —
TPMT 70 0 70 0 — 63 7 70 0 — 95 0 95 0 — 80 15 95 0 —
Accuracy 99.34% 98.85% 88.01% 77.70% 82.86% 100.00% 96.71% 94.16% 75.37% 59.50% 81.65% 65.26%

samples), and is as such able to improve the calling accuracy up to 30%
in these genes.

3.4 PacBio HiFi

Finally, we ran Aldy 4 on two sets of PacBio HiFi samples sequenced by
a custom targeted pharmacogenomics panel (Portik et al., 2021; Kingan
et al., 2022). The first set contained 24 samples, while the second set
was comprised of 21 samples. The region gene coverage of these datasets
varies—it can be as low as 10×—and at times exceed even 200×. We
compared Aldy’s calls with those of Astrolabe. While none of the other

tools support PacBio long reads natively, we were able to at least run
Astrolabe in VCF mode. The validation data was obtained from Scott et al.
(2021) and Pratt et al. (2016b). The call details are available in Table 2.

Star-allele calls generated by Aldy 4 agree with the ground truth in all
genes except for a few CYP2D6 calls and one CYP2C9 call. Furthermore,
its calls augmented and phased many ground-truth calls generated by
panels with limited SNP coverage with additional SNPs observed by
PacBio data (Table 2). Aldy was also able to find and phase novel alleles
that have not been cataloged in genes CYP2B6, CYP2C19, CYP3A4, DPYD
and SLCO1B1. Further validation of such novel calls, as well as of the calls
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that were deemed ambiguous, is needed to fully confirm and understand
such alleles.

When it comes to CYP2D6, Aldy 4’s calls disagree with the ground-
truth data due to the difference in predicted copy number. In two instances,
Aldy 4 called an additional copy (i.e., *1+*1 instead of *1, and *4+*4
instead of *4), while in the other two instances, Aldy 4 did not call
an existing copy (i.e., it called *2 instead of *2+*2 and *10 instead of
*10+*10). In one instance, Aldy called *36 instead of *10 (note that these
alleles are nearly identical); in the final instance Aldy did not call non-
functional *68 fusion allele. In all these cases, the observed coverage
was noisy, and further validation is needed to ascertain the exact copy
number of these samples. We would also like to point out that Astrolabe’s
calls in genes CYP2C19 and SLCO1B1, as well as on CYP2D6 on the
second dataset, were highly ambiguous, often containing more than ten
functionally different solutions.

Table 2. Overview of the star-allele calls generated by Aldy 4 and Astrolabe
on PacBio HiFi targeted data. Some tools do not support all genes; those cases
are indicated with a dash (—). Check mark (4) indicates the call that matches
the updated validation panel star-allele call; a cross-mark (6) indicates the
mismatch. Number of updated panel calls, as well as the calls that need further
validation (marked with N.V.), is indicated at the beginning.

Dataset 1
Aldy 4 Astrolabe

Gene Updated N.V. 4 6 4 6

CYP2D6 5 1 21 3 9 15
CYP1A2 1 0 24 0 —
CYP2B6 8 0 24 0 —
CYP2C8 2 0 24 0 15 9
CYP2C9 3 1 24 0 24 0
CYP2C19 4 0 24 0 9 15
CYP3A4 0 0 24 0 —
CYP3A5 0 0 24 0 —
CYP4F2 0 0 24 0 13 11
DPYD 20 0 24 0 —
NUDT15 0 1 24 0 —
SLCO1B1 8 0 24 0 24 0
TPMT 1 0 24 0 17 7
Accuracy 98.96% 66.07%

Dataset 2
Aldy 4 Astrolabe

Gene Updated N.V. 4 6 4 6

CYP2D6 0 0 18 3 14 7
CYP1A2 0 0 21 0 —
CYP2B6 6 0 21 0 —
CYP2C8 0 0 21 0 12 9
CYP2C9 0 0 20 1 20 1
CYP2C19 2 0 21 0 19 2
CYP3A4 0 0 21 0 —
CYP3A5 0 0 21 0 —
CYP4F2 1 0 21 0 12 9
DPYD 8 0 21 0 —
SLCO1B1 6 0 21 0 21 0
TPMT 0 0 21 0 19 2
Accuracy 98.41% 79.59%

3.5 Other remarks

We have observed that many tools often confuse CYP2B6*6 and
CYP2B6*9 alleles that differ only in rs2279343 SNP. This SNP is often

either under-sequenced or covered by ambiguous reads that potentially
originate from the neighboring CYP2B7 pseudogene, and is thus hard to
call with high confidence in some technologies (e.g., PGRNseq v.3). When
the true call was ambiguous, we have deemed both possible calls “correct”.
Similar cases were also observed with CYP2A6*1 and CYP2A6*35 alleles.
Further validation is needed to properly ascertain the true existence of these
alleles in problematic samples.

If multiple allele calls were generated by a tool for a given sample
and gene combination, the call was deemed “correct” if at least one such
multi-call matched the ground truth. Note that the prevalence of multiple
calls was overall low: around 1.2% for Aldy 4, 2.7% for Aldy 3, 1.8%
for Stargazer, 1.8% for StellarPGx and 15.7% for Astrolabe. Aldy 4’s new
phasing model was a significant factor for a low multi-call rate: while
the rate was 1.8% on PGRNseq v.3 and 1.9% on WGS samples due to the
short read lengths of such samples, it decreased to 0.5% on 10X and PacBio
samples that allowed better phasing. The vast majority of ambiguous calls
were observed when genotyping CYP4F2 and SLCO1B1.

4 Conclusion
Pharmacogenomics is becoming a key component of evidence-based
medicine (Relling and Evans, 2015). Genes like CYP2D6 and CYP2C19
regulate a large portion of clinically prescribed drugs; other genes, such
as HLA or IGH gene cluster, are vital for understanding the immune
response (Ford et al., 2020, 2022). As their function is dependent on
their haplotype, it is of vital importance to genotype and haplotype these
genes prior to administering medical treatment (Crews et al., 2014).
High-throughput sequencing technologies are a natural candidate for
this process, especially when considered that the currently available
clinical genotyping panels are often restricted only to the most common
genotypes and struggle to detect more complex structural altercations
within pharmacogenes.

In this work, we have presented Aldy 4, the first tool that
can accurately and consistently call star-alleles in data from various
sequencing technologies, including but not limited to long-read PacBio
data, Illumina short-read sequencing in all of its flavors (i.e., whole-
genome, whole-exome, and targeted capture data), as well as the 10X
Genomics barcoded data. Aldy 4 achieves this by employing combinatorial
optimization models to solve various challenges associated with calling
pharmacogenetic haplotypes from sequencing data, such as copy number
and structural variation detection, variant calling and variant phasing,
ultimately resulting in a star-allele decomposition of a gene of interest.
We have shown the strength of Aldy 4’s approach through a series of
comparisons against the current state-of-the-art star-allele callers, in which
Aldy 4 always performed the best. We hope that Aldy 4 will be of vital
importance to clinicians in tailoring prescription recommendations, thus
ultimately leading to improved medical care.

There are still some open questions left that need to be answered in
future work. Most importantly, the panel-validated calls improved by
the star-allele callers through the use of HTS data—often containing
novel alleles not previously cataloged in the existing databases—need
to be validated in a wet-lab environment for all genes presented, as
was done recently for a selection of CYP2C genes (Gaedigk et al.,
2022). More tests are also needed on larger cohorts to accurately evaluate
the precision of these tools, Aldy 4 included, on rare fusions. The
incorporation of other highly polymorphic pharmacogenomics regions,
such as HLA or IGH, should also be considered, as Aldy (and other
evaluated pharmacogenomics tools) are currently unable to handle the
complexities of such regions. Finally, the complete characterization
of minor star-alleles, accompanied by the careful characterization of

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.11.503701doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.11.503701
http://creativecommons.org/licenses/by-nc-nd/4.0/


i
i

“output” — 2022/8/12 — 4:48 — page 9 — #9 i
i

i
i

i
i

Aldy 4 9

non-coding variants, is also needed to understand the full effect of
pharmacogenes on the treatment and drug dosage decisions.
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