
Learning representations for
image-based profiling of perturbations

Authors
Nikita Moshkov, Michael Bornholdt, Santiago Benoit, Matthew Smith, Claire McQuin, Allen
Goodman, Rebecca A. Senft, Yu Han, Mehrtash Babadi, Peter Horvath, Beth A. Cimini, Anne E.
Carpenter, Shantanu Singh, Juan C. Caicedo*

* Corresponding author

Abstract
Measuring the phenotypic effect of treatments on cells through imaging assays is an efficient
and powerful way of studying cell biology, and requires computational methods for transforming
images into quantitative data that highlight phenotypic outcomes. Here, we present an optimized
strategy for learning representations of treatment effects from high-throughput imaging data,
which follows a causal framework for interpreting results and guiding performance
improvements. We use weakly supervised learning (WSL) for modeling associations between
images and treatments, and show that it encodes both confounding factors and phenotypic
features in the learned representation. To facilitate their separation, we constructed a large
training dataset with Cell Painting images from five different studies to maximize experimental
diversity, following insights from our causal analysis. Training a WSL model with this dataset
successfully improves downstream performance, and produces a reusable convolutional
network for image-based profiling, which we call Cell Painting CNN-1. We conducted a
comprehensive evaluation of our strategy on three publicly available Cell Painting datasets,
discovering that representations obtained by the Cell Painting CNN-1 can improve performance
in downstream analysis for biological matching up to 30% with respect to classical features,
while also being more computationally efficient.
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Introduction
High-throughput imaging and automated image analysis are powerful tools for studying the
inner workings of cells under experimental interventions. In particular, the Cell Painting assay 1,2

has been adopted both by academic and industrial laboratories to evaluate how perturbations
alter overall cell biology. It has been successfully used for studying compound libraries 3–5,
predicting phenotypic activity 6–9, and profiling human disease 10,11, among many other
applications. To reveal the phenotypic outcome of treatments, image-based profiling transforms
microscopy images into rich high-dimensional data using morphological feature extraction 12.
Cell Painting datasets with thousands of experimental interventions provide a unique
opportunity to use machine learning for obtaining representations of the phenotypic outcomes of
treatments.

Improved feature representations of cellular morphology have the potential to increase the
sensitivity and robustness of image-based profiling to support a wide range of discovery
applications 13,14. Feature extraction has been traditionally approached with classical image
processing 15,16, which is based on manually engineered features that may not capture all the
relevant phenotypic variation. Several studies have used convolutional neural networks (CNNs)
pre-trained on natural images 17–19, which are optimized to capture variation of macroscopic
objects instead of images of cells. To recover causal representations of treatment effects,
feature representations need to be sensitive to subtle changes in morphology. However,
classical features and pre-trained networks may not have sufficient expressive power to realize
that potential. Representation learning shows promise as a tool to learn domain-specific
features from cellular images in a data-driven way 4,20–23, but it also brings unique challenges to
avoid being dominated by confounding factors 24,25.

In this paper, we investigate the problem of learning representations for image-based profiling
with Cell Painting. Our goal is to identify an optimal strategy for learning cellular features, and
then use it for training models that recover improved representations of the phenotypic
outcomes of treatments. We use a causal framework to reason about the challenges of learning
representations of cell morphology (e.g., confounding factors), which naturally fits in the context
of perturbation experiments 26,27, and serves as a tool to optimize the workflow and yield better
performance (Figure 1). In addition, we adopted a quantitative evaluation of the impact of
feature representations in a biological downstream task, to guide the search for an optimized
workflow. The evaluation is based on querying a reference collection of treatments to find
biological matches in a perturbation experiment. In each evaluation, cell morphology features
change to compare different strategies, while the rest of the image-based profiling workflow
remains constant. Performance is measured using metrics for the quality of a ranked list of
results for each query (Figure 1G). With this evaluation framework, we conduct an extensive
analysis on three publicly available Cell Painting datasets.

Within the proposed causal framework, we use weakly supervised learning (WSL) 20 to model
the associations between images and treatments, and we found that it powerfully captures rich
cellular features that simultaneously encode confounding factors and phenotypic outcomes as
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latent variables. Our analysis indicates that to disentangle them, to improve the ability of models
to learn the difference between the two types of variation, and to recover the causal
representations of the true outcome of perturbations, it is important to train models with highly
diverse data. Therefore, we constructed a training dataset that combines variation from five
different experiments to maximize the diversity of treatments and confounding factors (Figure 4).
As a result, we successfully trained a new, reusable single-cell feature extraction model: the Cell
Painting CNN-1 (Figure 1F), which yields better performance in the evaluated benchmarks and
displays sufficient generalization ability to profile other datasets effectively.

Results

Recovering features of treatment effects
We use a causal model as a conceptual framework to reason and analyze the results of
representation learning strategies. Figure 1B presents the causal graph with four variables:
interventions (treatments T), observations (images O), outcomes (phenotypes Y) and
confounders (e.g. batches C). Some variables are observables (white circles), while others
represent latent variables (shaded circles). This graph is a model of the causal assumptions we
make for representation learning and for interpreting the results.

Our goal is to estimate an unbiased, multidimensional representation of treatment outcomes
(Y), which can later be used in many downstream analysis tasks. We use WSL 20 (Figure 1C) for
obtaining representations of the phenotypic outcome of treatments by training a classifier to
distinguish all treatments from each other. In this way, the model learns associations between
observed images (O) and treatments (T), while capturing unobserved variables in a latent
representation (Y and C). To recover the phenotypic features of treatment effects (Y) from the
latent representations, we employ batch correction 18 to reduce the variation associated with
confounders and amplify causal features of phenotypic outcomes (Figure 1D). More details of
the assumptions and structure of our framework can be found in the Methods section.
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Figure 1. Framework for analyzing image-based profiling experiments. A) Example Cell Painting
images from the BBBC037 dataset of control cells (empty status) and one experimental intervention (JUN
wild-type overexpression) in the U2OS cell line. B) Causal graph of a conventional high-throughput Cell
Painting experiment with two observables in white circles (treatments and images) and two latent
variables in shaded circles (phenotypes and batch effects). The arrows indicate the direction of causation.
C) Weakly supervised learning as a strategy to model associations between images (O) and treatments
(T) using a convolutional neural network (CNN). The CNN captures information about the latent variables
C and Y in the causal graph because both are intermediate nodes in the paths connecting images and
treatments. D) Illustration of the sphering batch-correction method where control samples are a model of
unwanted variation (top). After sphering, the biases of unwanted variation in control samples is reduced
(bottom). E) The goal of image-based profiling is to recover the outcome of treatments by estimating a
representation of the resulting phenotype, free from unwanted confounding effects. F) Illustration of the
Cell Painting CNN-1, an EfficientNet model trained to extract features from single cells. G) The evaluation
of performance is based on nearest neighbor queries performed in the space of phenotype
representations to match treatments with the same phenotypic outcome. Performance is measured with
two metrics: folds of enrichment and mean average precision (Methods).

Weakly supervised learning captures confounders and phenotypic
outcomes of treatments
WSL models are trained with a classification loss to detect the treatment in images of single
cells (Figure 1C, Methods), which is a pretext task to learn representations of the latent
variables in the causal graph. Given that the treatment applied to cells in a well is always
known, we can quantify the success rate of single-cell classifiers on this pretext task using
precision and recall. We conducted single-cell classification experiments using two validation
schemes to reveal how sensitive WSL is to biological and technical variation (Figure 2A). The
leave-cells-out validation scheme uses single cells from all plates and treatments in the
experiment for training, and leaves a random fraction out for validation. By doing so, trained
CNNs have the opportunity to observe the whole distribution of phenotypic features (all
treatments) as well as the whole distribution of confounding factors (all batches or plates). In
contrast, the leave-plates-out validation scheme separates different technical replicates (plates)
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for training and validation, resulting in a model that still observes the whole distribution of
treatments, but only partially sees the distribution of confounding factors.

The results in Figure 2B show a stark contrast in performance between the two validation
strategies. When leaving cells out (results in blue), a CNN can accurately learn to classify single
cells in the training and validation sets with only a minor difference in performance. When
leaving plates out (results in orange), the CNN learns to classify the training set well but fails to
generalize correctly to the validation set. The generalization ability of the two models is further
highlighted in the validation results in Figure 2C, which presents the precision and recall of each
treatment.

Importantly, while these WSL models exhibit a major difference in performance in the pretext
classification task, their performance in the downstream analysis task is almost the same after
batch correction (Figure 2D). The large difference in performance in the pretext task followed by
no difference in the downstream task reveals that WSL models leverage both phenotypes and
confounders to solve the pretext task. On one hand, the validation results of leaving-cells-out
are an overly optimistic estimate of how well a CNN can recognize treatments in single cells,
because the models leverage batch effects to make the correct connection. On the other hand,
the results of leaving-plates-out are an overly pessimistic estimate because the CNN fails to
generalize to unseen replicates with unknown confounding variation (domain shift). The true
estimate of performance in the pretext classification task is likely to be in the middle when
accounting for confounding factors. This is indeed what we observe in the downstream analysis
results: after batch correction, the representations of models trained with leave-cells-out and
leave-plates-out yield similar downstream performance in the biological matching task,
indicating that both models find similar phenotypic features, but capture different confounding
variation.
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Figure 2. Validation strategies for the single-cell classification task in weakly supervised learning.
A) Illustration of the two strategies: leave-cells-out (in blue) uses cells from all plates in the dataset for
training and leaves a random fraction out for validation. Leave-plates-out (in orange) uses all the cells
from certain plates for training, and leaves entire plates out for validation. Any difference in performance
is due to confounding factors. Note that plates-left out are selected such that all treatments have two full
replicate-wells out for validation, which may or may not correspond to entire batches, depending on the
experimental design. B) Learning curves of models trained with WSL for 30 epochs with all treatments
from each dataset. The x-axis is the number of epochs and the y axis is the average F1-score. The color
of lines indicates the validation strategy, and the style of lines indicates training (solid) or validation
(dashed) data. C) Precision and recall results of each treatment in the single-cell classification task. Each
point is a treatment (negative controls are labeled in blue), and the color corresponds to the validation
strategy. D) Performance of models in the downstream, biological matching task after batch correction.

Treatments with strong phenotypic effect improve performance
The WSL model depicted in Figure 1C captures associations between images (O) and
treatments (T) in the causal graph, while encoding technical (C) and phenotypic (Y) variation as
latent variables because both are valid paths to find correlations. Given that controlling the
distribution of confounding factors does not result in downstream performance changes, in this
section we explore the impact of controlling the distribution of phenotypic diversity. Our
reasoning is that WSL learning favors correlations between treatments and images through the
path in the causal graph that makes it easier to minimize the empirical error in the pretext task.
Therefore, the variation of treatments with a weak phenotypic response is overpowered by
confounding factors that are stronger relative to the phenotype.

To measure the phenotypic strength of treatments we calculate the Euclidean distance between
control and treatment profiles in the CellProfiler feature space after batch correction with a
sphering transform (Figure 3A). We interpret this procedure as a crude approximation of the
average treatment effect (ATE), a causal parameter of intervention outcomes, because the
Euclidean distance calculates the difference in expected values (aggregated profiles) of the
outcome variable (phenotype) between the control and treated conditions. However, since we
do not observe the control and treated condition in the same cells, this remains only an
approximation of the ATE, even if the cells are isogenic clones of each other. We chose
distances in the CellProfiler feature space as an independent prior for estimating treatment
strength because these are non-trainable, and because in our experiments CellProfiler features
exhibit more robustness to confounding factors (Supplementary Figure 1).

We ranked treatments in ascending order based on the strength of the phenotypic effect and
took 20% in the bottom, middle and top of the distribution (Figure 3B,C). Next, we evaluated the
performance of WSL models trained on each of these three categories and we found that
performance improves in the downstream biological matching task with treatments that have a
stronger phenotypic effect (Figure 3D). These results were obtained by training under a
leave-cells-out validation scheme, giving the CNN full access to the distribution of confounders.
The trend indicates that it is possible to break the limitations of WSL for capturing useful
associations between images and treatments in the latent variables as long as the phenotypic
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outcome is stronger than confounding factors. Note that training with all treatments (green
points in Figure 3D) may result in lower overall performance if the majority of the treatments
have weak phenotypes (BBBC037), may result in marginally improved performance if the
confounding effects are too strong (BBBC022), or may result in better performance when there
is a balance between both latent variables (BBBC036). Training with all treatments only
improves performance with respect to the CellProfiler baseline in one of the three datasets
(Figure 3D).

Figure 3. Effect of training models with subsets of treatments. A) Illustration of phenotypic outcomes
with varied effects and their distance to controls (see Methods). B) Number of treatments used for training
per dataset partition. The rows are datasets and the columns are subsets of treatments grouped by their
estimated effect. C) Distribution of distances between treatments and controls as an estimation of
treatment effect sorted by distance for each dataset. The x axis represents individual treatments and the y
axis represents the log normalized distance to controls. From this distribution, we select 20% of
treatments with the weakest (blue), median (orange), and strongest (red) treatments for experiments. D)
Evaluation of performance in downstream analysis (biological matching task) for each dataset. Each point
in the scatter plots represents one experiment conducted with a model trained with the corresponding
subset of the data. The x axis represents performance according to mean average precision (higher is
better) and the y axis represents the folds-of-enrichment metric (higher is better).

A training set with highly diverse experimental conditions
In previous sections, we presented the results of changing the distribution of confounders by
training with all plates (leave-cells-out validation) or with a few plates (leave-plates-out
validation), which did not change the performance in the biological matching task after batch
correction (Figure 2D). We also changed the distribution of phenotypic outcomes by sampling
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treatments of diverse effects, and observed that strong treatments can improve performance
(Figure 3D). In addition, we found that even when training a model with the full distribution of
confounders (leave-cells-out) and the full distribution of phenotypes (all treatments) in a dataset,
the performance in the downstream task may not necessarily improve with respect to the
CellProfiler baseline (Figure 3D green vs pink points). These results suggest that training
models in individual datasets alone may limit the representation power of learned features to
their local distributions of confounders and phenotypes, and therefore, we hypothesized that
increasing their diversity to out of distribution examples may improve performance.

To increase the diversity of experimental conditions in the training set, we created a combined
training resource by collecting strong treatments from five different dataset sources, including
the three benchmarks evaluated in this work plus two additional publicly available Cell Painting
datasets (Figure 4). We selected strong treatments from each source and sought to prioritize
treatments shared across sources (Methods). In total, the resulting combined set has 488 strong
treatments, represents two cell lines, two types of negative controls, and examples from more
than 200 plates, resulting in training data with high experimental diversity with respect to the two
latent variables in the causal graph: high technical variation (confounders C) and high
phenotypic variation through strong treatments (outcomes Y).

Figure 4. A combined set of Cell Painting images for training. A) Statistics of the combined Cell
Painting dataset created to train a generalist model, which brings 488 treatments from 5 different publicly
available sources (Methods): LINCS, LUAD, and the three datasets evaluated here; the Venn diagrams
illustrate the common treatments among them. There are two types of treatments (compounds and gene
overexpression), two types of controls (empty and DMSO), two cell lines (A549 and U2OS), for a total of
8.3 million single cells from 232 plates in the resulting training resource. B) Table of the three benchmark
datasets used in this study with the number of treatment queries used for evaluation, and the type of
ground truth annotations available for evaluation of the biological matching task. The quantitative results
for each dataset are the mean across the queries listed in this table.

Cell Painting CNN-1 learns improved biological features
We found that training a model on this combined Cell Painting dataset consistently improves
performance and yields better results than baseline approaches in the task of biologically
matching queries against a reference annotated library of treatments, across all three
benchmarks (Figure 5A). We consider two baseline strategies in our evaluation: 1) creating
image-based profiles with classical features obtained with custom CellProfiler pipelines
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(Methods), and 2) computing profiles with a CNN pre-trained on ImageNet, a dataset of natural
images in red, green, blue (RGB) colorspace (Methods). Intuitively, we expect feature
representations trained on Cell Painting images to perform better at the matching task than the
baselines. In the case of CellProfiler, manually engineered features may not capture all the
relevant phenotypic variation, and in the case of ImageNet pre-trained networks, they are
optimized for macroscopic objects in 3-channel natural images instead of 5-channel
fluorescence images of cells.

According to the MAP metric, a WSL model trained on the highly diverse combined set improves
performance 7%, 8% and 25% relative to CellProfiler features on BBBC037, BBBC022 and
BBBC036 respectively (difference of cyan points vs pink points in the x axis of Figure 2B).
Similar improvements are observed with the Folds of Enrichment metric (y-axis of Figure 2B),
obtaining 6%, 8%, and 30% relative improvement on the three benchmarks respectively.
Importantly, the combined dataset allowed us to train a single model once and profile all the
three benchmarks without re-training or fine-tuning on each of them, demonstrating that the
model captures features of Cell Painting images relevant to distinguish more effectively the
variation of the two latent variables of the causal model.

We found that ImageNet features showed variable performance compared to CellProfiler
features (Figure 2B), sometimes yielding similar performance (BBBC022), sometimes lower
performance (BBBC037) and sometimes slightly better performance (BBBC036). The three
benchmarks used in this study are larger scale and more challenging than datasets used in
previous studies 17,18 where it was observed that ImageNet features are typically more powerful
than classical features. Our results indicate that, in large scale perturbation experiments with
Cell Painting, ImageNet features do not conclusively capture more cellular-specific variation
than manually engineered features using classical image processing.

Figure 5B shows a UMAP projection 28 of the feature space obtained using our Cell Painting
CNN-1 for the three datasets evaluated in this study. From a qualitative perspective, the UMAP
plot of the BBBC037 dataset (a gene overexpression screen) shows groups of treatments
clustered according to their corresponding genetic pathway, and recapitulates previous
observations of known biology 29. The BBBC022 30 and BBBC036 31 datasets (compound
screens) likewise show many treatments grouped together according to their mechanism of
action (MoA).
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Figure 5. Quantitative evaluation of feature representations of treatment effects. The evaluation
task is biological profile matching (see Figure 1G). A) Performance of feature representations for the three
benchmark datasets according to two metrics: Mean Average Precision (MAP) in the x axis and Folds of
Enrichment in the y axis (see Methods). Each point indicates the mean of these metrics over all queries
using the following feature representations: CellProfiler (pink), a CNN pre-trained on ImageNet (yellow), a
CNN trained on the combined set of Cell Painting images (cyan), and a CNN trained on Cell Painting
images from the same dataset (green). B) UMAP visualizations of treatment profiles recovered with the
Cell Painting CNN-1 after batch correction for the three datasets evaluated in this work. The plot includes
a projection of well-level profiles (gray points), control wells (red points), and aggregated treatment-level
profiles of treatments (blue points). Dashed lines indicate clusters of treatment-level profiles where all or
the majority of points share the same biological annotation.

Batch correction recovers phenotype representations
Batch correction is a crucial step for image-based profiling regardless of the feature space of
choice. We hypothesized that a rich representation might encode both confounders and
phenotypic features in a way that facilitates separating one type of variation from the other, i.e.
disentangles the sources of variation. To test this, we evaluated how representations respond to
the sphering transform, a linear transformation for batch correction based on singular value
decomposition SVD (Methods). Sphering first finds directions of maximal variance in the set of
control samples and then reverses their importance by inverting the eigenvalues. This transform
makes the assumption that large variation found in controls is associated with confounders and
any variation not observed in controls is associated with phenotypes. Thus, sphering can
succeed at recovering the phenotypic effects of treatments if the feature space is effective at
separating the sources of variation.
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We found that all the methods benefit from batch correction with the sphering transform,
indicated by the upward trend of all curves from low performance with no batch correction to
improved performance as batch correction increases (Figure 6B). Downstream performance in
the biological matching task improves by about 50% on average when comparing against raw
features without correction. The UMAP plots in Figure 6A show the Cell Painting CNN-1 feature
space for well-level profiles before batch correction. When colored by Plate IDs, the data points
are fragmented, and the density functions in the two UMAP axes indicate concentration of plate
clusters. After sphering, the UMAP plots in Figure 6C show more integrated data points and
better aligned density distributions of plates. The performance of the Cell Painting CNN-1 in the
biological matching task also improves upon the baselines (Figure 6B) and displays a consistent
ability to facilitate batch correction in all the three datasets, unlike the ImageNet CNN.

The sphering transform, while effective, is still far from perfect, and further research is needed to
better disentangle confounding from phenotypic variation, potentially using nonlinear
transformations.

Figure 6. Effect of batch correction on feature representations. Batch correction is based on the
sphering transform and applied at the well-level, before treatment-level profiling (Methods). A) UMAP
plots of well-level profiles before batch correction for the three benchmark datasets (rows) colored by
plate IDs (left column) and by control vs treatment status (right column). The UMAP plots display density
functions on the x and y axes for each color group to highlight the spread and clustering patterns of data.
B) Effect of batch correction in the biological matching task. The x axis indicates the value of the
regularization parameter of the sphering transform (smaller parameter means more regularization), with
no correction in the leftmost point and then in decreasing parameter order (increasing sphering effect).
The y axis is Mean Average Precision in the biological matching task. C) UMAP plots of well-level profiles
after batch correction for the three benchmark datasets with the same color organization as in A.
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Discussion
This paper presented an optimized methodology for learning representations of phenotypes in
imaging experiments, which uses weakly supervised learning, batch correction with sphering,
and an evaluation framework to assess performance. We used this methodology to analyze
three publicly available Cell Painting datasets with thousands of perturbations, and we found
that: 1) CNNs capture confounding and phenotypic variation as latent variables, 2) the
performance of CNNs can be improved by training with datasets that maximize technical and
biological diversity, and 3) batch correction is necessary to recover a representation of the
phenotypic outcome of treatments. The WSL approach in our methodology aims to learn
unbiased features of cellular morphology that can be used to approach various problems and
applications in cell biology. This is in contrast to supervised strategies that aim to solve one task
with high accuracy, and therefore only capture features relevant to that task. Our approach can
also be generalized to other imaging assays or screens, and we anticipate that the same
principles will be useful for improving performance in downstream tasks.

We optimized a Cell Painting CNN-1 model that can extract single-cell features to create
image-based profiles for estimating the phenotypic outcome of treatments in perturbation
experiments. Following insights derived from the analysis with our methodology, we constructed
a large training resource by combining five sources of Cell Painting data to maximize phenotypic
and technical variation for training a reusable feature extraction model. This model successfully
improved performance in all three benchmarks while also being computationally efficient
(Supplementary Figure 4). The fact that the best-performing strategy involved training a single
model once and profiling all the three benchmarks without re-training or fine-tuning has a
remarkable implication: it indicates that generating large experimental datasets with a diversity
of phenotypic impacts could be used to create a single model for the community that could be
transformational in the same way that models trained on ImageNet have enabled transfer
learning on natural image tasks.

We used a causal conceptual framework for analyzing the results, which we found very useful to
interpret performance differences between feature extraction models. In practice, the framework
was useful for guiding decision making while training new models, and it is helpful to understand
and communicate the challenges of learning representations in imaging experiments. In theory,
it also opens new possibilities to formulate the problem in novel ways, for instance, creating
learning models that account for all four variables simultaneously. This framework is a compact
way to express the causal assumptions of the underlying biological experiment, which is
consistent with the experimental evidence that we observed throughout this study. We believe
that this is a first step towards studying the causal relationships between disease and
treatments using high-throughput imaging experiments and modern machine learning.

There are many sources of confounding factors in biological experiments, and microscopy
imaging is not exempt. While batch effects have been widely studied for other data modalities
(e.g. gene expression), they remain largely unexplored in imaging studies, with a few
exceptions. Imaging is a powerful technology for observing cellular states, and it is sensitive to
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phenotypes as well as unwanted variation. If left unaccounted for, unwanted variation can result
in biased models that confound biological conclusions, and this is especially true for large
capacity, deep learning models. Our experiments show that deep learning can exploit
confounding factors to minimize training error, and that batch effect correction is critical to
recover the biological representation of interest in conventional or deep-learning based features.
More research is necessary to improve the efficiency and generalizability of batch correction
methods for imaging studies.

Deep learning for high-throughput imaging promises to realize the potential of perturbation
studies for decoding and understanding the phenotypic effects of treatments. The upcoming
public release of the JUMP-Cell Painting Consortium’s dataset of more than 100,000 chemical
and genetic perturbations, collected across 12 different laboratories in academia and industry, is
an excellent example of the scale and biological diversity that imaging can bring for drug
discovery and functional genomics research 32. Our Cell Painting CNN-1 is the first publicly
available model optimized for phenotypic feature extraction in image-based profiling studies,
and can generalize to new data with new perturbations. We expect that our methodology,
together with larger datasets, will be useful to create new and better models for analyzing
images of cells in the future.
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Methods

1. Causal framework
The causal graph in our framework includes four variables: interventions (treatments T),
observations (images O), outcomes (phenotypes Y) and confounders (e.g. batches C). For
simplicity, we assume that there is a single context (X, not in the diagram) for experimental
treatments, which are clonal cells of an isogenic cell line; perturbation experiments with multiple
cell lines may need a different model. We assume that images and treatments are observables (
O and T) because the images are acquired as a result of the experiment, and because the
treatments are chosen by researchers. We also assume that the phenotype and confounders
are latent variables (Y and C) that we want to estimate and separate.

The relationships in the causal graph are interpreted as follows: the arrow from T to Y indicates
that treatments are applied to cells and are the main direct biological cause of phenotypic
changes in cells in the perturbation experiment. The arrow from Y to O indicates that we partially
observe the phenotypic outcome through images. This observation is assumed to be noisy and
incomplete, requiring hundreds of cells and multiple replicates to increase the chances of
measuring the real effect of treatments. In addition, the image acquisition process and the
overall experiment are influenced by technical variation. The arrow from C to O indicates that
images are impacted by artifacts in image acquisition, including microscope settings and assay
preparation. The arrow from C to Y indicates that phenotypes are impacted by variations in cell
density and other conditions that make cells grow and respond differently. The arrow from C to
T indicates that treatments are impacted by plate map designs that are not fully randomized and
usually group treatments in specific plate positions.

We observe treatment outcomes (Y) indirectly through imaging assays, and thus, we need
image analysis to recover the phenotypic effect and to separate it from unwanted variation (C).
A representation of the phenotypic effect can be obtained with the workflow depicted in Figures
1C-E, which illustrates three major steps: 1) modeling the correlations between images and
treatments using a CNN trained with weakly supervised learning (WSL), 2) using batch
correction to learn a transformation of the latent representation of images obtained from
intermediate layers of the CNN, and 3) generating representations of treatment effects in cellular
morphology for downstream analysis.

2. Weakly Supervised Learning
Weakly supervised learning 20 (WSL) trains models with the auxiliary task of learning to
recognize the treatment applied to single cells. Treatments are always known in a perturbation
experiment, while other biological annotations, such as mechanism of action or genetic pathway
may not be known for certain treatments, only reflect part of the phenotypic outcome, and is
usually unknown at the single-cell level (which is the resolution used for training models in this
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work). We use an EfficientNet 33 architecture with a classification loss with respect to treatment
labels for training WSL models.

WSL captures the correlations between observed images and treatments and makes the
following assumptions: 1) if a treatment has an observable effect then it can be seen in images,
and therefore, training a CNN helps identify visual features that make it detectably different from
all other treatments. 2) Treatment labels in the classification task are weak labels because they
are not the final outcome of interest, they do not reflect expert biological ground truth, and there
is no certainty that all treatments produce a phenotypic outcome, nor that they produce a
different phenotypic outcome from each other. 3) Cells might not respond uniformly to particular
treatments 34, which yields heterogeneous subpopulations of cells that may not be consistent
with the treatment label, i.e, treatment labels do not have single-cell resolution. 4) Intermediate
layers of the CNN trained with treatment labels capture all visual variation of images as latent
variables, including confounders and causal phenotypic features.

3. Deep learning models

3.1 Image preprocessing
The original Cell Painting images in all the datasets used in this work are encoded and stored in
16-bit TIFF format. To facilitate image loading from disk to memory during training of deep
learning models, we used image compression. This is only required for training, which requires
repeated randomized loading of images for minibatch-based optimization.

The compression procedure is as follows:

● Compute one illumination correction function for each channel-plate 35. The illumination
correction function is computed at 25% of the width/height of the original images.

● Apply the illumination correction function to images before any of the following
compression steps.

● Stretch the histogram of intensities of each image by removing pixels that are too dark or
too bright (below 0.05 and above 99.95 percentiles). This expands the bin ranges when
changing pixel depth and prevents having dark images as a result of saturated pixels.

● Change the pixel depth from 16 bits to 8 bits. This results in 2X compression.
● Save the resulting image in PNG lossless format. This results in approximately 3X

compression.
● The resulting compression factor is approximately (2X)(3X) = 6X.

This preprocessing pipeline is implemented in DeepProfiler and can be run with a metadata file
that lists the images in the dataset that require compression, together with plate, well and site
(image or field of view) information.
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3.2 EfficientNet
The deep convolutional neural network architecture used in all our experiments is the
EfficientNet33. We use the base model EfficientNet-B0 to compute features on single-cell crops
of 128x128 pixels. It consists of 9 stages: input, seven inverted residual convolutional blocks
from MobileNetV2 36 (with the addition of squeeze and excitation optimization) and final layers.
The usage of convolutional blocks from MobileNetV2 in combination with neural architecture
search gave EfficientNet an advantage in terms of computational efficiency and accuracy
compared to ResNet50. This model has only 4 million parameters and can extract features from
single cells in a few milliseconds using GPU acceleration. EfficientNet has been previously used
for image-based profiling, including in models trained with the CytoImageNet dataset 37, by top
competitors in the Recursion Cellular Image Classification challenge in Kaggle, and for studying
variants of unknown significance in cancer lung cells11.

3.3 Training Cell Painting models
The Cell Painting models are trained on single-cell crops obtained from full images using cell
locations and full-image metadata. Cropped single cells are exported to individual images
together with their segmentation mask if available. In all our experiments, we used single cells
cropped from a region of 128x128 pixels centered on the cell’s nucleus without any resizing. We
preserve the context of the single cell (background or parts of other cells), meaning that the
segmentation mask is not used in our experiments.

To train a weakly supervised model we first initialize an EfficientNet with ImageNet weights and
sample mini-batches of 32 examples for training with an SGD optimizer with a learning rate of
0.005. We train models for 30 epochs; each epoch makes a pass over example cells of all
treatments in a balanced way. Balancing is set to draw the same number of single cells from
each treatment (the median across treatments) in one epoch, and every epoch resamples new
cells from the pool. This strategy leverages the variation of cells in treatments that are
overrepresented (such as controls), and oversamples cells from treatments with fewer than the
median. Balancing is important to optimize the categorical cross-entropy loss to compensate for
rare classes among the hundreds of treatments used for training in our experiments.

All single cells go through a data augmentation process during training, which involves the
following three steps:

1. Random crop and resize. This augmentation is applied with 0.5 probability. The crop
region size is random, 80% to 100% of the size of the original image, then resized back
to 128x128 pixels.

2. Random horizontal flips and 90-degree rotations.
3. Random brightness and contrast adjustments, each channel is augmented and

renormalized separately.

We used two data-split approaches for creating training and validation subsets for the single-cell
treatment classification task:
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● Leave plates out: we selected the plates in a way that the data of one subset of plates is
only the train data and another one is in validation.

● Leave cells out: all plates are used for training and validation. We randomly choose
single cells from each well, meaning that approximately 60% of cells from each well
would be in the training set and the rest in the validation set.

The training of deep learning models was performed on NVIDIA DGX with NVIDIA V100 GPUs;
a single GPU was used to train each model.

3.4 Feature extraction with trained Cell Painting models
We extract features of single cells and store them in one NumPy file per field of view using an
array of vectors (one per cell). The feature extraction procedure requires access to full images,
metadata and location files. Since a trained model is natively trained for five-channel images,
there is no need to replicate each channel separately, thus, each cell requires one inference
pass and the feature vector contains representation of all channels simultaneously. The size of
the feature vectors is 672 for reported results, which were extracted from EfficientNet’s
block6a-activation layer.

3.5 ImageNet pre-trained models
ImageNet pre-trained convolutional networks are widely used in computer vision applications
and they have also been used in image-based profiling applications. ImageNet is a large
collection of natural images with objects and animals of different categories38. A deep learning
model trained on this dataset is capable of extracting generic visual features from images for
different applications, also known as transfer learning. Pre-trained models for morphological
profiling have been evaluated in several studies 11,17–19.

We use DeepProfiler to extract features of single-cells with the pre-trained EfficientNet-B0
model available in the Keras library. The size of single-cell images in our experiments is
128x128 after being cropped from field-of-view images. An ImageNet pre-trained model expects
images of higher resolution, specifically 224x224 in our case; therefore the cell crops are first
resized. The pixel values are then rescaled using min-max normalization and adjusted to have
values [-1:1] to match the required input range. As Cell Painting images are five-channel and
ImageNet pre-trained models expect three-channel (RGB) images, we follow the well
established practice of computing a pseudo RGB image for each grayscale fluorescent channel
by replicating it three times before passing it through the model (thus each cell requires five
inference passes). Features extracted for each channel are concatenated and the resulting
feature vector size is 3,360 (672 is the size of the block6a-activation layer of the EfficientNet
used in our experiments).
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3. Profiling workflow

3.1 Segmentation
The cell segmentation for the benchmark datasets (BBBC037, BBBC022 and BBBC036) was
performed with methods built in CellProfiler v2 based on Otsu thresholding 39 and propagation
method 40 based on Voronoi diagrams 41 or watershed from 42. The segmentation is two-stepped:
first, the images stained with Hoechst (DNA channel) were segmented using global Otsu
thresholding. This prior information is then used in the second step: cell segmentation with the
propagation or watershed method. The input channel for the second step depends on the
dataset, as well as the other specific parameters of segmentation. The segmentation part of the
pipelines is available in the published CellProfiler pipelines (see Code availability section). For
the purposes of this project, we used the center of the nuclei to crop out cells in a region of
128x128 pixels. These cell crops are used in all the deep learning workflows.

3.2 Feature extraction with CellProfiler
Feature extraction for evaluated datasets was performed with CellProfiler 2. The feature
extraction steps are described in the CellProfiler pipelines published together with the
corresponding original datasets. These steps can be grouped in the following stages: 1) Data
loading - load full image 2) Illumination correction for each channel 3) Identification of cell nuclei
4) Identification of cells using identified nuclei 4) Measurements: intensity, context, radial
distribution, size and shape, texture 5) Export the features and cell outlines. Parameters of
feature extraction can be found in CellProfiler pipelines which are available in the published
pipelines (see Code availability section).

The features of CellProfiler are designed to be human-readable and grouped into three large
groups: “Cell”, “Cytoplasm” and “Nuclei”. Each of those feature groups has several common
subgroups, such as shape features, intensity-based features, texture features and context
features 12. The resulting size of a feature vector is approximately 1,800 (which depends on the
dataset). In our analysis, we used well-level CellProfiler features to obtain baseline results.
These features were computed by the authors of the corresponding dataset and made publicly
available (see Data availability section).

3.3 Feature aggregation and profiling
Image-based profiling aims to create representations of treatment effects, which is obtained by
aggregating information of single cells into population-level profiles. This process follows a
multi-step aggregation process. Features of single-cells are first aggregated using the median
operator at field-of-view (image) level. Next, fields-of-view features are aggregated using the
mean to create a well-level profile. Finally, treatment-level profiles are obtained with the average
across replicate wells. The feature aggregation steps are the same for CellProfiler and deep
learning features. CellProfiler well-level features with NA values were removed in the
aggregation pipeline.
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3.4 Batch correction with the sphering transform
To recover the phenotypic features of treatments from the latent representations of the weakly
supervised CNN, we employ a batch correction model inspired by the Typical Variation
Normalization (TVN) technique 18. This transform aims to reduce the variation associated with
confounders and amplify features caused by phenotypic outcomes (Figure 1D). The main idea
of this approach is to use negative control samples as a model of unwanted variation under the
assumption that their phenotypic features should be neutral, and therefore differences in control
images reflect mainly confounding factors. We follow this assumption and use a sphering
transformation to learn a function that projects latent features from the CNN to a corrected
feature space that preserves the phenotypic features caused by treatments. We note that given
how control wells are placed in plates, they may not represent all of the unwanted variation
caused by plate layout effects, nevertheless, we assume it is a sufficient approximation.

In our implementation, we aim to reduce the profiles of control wells to a white noise distribution
using a sphering transform, and then use the resulting transformation as a correction function
for treated wells. First, the orthogonal directions of maximal variance are identified using
singular value decomposition (SVD) on the matrix of control wells. Then, directions with small
variation are amplified while directions with large variation are reduced by inverting their
eigenvalues. We control the strength of signal amplification or reduction with a regularization
parameter. The computation involves only profiles of negative controls and as a result, we
obtain a linear transformation that can be applied to all well-level feature vectors in a dataset.

The sphering transformation takes well-level profiles of negative controls with vector size as𝑛 𝑑

an input matrix . Then, its covariance matrix is calculated as followed by 𝑋𝑛×𝑑 Σ =  𝑋𝑇𝑋
𝑛

eigendecomposition , where is the diagonal matrix of eigenvalues, and is theΣ = 𝑈∆𝑈𝑇 ∆ 𝑈
matrix of orthonormal vectors. We renormalize the orthonormal vectors by inverting the square
root of the eigenvalues in together with a regularization parameter . The resulting∆ λ

ZCA-transformation43 matrix is , which can be used to compute the𝑄 = 𝑈 (∆ + λ)
− 1

2 𝑈𝑇

corrected profile of a treated well with a matrix multiplication: . The effect of sphering𝑡 𝑡' = 𝑄𝑡
and its regularization on representations and profiling performance is presented in Figure 4.

3.5 Similarity matching
To assess the similarity between treatment profiles the cosine similarity is measured between
pairs of treatments. The cosine similarity is one of several similarity metrics that can be used in
profiling12 and has been used in previous studies44.

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  𝐴 • 𝐵
𝐴| || | 𝐵| || |  

where A and B are image-based profiles, i.e., multidimensional vectors. We adopt the cosine
similarity in all our similarity search and biological matching experiments.
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4. Evaluation metrics
For quantitative comparison of multiple feature extraction strategies, we simulate a user
searching a reference library to find a “match” to their query treatment of interest. We used a
leave-one-treatment-out strategy for all annotated treatments in three benchmark datasets,
following previous research in the field 18,44,45. In all cases, queries and reference items are
aggregated treatment-level profiles matched using the cosine similarity (Methods). The result of
searching the library with one treatment query is a ranked list of treatments in descending order
of relevance. A result in the ranked list is considered a positive hit if it shares at least one
biological annotation in common with the query; otherwise it is a negative result (Figure 1H).

There are several quantitative evaluations of feature representation quality that we use in our
study. At the single-cell level, we expect neural networks to classify single cells into their
corresponding treatment, and therefore use accuracy, precision and recall to evaluate
performance (see Figure 3 and main text). For downstream analysis we adopted a biological
matching task, which simulates a user searching for treatments that correspond to the same
mechanism of action or genetic pathway (for compound and gene overexpression perturbations
respectively). These queries are conducted and evaluated at the treatment-level, and the main
idea is to assess how well connected treatments are in the feature space according to known
biology.

We use two main metrics for evaluating the quality of the results for a given query: 1) folds of
enrichment and 2) mean average precision (mAP). The folds-of-enrichment metric (see details
below) is inspired by statistical analyses in biology and determines how unusual positive
connections happen to be in the top 1% of the list45. On the other hand, the mAP metric is
inspired by information retrieval research, and quantifies the precision and recall trend over the
entire list of results for all queries.

In order to simulate queries, we proceed as follows:
● Choose a query treatment - which belongs to an MoA or pathway that has at least two

treatments in the database and, therefore, it is possible to find a match.
● Library treatments - all the others while leaving the query treatment out. Library

treatments represent a database of treatments with known MoAs or pathways
annotations, which can be candidate matches for a given query.

4.1 Folds of enrichment
For each query treatment we calculate the odds ratio of a one-sided Fisher’s exact test. The test
is calculated using a 2x2 contingency table: the first row contains a number of treatments with
the same MoAs or pathways (positive matches) and different MoAs or pathways (negative
matches) at a selected threshold of the list of results. The second row is the same, but for the
treatments below the threshold (the rest). Odds ratio is a sum of the first row divided by the sum
of the second row. It estimates the likelihood of observing the treatment with the same MoA or
pathway in the top connections.
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We calculate the odds ratio of each individual query, and then obtain the average over all query
treatments. The threshold we use is 1% of connections, meaning we expect the top 1% of
matching results in the list to be significantly enriched for positive matches. This metric in the
text is referred to as “Folds of Enrichment”. The implementation of the metric is available as a
part of analysis pipelines (see Code availability section).

4.2 Mean Average Precision
For each query treatment, average precision (area under precision-recall curve) is computed
following the common practice in information retrieval tasks. The evaluation starts from the most
similar treatments to the query (top results) and continues until all positive pairs (response
treatments with the same MoA or pathway) are found. Precision and recall are computed at
each item of the result list.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃

𝑇𝑃 + 𝐹𝑁
where TP are the true positives, FP are the false positives, and FN are the false negatives in the
list of results until the current item. This is evaluated for each query separately. As the number
of treatments per MoA or pathway is not balanced, the precision-recall curve has a different
number of recall points. Therefore, precision and recall are interpolated for each query to cover
the maximum number of recall points possible in the dataset, and thus allow for averaging at the
same recall points. The interpolated precision at each recall point is defined as follows 46:

𝑝
𝑖𝑛𝑡𝑒𝑟

(𝑟) = 𝑚𝑎𝑥
𝑟' ≥ 𝑟 

𝑝(𝑟') 

Average precision for a query treatment is the mean of at all recall points. The reported𝑝
𝑖𝑛𝑡𝑒𝑟

mean average precision (mAP) is the mean average precision over all queries.

5. Datasets

5.1 Benchmarks and ground truth annotations
For this study, we used three publicly available Cell Painting datasets representing gene
overexpression perturbations (BBBC037 45) and compound perturbations (BBBC022 30 and
BBBC036 31). The three datasets were produced at the Broad Institute using the U2OS cell-line
(bone cancer) following the standardized Cell Painting protocol 1, which stains cells with six
fluorescent dyes and acquires imaging samples in five channels at 20X magnification. The
compound perturbation experiments used DMSO as a negative control treatment, while in the
gene overexpression experiments no perturbation was used for negative control samples. All
experiments were conducted using multiple 384-well plates at high-throughput with 5 replicates
per treatment (except for high-replicate positive and negative controls).

We conducted quality control of images in all the three datasets by analyzing image-based
features with principal component analysis. The outliers observed in the first two principal
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components were flagged as candidates for exclusion, and were visually inspected to confirm
rejection. We found most of these images to be noisy or empty and not suitable for training and
evaluation. With this quality control, two wells were removed from BBBC037, 43 wells from
BBBC022, and no wells were removed from BBBC036. If treatments had multiple
concentrations in BBBC022 and BBBC036, we kept only the maximum concentration for further
analysis and evaluation.

The ground-truth annotations for compounds correspond to mechanism-of-action (MoA) labels
when known, and can include multiple annotations per compound. In the case of gene
overexpression, the ground-truth corresponds to the genetic pathway of perturbed genes. We
used annotations collected in prior work for the same three datasets 45 and applied minor
updates and corrections (see Data Availability section). Only treatments with at least two
replicates left after quality control are included in the ground-truth.

5.2 Measuring treatment effect
The effect of treatments is approximated by computing the distance between the morphological
features of treatments and controls. We use batch-corrected features obtained with CellProfiler
(with sphering regularization parameter 1e-2) in the following way:

1. Calculate the median profile of control wells within the same plate (median control profile
of the plate).

2. For each treated well, calculate the Euclidean distance between its well-level profile and
the median control profile of its plate.

3. Estimate the distribution of control well distances against the median control profile per
plate. Then, calculate their mean and standard deviation.

4. Using the statistics of control distances per plate, Z-score the distances of treated wells
obtained in step 2.

5. Finally, we define the approximate measure of the effect of a given treatment as the
average of the Z-scores of its well replicates across plates.

Intuitively, we expect treatments with stronger effects to have a high average Z-score while
treatments with weaker or no detectable effect are expected to have low average Z-score. We
use this measure to rank treatments and select subsets of treatments for evaluation of the
impact of treatment effect during training, as well as for sampling treatments with high
phenotypic effect for creating a combined training dataset.

5.3 Combined Cell Painting dataset
We combined five publicly available Cell Painting datasets to create a training resource that
maximizes both phenotypic and technical variation. The five dataset sources include the three
benchmarks described above (BBBC037, BBBC022, and BBBC036), as well as two additional
datasets: 1) BBBC043 11 , a gene overexpression experiment to study the impact of cancer
variants, and 2) LINCS 5, a chemical screen of FDA approved compounds for drug repurposing
research. Both BBBC043 and LINCS are perturbation experiments conducted with A549 cells
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(lung adenocarcinoma). In total, these five sources of data have more than 6,000 treatments, in
hundreds of plates, thousands of wells, and millions of images resulting in the order of hundreds
of millions of imaged single cells. Our goal was to select a sample of single cells from these five
sources to maximally capture phenotypic and technical variation.

Instead of sampling single cells uniformly at random, we follow the distribution of treatments to
include biological diversity, and the organization of the experimental design to represent various
sources of technical noise. Technical variation is organized hierarchically in experiments,
starting with the five sources of Cell Painting images, continuing with batches, plate-maps,
plates, and well positions. We aimed to bring samples from as many of these combinations as
possible to have cells representing different types of technical variation. In terms of biological
variation, three of the five data sources have U2OS cells and the other two have A549 cells,
resulting in two different cellular contexts being represented. The five sources also include two
types of perturbations (chemical and genetic), and multiple treatments.

To preserve as much phenotypic variation as possible, we sample treatments from both cell
lines, both types of perturbations, and we identify the treatments with strongest effect in each of
the five sources following the procedure described in the previous section. Several treatments
overlap across data sources, and we prioritized those that can be found in two or more sources
simultaneously. An example is negative controls: all compound screens use DMSO as the
negative control, and we would expect their phenotype to match across data sources. The same
expectation holds for the rest of treatments. Negative control wells are typically present in each
plate of the experiment in several replicates.

The selection of strong treatments started with the BBBC022 and BBBC036 datasets (chemical
perturbations). We selected the 500 strongest treatments (see Measuring treatment effect) from
BBBC022 and searched for those in BBBC036, which resulted in 301 strong treatments in
common between both datasets. We additionally selected 50 unique treatments from BBBC022
and 62 unique treatments from BBBC036. Out of those 413 treatments, 122 overlapped with the
LINCS dataset and were included. We additionally selected 7 random treatments from LINCS,
from top 20 (by number of associated treatments) MoAs. Treatment selection from BBBC037
and BBBC043 (gene overexpression perturbations) was similar, and we identified 28
overlapping genes. We assume that “wildtype” genes from both datasets are the same, and
then we selected the 29 strongest unique perturbations from the BBBC037 dataset and the 32
strongest perturbations from BBBC043 from non-overlapping subsets.

Negative controls from compound screening datasets and negative controls from gene
overexpression datasets are considered as different classes in the combined dataset (DMSO
and EMPTY). Not all control wells were included from the LINCS dataset in the final sample, as
these would result in extreme overrepresentation, so we randomly sampled three control wells
per plate. As the final step, the treatments with less than 100 cells were filtered out. In total the
dataset contains 490 classes (488 for treatments and 2 for negative controls), 8,423,455
individual single-cells (47% treatment and 53% control cells). See Venn diagrams in Figure 1C
for more details.
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Data availability
The Cell Painting datasets (raw images and CellProfiler profiles) are available at public S3
buckets:
BBBC037 gene overexpression dataset in U2OS cells 29

s3://cytodata/datasets/TA-ORF-BBBC037-Rohban/profiles_cp/TA-ORF-BBBC037-Rohban/

BBBC022 compound screening in U2OS cells 30

s3://cytodata/datasets/Bioactives-BBBC022-Gustafsdottir/profiles/Bioactives-BBBC022-Gustafs
dottir/

BBBC036 compound screening in U2OS cells 31

s3://cytodata/datasets/CDRPBIO-BBBC036-Bray/profiles_cp/CDRPBIO-BBBC036-Bray/

BBBC043 gene overexpression dataset in A549 cells 11

s3://cytodata/datasets/LUAD-BBBC043-Caicedo/profiles_cp/LUAD-BBBC043-Caicedo/

LINCS compound screening in A549 cells 5

s3://cellpainting-gallery/cpg0004-lincs/broad/images/2016_04_01_a549_48hr_batch1/

Code availability

A. DeepProfiler
To run all the experiments in this study, we developed DeepProfiler, a tool for learning and
extracting representations from high-throughput microscopy images using convolutional neural
networks (CNNs). DeepProfiler uses a standardized workflow that includes image
pre-processing, training of CNNs and feature extraction, as discussed in previous sections.
DeepProfiler is implemented in Tensorflow 47 (version 2) and is publicly available on GitHub
https://github.com/cytomining/DeepProfiler.

The DeepProfiler documentation (https://cytomining.github.io/DeepProfiler-handbook/)
describes the steps for installing, configuring and running the software for profiling new images
and for training models. In DeepProfiler we used the following EfficientNet implementation:
https://github.com/qubvel/efficientnet.

B. DeepProfiler experiments and configurations
The processing and profiling pipelines for the three benchmarks evaluated in this work (Jupyter
notebooks and Python scripts to analyze features) are available on GitHub:
https://github.com/broadinstitute/DeepProfilerExperiments.
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This repository also includes the DeepProfiler configuration files used for training the models on
each dataset, as well as the configuration for training the Cell Painting CNN-1 model. In
addition, the ground truth files and code for evaluation of the downstream tasks are also
available in this repository.

C. Models
The Cell Painting CNN-1 model (trained with leave-cells-out training-validation split) is available
on Zenodo: https://doi.org/10.5281/zenodo.7114557.
The ImageNet pre-trained EfficientNet model used in this study can be found here:
https://github.com/Callidior/keras-applications/releases/download/efficientnet/efficientnet-b0_wei
ghts_tf_dim_ordering_tf_kernels_autoaugment.h5.

D. Others
The code and CellProfiler pipelines for three evaluated datasets can be found in the associated
GitHub repositories:
BBBC037: https://github.com/carpenterlab/2017_rohban_elife
BBBC036: https://github.com/gigascience/paper-bray2017
BBBC022: Supplementary materials in 30.
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Supplementary Material

Supplementary Figure 1. UMAP visualization after combining three benchmark datasets in CNN
ImageNet and CellProfiler feature-spaces. The top plots are colored by dataset (BBBC037 - blue,
BBBC022 - red, BBBC036 - green). The bottom plots are colored by negative control (cyan) and
treatments (red). This data was produced in preliminary experiments with dataset selection and shows the
strongest treatments selected with use of corresponding features and Mahalanobis distance, instead of
Euclidean in the main text. The CNN ImageNet features were selected with the penultimate layer. We see
that different datasets are better integrated in the CellProfiler feature-space.

Representations learned from Cell Painting images are
computationally efficient
The dimensionality of the feature space of the Cell Painting CNN-1 is also more compact than
CellProfiler and the ImageNet CNN model (Supplementary Figure 2A), with the intermediate
layer Conv6A of the EfficientNet B0 network being the best source of latent representations for
downstream analysis in all of our experiments (Supplementary Figure 2B). This layer, after
spatial average pooling, results in 672 features, compared to 1,700 of CellProfiler and 3,360 of
ImageNet CNN (672 for each of the five imaging channels). The dimensionality of single-cell
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features has an impact on storage space, especially for large scale experiments, making the
Cell Painting CNN-1 an efficient choice too (Supplementary Figure 2A).

Supplementary Figure 2. Computational cost of profiling strategies. Beyond improved accuracy and
better performance in downstream tasks, our Cell Painting CNN-1 is more computationally efficient than
the baseline approaches. A) Computational cost in terms processing time per plate (in hours),
dimensionality of representations (number of features), and storage space per plate (in GB), for the three
representations evaluated in this work (x axes of plots). B) Downstream performance in the biological
matching task from different convolutional layers of the EfficientNet model for all three datasets. We
observe a consistent ability of Conv6A to yield better performance.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2022. ; https://doi.org/10.1101/2022.08.12.503783doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.12.503783
http://creativecommons.org/licenses/by/4.0/


References

1. Bray, M.-A. et al. Cell Painting, a high-content image-based assay for morphological

profiling using multiplexed fluorescent dyes. Nat. Protoc. 11, 1757–1774 (2016).

2. Cimini, B. A. et al. Optimizing the Cell Painting assay for image-based profiling. bioRxiv

2022.07.13.499171 (2022) doi:10.1101/2022.07.13.499171.

3. Wawer, M. J. et al. Toward performance-diverse small-molecule libraries for cell-based

phenotypic screening using multiplexed high-dimensional profiling. Proceedings of the

National Academy of Sciences 111, 10911–10916 (2014).

4. Cuccarese, M. F. et al. Functional immune mapping with deep-learning enabled phenomics

applied to immunomodulatory and COVID-19 drug discovery. 2020.08.02.233064 (2020)

doi:10.1101/2020.08.02.233064.

5. Way, G. P. et al. Morphology and gene expression profiling provide complementary

information for mapping cell state. bioRxiv 2021.10.21.465335 (2021)

doi:10.1101/2021.10.21.465335.

6. Simm, J. et al. Repurposing High-Throughput Image Assays Enables Biological Activity

Prediction for Drug Discovery. Cell Chem Biol 25, 611–618.e3 (2018).

7. Way, G. P. et al. Predicting cell health phenotypes using image-based morphology profiling.

Mol. Biol. Cell mbcE20120784 (2021).

8. Moshkov, N. et al. Predicting compound activity from phenotypic profiles and chemical

structures. bioRxiv 2020.12.15.422887 (2022) doi:10.1101/2020.12.15.422887.

9. Rohban, M. H. et al. Virtual screening for small molecule pathway regulators by image

profile matching. bioRxiv 2021.07.29.454377 (2022) doi:10.1101/2021.07.29.454377.

10. Schiff, L. et al. Integrating deep learning and unbiased automated high-content screening to

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2022. ; https://doi.org/10.1101/2022.08.12.503783doi: bioRxiv preprint 

http://paperpile.com/b/ZrxQmk/oxeZ
http://paperpile.com/b/ZrxQmk/oxeZ
http://paperpile.com/b/ZrxQmk/MaXs
http://paperpile.com/b/ZrxQmk/MaXs
http://dx.doi.org/10.1101/2022.07.13.499171
http://paperpile.com/b/ZrxQmk/MaXs
http://paperpile.com/b/ZrxQmk/5e8t
http://paperpile.com/b/ZrxQmk/5e8t
http://paperpile.com/b/ZrxQmk/5e8t
http://paperpile.com/b/ZrxQmk/xQve
http://paperpile.com/b/ZrxQmk/xQve
http://paperpile.com/b/ZrxQmk/xQve
http://dx.doi.org/10.1101/2020.08.02.233064
http://paperpile.com/b/ZrxQmk/xQve
http://paperpile.com/b/ZrxQmk/lM4u
http://paperpile.com/b/ZrxQmk/lM4u
http://paperpile.com/b/ZrxQmk/lM4u
http://dx.doi.org/10.1101/2021.10.21.465335
http://paperpile.com/b/ZrxQmk/lM4u
http://paperpile.com/b/ZrxQmk/DRc0
http://paperpile.com/b/ZrxQmk/DRc0
http://paperpile.com/b/ZrxQmk/n7qK
http://paperpile.com/b/ZrxQmk/n7qK
http://paperpile.com/b/ZrxQmk/d5eX
http://paperpile.com/b/ZrxQmk/d5eX
http://dx.doi.org/10.1101/2020.12.15.422887
http://paperpile.com/b/ZrxQmk/d5eX
http://paperpile.com/b/ZrxQmk/bntW
http://paperpile.com/b/ZrxQmk/bntW
http://dx.doi.org/10.1101/2021.07.29.454377
http://paperpile.com/b/ZrxQmk/bntW
http://paperpile.com/b/ZrxQmk/l9LD
https://doi.org/10.1101/2022.08.12.503783
http://creativecommons.org/licenses/by/4.0/


identify complex disease signatures in human fibroblasts. bioRxiv 2020.11.13.380576

(2021) doi:10.1101/2020.11.13.380576.

11. Caicedo, J. C., Arevalo, J. & Piccioni, F. Cell Painting predicts impact of lung cancer

variants. Mol. Biol. Cell (2022).

12. Caicedo, J. C. et al. Data-analysis strategies for image-based cell profiling. Nat. Methods

14, 849–863 (2017).

13. Caicedo, J. C., Singh, S. & Carpenter, A. E. Applications in image-based profiling of

perturbations. Curr. Opin. Biotechnol. 39, 134–142 (2016).

14. Chandrasekaran, S. N., Ceulemans, H., Boyd, J. D. & Carpenter, A. E. Image-based

profiling for drug discovery: due for a machine-learning upgrade? Nat. Rev. Drug Discov.

(2020) doi:10.1038/s41573-020-00117-w.

15. McQuin, C. et al. CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol.

16, e2005970 (2018).

16. Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility and usability. BMC

Bioinformatics 22, 433 (2021).

17. Pawlowski, N., Caicedo, J. C., Singh, S., Carpenter, A. E. & Storkey, A. Automating

Morphological Profiling with Generic Deep Convolutional Networks. bioRxiv 085118 (2016)

doi:10.1101/085118.

18. Michael Ando, D., McLean, C. Y. & Berndl, M. Improving Phenotypic Measurements in

High-Content Imaging Screens. bioRxiv 161422 (2017) doi:10.1101/161422.

19. Schiff, L. et al. Integrating deep learning and unbiased automated high-content screening to

identify complex disease signatures in human fibroblasts. Nat. Commun. 13, 1590 (2022).

20. Caicedo, J. C., McQuin, C., Goodman, A., Singh, S. & Carpenter, A. E. Weakly Supervised

Learning of Single-Cell Feature Embeddings. Proc. IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit. 2018, 9309–9318 (2018).

21. Lu, A. X., Kraus, O. Z., Cooper, S. & Moses, A. M. Learning unsupervised feature

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2022. ; https://doi.org/10.1101/2022.08.12.503783doi: bioRxiv preprint 

http://paperpile.com/b/ZrxQmk/l9LD
http://paperpile.com/b/ZrxQmk/l9LD
http://dx.doi.org/10.1101/2020.11.13.380576
http://paperpile.com/b/ZrxQmk/l9LD
http://paperpile.com/b/ZrxQmk/Rkdp
http://paperpile.com/b/ZrxQmk/Rkdp
http://paperpile.com/b/ZrxQmk/1kHF
http://paperpile.com/b/ZrxQmk/1kHF
http://paperpile.com/b/ZrxQmk/YjpF
http://paperpile.com/b/ZrxQmk/YjpF
http://paperpile.com/b/ZrxQmk/QVDc
http://paperpile.com/b/ZrxQmk/QVDc
http://paperpile.com/b/ZrxQmk/QVDc
http://dx.doi.org/10.1038/s41573-020-00117-w
http://paperpile.com/b/ZrxQmk/QVDc
http://paperpile.com/b/ZrxQmk/sZK4
http://paperpile.com/b/ZrxQmk/sZK4
http://paperpile.com/b/ZrxQmk/x6sI
http://paperpile.com/b/ZrxQmk/x6sI
http://paperpile.com/b/ZrxQmk/xp8n
http://paperpile.com/b/ZrxQmk/xp8n
http://paperpile.com/b/ZrxQmk/xp8n
http://dx.doi.org/10.1101/085118
http://paperpile.com/b/ZrxQmk/xp8n
http://paperpile.com/b/ZrxQmk/9EHi
http://paperpile.com/b/ZrxQmk/9EHi
http://dx.doi.org/10.1101/161422
http://paperpile.com/b/ZrxQmk/9EHi
http://paperpile.com/b/ZrxQmk/us85
http://paperpile.com/b/ZrxQmk/us85
http://paperpile.com/b/ZrxQmk/6rne
http://paperpile.com/b/ZrxQmk/6rne
http://paperpile.com/b/ZrxQmk/6rne
http://paperpile.com/b/ZrxQmk/HkfN
https://doi.org/10.1101/2022.08.12.503783
http://creativecommons.org/licenses/by/4.0/


representations for single cell microscopy images with paired cell inpainting. PLoS Comput.

Biol. 15, e1007348 (2019).

22. Hofmarcher, M., Rumetshofer, E. & Clevert, D. A. Accurate prediction of biological assays

with high-throughput microscopy images and convolutional networks. Journal of chemical

(2019).

23. Yang, S. J. et al. Applying Deep Neural Network Analysis to High-Content Image-Based

Assays. SLAS Discov 24, 829–841 (2019).

24. Mao, C. et al. Generative Interventions for Causal Learning. in 2021 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2021).

doi:10.1109/cvpr46437.2021.00394.

25. Schölkopf, B. et al. Toward Causal Representation Learning. Proc. IEEE 109, 612–634

(2021).

26. Rubin, D. B. Estimating causal effects of treatments in randomized and nonrandomized

studies. J. Educ. Psychol. 66, 688–701 (1974).

27. Johansson, F., Shalit, U. & Sontag, D. Learning Representations for Counterfactual

Inference. in Proceedings of The 33rd International Conference on Machine Learning (eds.

Balcan, M. F. & Weinberger, K. Q.) vol. 48 3020–3029 (PMLR, 20--22 Jun 2016).

28. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat.

Biotechnol. (2018) doi:10.1038/nbt.4314.

29. Rohban, M. H. et al. Systematic morphological profiling of human gene and allele function

via Cell Painting. Elife 6, (2017).

30. Gustafsdottir, S. M. et al. Multiplex cytological profiling assay to measure diverse cellular

states. PLoS One 8, e80999 (2013).

31. Bray, M.-A. et al. A dataset of images and morphological profiles of 30 000 small-molecule

treatments using the Cell Painting assay. Gigascience 6, 1–5 (2017).

32. Chandrasekaran, S. N. et al. Three million images and morphological profiles of cells

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2022. ; https://doi.org/10.1101/2022.08.12.503783doi: bioRxiv preprint 

http://paperpile.com/b/ZrxQmk/HkfN
http://paperpile.com/b/ZrxQmk/HkfN
http://paperpile.com/b/ZrxQmk/WxTI
http://paperpile.com/b/ZrxQmk/WxTI
http://paperpile.com/b/ZrxQmk/WxTI
http://paperpile.com/b/ZrxQmk/dlMp
http://paperpile.com/b/ZrxQmk/dlMp
http://paperpile.com/b/ZrxQmk/D1KF
http://paperpile.com/b/ZrxQmk/D1KF
http://paperpile.com/b/ZrxQmk/D1KF
http://dx.doi.org/10.1109/cvpr46437.2021.00394
http://paperpile.com/b/ZrxQmk/D1KF
http://paperpile.com/b/ZrxQmk/Ffmf
http://paperpile.com/b/ZrxQmk/Ffmf
http://paperpile.com/b/ZrxQmk/SnpV
http://paperpile.com/b/ZrxQmk/SnpV
http://paperpile.com/b/ZrxQmk/FEIF
http://paperpile.com/b/ZrxQmk/FEIF
http://paperpile.com/b/ZrxQmk/FEIF
http://paperpile.com/b/ZrxQmk/9FJn
http://paperpile.com/b/ZrxQmk/9FJn
http://dx.doi.org/10.1038/nbt.4314
http://paperpile.com/b/ZrxQmk/9FJn
http://paperpile.com/b/ZrxQmk/hsQJ
http://paperpile.com/b/ZrxQmk/hsQJ
http://paperpile.com/b/ZrxQmk/N3gP
http://paperpile.com/b/ZrxQmk/N3gP
http://paperpile.com/b/ZrxQmk/lQPE
http://paperpile.com/b/ZrxQmk/lQPE
http://paperpile.com/b/ZrxQmk/BRAE
https://doi.org/10.1101/2022.08.12.503783
http://creativecommons.org/licenses/by/4.0/


treated with matched chemical and genetic perturbations. bioRxiv 2022.01.05.475090

(2022) doi:10.1101/2022.01.05.475090.

33. Tan, M. & Le, Q. V. EfficientNet: Rethinking Model Scaling for Convolutional Neural

Networks. arXiv [cs.LG] (2019).

34. Gough, A. et al. Biologically Relevant Heterogeneity: Metrics and Practical Insights. SLAS

Discov 22, 213–237 (2017).

35. Singh, S., Bray, M.-A., Jones, T. R. & Carpenter, A. E. Pipeline for illumination correction of

images for high-throughput microscopy. J. Microsc. 256, 231–236 (2014).

36. Sandler, Howard & Zhu. Mobilenetv2: Inverted residuals and linear bottlenecks. Proc.

Estonian Acad. Sci. Biol. Ecol.

37. Hua, S. B. Z., Lu, A. X. & Moses, A. M. CytoImageNet: A large-scale pretraining dataset for

bioimage transfer learning. arXiv [cs.CV] (2021).

38. Deng, J. et al. ImageNet: A large-scale hierarchical image database. in 2009 IEEE

Conference on Computer Vision and Pattern Recognition 248–255 (2009).

39. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst.

Man Cybern. 9, 62–66 (1979).

40. Jones, T. R., Carpenter, A. & Golland, P. Voronoi-Based Segmentation of Cells on Image

Manifolds. in Computer Vision for Biomedical Image Applications 535–543 (Springer Berlin

Heidelberg, 2005).

41. Voronoi, G. Nouvelles applications des paramètres continus à la théorie des formes

quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. J. Reine

Angew. Math. 1908, 198–287 (1908).

42. van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).

43. Kessy, A., Lewin, A. & Strimmer, K. Optimal Whitening and Decorrelation. Am. Stat. 72,

309–314 (2018).

44. Ljosa, V. et al. Comparison of methods for image-based profiling of cellular morphological

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2022. ; https://doi.org/10.1101/2022.08.12.503783doi: bioRxiv preprint 

http://paperpile.com/b/ZrxQmk/BRAE
http://paperpile.com/b/ZrxQmk/BRAE
http://dx.doi.org/10.1101/2022.01.05.475090
http://paperpile.com/b/ZrxQmk/BRAE
http://paperpile.com/b/ZrxQmk/tQMJ
http://paperpile.com/b/ZrxQmk/tQMJ
http://paperpile.com/b/ZrxQmk/t1Oo
http://paperpile.com/b/ZrxQmk/t1Oo
http://paperpile.com/b/ZrxQmk/SNY0
http://paperpile.com/b/ZrxQmk/SNY0
http://paperpile.com/b/ZrxQmk/awEE
http://paperpile.com/b/ZrxQmk/awEE
http://paperpile.com/b/ZrxQmk/3wLG
http://paperpile.com/b/ZrxQmk/3wLG
http://paperpile.com/b/ZrxQmk/zCMk
http://paperpile.com/b/ZrxQmk/zCMk
http://paperpile.com/b/ZrxQmk/Htaf
http://paperpile.com/b/ZrxQmk/Htaf
http://paperpile.com/b/ZrxQmk/K2Hy
http://paperpile.com/b/ZrxQmk/K2Hy
http://paperpile.com/b/ZrxQmk/K2Hy
http://paperpile.com/b/ZrxQmk/MrVQ
http://paperpile.com/b/ZrxQmk/MrVQ
http://paperpile.com/b/ZrxQmk/MrVQ
http://paperpile.com/b/ZrxQmk/UY0V
http://paperpile.com/b/ZrxQmk/AFYz
http://paperpile.com/b/ZrxQmk/AFYz
http://paperpile.com/b/ZrxQmk/oZW1
https://doi.org/10.1101/2022.08.12.503783
http://creativecommons.org/licenses/by/4.0/


responses to small-molecule treatment. J. Biomol. Screen. 18, 1321–1329 (2013).

45. Rohban, M. H., Abbasi, H. S., Singh, S. & Carpenter, A. E. Capturing single-cell

heterogeneity via data fusion improves image-based profiling. Nat. Commun. 10, 2082

(2019).

46. Manning, C. D. Introduction to information retrieval. (Syngress Publishing, 2008).

47. Developers, T. TensorFlow. (Zenodo, 2021). doi:10.5281/ZENODO.4724125.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2022. ; https://doi.org/10.1101/2022.08.12.503783doi: bioRxiv preprint 

http://paperpile.com/b/ZrxQmk/oZW1
http://paperpile.com/b/ZrxQmk/Olws
http://paperpile.com/b/ZrxQmk/Olws
http://paperpile.com/b/ZrxQmk/Olws
http://paperpile.com/b/ZrxQmk/7hav
http://paperpile.com/b/ZrxQmk/fSck
http://dx.doi.org/10.5281/ZENODO.4724125
http://paperpile.com/b/ZrxQmk/fSck
https://doi.org/10.1101/2022.08.12.503783
http://creativecommons.org/licenses/by/4.0/

