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20 Abstract

21 Cytochrome P450 (CYP) monooxygenases and glutathione S-transferases (GST) are enzymes that 

22 catalyse chemical modifications of a range of organic compounds. Herbicide tolerance is associated 

23 with higher levels of CYP and GST gene expression in some herbicide-resistant weed populations 

24 compared to sensitive populations of the same species. By comparing the protein sequences of 9 

25 representative species of the Archaeplastida – the lineage which includes red algae, glaucophyte 

26 algae, chlorophyte algae, and streptophytes – and generating phylogenetic trees, we identified the 

27 CYP and GST proteins that existed in the common ancestor of the Archaeplastida. All CYP clans and 

28 all but one land plant GST classes  present in land plants evolved before the divergence of 

29 streptophyte algae and land plants from their last common ancestor. We also demonstrate that 

30 there are more genes encoding CYP and GST proteins in land plants than in algae. The larger 

31 numbers of genes among land plants largely results from gene duplications in CYP clans 71, 72, and 

32 85 and in the GST Phi and Tau classes. Enzymes that either chemically alter herbicides or confer 

33 herbicide resistance belong to CYP clans 71 and 72 and the GST Phi and Tau classes. These results 

34 demonstrate that the clan and class diversity in extant plant CYP and GST proteins evolved in the 

35 Proterozoic before the divergence of land plants and streptophyte algae from a last common 

36 ancestor. Then, early in embryophyte evolution during the Palaeozoic, gene duplication in four of 

37 the twelve CYP clans, and in two of the fourteen GST classes, led to the large numbers of CYP and 

38 GST proteins found in extant land plants. It is among the genes of CYP clans 71 and 72 and GST 

39 classes Phi and Tau that alleles conferring herbicide resistance evolved in the last fifty years.

40

41 Introduction

42 Herbicide resistance evolves in weed populations and poses a challenge in all agricultural 

43 landscapes where chemical herbicides are used for weed control. This resistance can result from two 
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44 types of mutations. Mutations in the gene targeted by the herbicide which inhibit the interaction 

45 between the two confer target site resistance (TSR). Non target site resistance (NTSR) results either 

46 from mutations that reduce the amount of herbicide chemical reaching the target or that alleviate 

47 the herbicide-induced damage [1]. Reported mechanisms of NTSR involve the reduction of herbicide 

48 uptake or translocation, chemical modification of the herbicide, or sequestration of the herbicide to 

49 a location where it cannot access the target [2–4]. Genetic changes in genes encoding enzymes that 

50 can chemically modify the herbicide, including changes such as overexpression, the expression of 

51 hyperactive forms of the enzymes, or enzymes with altered substrate specificity, can inactivate the 

52 herbicide, conferring resistance [5–7]. Mutations that result in NTSR are selected for in agricultural 

53 landscapes where chemical herbicides are used and can reach high allele frequencies in the presence 

54 of ongoing herbicide selection. While the genetic basis of NTSR is often complex and mechanistically 

55 poorly understood, the overexpression of genes encoding cytochrome P450 monooxygenases and 

56 glutathione s-transferases has been shown to confer resistance in weed populations [8–10].

57 Glutathione-s-transferases (GSTs) are an ancient superfamily of enzymes found in 

58 eukaryotes and prokaryotes. GSTs catalyse the conjugation of glutathione (GSH) to both endogenous 

59 and exogenous electrophilic, hydrophobic substrates to form more polar, hydrophilic compounds. 

60 GSTs also catalyse GSH-dependent peroxidase, isomerase, and deglutathionylation reactions. In 

61 plants, GSTs are active in diverse processes including abiotic and biotic detoxification pathways 

62 [11,12], ascorbic acid metabolism [13], hormone signalling such as auxin and cytokinin homeostasis 

63 [14–16], metabolism of anthocyanins and flavonoids [17,18], tyrosine catabolism [19], and in 

64 preventing apoptosis [20]. 

65 GSTs function as either monomers or dimers. Each monomer is characterised by a conserved 

66 N-terminal domain containing the active site and several GSH binding site residues (G-sites), and a 

67 less conserved C-terminal domain comprising alpha helices with class-specific substrate binding sites 

68 (H-sites) [21]. Plant GSTs are classified into groups as cytosolic, mitochondrial,or microsomal and 

69 each group is further subdivided into classes. In plants there are 12 cytosolic GST classes. These 
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70 include Tau (GSTU), Phi (GSTF), Theta (GSTT), Lambda (GSTL), Zeta (GSTZ), Iota (GSTI), Hemerythrin 

71 (GSTH), tetrachlorohydroquinone dehalogenase (TCHQD), eukaryotic translation elongation factor 

72 1B-γ subunit (Ef1Bγ), Ure2p, glutathionyl hydroquinone reductase (GHR), and dehydroascorbate 

73 reductase (DHAR). In contrast, there is only a single microsomal GST class, microsomal prostaglandin 

74 E-synthase type 2 (mPGES2), and a single mitochondrial GST class, Metaxin (GSTM). 

75 Cytochrome p450 monooxygenases (CYPs) are a superfamily of membrane-bound enzymes 

76 present in plants, fungi, bacteria, and animals. They are heme-thiolate proteins that use molecular 

77 oxygen and NADPH to modify substrates with diverse chemical reactions including oxidations, 

78 hydroxylations, dealkylations, and reductions [22] and are implicated in a wide array of biochemical 

79 pathways. CYPs participate in the synthesis and modification of primary metabolites such as sterols 

80 and fatty acids, secondary metabolites such as phenylpropanoids, glucosinolates, and carotenoids, 

81 and the synthesis and catabolism of hormones such as gibberellins, jasmonic acid, abscisic acid, 

82 brassinosteroids, and strigolactones [22–24]. 

83 CYPs are characterised by a conserved heme-binding domain, an oxygen binding domain, 

84 two conserved motifs (X-E-X-X-R and P-E-R-F) that form what is known as the ERR triad and is 

85 involved in positioning and stabilising the heme pocket, and several highly variable substrate 

86 positioning and recognition sites [25]. The three-dimensional structure of CYPs is conserved across 

87 the family even though the amino acid sequences of individual members may be as little as 20% 

88 identical [26–30]. Previous phylogenetic analyses of CYPs grouped them into monophyletic clades 

89 termed clans, each containing one or more CYP families [31–33], with clans being named after their 

90 lowest numbered family member [34]. Clans represent the deepest clades that reproducibly appear 

91 in multiple phylogenetic trees.

92 Here we report the phylogenetic relationships among both the GST and CYP proteins within 

93 the Archaeplastida lineage. We discovered that those CYPs and GSTs that confer herbicide resistance 

94 among weeds are restricted to two monophyletic clans and two monophyletic classes, respectively. 
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95 These clans and classes already existed in the common ancestor of land plants, which is estimated to 

96 have existed between 980 and 473 Mya [35–37].These clans and classes diversified early in land 

97 plant evolution and now constitute the largest groups of CYP and GST proteins in extant vascular 

98 plants. This analysis suggests that natural selection caused by herbicides acts on sets of ancient 

99 genes that existed in the last common ancestor of the land plants and K. nitens, a streptophyte alga, 

100 and diversified in vascular plants, leading to the evolution of herbicide resistance in the agricultural 

101 landscape.
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114 Materials and methods

115 Data resources

116 Protein sequences from A. thaliana were retrieved from TAIR10 [38] (https://www.arabidopsis.org/) 

117 Protein sequences from Oryza sativa were retrieved from the rice genome annotation project [39] 

118 (http://rice.plantbiology.msu.edu/).Protein sequences from the liverwort M. polymorpha were 

119 obtained from MarpolBase (http://marchantia.info/). Protein sequences from the hornwort 

120 Anthoceros agrestis were obtained from [40] (https://www.hornworts.uzh.ch/en/download.html). 

121 Protein sequences from the streptophyte alga Klebsormidium nitens were obtained from the K. 

122 nitens genome webpage [41] 

123 (http://www.plantmorphogenesis.bio.titech.ac.jp/~algae_genome_project/klebsormidium/). Protein 

124 sequences from the moss Physcomitrium patens and the chlorophyte alga Chlamydomonas 

125 reinhardtii were retrieved from Phytozome 12 [42] (https://phytozome.jgi.doe.gov/pz/portal.html). 

126 Protein sequences from the red alga Cyanidioschyzon merolae were retrieved from the C. merolae 

127 genome webpage [43] (https://www.genome.jp/kegg-bin/show_organism?org=cme).

128 A classification of CYP genes from A. thaliana, S. moellendorffii, P. patens, C. reinhardtii is 

129 available on The Cytochrome P450 Homepage [44] (http://drnelson.uthsc.edu/plants/). Two other 

130 Arabidopsis CYP databases can be found on the Arabidopsis Cytochrome P450 List [45] 

131 (http://www.p450.kvl.dk/At_cyps/table.shtml) and CyPEDIA [46] (http://www-ibmp.u-

132 strasbg.fr/~CYPedia/). The classification of O. sativa CYPs is available on the University of California, 

133 Davis Rice CYP Database (https://ricephylogenomics.ucdavis.edu/p450/). 

134 Sequence collection

135 CYP protein sequences from A. thaliana and O. sativa [47,48] were used to perform BLASTP searches 

136 using a minimum E value cut-off of 1e-10 against the predicted proteomes of S. moellendorffii, M. 

137 polymorpha, A. agrestis, P. patens, K. nitens, C. reinhardtii, and C. merolae. GST protein sequences 
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138 were retrieved by BLASTP searches using GST proteins from A. thaliana [49,50], O. sativa [51,52], 

139 and P. patens [53] against the predicted proteomes of S. moellendorffii, M. polymorpha, A. agrestis, 

140 K. nitens, C. reinhardtii, and C. merolae. This initial list of sequences for each species was self-blasted 

141 against the proteome of that species to retrieve additional sequences belonging to species-specific 

142 clans. Each CYP sequence was checked for the presence of the cytochrome p450 domain (PF00067, 

143 IPR00128) and each GST sequence was checked for the presence of the GST N-terminal domain 

144 (IPR004045, IPR019564, PF13409, PF17172, PF13417 and PF02798) and C-terminal domain 

145 (IPR010987, PF13410, PF00043, PF14497 and PF17171) using InterProScan 84.0 [54]. 

146 Two GST classes, mitochondrial Kappa and microsomal MAPEG, don’t possess a GST N-

147 terminal thioredoxin-like domain or GST C-terminal domain and lack the N-terminal active site found 

148 in all other GST proteins. An additional group of sequences was identified by this analysis possessing 

149 two GST N-terminal domains but lacking a C-terminal domain. Protein sequences belonging to the 

150 Kappa, MAPEG, and 2N classes were therefore not included in the phylogenetic analysis but are 

151 listed in S5 Table.

152 Sequence alignment 

153 Sequences were aligned in MAFFT [55] using the FFT-NS-2 algorithm and visualised in Bioedit [56]. 

154 Sequences lacking important functional residues were removed. To trim large gaps, four approaches 

155 to alignment cleaning were undertaken. A manual approach was carried out using knowledge of the 

156 location of the functionally important CYP and GST residues. A more stringent trimming approach 

157 was also tested with the trimming software trimAl v.1.2. [57] using the three automated modes (-

158 gappyout, -strict and -strictplus) (S2 Fig).

159 Phylogenetic analysis 

160 The final alignments were subjected to a maximum-likelihood analysis conducted by PHyML 3.0 [58] 

161 using an estimated gamma distribution parameter, the LG+G+F model of amino acid substitution, 
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162 and a Chi2-based approximate likelihood ratio test (aLRT). The resulting unrooted trees were 

163 visualised in Figtree v1.4.4 [59] and annotated in Inkscape v1.0.2 [60].
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184 Results

185 1130 CYP and 358 GST sequences were identified in the genomes of 9 

186 species of Archaeplastida

187 To determine the phylogenetic relationships among CYP and GST sequences in the Archaeplastida 

188 lineage, we collected sequences from online resources. CYP and GST protein-coding genes in 9 

189 species (Table 1) representing key Archaeplastida lineages were identified as described in Methods. 

190 The resulting 1130 CYP and 358 GST sequences included sequences from the red alga 

191 Cyanidioschyzon merolae (5 CYP and 9 GST proteins), the chlorophyte alga Chlamydomonas 

192 reinhardtii (40 CYP and 19 GST proteins), the streptophyte alga Klebsormidium nitens (29 CYP and 24 

193 GST proteins), the liverwort Marchantia polymorpha (115 CYP and 35 GST proteins), the moss 

194 Physcomitrium patens (69 CYP and 42 GST proteins), the hornwort Anthoceros agrestis (144 CYP and 

195 26 GST proteins), the lycophyte Selaginella moellendorffii (199 CYP and 57 GST proteins), and the 

196 angiosperms Oryza sativa (291 CYP and 85 GST proteins) and Arabidopsis thaliana (238 CYP and 61 

197 GST proteins) (Table 1). The M. polymorpha CYP sequences were named following the standard CYP 

198 nomenclature [34].

199
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207 Table 1. List of species used in the analysis. 

208 Including their phylum (Classification), genome size (Genome), total number of protein-coding genes (Protein-coding 

209 genes), total number of GST proteins (GSTs), GST proteins as a percentage of total protein coding genes (GSTs % PCG), total 

210 number of CYP proteins (CYPs), CYP proteins as a percentage of total protein coding genes (CYPs % PCG) and the 

211 bibliographical reference for each genome sequence.

212

213 Alignments were generated from the identified sequences and used to construct 

214 phylogenetic trees, using four alignment trimming approaches. The sequences were manually 

215 trimmed to retain the homologous domains and remove large gaps. A more stringent trimming 

216 approach was also tested with the trimming software trimAl v.1.2. [57] using the three automated 

217 modes (-gappyout, -strict and -strictplus) (S2 Fig). For both the GST and CYP phylogenetic trees, the 

218 approximate likelihood ratio test (aLRT) support values for the deepest clades of the maximum-

219 likelihood (ML) trees resulting from the trimAl -strict and -strictplus alignments were low (0-0.23). 

220 The ML trees generated from the trimAI -gappyout alignments had correct tree topologies but had 

221 low aLRT support values for the main clades (0.05-0.23). The ML trees generated from the manually 

Species Classification Genome 
(Mb)

Protein-
coding genes

GSTs GSTs 
(% PCG)

CYPs CYPs  
(% PCG)

References

Arabidopsis 
thaliana

Angiosperm 
eudicot

135 25,498 61 0.24 238 0.93 [61]

Oryza sativa Angiosperm 
monocot

321 35,681 85 0.24 291 0.82 [39]

Selaginella 
moellendorffii

Lycophyte 212.6 22,285 57 0.26 199 0.89 [62]

Anthoceros 
agrestis

Hornwort 133 24,700 26 0.11 144 0.58 [40]

Physcomitrella 
patens

Moss 480 35,938 42 0.12 69 0.19 [63]

Marchantia 
polymorpha

Liverwort 225.8 19,138 35 0.18 115 0.60 [64]

Klebsormidium 
nitens

Streptophyte 
alga

117.1 16,215 24 0.15 29 0.18 [41]

Chlamydomonas 
reinhardtii

Chlorophyte 
alga

120 15,143 19 0.13 40 0.26 [65]

Cyanidioschyzon 
merolae

Rhodophyte 
alga

16.5 5,331 9 0.17 5 0.09 [43]
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222 trimmed GST and CYP alignments had the overall highest aLRT values (>0.8) for the main clades and 

223 were selected as the representative trees for further analysis (Fig 1). 

224

225 Fig 1. Phylogenetic analysis of CYP and GST protein sequences in the Archaeplastida. 

226 Unrooted cladogram of a maximum likelihood (ML) analysis of Archaeplastida CYP (A) and GST (B) 

227 proteins conducted by PHyML 3.0 [58] using an estimated gamma distribution parameter, the 

228 LG+G+F model of amino acid substitution, and a Chi2-based approximate likelihood ratio (aLRT) test. 

229 Protein sequences were aligned using MAFFT with the L-INS-i algorithm. CYP clans are indicated by 

230 light green highlighting and numbers. GST classes are indicated by light yellow highlighting and 

231 acronyms. Coloured dots indicate the presence of sequences from different species in each clan. A. 

232 thaliana (orange); O. sativa ssp. japonica (grey); Selaginella moellendorffii (yellow); Physcomitrium 

233 patens (cyan); Anthoceros agrestis (blue); Marchantia polymorpha (black); Klebsormidium nitens 

234 (purple); Chlamydomonas reinhardtii (green); Cyanidioschyzon merolae (red). 

235

236 Plant CYP clans are ancient and two CYP clans existed in the last 

237 common ancestor of the Archaeplastida  

238 To elucidate the evolution of CYPs in Archaeplastida, we constructed a phylogenetic tree using a 

239 maximum likelihood approach (Fig 1A). This analysis demonstrated that CYPs from the 9 

240 representative species of Archaeplastida grouped into 17 monophyletic clans, consistent with 

241 previous analyses of plant CYP phylogeny [31–33]. 

242 CYPs encoded by the genomes of land plants A. agrestis, M. polymorpha, P. patens, S. 

243 moellendorffii, O. sativa, and A. thaliana corresponded to 12 of the 17 clans identified in the 

244 Archaeplastida – 51, 71, 72, 74, 85, 86, 97, 710, 711, 727, 746, and 747. Each of these 12 clans was 

245 also represented in the genome of the streptophyte alga K. nitens. This indicates that these clans 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.12.503801doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.12.503801
http://creativecommons.org/licenses/by/4.0/


12

246 existed before the divergence of K. nitens and land plants from their last common ancestor. 

247 Members of 6 of the 12 clans – 71, 72, 74, 85, 86, and 727 – were not present in the genome of C. 

248 reinhardtii. This suggests that these 6 clans originated in the streptophyte lineage after the 

249 divergence of chlorophytes and streptophytes from their last common ancestor but before the 

250 divergence of K. nitens (Fig 2A). Members of the other 6 of the 12 CYP clans – 51, 97, 710, 711, 746, 

251 and 747 – were encoded by the C. reinhardtii genome indicating that they were present before the 

252 divergence of streptophytes and chlorophytic algae from the last common ancestor. Two of the 

253 clans were also present in red algae; there is one member of clan 51 and two members of clan 710 in 

254 the genome of C. merolae. This places the origin of clan 51 and clan 710 before the divergence of 

255 Rhodophyta and Viridiplantae (Fig 2A). We conclude that clans 51 and 710 were present in the last 

256 common ancestor of Archaeplastida and therefore constitute the most ancient Archaeplastida clans.

257

258 Fig 2. Four CYP clans and two GST classes expanded during land plant evolution. 

259 Cladogram of Archaeplastida phylogeny showing CYP clan (A) and GST class (C) origins and losses in 

260 plants. Blue circles represent first appearance of a clan/class, black circles represent the absence of a 

261 clan or class in a particular lineage. Numbers of CYP proteins in each species showing increases in the 

262 sizes of four CYP clans (B) and two GST classes (D) during land plant evolution. 

263

264 Three clans – 55, 737, and 741 – were restricted to C. reinhardtii. There is a single clan 55 

265 member in C. reinhardtii, CrCYP55B1, which was sister to the clan 51 clade. Members of clan 55 are 

266 also present in fungi and hypothesised to have been acquired by C. reinhardtii from fungi through 

267 horizontal gene transfer [66]. Two C. reinhardtii CYP protein sequences – CrCYP741A1 and 

268 CrCYP768A1 – formed a monophyletic clade, clan 741, that was sister to the clade comprising clans 

269 86, 97, and 747. Thirty C. reinhardtii CYP sequences formed a monophyletic clade – clan 737 – which 
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270 was sister to the clade containing the 86, 97, 741, and 747 clans. These data are consistent with the 

271 hypothesis that clans 737 and 741 are chlorophyte specific. 

272 Two clans – Cm1 and Cm2 – comprised only single red algae proteins. Cm1 (CMD096C) was 

273 sister to the clade containing clans 72, 86, 97, 711, 727, 737, 746, and 747. Clan Cm1 and clans 72, 

274 86, 97, 711, 727, 737, 746, and 747 are therefore likely derived from a protein present in the 

275 common ancestor of the red algae and the green plant lineage (chlorophytes and streptophytes). 

276 Cm2 (CMR093C) was sister to clan 710 but shares very low amino acid identity (20%) with members 

277 of 710. Cm2 is possibly an ancestral 710 protein or it could represent a red-algae specific clan. Clans 

278 Cm2 and 710 are therefore likely derived from a protein present in the common ancestor of the red 

279 algae and the green plant lineage (chlorophytes and streptophytes). 

280 In summary, our phylogenetic analysis shows that each of the of the land plant CYP clans are 

281 also present in the genome of the streptophyte alga K. nitens. This indicates that the diversity of CYP 

282 sequences in plants evolved among algae in the aquatic environment before plants colonised land  

283 between 980 and 470 million years ago [35–37]. No new clans evolved among land plants after their 

284 colonisation of the land. Instead, the number of genes in each clan increased. Five CYP clans present 

285 in land plants and streptophyte algae are also present in the genome of the chlorophyte alga C. 

286 reinhardtii, which places their origin before the divergence of the chlorophyte and streptophyte 

287 lineages from their last common ancestor. Two clans found in land plants, streptophyte algae, and 

288 chlorophytes – 51 and 710 – are also present in the red algae. This suggests that these clans are the 

289 most ancient Archaeplastida clans and evolved before the divergence of Rhodophyta and 

290 Viridiplantae from their last common ancestor.

291
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292 Plant GST classes are ancient, and 11 classes existed in the last 

293 common ancestor of the Archaeplastida  

294 To elucidate the evolutionary history of GST classes in Archaeplastida, sequences were retrieved, 

295 aligned, and a phylogenetic tree constructed using maximum likelihood statistics (Fig 1B). The 

296 topology of the trees demonstrated that GSTs from the 9 representative species of Archaeplastida 

297 constituted 19 monophyletic classes – Ala, Alb, Alc, Cr1, DHAR, EF1B-γ, GHR, Hemerythrin, Iota, Kn1, 

298 Lambda, Metaxin, mPGES2, Phi, Tau, TCHQD, Theta, Ure2p, and Zeta. Of these 19 classes, 14 are 

299 encoded in the genomes of the land plant species A. agrestis, M. polymorpha, P. patens, S. 

300 moellendorffii, O. sativa and A. thaliana – DHAR, EF1B-γ, GHR, Hemerythrin, Iota, Lambda, Metaxin, 

301 mPGES2, Phi, Tau, TCHQD, Theta, Ure2p and Zeta (Fig 1B). Five of the 19 classes are novel GST 

302 classes identified in algal genomes, named Ala, Alb, Alc, Cr1, and Kn1. 

303 16 algal GST sequences comprised several different monophyletic clades. Three C. reinhardtii 

304 sequences and one C. merolae sequence comprised class Alc, which is a sister to the Ure2p class (Fig 

305 1B). However, these sequences lacked a characteristic Ure2p protein domain (cd03048) and were 

306 therefore not included in the Ure2p class. Class Alb, which included one K. nitens sequence and one 

307 C. merolae sequence, is a sister to the monophyletic clade comprising both the Ure2p and Alc 

308 classes. Class Ala, comprising 7 C. reinhardtii sequences and a single C. merolae sequence, is a sister 

309 to the clade containing Phi, Theta, EFB1-γ, Ure2p, Alb, and Alc GST sequences. Ala, Alb, and Alc may 

310 represent classes that evolved in the ancestor of Archaeplastida, where Ala and Alc were lost in the 

311 common ancestor of Streptophytes, and Alb was lost in the chlorophyte lineage and in the common 

312 ancestor of land plants. 

313 Two individual algal sequences formed two independent clades. A C. reinhardtii sequence 

314 (Cre12.g508850.t1) was sister to the TCHQD class. However, this sequence lacked a TCHQD protein 

315 domain (IPR044617) and was therefore designated Cr1. A K. nitens sequence (Kfl00304_0120_v1) 

316 was sister to the Lambda class, however there was no GST Lambda class C-terminal domain 
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317 (cd03203). This sequence was designated Kn1. These data suggest that Cr1 evolved in the 

318 chlorophyte lineage and Kn1 evolved in the streptophyte algal lineage.

319 Of the 14 GST classes present in the genomes of the land plants A. agrestis, M. polymorpha, 

320 P. patens, S. moellendorffii, O. sativa and A. thaliana, 9 classes – EF1B-γ, GHR, Metaxin, mPGES2, Phi, 

321 TCHQD, Theta, Ure2p, Zeta – are also found in non-plant genomes (such as metazoans, bacteria, 

322 archaea, and fungi) and therefore predate the origin of the Archaeplastida [53,67–71]. The other 5 

323 GST classes – DHAR, Hemerythrin, Iota, Lambda, and Tau – have only been described from the 

324 genomes of land plants and chlorophyte and streptophyte algae [49,51,53,72]. Our analysis shows 

325 that Lambda and Tau members are present in the genome of the streptophyte alga K. nitens but not 

326 in the C. reinhardtii and C. merolae genomes. This indicates that these classes evolved among the 

327 streptophytes after the divergence of the red algae and chlorophytes but before the divergence of K. 

328 nitens and land plants. Members of the Hemerythrin class were found in genomes of the bryophytes 

329 P. patens, M. polymorpha, and A. agrestis and the lycophyte S. moellendorffii, but not in the 

330 angiosperms or in K. nitens, C. reinhardtii, or C. merolae. This suggests that the Hemerythrin class 

331 originated in the common ancestor of bryophytes and vascular plants but was lost in the common 

332 ancestor of the angiosperms. There are DHAR members in the genomes of K. nitens and C. 

333 reinhardtii. This suggests that DHAR GST proteins were present in the last common ancestor of 

334 chlorophytes and streptophytes. There are Iota members in C. merolae, C. reinhardtii, and K. nitens 

335 indicating that Iota class enzymes originated before the divergence of rhodophytes and chlorophytes 

336 in the common ancestor of Archaeplastida (Fig 2C).  

337 There are 26 GST proteins belonging to 12 classes in the genome of the hornwort 

338 Anthoceros agrestis (S2 Table). One sequence (AagrOXF_evm.model.utg000005l.356.1) nested 

339 within the monophyletic Tau GST clade and contained the conserved N- and C-terminal Tau class 

340 catalytic motifs (cd03058 and cd03185). This is strong evidence that 

341 AagrOXF_evm.model.utg000005l.356.1 is a Tau GST. Tau GST proteins are also present in 

342 streptophyte algae, liverworts, and vascular plants but absent from mosses. This suggests that the 
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343 Tau GST class was present in the last common ancestor of the streptophyte algae and subsequently 

344 lost in the moss lineage (Fig 2C).

345 In summary, this analysis showed that Archaeplastida GST proteins comprise 19 classes. 11 

346 classes – Ala, Alb, Alc, EF1B-γ, GHR, Iota, Metaxin, mPGES2, TCHQD, Theta, and Zeta – were present 

347 in the common ancestor of the Archaeplastida. 12 classes originated after the divergence of 

348 Archaeplastida from other eukaryotes. The earliest GST classes to arise in Archaeplastida were the 

349 Ala, Alb, Alc, and Iota classes, which originated before the separation of rhodophyte and chlorophyte 

350 lineages. The DHAR class originated in the common ancestor of chlorophytes and streptophytes.The 

351 Cr1 class originated in the chlorophyte lineage. Lambda, Tau, Phi, and Ure2p GSTs originated in the 

352 last common ancestor of streptophyte algae and land plants. Kn1 originated in the streptophyte 

353 algae. The most recently diverging plant GST class, the Hemerythrin class, originated in the last 

354 common ancestor of land plants. 

355

356 CYP clans 71, 72, 85, and 86 and GST classes Phi and Tau GST 

357 expanded among land plants

358 The number of CYP genes encoded in the genomes of land plants is larger than the number encoded 

359 in the genomes of algae. We identified between 5 and 40 CYP protein genes in algae – 5 in C. 

360 merolae, 40 in C. reinhardtii, and 29 in K. nitens. We identified between 69 and 144 among the 

361 bryophytes – 69 in A. agrestis, 115 in P. patens, and 144 in M. polymorpha genomes. Among the 

362 vascular plants we identified between 199 and 291 – 199 in S. moellendorffii, 238 in A. thaliana, and 

363 291 in O. sativa genomes (Table 1, S1 Table). 

364 To determine if CYP gene numbers are correlated with the numbers of total protein coding 

365 genes in land plants, we calculated the percentage of protein-coding genes that encoded CYP 

366 proteins. CYPs represent 0.18% of the protein-coding genes in the streptophyte alga K. nitens, 0.19-
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367 0.60% in bryophytes, and 0.82-0.93% in vascular plants (Table 1). These data are consistent with the 

368 hypothesis that the larger number of CYP genes in bryophytes and vascular plants compared to algae 

369 is not simply due to a general increase in gene number.

370 To identify the clans responsible for the increase in CYPs in land plants, clan gene numbers 

371 were compared between species. There are more genes in clans 71, 72, 85, and 86 in land plants 

372 than in streptophyte algae (Fig 2B, S1 Table), with clan 71 gene numbers differing the most between 

373 species. There are three 71 clan members in the genome of the streptophyte alga K. nitens. Among 

374 the bryophytes there are 59 clan 71 members in the hornwort A. agrestis, 68 in the liverwort M. 

375 polymorpha and 38 in the moss P. patens. Among the vascular plants there are 98 in the lycophyte S. 

376 moellendorffii, 148 in A. thaliana, and 163 in O. sativa (S1 Table). Clan 71 proteins represent 10% of 

377 all CYPs in K. nitens but 40-60% of all CYPs in the land plants. Together these data are consistent with 

378 the hypothesis that the expansion in the numbers of clan 71 genes contributed to the large number 

379 of CYP proteins in land plants compared to algae (non-land plant Archaeplastida). There are only a 

380 small number of genes in eight CYP clans across all streptophyte species – 51, 74, 97, 710, 711, 727, 

381 746, and 747. Generally, there were fewer than 10 members in each of these clans in any one 

382 species (S1 Table). Thus, these clans therefore represent monophyletic groups that did not diversify 

383 among land plants.

384 Despite the smaller number of GST classes in land plants compared to algae, there are more 

385 GST protein coding genes in land plants than in algae. We identified 9 GST genes in the genome of C. 

386 merolae, 19 in C. reinhardtii, and 24 in K. nitens. Among the bryophytes we identified 35 in M. 

387 polymorpha, 42 in P. patens and 26 in A. agrestis. Among the vascular plants we identified 57 in S. 

388 moellendorffii, 85 in O. sativa and 61 in A. thaliana (Table 1, S2 Table). Genes coding for GST proteins 

389 represent 0.15% of all protein coding genes in K. nitens, 0.11-0.18% in bryophytes, and 0.24-0.26% in 

390 vascular plants (Table 1). These data are consistent with the hypothesis that the larger number of 

391 GST genes in vascular plants than in algae is not due to a general increase in protein number, but 

392 due to GST family expansion.
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393 To identify the classes responsible for the increase in GSTs in vascular plants, gene numbers 

394 in each GST class were compared between species. The number of GST proteins in the Phi and Tau 

395 classes is larger in land plants than in streptophyte algae. There are 3 Phi class members in the 

396 genome of the streptophyte alga K. nitens. Among the bryophytes there are 18 Phi class genes in the 

397 genome of M. polymorpha, 10 in P. patens and 11 in A. agrestis. Only 1 Phi GST was identified in the 

398 genome of the lycophyte S. moellendorffii. Among the angiosperms, there are 19 Phi GST proteins in 

399 O. sativa and 13 in A. thaliana. This suggests that the Phi class expanded in the land plant lineage 

400 after the divergence of streptophyte algae and land plants from the last common ancestor but 

401 before the divergence of bryophytes and vascular plants. There are also more Tau class GST proteins 

402 in vascular plant genomes than in either the algal or bryophyte genomes (Fig 2D). There are 3 Tau 

403 class genes in the genome of K. nitens. Among the early diverging land plants there are 2 Tau class 

404 members in M. polymorpha, 1 in A. agrestis and none in P. patens. Among the vascular plants there 

405 are 34 in S. moellendorffii, 49 in O. sativa and 28 in A. thaliana. This suggests that the Tau class 

406 expanded in vascular plants after the divergence of bryophytes and vascular plants. In the other 17 

407 GST classes in Archaeplastida – Ala, Alb, Alc, Cr1, DHAR, EF1B-γ, GHR, Hemerythrin, Iota, Kn1, 

408 Lambda, Metaxin, mPGES2, TCHQD, Theta, Ure2p, and Zeta – gene numbers are less than 10 in each 

409 species (S2 Table), indicating these these classes have not expanded during the course of evolution.

410 In summary, our phylogenetic analysis shows that the 2 to 10-fold larger number of CYP 

411 genes in the genomes of land plants than in the streptophyte alga K. nitens results from expansions 

412 of clans 71, 72, 85, and 86. The 1.5 to 3.5-fold more GST genes in land plants than in the 

413 streptophyte alga K. nitens results from expansions of the Phi and Tau classes. 

414
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415 Herbicide metabolic resistance is associated with proteins from the 

416 GST Phi and Tau classes and CYP 71 and 72 clans 

417 GSTs and CYPs have been genetically associated with herbicide resistance in crops and weed 

418 populations [73,74]. To identify which CYP clans and GST classes are genetically and/or metabolically 

419 associated with herbicide resistance, a literature search was conducted. CYPs or GSTs reported in 

420 previous studies to increase herbicide resistance in transgenic plants or to metabolise herbicides 

421 were classified as NTSR genes (S3 and S4 Tables). CYPs and GSTs found to have increased expression 

422 in herbicide resistant weeds, but whose function was not experimentally validated, were classified as 

423 “candidate NTSR genes” and are listed in S5 and S6 Tables. 

424

425 Clan 71 and clan 72 CYP proteins are associated with resistance to herbicides 

426 from 16 chemical classes 

427 A total of thirty plant CYPs have been experimentally shown to metabolise or confer resistance to 

428 one or more herbicides in sensitivity or metabolism assays (Fig 3A, S3 Table). These CYPs were 

429 identified in the model plant Arabidopsis (A. thaliana) [75,76], the grass weeds barnyard grass 

430 (Echinochloa phyllopogon) [77–79], shortawn foxtail (Alopecurus aequalis) [80] and annual ryegrass 

431 (Lolium rigidum) [81], the gymnosperm western red cedar (Thuja plicata) [82], and the crops barley 

432 (Hordeum vulgare) [83],  rice (Oryza sativa) [84–86], wheat (Triticum aestivum) [87], maize (Zea 

433 mays) [88], cotton (Gossypium hirsutum) [89], soybean (Glycine max) [90,91], ginseng (Panax 

434 ginseng) [92], Jerusalem artichoke (Helianthus tuberosus) [93,94] and tobacco (Nicotiana tabacum) 

435 [95]. These 29 CYPs metabolised or conferred resistance to diverse herbicide chemical classes, with 

436 the majority (24 of 29) metabolising phenylureas or sulfonylureas (S3 Table). 

437
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438 Fig 3. GST and CYP proteins associated with herbicide resistance belong to the Lambda, Phi, and 

439 Tau classes and clans 71 and 72. 

440 (A) Number of CYP proteins associated with herbicide resistance (white bars), present in the A. 

441 thaliana  genome (light grey bars) and in the O. sativa genome (dark grey bars), per clan. (B) Number 

442 of GST proteins associated with herbicide resistance (white bars), present in the A. thaliana genome 

443 (light grey bars) and the O. sativa genome (dark grey bars) per clan. (C) Number of CYP proteins 

444 associated with resistance per clan, with family membership indicated by colours. The most 

445 represented family among CYPs associated with herbicide resistance is the CYP81 family. Numbers 

446 over or within bars represent the number of proteins within that category.

447

448 All thirty of the herbicide-metabolising CYPs belong to clan 71 or 72 (Fig 3A). Twenty-six clan 

449 71 enzymes have been shown to confer resistance to benzothiadiazinones, clomazone, DEN, DIM, 

450 FOP, isoxazolidinones, phenylureas, pyrazoles, pyridazinones, thiobenzoates, sulfonylaminocarbonyl-

451 triazolinones, sulfonylureas, thiadiazines, triazolopyrimidines, and triketone herbicide chemicals. 

452 Clan 71 CYPs are encoded in large number in the genomes of all land species; there are 150 in A. 

453 thaliana and 164 in O. sativa. In contrast, there are much fewer clan 72 CYPs encoded in land plant 

454 genomes, with  19 in A. thaliana and 34 in O. sativa. Four clan 72 members shown to confer 

455 resistance to thiobenzoates, pelargonic acid, or sulfonylureas. Thus, all CYPs currently known to 

456 metabolise or confer resistance to herbicides belong to clans 71 and 72, which represent two of the 

457 four expanded CYP clans in land plants. 

458 Twelve members of the clan 71 family CYP81 were shown to confer herbicide resistance. 

459 This is more than any other family or clan (Fig 3C). CYP81 enzymes catalyse hydroxylations and N-/O-

460 demethylations of herbicide substrates [77]. The CYP81 enzymes metabolise herbicides from five 

461 chemical classes, more than any other CYP family to date.
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462 Together these data indicate that genes encoding CYP proteins that mutate to herbicide 

463 resistance are members of clan 71 and 72. Within clan 71, more members of the CYP81 family are 

464 associated with herbicide resistance than any other family.

465

466 Phi, Tau and Lambda GST class proteins are associated with resistance to 

467 herbicides from 9 chemical classes

468 Thirty-three plant GSTs were found in the literature to be active towards one or more herbicides or 

469 that confer herbicide resistance (Fig 3B, S4 Table). These GST proteins were identified in the model 

470 species Arabidopsis (Arabidopsis thaliana) [96], moss (P. patens) [53], the weed species blackgrass 

471 (Alopecurus myosuroides) [97,98], the crops maize (Zea mays) [99,100,109,101–108], rice (Oryza 

472 sativa) [99,110,111], sorghum (Sorghum bicolor) [112], wheat (Triticum aestivum) [29,113–115] and 

473 soybean (Glycine max) [116–118]. These GSTs were shown to modify or confer resistance to diverse 

474 chemical classes, with most GSTs (28 of 33) modifying chloroacetanilide herbicides. Of the 33 GSTs, 

475 11 are Phi class members, 21 are Tau class members, and one is a lambda class member (Fig 3B).

476 Twenty-one Tau GSTs were identified in 6 species and catalysed the GSH-conjugation of 

477 chloroacetanilide, diphenyl ether, FOP, sulfonylurea and triazine herbicide chemicals. Eleven Phi 

478 GSTs identified in 6 species catalysed the GSH-conjugation of bipyridylium, chloroacetanilide, DIM, 

479 diphenyl ether, FOP, organophosphorus, phenylurea, sulphonylurea, thiocarbamate and triazine 

480 herbicides (S4 Table). 

481 50-70% of all GSTs encoded in vascular plant genomes are Tau or Phi class members. In A. 

482 thaliana, there are 41 Tau and Phi GSTs and only 20 GSTs across the other 12 classes. In O. sativa, 

483 there are 68 Tau and Phi GSTs and 17 in the other classes (Fig 3B). Thus, the overrepresentation of  

484 Phi and Tau class GSTs among those reported to confer herbicide resistance may simply be due to 

485 the fact that there are more genes in these classes than others. Therefore, we cannot reject the 

486 hypothesis that there is an equal probability of GST proteins from any class being able to confer 
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487 herbicide resistance. The report that overexpression of a single Lambda class GST – there are 3 

488 Lambda class genes encoded in A. thaliana – in a naturally occurring herbicide tolerant weed is able 

489 to confer herbicide resistance supports this hypothesis. 

490 In conclusion, herbicide resistance has been associated with GST proteins from Tau, Phi and 

491 Lambda classes. The probability of resistance evolving among any of those classes, is likely to be 

492 proportional to the number of genes in each class. 

493

494 Discussion

495 Cytochrome P450 monooxygenases (CYPs) and glutathione S-transferases (GSTs) are enzymes that 

496 catalyse the chemical modification of a multitude of organic compounds in organisms from all 

497 domains of life. Overexpression of genes encoding CYPs and GSTs has been shown to confer 

498 herbicide resistance in wild weed populations subjected to herbicide selection. To classify the genes 

499 that metabolise herbicides, we carried out a phylogenetic analysis of both the CYP and GST protein 

500 families. By comparing protein sequences of 9 representative species of the Archaeplastida – the 

501 lineage that includes the red algae, glaucophyte algae, chlorophyte algae, and streptophytes – and 

502 generating phylogenetic trees, we identified the CYP and GST protein families that existed in the 

503 common ancestor of the Archaeplastida. Members of two CYP clans (clans 51 and 71) and eleven 

504 GST classes (Ala, Alb, Alc, EF1B-y, GHR, Iota, Metaxin, mPGES2, TCHQD, Theta, and Zeta) existed in 

505 the last common ancestor of the Archaeplastida. Other families evolved during the course of 

506 Archaeplastida evolution. There are more CYP and GST genes in land plants than in algae, even 

507 relative to the total number of genes, consistent with the hypothesis that these gene families 

508 expanded during Archaeplastida evolution. This expansion was largely driven by gene duplications 

509 among CYP clan 71 and 72, and among the GST Phi and Tau classes. Those CYP and GST genes that 

510 confer resistance to herbicides belong almost exclusively to these expanded CYP clans and GST 

511 classes.  
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512 In the face of intense herbicide use over the past 50 years, herbicide resistance has evolved 

513 through the selection of naturally occurring alleles that contribute to herbicide tolerance. Target site 

514 resistance can evolve  as a result of mutations in the gene encoding the herbicide’s target, thereby 

515 disrupting the inhibition of the target proteins by the herbicide. Non-target site resistance results 

516 from genetic changes that inhibit access of the active herbicide to its target [1]. Diverse forms of 

517 non-target site resistance have been reported which either chemically modify the herbicide, making 

518 it inactive, or sequester the herbicide to a location where it cannot access the target [2–4]. 

519 Overexpression of genes encoding CYPs and GSTs is associated with herbicide resistance in many 

520 weed populations [8–10]. Using phylogenetic trees built from protein sequences from 9 

521 Archaeplastida species, we show that the CYP and GST proteins that confer non-target site herbicide 

522 resistance in natural weed populations belong to the expanded CYP clans 71 and 72 and the GST Phi 

523 and Tau classes.  

524 It is unclear why mutation of genes in these CYP clans and GST classes leads to resistance in 

525 weed populations while others do not. It is possible that because these clans and classes are the 

526 largest, there is simply a greater probability of them mutating to resistance.  Characterizing the 

527 cause of resistance in more resistant populations will help to resolve this question. It is also possible 

528 that the enzymatic activity of these proteins makes them more likely to metabolize herbicide 

529 compounds. Further characterization of the endogenous function of CYP clans 71 and 72 and GST 

530 Tau and Phi classes during normal plant growth and development will help to answer this question.  

531 At present, the available phylogenetic and enzymatic data do not allow us to distinguish between 

532 these alternative hypotheses. 

533 All CYP clans and all but one land plant GST classes that are present in land plants evolved 

534 before the divergence of streptophyte algae and land plants from their last common ancestor. These 

535 results demonstrate that the clan and class diversity in extant plant CYP and GST proteins, 

536 respectively, evolved in the Proterozoic, before the divergence of land plants and streptophyte algae 

537 from a last common ancestor. Then, early in embryophyte evolution during the Palaeozoic, 
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538 expansion of four of the twelve CYP clans and two of the fourteen GST classes resulted in the large 

539 number of CYP and GST proteins found in extant land plants. It is among these expanded groups that 

540 herbicide resistance genes are found. Thus, resistance depends on the deregulation of the 

541 expression of genes that evolved in the Proterozoic, with original functions unrelated to herbicide 

542 resistance. This is an unusual example of exaptation – whereby traits [or genes] that evolved in 

543 response to one selection pressure – in this case probably metabolic biosynthesis – are selected for 

544 in response to an entirely different selection pressure – here herbicide resistance [119]. Exaptation is 

545 likely to be a general principle underpinning the evolution of herbicide resistance mechanisms 

546 among weeds in the agricultural landscape.

547
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959 S1 Fig. Overview of cytochrome P450 protein features in plants. Diagram of a typical CYP protein 

960 showing recognisable amino acid sites. Adapted from Werck-Reichhart & Feyereisen, 2000. 

961 Weblogos of the four conserved CYP amino acid motifs in plants are shown. 

962

963 S2 Fig. Plant CYP and GST phylogenetic analysis using automatic and manual trimming approaches.

964 Unrooted cladograms of maximum likelihood (ML) analysis conducted by PHyML 3.0 [58] using an 

965 estimated gamma distribution parameter, the LG+G+F model of amino acid substitution and a Chi2-

966 based approximate likelihood ratio (aLRT) test. CYP (A) and GST (B) sequences were aligned in 

967 MAFFT and trimmed with the automatic trimming software trimAl using the automatic modes -

968 strictplus, -strict, -gappyout or by manual trimming.  Branches are coloured to show the different 

969 CYP clans or GST classes. aLRT Support values for some of the clades are shown for comparison. 
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971 S1 Table. Cytochrome P450 clans and gene numbers in green plants and red algae. Numbers of CYP 

972 proteins in each clan, excluding pseudogenes. At, Arabidopsis thaliana; Os, Oryza sativa; Sm, 

973 Selaginella moellendorffii; Aa, Anthoceros agrestis; Pp, Physcomitrium patens; Mp, Marchantia 
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974 polymorpha; Kn, Klebsormidium nitens; Cr, Chlamydomonas reinhardtii; Cm, Cyanidioschyzon 

975 merolae. 

976

977 S2 Table. Glutathione-S-transferase classes and gene numbers in green plants and red algae. 

978 Numbers of GST proteins in each clan, excluding pseudogenes. At, Arabidopsis thaliana; Os, Oryza 

979 sativa; Sm, Selaginella moellendorffii; Aa, Anthoceros agrestis; Pp, Physcomitrium patens; Mp, 

980 Marchantia polymorpha; Kn, Klebsormidium nitens; Cr, Chlamydomonas reinhardtii; Cm, 

981 Cyanidioschyzon merolae. 

982

983 S3 Table. Plant CYPs that metabolise or confer resistance to herbicides are found within clans 71 

984 and 72. Table adapted from [10].

985

986 S4 Table. Plant GST proteins that conjugate or confer resistance to herbicides are members of 

987 classes Phi, Tau, and Lambda. Maize and A. thaliana genes were renamed according to current 

988 nomenclature [21]. 

989

990 S5 Table. Candidate NTSR CYPs are found within clans 71, 72, 85 and 86.

991

992 S6 Table. Candidate NTSR genes belong to several GST classes. The organophosphorus class refers 

993 to the herbicide glyphosate.

994

995 S7 Table. Number of GST proteins identified from classes 2N, Kappa, and MAPEG in green plants 

996 and red algae. Sequences from these classes were not included in the phylogenetic analysis due to 

997 lack of classical N-terminal and C-terminal GST domains. 2N GST sequences have two N-terminal 

998 domains and lack a C-terminal domain. Kappa GST proteins lack the two classical GST domains and 
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999 instead have one single thioredoxin-like kappa GST domain (InterPro domain IPR014440). MAPEG GST 

1000 proteins lack both C and N-terminal GST domains and have instead a single ‘MAPEG’ domain.

1001

1002 S3 Fig. Untrimmed amino acid alignment of representative CYP proteins from each clan showing 

1003 the location of conserved CYP domains. Representative sequences from each plant species in this 

1004 study are included for each clan. Sequences were aligned in MAFFT using the FFT-NS-i algorithm. The 

1005 locations of the substrate recognition sites are based on those identified in Arabidopsis CYPs in [25]. 

1006 The absolutely conserved cysteine that binds the heme within the heme-binding domain is marked 

1007 with an asterisk. 

1008

1009 S4 Fig. Amino acid alignment of representative plant GST proteins showing the location of 

1010 conserved GST domains. Sequences were aligned in MAFFT using the FFT-NS-I algorithm. Four 

1011 representative sequences from different species are shown for each GST class. The location of the 

1012 putative catalytic residue is indicated with an asterisk. Predicted GSH-binding sites (G-sites) based on 

1013 the crystal structure of TaGSTU4 [29] are indicated in solid pink, and G-sites based on the crystal 

1014 structure of PtGSTF1 [121] are indicated by pink boxes. Predicted substrate-binding sites (H-sites) 

1015 based on the crystal structure of TaGSTU4 [29] are indicated in solid green, and H-sites based on the 

1016 crystal structure of PtGSTF1 [121] are indicated by green boxes. Residues conserved in at least 80% 

1017 of samples are indicated by black arrows. GSTHs and GSTIs have large domains that extend past the 

1018 C-terminal domain end which haven’t been included in the figure. Large gaps caused by single 

1019 sequences were removed for clarity. 

1020

1021 S1 Text. Untrimmed alignment of all CYP sequences used in the phylogenetic analysis. 

1022

1023 S2 Text. Manually trimmed alignment of all CYP sequences used in the phylogenetic analysis. 

1024
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1025 S3 Text. Trimmed alignment of all CYP sequences used in the phylogenetic analysis using the 

1026 trimAI -gappyout automated setting. 

1027

1028 S4 Text. Trimmed alignment of all CYP sequences used in the phylogenetic analysis using the 

1029 trimAI -strict automated setting.

1030

1031 S5 Text. Trimmed alignment of all CYP sequences used in the phylogenetic analysis using the 

1032 trimAI -strictplus automated setting.

1033

1034 S6 Text. Untrimmed alignment of all GST sequences used in the phylogenetic analysis.

1035

1036 S7 Text. Manually trimmed alignment of all GST sequences used in the phylogenetic analysis.

1037

1038 S8 Text. Trimmed alignment of all GST sequences used in the phylogenetic analysis using the 

1039 trimAI -gappyout automated setting.

1040

1041 S9 Text. Trimmed alignment of all GST sequences used in the phylogenetic analysis using the 

1042 trimAI -strict automated setting.

1043

1044 S10 Text. Trimmed alignment of all GST sequences used in the phylogenetic analysis using the 

1045 trimAI -strictplus automated setting.
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