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 2 

Abstract 1 

The multiple-demand (MD) network is sensitive to many aspects of cognitive demand, showing 2 

increased activation with more difficult tasks. However, it is currently unknown whether the MD 3 

network is modulated by the context in which task difficulty is experienced. Using fMRI, we 4 

examined MD network responses to low, medium, and high difficulty arithmetic problems within 5 

two cued contexts, an easy versus a hard set. The results showed that MD activity varied reliably 6 

with the absolute difficulty of a problem, independent of the context in which the problem was 7 

presented. Similarly, MD activity during task execution was independent of the difficulty of the 8 

previous trial. Representational similarity analysis further supported that representational distances 9 

in the MD network were consistent with a context-independent code. Finally, we identified several 10 

regions outside the MD network that showed context-dependent coding, including the precuneus, 11 

posterior cingulate cortex, precentral gryus, and large areas of visual cortex. In sum, cognitive 12 

effort is processed by the MD network in a context-independent manner. We suggest that this 13 

absolute coding of cognitive demand in the MD network reflects the limited range of task difficulty 14 

that can be supported by the cognitive apparatus. 15 

 16 
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 3 

The multiple-demand (MD) network is a set of frontal and parietal brain regions whose responses 1 

scale with cognitive demands, exhibiting enhanced activity with increasing cognitive load or 2 

difficulty across a diverse set of tasks (Duncan and Owen 2000; Duncan 2010; Fedorenko et al. 3 

2013; Duncan et al. 2020). To account for this broad association with cognitive demand, the MD 4 

network has been suggested to implement top down control to focus on the operations required for 5 

a current task, regardless of the precise nature of those operations (Erez and Duncan 2015; Jackson 6 

et al. 2017; Wen et al. 2020). However, as most previous studies were limited to a single 7 

experimental context in which difficulty was manipulated, a fundamental question about the 8 

relationship between MD network activity and cognitive effort remains unanswered: is MD 9 

network activity shaped by the context in which a given level of task difficulty is experienced?  10 

 11 

On one hand, context-dependent coding – sometimes referred to as “range adaptation” – is 12 

commonly observed in value-based decisions and perceptual processing  (Nieuwenhuis et al. 2005; 13 

Elliott et al. 2008; Carandini and Heeger 2011; Cheadle et al. 2014; Cox and Kable 2014; 14 

Palminteri et al. 2015; Murai et al. 2016; Bavard et al. 2018, 2021; Hunter and Daw 2021). For 15 

example, Nieuwenhuis et al. (2005) created two contexts in which participants would either always 16 

win or always lose money. Within each context, there were also three possible outcomes, worst 17 

(+0¢/-40¢), intermediate (+30¢/-20¢), and best (+60¢/-0¢). The authors found that activity in 18 

reward-sensitive areas scaled positively with outcome value (best > intermediate > worst) in each 19 

context, but that activity levels for the three outcomes were comparable between contexts, despite 20 

the large difference in the objective value of these outcomes. In other words, neural reward coding 21 

appears to be relative, such that an equivalent absolute value will elicit a greater response if it is a 22 

relatively good than if it is a relatively bad outcome in the current context. Recent studies have 23 
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identified overlapping regions involved in cognitive effort and the anticipation and processing of 1 

reward in the MD network, especially in the anterior cingulate cortex (ACC; Chong et al., 2017; 2 

Croxson, Walton, O’Reilly, Behrens, & Rushworth, 2009; Shashidhara, Mitchell, Erez, & Duncan, 3 

2019; Vassena et al., 2014). In line with studies suggesting a close relationship between effort and 4 

reward of cognitive actions (Kool et al. 2010; Otto and Vassena 2021), it is therefore plausible that 5 

MD activity in response to difficulty could also dynamically adapt according to the range of 6 

difficulty levels within a given task context. 7 

 8 

On the other hand, while humans can easily represent near-unlimited bounds of value (i.e., $0.01, 9 

$10, $10000, etc.), and this large range may promote contextual adaptation in terms of neural 10 

coding, the range of difficulty of information processing we can handle seems to be rather limited 11 

(Marois & Ivanoff, 2005). Capacity limits in cognitive processing include the number of items we 12 

can attend to (Chun & Marois, 2002) and hold in working memory (e.g., Miller, 1956), processing 13 

bottlenecks that hinder parallel task execution (Pashler, 1994), and the speed with which 14 

information can be encoded into working memory (Dux & Marois, 2009; Zivoni & Lamy, 2022). 15 

Various authors have linked these capacity limitations to the MD network (Marois and Ivanoff 16 

2005; Watanabe and Funahashi 2014; Duncan et al. 2020) and, corresponding to the limited range 17 

of cognitive processing, the MD network’s capacity to adapt its response to a wide range of 18 

difficulty levels may also be limited. Specifically, several studies have found that, rather than 19 

showing a monotonic increase with task difficulty, MD activity displayed an inverted U-shape 20 

response (Callicott et al. 1999; Linden et al. 2003) or a plateau after a certain difficulty level (Todd 21 

and Marois 2004; Marois and Ivanoff 2005; Mitchell and Cusack 2008), especially when 22 

performance improvement becomes impossible even with maximal attention. Thus, activity in the 23 
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 5 

MD network may reflect the investment of attentional resources, rather than objective or even 1 

subjective difficulty per se (Han and Marois 2013; Wen et al. 2018). If MD activity reflects 2 

resource investment, then this activity should increase whenever demand increases, but it should 3 

be unaltered by the difficulty of other tasks within its shared context.  4 

 5 

The current experiment was designed to tease apart these two possibilities by creating two 6 

difficulty contexts (easy and hard). Within each context we manipulated difficulty over three levels 7 

(low, medium, high) with basic arithmetic problems. Crucially, the highest difficulty level within 8 

the easy context was matched with the lowest level in the hard context. If MD activity were 9 

context-dependent, we would expect the MD network to adapt its range of activation according to 10 

relative task difficulty within each context. Accordingly, the MD network would show a different 11 

neural response to the matched difficulty conditions across contexts, with greater activity for the 12 

high difficulty level in the easy context than for the low difficulty level in the hard context. As 13 

another test of context-dependence, we examined whether MD activity during a given trial is 14 

sensitive to the difficulty level of the previous trial. Complementing these univariate analyses, we 15 

explored representational distances of difficulty in the MD network with RSA. Finally, a whole-16 

brain analyses was conducted to identify additional regions that may differentially represent 17 

context-dependent and context-independent responses (Grabenhorst and Rolls 2009) to difficulty.  18 

 19 

 20 

Materials and Methods 21 

Participants  22 
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 6 

25 participants (9 males, 16 females; ages 18-35, mean = 25.01, SD = 4.11) were included in the 1 

experiment. Two additional participants were excluded due to low accuracy and excessive motion 2 

during the scans (mean accuracy < 70% and/or motion > 4 mm on one or more runs). All 3 

participants were neurologically healthy with normal or corrected-to-normal vision. Procedures 4 

were conducted in accordance with ethical approval obtained from the Duke University Health 5 

System Institutional Review Committee, and participants provided written, informed consent 6 

before the start of the experiment.  7 

 8 

Stimuli and task procedures 9 

The experimental design was modeled closely on Nieuwenhuis et al. (2005), but instead of reward, 10 

we manipulated task difficulty. The study consisted of an online practice session and a main 11 

experimental session in the scanner. The practice session was performed on participants’ own 12 

computers within a week before the main experiment. During both sessions, participants were told 13 

that on each trial, they would be shown three doors from either a blue set or red set. They were 14 

informed that (a) one set of doors contains more difficult problems than the other set and (b) within 15 

each set of doors, there would be three levels of difficulty (low, medium, and high), and each door 16 

is associated with one level of difficulty. Thus, the two sets of doors defined the two difficulty 17 

contexts in the experiment. Additionally, participants were told that before the beginning of each 18 

trial, the position of the doors within the presented set would be shuffled, and they were given an 19 

animation demo of the doors being shuffled during the instructions to incentivize participants to 20 

choose different locations. Behind the “easy” set of doors, the math problems could be addition of 21 

(1: low difficulty) two single digits, with the constraint of the sum not exceeding 10 (e.g., 3 + 1), 22 

(2: medium difficulty) a single digit and a double digit, with the ones position requiring a carryover 23 
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 7 

(e.g., 94 + 8), or (3: high difficulty) two double digits, with at least one carryover (e.g., 26 + 57). 1 

Behind the “hard” set of doors, the math problems could be (1: low difficulty) two double digits 2 

(e.g., 19 + 42), (2: medium difficulty) a double digit and a triple digit (e.g., 925 + 86), or (3: high 3 

difficulty) two triple digits (e.g., 718 + 503), all requiring at least one carryover. Thus, the high 4 

difficulty condition in the easy set was equivalent to the low difficulty condition in the hard set. 5 

The assignment of the red and blue doors to easy versus difficult sets was counterbalanced across 6 

participants. 7 

 8 

Figure 1 illustrates the structure of the experimental paradigm. On each trial, participants were 9 

first shown three doors from one set (i.e., the contextual cue) on the screen and had up to 2.5 s to 10 

press one out of three buttons (the “8”, “9”, and “0” keys on their keyboard during the online 11 

practice and the first three buttons of the right-hand button box in the scanner) to select the left, 12 

center, or right door. Participants were encouraged to respond to every trial, however, if the 13 

participant did not respond within the time limit, the computer would choose a door for them. As 14 

soon as a door was chosen, the word “Chosen!” would be displayed along with arrows indicating 15 

the selected door for the remainder of the 2.5 s and an additional 1 s. This was then followed by a 16 

1.5 s fixation cross. Next, participants were presented with a screen displaying a math problem in 17 

the center with three choices below. They were given up to 6 s to select the correct answer, using 18 

the same three buttons. After an answer was chosen, participants would be shown a fixation cross 19 

for the remainder of the duration and an additional 3 s before moving on to the next trial.  20 

 21 

The timing of the displays was the same for the online practice and the scanning sessions, except 22 

for that in the practice session, participants were additionally given feedback after each answer to 23 
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 8 

a math problem (either “Too slow! Press the spacebar to continue”, or “correct” or “incorrect” for 1 

500 ms). To promote learning of the associations between the colored doors and difficulty context 2 

during the online practice session, we used a blocked design (Flesch et al., 2018), where 3 

participants were given the same set of doors for 9 consecutive trials in alternating blocks. 4 

Participants performed a total of 54 practice trials in total and experienced each set of doors and 5 

difficulty level both equal number of times.  6 

 7 

In the main experiment, participants performed 5 scanning runs. Each run had a total of 37 trials, 8 

with the first trial being a dummy trial. The two possible sets of doors and the six possible difficulty 9 

conditions (five levels) were varied on a trial-to-trial basis and occurred equally often across the 10 

experiment. The probability of switching from one condition to any other was equated, such that 11 

all possible transitions occurred equally often across the experiment. Although participants were 12 

told that different doors led to different math problems, in reality, the order of difficulty conditions 13 

was pre-determined and the sequence of difficulty conditions was unaffected by their response 14 

choices. Participants were not given feedback after each trial, but were shown an overall accuracy 15 

score after the end of each run.  16 

 17 
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 1 

Figure 1. Illustration of experimental paradigm, showing two trials. On each trial, participants 2 

were given a contextual cue in the form of a set of three colored doors (blue or red, associated 3 

with easy or hard problems, counterbalanced across participants), and were asked to choose one 4 

door to enter. After selecting a door, they were given a math problem from one of the three 5 

difficulty levels associated with that colored set and were asked to select the correct answer among 6 

three choices. See text for the timing of each display. 7 

 8 

fMRI data acquisition 9 

Scanning took place in a 3T Siemens Prisma scanner at the Center for Advanced Magnetic 10 

Resonance Development at Duke University Hospital. Functional images were acquired using a 11 

multiband gradient-echo echoplanar imaging (EPI) pulse sequence (TR = 2000 ms, TE = 30 ms, 12 

flip angle = 90°, 128 × 128 matrices, slice thickness = 2 mm, no gap, voxel size 2 × 2 × 2 mm, 69 13 
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axial slices covering the entire brain, three slices acquired at once). The first five volumes served 1 

as dummy scans and were discarded to avoid T1 equilibrium effects. A reverse phase encoding 2 

image was collected at the end of the experiment. High-resolution anatomical T1-weighted images 3 

were acquired for each participant using a 3D MPRAGE sequence (192 axial slices, TR = 2250 4 

ms, TI = 900 ms, TE = 3.12 ms, flip angle = 9°, field of view = 256 × 256 mm, 1-mm isotropic 5 

resolution). 6 

 7 

Preprocessing 8 

Preprocessing was performed using fMRIPrep 20.2.3 (Esteban et al., 2018; RRID:SCR_016216), 9 

which is based on Nipype 1.6.1 (Gorgolewski et al., 2011; RRID:SCR_002502).  10 

 11 

Anatomical data preprocessing 12 

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 13 

N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.3.3 (Avants, Epstein, 14 

Grossman, & Gee, 2008; RRID:SCR_004757), and used as T1w-reference throughout the 15 

workflow. The T1w-reference was then skull-stripped with a Nipype implementation of the 16 

antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain 17 

tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was 18 

performed on the brain-extracted T1w using fast ( FSL 5.0.9, RRID:SCR_002823; Zhang, Brady, 19 

& Smith, 2001). Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, 20 

RRID:SCR_001847; Dale, Fischl, & Sereno, 1999), and the brain mask estimated previously was 21 

refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived 22 

segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438; Klein et al., 2017). 23 
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Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym) was 1 

performed through nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-2 

extracted versions of both T1w reference and the T1w template. The following template was 3 

selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c 4 

(Fonov, Evans, McKinstry, Almli, & Collins, 2009; RRID:SCR_008796; TemplateFlow ID: 5 

MNI152NLin2009cAsym). 6 

 7 

Functional data preprocessing 8 

For each of the 5 BOLD runs per subject, the following preprocessing was performed. First, a 9 

reference volume and its skull-stripped version were generated using a custom methodology of 10 

fMRIPrep. A B0-nonuniformity map (or fieldmap) was estimated based on two (or more) echo-11 

planar imaging (EPI) references with opposing phase-encoding directions, with 3dQwarp (R. W. 12 

Cox & Hyde, 1997; AFNI 20160207). Based on the estimated susceptibility distortion, a corrected 13 

EPI (echo-planar imaging) reference was calculated for a more accurate co-registration with the 14 

anatomical reference. The BOLD reference was then co-registered to the T1w reference using 15 

bbregister (FreeSurfer) which implements boundary-based registration (Greve and Fischl 2009). 16 

Co-registration was configured with six degrees of freedom. Head-motion parameters with respect 17 

to the BOLD reference (transformation matrices, and six corresponding rotation and translation 18 

parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9; Jenkinson, 19 

Bannister, Brady, & Smith, 2002). BOLD runs were slice-time corrected using 3dTshift from 20 

AFNI 20160207 (R. W. Cox & Hyde, 1997; RRID:SCR_005927). The BOLD time-series were 21 

resampled into standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym 22 

space. All resamplings were performed with a single interpolation step by composing all the 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.12.503813doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.12.503813
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion correction, 1 

and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were 2 

performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to 3 

minimize the smoothing effects of other kernels (Lanczos 1964). 4 

 5 

Prior to fMRI analyses, we removed the first 5 TRs in each run. The functional data were high-6 

pass filtered with a cutoff at 1/128 Hz. Spatial smoothing of 10 mm full width at half maximum 7 

(FWHM) was applied for the univariate whole-brain analysis, but not for the univariate region of 8 

interest (ROI) analysis or the representation similarity analysis (RSA). For all the analyses, we 9 

controlled the false discovery rate (FDR) to correct for multiple comparisons across ROIs as well 10 

as the whole brain.  11 

 12 

ROIs 13 

For the primary analysis, we focused on the MD network (see Figures 4, 6, and 7). The MD 14 

network was based on data from Fedorenko et al. (2013), selecting frontoparietal regions 15 

responsive to cognitive demands across seven diverse tasks (http://imaging.mrc-16 

cbu.cam.ac.uk/imaging/MDsystem). MD component ROIs were separated as described in Mitchell 17 

et al. (2016), based on proximity to local maxima in the data of Fedorenko et al. (2013); and 18 

included three clusters along the anterior, middle, and posterior middle frontal gyrus (aMFG, 19 

mMFG, and pMFG), posterior-dorsal lateral frontal cortex (pdLFC) close to the frontal eye field 20 

in the superior precentral sulcus, and clusters in the inferior parietal sulcus (IPS), anterior insula 21 

(AI), and pre-supplementary motor area and adjacent anterior cingulate cortex (ACC). As MD 22 
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activation tends to be largely symmetrical, left and right hemisphere ROIs were combined to form 1 

bilateral ROIs. 2 

 3 

Univariate activation across difficulty levels 4 

Statistical analyses were performed first at the individual level, using a general linear model 5 

(GLM). In our first GLM, we had a regressor for each type of math problem that was answered 6 

correctly (6 regressors: 2 contexts × 3 difficulty levels). Math problems that were answered 7 

incorrectly were removed from the analysis using a separate regressor. All math problems were 8 

modeled with the duration of each trial’s response time (or the maximum 6 s if participants failed 9 

to provide a response). We additionally had regressors for each set of contextual cues (i.e., blue 10 

and red doors; 2 regressors). The contextual cues were modeled with a fixed 3.5 s duration. Each 11 

regressor was convolved with the canonical hemodynamic response function. The six motion 12 

parameters and block means were included as regressors of no interest. The average beta estimates 13 

for individual participants were entered into a random effects group analysis. 14 

 15 

One possibility is that the MD network shows context-independent activity (Figure 2Ai), such that 16 

MD activity would increase linearly with increased absolute difficulty of the math problems, and 17 

there would be an equivalent response to the two double digits additions (the high difficulty level 18 

in the easy set and the low difficulty level in the hard set), regardless whether it was experienced 19 

in the easy set or hard set. Another possibility is that the MD network shows context-dependent 20 

activity (Figure 2Aii), such that activation would be scaled within each set of doors. In this scenario, 21 

we would expect the low, medium, and high difficulty conditions to elicit similar neural responses 22 

across the two sets, such that the two double digits additions to show a greater neural response 23 
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when experienced in the easy set (in which it is the high difficulty condition) than when it is 1 

experienced in the hard set (in which it is the low difficulty condition). Finally, it is possible that 2 

the MD network is sensitive to both relative difficulty within a context as well as absolute difficulty 3 

that is independent of context, in which case we would expect MD activation to reflect an additive 4 

mix of the former two (Figure 2Aiii). To evaluate these possibilities, for each participant, we fit a 5 

linear regression with a regressor modeling absolute difficulty ([1,2,3,3,4,5]) and a regressor 6 

modeling relative difficulty ([1,3,5,1,3,5]) to their neural response to the six types of math 7 

problems. The individual participants’ beta estimates were then entered into a random effects 8 

group analysis.   9 

 10 

Univariate activation when switching difficulty levels 11 

In our second GLM, we modeled each imperative trial according to its current as well as previous 12 

difficulty context (i.e., Easy-Easy, Hard-Easy, Hard-Hard, Easy-Hard; 4 regressors). Each trial 13 

duration was modeled according to participants’ response times. We also modeled the contextual 14 

cues according to their current and previous condition (i.e., Easy-Easy, Hard-Easy, Hard-Hard, 15 

Easy-Hard; 4 regressors). The context cues were modeled with a fixed 3.5 s duration. Math 16 

problems that were answered incorrectly were removed from the analysis using a separate 17 

regressor. The first imperative trial and first cue (which did not have a previous trial to switch 18 

from) was modeled individually as a regressor of no interest (2 regressors). Each regressor was 19 

convolved with the canonical hemodynamic response function. The six motion parameters and 20 

block means were included as regressors of no interest. The average beta estimates for individual 21 

participants were entered into a random effects group analysis. 22 

 23 
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 15 

A priori, we were particularly interested in the following contrasts: (1) switching from a problem 1 

in the hard set to a problem in the easy set versus repeating a problem in the easy set, and (2) 2 

switching from the easy set to a problem in the hard set versus repeating a problem in the hard set. 3 

One demonstration of context-dependent coding would be sensitivity to previous trial experience 4 

(Akitsuki et al. 2003; Nakahara et al. 2004). We hypothesized that if a participant becomes more 5 

efficient at solving hard problems because of a previous experience with a hard trial, then we 6 

would expect decreased MD activity when switching from the hard set to the easy set (Garavan et 7 

al. 2000; Landau et al. 2004). One the other hand, we may expect increased MD activity when 8 

switching from the easy set to the hard set, as relative task difficulty would increase (Botvinick et 9 

al. 1999; Carter et al. 2000; Durston et al. 2003; Kerns et al. 2004). Thus, we would expect an 10 

interaction between switching versus repeating a set, and whether the current set is easy or hard. 11 

 12 

RSA analysis 13 

We performed RSA using the linear discriminant contrast (LDC) to quantify dissimilarities 14 

between activation patterns. The analysis used the RSA toolbox (Nili et al., 2014), in conjunction 15 

with in-house software. The LDC was chosen because it is multivariate noise-normalized, 16 

potentially increasing sensitivity, and is a cross-validated measure which is distributed around zero 17 

when the true distance is zero (Walther et al., 2016). An average activity pattern for each type of 18 

math problem was obtained from the first GLM above, thus resulting in 6 patterns in total for each 19 

run. For every possible combination of two runs, and for each pair of patterns, the patterns from 20 

run 1 were projected onto a Fisher discriminant fitted for run 2, with the difference between the 21 

projected patterns providing a cross-validated estimate of a squared Mahalanobis distance. This 22 

was repeated projecting run 2 onto run 1, and we took the average as the dissimilarity measure 23 
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between the two patterns. We then averaged the result from each pair of runs. All pairs of pattern 1 

dissimilarities therefore formed a symmetrical representational dissimilarity matrix (RDM) with 2 

zeros on the diagonal. This was done individually on the MD ROIs as well as in a whole-brain 3 

analysis using a 10 mm searchlight and then smoothed with a 10 mm FWHM before the group 4 

analysis. 5 

 6 

We constructed two model RDMs to probe for the existence of absolute, context-independent 7 

difficulty coding and relative, context-dependent difficulty coding (Figure 2B). In each RDM, each 8 

cell represents the dissimilarity between the corresponding two types of math problems. In the 9 

context-independent coding RDM, dissimilarity increases as the difference in difficulty of the math 10 

problems increases (Figure 2Bi). In the context-dependent coding RDM, the low, medium, and 11 

high difficulty levels of each set are represented with the smallest dissimilarity, and dissimilarity 12 

increases accordingly to the distance between these three levels (Figure 2Bii). We note that the 13 

two model RDMs have little correlation with each other (Spearman’s = -0.04, p = 0.90). 14 

 15 

The RDMs generated from the brain data were then compared to the model RDMs using the 16 

Kendall’s rank correlation coefficient 𝜏𝐴 . As we did not want to assume a linear relationship 17 

between the dissimilarities, we used a rank-correlation method, and Kendall’s 𝜏𝐴 is ideally suited 18 

for models that predict tied ranks (Nili et al., 2014). t-tests were then performed to identify ROIs 19 

or regions that showed a significant correlation between the brain RDM and model RDMs.  20 

 21 
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 1 

Figure 2. Predictions of (A) univariate activations for regions that are (i) context-independent, (ii) 2 

context-dependent, and (iii) an additive mix of the two; and (B) RDMs of (i) context-independent 3 

and (ii) context-dependent coding in difficulty processing. 4 

 5 
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Data and code sharing 1 

All experimental stimuli and task/analysis codes are available at https://github.com/tanya-2 

wen/Difficulty-MD-network. 3 

 4 

 5 

Results 6 

Behavioral results 7 

As shown in Figure 3A, accuracy decreased while reaction times increased with difficulty of the 8 

math problem. Overall, accuracy decreased from a mean of 98.84%, to a mean of 72.19% from 9 

the easiest (two single digits) to the hardest (two triple digits) difficulty level. Pairwise t-tests 10 

showed no differences between the two matched levels, that is, the high difficulty condition in the 11 

easy set and the low difficulty condition in the hard set (t = 0.36, p = 0.72). There were significant 12 

differences between all other trial types (all ts > 2.69, all ps < 0.02; FDR corrected for multiple 13 

comparisons). Average median reaction time increased from 0.97 s in the easiest level to 4.12 s in 14 

the hardest level. Pairwise t-tests showed significant differences between all trial types, with the 15 

smallest difference occurring between the matched difficulty conditions where participants were 16 

slightly slower in responding to the low difficulty level in the hard set compared to the high 17 

difficulty level in the easy set (all ts > 2.64, all ps < 0.02; FDR corrected for multiple comparisons).  18 

 19 

We next examined whether there were any behavioral signatures of context-dependence based on 20 

previously experienced difficulty contexts. First, we grouped all trials according to whether they 21 

belonged to the hard or easy set, and which set proceeded them. A two-way repeated measures 22 

ANOVA with factors of previous difficulty (easy vs. hard)  current difficulty (easy vs. hard) was 23 
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performed on the accuracy data and median reaction time of correct trials, respectively (Figure 1 

3B). For accuracy, we found a significant main effect of current difficulty (F(1,24) = 91.68, p < 2 

0.001), which is caused by the hard set having lower accuracy than the easy set. There was no 3 

main effect of previous difficulty (F(1,24) < 0.01, p = 0.97) or previous difficulty  current 4 

difficulty interaction (F(1,24) < 0.01, p = 0.96). For reaction time, we found a significant main 5 

effect of current difficulty (F(1,24) = 1755.35, p < 0.001), with longer reaction times for the hard 6 

set. There was no main effect of previous difficulty (F(1,24) = 0.29, p = 0.59) and no previous 7 

difficulty  current difficulty interaction (F(1,24) = 1.24, p = 0.28). Thus, when analyzing sequence 8 

effects, we observed no context-dependence in accuracy or RT data.  9 
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 1 

Figure 3. (A) Behavioral results of accuracy (left) and reaction time (right) across the six math 2 

conditions. (B) Accuracy (left) and reaction time (right) plotted as a function of the current context 3 

as well as the previously experienced context. EE: previous easy current easy; EH: previous easy 4 

current hard; HE: previous hard current easy; HH: previous hard current hard. Error bars 5 

represent standard error. 6 

 7 

Univariate activation across difficulty conditions 8 

ROI analysis 9 
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Average beta estimates of each difficulty level from bilateral MD regions are shown in Figure 4. 1 

We also extracted the average activation for each of the six difficulty conditions from each 2 

participant using a combined MD network ROI. We first ran a context (easy vs. hard)  difficulty 3 

level (low, medium, and high) repeated measures ANOVA to examine activity in the MD network. 4 

Results showed a significant main effect of context (F(1,24) = 21.47, p < 0.001) and a significant 5 

main effect of difficulty level (F(2,48) = 9.89, p < 0.001). There was also a context  difficulty 6 

level interaction (F(2,48) = 4.10, p = 0.02). Pairwise t-tests across the six difficulty conditions 7 

revealed several significant contrasts, with increased absolute difficulty associated with increased 8 

MD activation, although starting to plateau at the higher difficulty levels (no significant difference 9 

between the medium and high difficulty levels in the hard set (t = 0.20, p = 0.84)).  10 

 11 

To compare across difficulty levels and ROIs, we conducted a 3-way ANOVA with factors context 12 

(easy vs. hard), difficulty level (low, medium, and high), and ROI (7 MD ROIs). This analysis 13 

showed a significant main effect of context (F(1,24) = 15.31, p < 0.001), a significant main effect 14 

of difficulty level (F(2,48) = 5.71, p < 0.01), and a significant main effect of ROI (F(6,144) = 64.81, 15 

p < 0.001). The main effect of context was driven by increased MD activity in the hard compared 16 

to easy context, and the main effect of difficulty was driven by increasing MD activity with higher 17 

difficulty levels. There was a context  ROI interaction (F(6,144) = 7.20, p < 0.001) and difficulty 18 

level  ROI interaction (F(12,288) = 5.80, p < 0.001), but no context  difficulty level interaction 19 

(F(2,48) = 2.75, p = 0.07). Finally, there was a context  difficulty level  ROI interaction 20 

(F(12,288) = 6.34). Pairwise t-tests across the six difficulty conditions revealed that in most of the 21 

MD ROIs, there was a general increase and plateau in activation as difficulty increased, except for 22 

the aMFG and ACC, where the activation remained relatively similar across all six conditions.  23 
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 1 

Our key a priori hypothesis for a context-dependent system was that it would show a different 2 

neural response to the two double digit addition when experienced in the easy set than in the hard 3 

set. Crucially, we found no difference in the MD network ROI in response to these two conditions 4 

(t = 0.31, p = 76). Furthermore, none of the individual ROIs showed any significant differences 5 

between the matched difficulty conditions (all |t|s < 1.19, all ps > 0.98; FDR corrected for multiple 6 

comparisons). 7 

 8 

 9 

 10 

Figure 4. ROI results of MD regions (left) as well as the entire MD network (right). Graphs show 11 

the beta values for each math condition. Error bars represent standard error. 12 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.12.503813doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.12.503813
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

 1 

Whole-brain analysis 2 

We also carried out a whole-brain analysis to examine other potential regions that may show 3 

context-independent or context-dependent activation. To do this, we fit a linear regression for the 4 

six difficulty conditions in each voxel with the regressors [1,2,3,3,4,5] and [1,2,3,1,2,3] (see 5 

Material and Methods). Results are shown in Figure 5. For the context-independent regressor, there 6 

was a significant positive association with activity throughout the MD network, largely 7 

overlapping with the ROIs, as well as in visual cortex. Significant negative association was found 8 

with activity in default mode network (DMN) regions, as these regions showed decreased 9 

activation as absolute difficulty increased. This observation is consistent with previous findings of 10 

the DMN showing decreased activity during externally oriented, cognitively demanding tasks 11 

(Raichle and Snyder 2007; Gilbert et al. 2012). There were no significant activity associations for 12 

the context-dependent regressor in either positive or negative direction.  13 

 14 

As the matched difficulty conditions may be the most sensitive test for context-dependent effects, 15 

we also directly compared the high difficulty level in the easy set and the low difficulty level in 16 

the hard set, at the whole-brain level. No region showed significant differences between the two 17 

conditions at FDR < 0.05 in either direction. Thus, we obtained evidence only for context-18 

independent coding of difficulty. 19 

 20 
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 1 

Figure 5. Whole-brain voxelwise regression showing significant associations to absolute, context-2 

independent levels of difficulty. Colors indicate t values, with warm and cool scales indicating 3 

positive and negative tails, respectively. The activation maps are thresholded at FDR < 0.025 per 4 

tail.  5 

 6 

Univariate activation when switching difficulty contexts 7 

ROI analysis 8 

Figure 6 shows the average MD response to the two sets of math problems as a function of the 9 

difficulty of the previous trial set during the processing of the math problem. We first performed 10 

a previous difficulty (easy vs. hard)  current difficulty (easy vs. hard) ANOVA on the combined 11 

MD ROI. To further examine differences between ROIs, we conducted a previous difficulty (easy 12 

vs. hard)  current (easy vs. hard)  ROI (7 MD ROIs) ANOVA.  13 

 14 

The MD network ROI showed a significant main effect of current difficulty (F(1,24) = 17.05, p < 15 

0.001), which was a result of higher activation when performing math problems from the hard set. 16 

There was no main effect of previous difficulty (F(1,24) = 0.51, p = 0.48) or previous difficulty  17 

current difficulty interaction (F(1,24) = 0.47, p = 0.50). In the ANOVA with the additional factor 18 

of ROI, we found a significant main effect of current difficulty (F(1,24)  = 12.85, p = 0.001) and 19 

significant a main effect of ROI (F(6,144) = 74.09, p < 0.001), but no main effect of previous 20 
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difficulty (F(1,24) = 0.93, p = 0.35). There was a current difficulty  ROI interaction (F(6,144) = 1 

6.62, p < 0.001), but no previous difficulty  ROI (F(1,24) = 1.13, p = 0.35), previous difficulty  2 

current difficulty (F(6,144) = 0.35, p = 0.56), or previous difficulty  current difficulty  ROI 3 

interaction (F(6,144) = 0.09, p > 0.99). Separate previous difficulty  current difficulty ANOVAs 4 

on each of the MD ROIs showed that similar to the previous GLM, all ROIs, except for the aMFG 5 

and ACC (both Fs(1,24) < 3.52, p > 0.07) showed a main effect of difficulty (all Fs(1,24) > 6.79, 6 

all ps < 0.02). The main effects of difficulty were driven by higher activation during execution of 7 

hard versus easy math problems.  8 

 9 

We additionally examined whether the MD network was sensitive to previous trial difficulty 10 

during the context cue, as presented in the Supplementary Material. Results showed some regions 11 

within the MD network, including the ACC, pdLFC, and pMFG displayed increased activation 12 

when the current context cue signaled an upcoming hard math problem. Moreover, the ACC and 13 

pdLFC may be sensitive to the previous difficulty context during the cue, as indicated by increased 14 

activation to the context cue if the previous trial came from the easy set (Figure S1).  15 

 16 

In summary, these results suggest that some regions within the MD network may be sensitive to 17 

difficulty context during cue processing; however, during task execution, the MD network is only 18 

sensitive to the current difficulty level, unaffected by the level of task difficulty on the previous 19 

trial. 20 

 21 
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 1 

Figure 6. Activity in the MD network during task execution based on previous and current trial 2 

difficulty. EE: previous easy current easy; EH: previous easy current hard; HE: previous hard 3 

current easy; HH: previous hard current hard. Error bars represent standard error. 4 

 5 

Whole-brain analysis 6 

We examined responses including the main effect of previous difficulty, main effect of current 7 

difficulty, switching to an easy set versus repeating an easy set, and switching to a hard set versus 8 

repeating a hard set at the whole-brain level to examine possible effects outside of the MD network. 9 

These contrasts correspond to the components of a previous difficulty (easy vs. hard)  current 10 

difficulty (easy vs. hard) ANOVA. Results from this whole-brain analysis are presented in Figure 11 

S2. 12 

 13 
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During the math problem, no brain region was found to show a main effect of previous difficulty. 1 

There was significant activation throughout the MD network, as well as in the visual cortex, for 2 

hard versus easy problems. Significant activation was found in DMN for easy versus hard 3 

problems. No regions were identified when switching to an easy set versus repeating an easy set, 4 

nor its reverse contrast. Finally, no regions were identified when switching to a hard set versus 5 

repeating a hard set, although the thalamus and claustrum were more activated when repeating a 6 

hard set compared to switching from an easy to hard set. 7 

 8 

Analyses performed during the contextual cue are also presented in the Supplementary Material 9 

(Figure S2).  10 

 11 

In summary, we identified several regions both within and outside the MD network that show 12 

context-dependence during the context cue, such that previously experienced task difficulty 13 

influenced activation levels in these regions during the cue. However, no brain region showing 14 

context-dependence during task execution was identified. Instead, we found that the MD network 15 

was more active when solving math problems from the hard compared to easy set. These results 16 

suggest MD activity during task execution is context-independent.  17 

 18 

RSA results 19 

ROI analysis 20 

We first performed RSA analysis on the MD ROIs. Results are shown in Figure 7. In all MD ROIs, 21 

the context-independent model RDM showed significant correlation with the brain RDMs (all ts 22 

> 5.10, all ps < 0.001) and provided a significantly better fit than the context-dependent model 23 
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RDM (all ts > 3.92, all ps < 0.001), which did not show any significant correlation with the brain 1 

RDMs (all |t|s < 1.45, all ps < 0.56). For the combined MD network ROI, the same pattern was 2 

observed. The context-independent model RDM showed significant correlation with the brain 3 

RDM (t = 22.51, p < 0.001) and had a significantly better fit than the context-dependent model 4 

RDM (t = 15.08, p < 0.001), which was not significantly different from zero (t = -0.37, p = 0.72).  5 

 6 

 7 

Figure 7. Relatedness of the model RDMs to the brain RDM for the MD ROIs (left) and the entire 8 

MD network (right). Kendall's 𝜏𝐴 was used as the measure of RDM similarity. The gray patches 9 

are estimates of the noise ceiling. Error bars represent standard error.  10 

 11 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.12.503813doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.12.503813
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

Whole-brain searchlight 1 

To explore the effects of context-independent and context-dependent coding effects outside the a 2 

priori MD ROIs, we carried out an RSA searchlight analysis. Results are shown in Figure 8. 3 

Context-independent representation of difficulty was significant across most of the brain, although 4 

it was strongest in the visual cortex and local peaks in MD and DMN regions (Figure 8A). This 5 

aligns with our univariate results of strong context-independent activation in these regions. We 6 

note that the large swathes of activation may also partially be due to spatial smoothing from the 7 

10 mm searchlight. We observed several regions showing context-dependent coding, including the 8 

precuneus, posterior cingulate cortex, precentral gryus, parts of the anterior cingulate cortex, 9 

posterior insula, and large areas of the visual cortex. While some of these regions are close to our 10 

MD ROIs, they have little overlap (Figure 8B). Since these regions are observed to be correlated 11 

with both RDM models (which are largely orthogonal), we suggest that they show sensitivity to 12 

both absolute difficulty as well as the contextual difficulty in which the task was presented.  13 

 14 
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 1 

Figure 8. (A) Context-independent and (B) context-dependent coding of difficulty across the whole 2 

brain, calculated using local spherical searchlights, and thresholded at FDR < 0.025. 3 

 4 

 5 

Discussion 6 

The present study examined for the first time whether activity in the MD network is responsive to 7 

task difficulty in a context-dependent or context-independent manner. Univariate activations as 8 

well as RSA analysis suggested that the response of the MD network to difficulty is context-9 

independent, such that activations increased with the absolute difficulty of the task and 10 

representational dissimilarity increased with the difference of difficulty between levels, rather than 11 

being re-scaled between contexts comprising easier or harder trials. Accordingly, identical 12 

difficulty levels across the two contexts elicited equivalent MD activity, even though they 13 

represented the highest difficulty level in the easy context and the lowest difficulty level in the 14 
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hard context. These results are inconsistent with context-dependent effects observed in value and 1 

sensory processing, but are consistent with the notion that strong MD activation during more 2 

difficult tasks reflects the increased demand in integrating the components of cognitive operations 3 

to solve the task at hand (Duncan 2013; Duncan et al. 2020). 4 

 5 

In everyday life, perceived difficulty may sometimes seem relative to previous experiences. For 6 

example, if one completes mock exam that is harder than the actual test, the test will feel easy; on 7 

the other hand, if one fails to adequately prepare, then the test would feel hard (Bjork et al. 2013; 8 

Carpenter et al. 2020). We found some effect of the previous trial on the current difficulty context 9 

during the cue presentation in the ACC and pdLFC of the MD network, as well as in the DMN. 10 

These results are consistent with previous studies on sequence effects in the ACC and regions in 11 

the prefrontal cortex in the conflict-control literature, where an incongruent trial following a 12 

congruent trial elicits more activation than repeating an incongruent trial (Botvinick et al. 1999; 13 

Carter et al. 2000; Durston et al. 2003; Kerns et al. 2004). Yet, during the actual execution of the 14 

task, none of the MD ROIs showed an effect of the previous context in the present study, which 15 

again suggests MD is not sensitive to relative difficulty.  16 

 17 

Why would brain activity related to cognitive demand be mostly context-independent when value-18 

based and sensory processing commonly display range adaptation effects? One common 19 

explanation for context-dependent coding is that neural computation is costly and maximum firing 20 

rates are limited, so an efficient neural code should adapt to the range of possible values within the 21 

present context (Padoa-Schioppa 2009; Louie and Glimcher 2012; Cox and Kable 2014; Glimcher 22 

2014). This allows humans to represent and compare seemingly unlimited ranges of values, from 23 
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fractions to trillions, without much increase in effort or cost to performance. However, our capacity 1 

for high-level cognitive operations is inherently limited, and when cognitive processes become 2 

overloaded, there is degradation in performance (Norman and Bobrow 1975). In other words, in 3 

cognitive tasks, such as solving an arithmetic problem, performance is a function of the amount of 4 

cognitive resources available, and thus hits a natural limit (Kahneman 1973; Norman and Bobrow 5 

1975; Marois and Ivanoff 2005). As previous studies have shown, MD network activity may reflect 6 

the degree to which performance can be improved by increasing attentional investment (Han and 7 

Marois 2013; Wen et al. 2018). If this were the case, then MD activity should be context-8 

independent, as other trials should not affect the number of cognitive processes required for any 9 

given trial. Another way of looking at this is that, unlike the vast range of possible rewards values 10 

or sensory stimulation, the range of cognitive processing demand that can be handled by the brain 11 

is so limited that contextual adaptation for range coverage is unnecessary.  12 

 13 

We note that our experiment is an event-related design, such that difficulty changed trial by trial. 14 

It therefore remains possible that MD activity might adapt to different difficulty ranges after longer 15 

exposure. Several studies have shown that task-related brain activity in MD regions may decrease 16 

after practice on a task (Garavan et al. 2000; Jansma et al. 2001; Milham et al. 2003; Landau et al. 17 

2004), presumably reflecting increased neural efficiency, with fewer neural resources required to 18 

achieve the same level of performance. Thus, future studies may test whether MD activity would 19 

be sensitive to context in a blocked design (Bavard et al. 2021) or with separate groups of subjects 20 

experiencing different ranges of difficulty levels. Having said that, it should be noted that the 21 

coding of reward outcomes in a near-identical event-related design was found to be context-22 

dependent (Nieuwenhuis et al., 2005). We can therefore conclude that trial-by-trial changes in 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.12.503813doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.12.503813
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

context do not generally pre-empt context adaptation effects, and that the processing of task 1 

difficulty seems to fundamentally differ from the processing of reward outcomes.   2 

 3 

Using whole-brain analysis, we furthermore explored whether there were regions outside the MD 4 

network that may show context sensitivity to task difficulty. We did not find any regions that 5 

activated in accordance with the univariate predictions of a context-dependent model. However, 6 

our RSA searchlight uncovered several regions, most notably the precuneus, posterior cingulate 7 

cortex, precentral gryus, and large areas of the visual cortex whose activity patterns were 8 

associated with context-dependent coding. It has been proposed that the posterior parietal cortex 9 

encodes abstract relational information among stimuli and the structure of the environment 10 

(Summerfield et al. 2019). These results are in line with the notion that the brain is capable to 11 

matching relational knowledge of levels (low, medium, and high) across different contexts 12 

(Sheahan et al. 2021).  13 

 14 

Previous studies have shown that mental effort is costly and has negative utility (Kool and 15 

Botvinick 2018), and when given the choice, participants typically choose tasks or contexts with 16 

low compared to high cognitive demand (Kool et al. 2010). It would therefore seem plausible that 17 

some reward-sensitive (cost-sensitive) brain regions should track task difficulty or cognitive effort. 18 

Our univariate analysis found that MD network regions showed increased activation and DMN 19 

regions showed decreased activation as the absolute difficulty of the task increased, regardless of 20 

context. Meta-analyses of the valuation network have documented that it has substantial overlap 21 

with several regions in the MD and DMN networks, including the ACC and AI in the MD network, 22 

and vmPFC and PCC in the DMN network (Levy and Glimcher 2012; Bartra et al. 2013), so these 23 
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regions may have been involved in tracking effort cost in the current paradigm. However, it is 1 

difficult to evaluate where coding of effort costs is located in the brain without fully crossing 2 

reward and effort variables to decorrelate reward and difficulty (Westbrook et al. 2019). As our 3 

study did not manipulate reward, we cannot know with certainty the relationship between the two 4 

variables in the present data. For example, it is possible that correctly solving a hard problem could 5 

be more rewarding (e.g., less boring, a bigger accomplishment) than solving an easy problem (Wu 6 

et al. 2021). 7 

 8 

Context-dependent representation in the brain seem ubiquitous in many domains, including 9 

sensory processing (Carandini and Heeger 2011; Cheadle et al. 2014), temporal perception 10 

(Walker et al. 1981; Murai et al. 2016), reward (Cox and Kable 2014; Bavard et al. 2018), and 11 

value (Sheahan et al. 2021). However, our study showed that the response of the MD network to 12 

task difficulty may be an exception to the norm. While context-dependent coding can be useful to 13 

compare values within the currently relevant context, it often leads to irrational choices, such as 14 

picking a suboptimal option under certain manipulations (Kahneman and Tversky 1979; Tversky 15 

and Simonson 1993; Chung et al. 2017; Bavard et al. 2021). Absolute coding is important for 16 

consistent and rational choices (Lee et al. 2007; Padoa-Schioppa and Assad 2007; Grabenhorst 17 

and Rolls 2009). In one study, Chung et al. (2017) found that stronger functional connectivity 18 

between frontal and reward regions when participants successfully overrode the decoy effect and 19 

made unbiased choices. Accordingly, it is possible that context-dependent coding in some areas, 20 

such as sensory and reward regions, combined with context-independent coding in MD regions, 21 

together contribute to adaptive human behavior.  22 

 23 
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