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Abstract— Objective: This paper presents a graph signal 

processing (GSP)-based approach for decoding two-class motor 

imagery EEG data via deriving task-specific discriminative 

features. Methods: First, a graph learning (GL) method is used to 

learn subject-specific graphs from EEG signals. Second, by 

diagonalizing the normalized Laplacian matrix of each subject’s 

graph, an orthonormal basis is obtained using which the graph 

Fourier transform (GFT) of the EEG signals is computed. Third, 

the GFT coefficients are mapped into a discriminative subspace 

for differentiating two class data using a projection matrix 

obtained by the Fukunaga-Koontz transform (FKT). Finally, an 

SVM classifier is trained and tested on the variance of the 

resulting features to differentiate motor imagery classes. Results: 

The proposed method is evaluated on Dataset IVa of the BCI 

Competition III and its performance is compared to i) using 

features extracted on a graph constructed by Pearson correlation 

coefficients and ii) three state-of-the-art alternative methods. 

Conclusion: Experimental results indicate the superiority of the 

proposed method over alternative methods, reflecting the added 

benefit of integrating elements from GL, GSP and FKT. 

Significance: The proposed method and results underpin the 

importance of integrating spatial and temporal characteristics of 

EEG signals in extracting features that can more powerfully 

differentiate motor imagery classes. 

 

Index Terms—— EEG, Fukunaga-Koontz Transform (FKT), 

Graph Learning, Graph Signal Processing, Motor Imagery.  

 

I. INTRODUCTION 

LECTROENCEPHALOGRAPHY (EEG) is a prevalent, 

non-invasive imaging modality for capturing brain 

activity at high temporal resolution [1]. A popular topic in 

analyzing EEG is during motor imagery (MI) tasks, which are 

dynamic states of movement imagination during which 

primary sensorimotor areas exhibit patterns of neural activity 

that resembles an attenuated version of real executed 

movement [2, 3]. From neurophysiological perspective, 

desynchronization of the neural populations during motor 

imagery tasks attenuates rhythms in the respective cortex and 

can be measured as a sign of brain activity [3, 4]. MI tasks are 

extensively utilized in brain-computer interface (BCI) 

systems, in which mental imagination of a movement is 

translated to executive commands via classification of features 
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extracted from acquired EEG data [5-7].  

Discrimination of mental states from EEG measurements in 

MI-BCI systems is a challenging task, for which numerous 

methods have been proposed [8]. One class of proposed 

methods aims at extracting features from the temporal 

evolution of the signal acquired at each individual electrode, 

either in time, frequency, or time-frequency domain [9, 10]. 

An alternative class of methods aim at extracting spatial 

features as manifested in multichannel EEG signals [11-15]. 

Adaptive classifiers, matrix and tensor classifiers, transfer 

learning, and deep learning are among other methods that have 

more recently been proposed [7, 16, 17].  

Graph signal processing (GSP) [18-21] is an emerging field 

that has attracted great interest. It has in particular been 

adopted in an increasing number of neuroimaging studies. In 

[22], insights provided by the GSP perspective for analysis of 

brain activity using functional magnetic resonance imaging 

(fMRI) and diffusion-weighted MRI (dMRI) data are 

presented. In [23], seven different graphs are constructed 

based on structural and functional connectivity between brain 

areas to evaluate the benefit of GSP for classification and 

dimensionality reduction of fMRI data. In [24-26], GSP is 

used to perform anatomically-informed spatial processing of 

fMRI data to enhance brain activation mapping. In [27], GSP 

is leveraged to introduce a measure of the coupling strength 

between brain structure and function, which has been used 

within the context of task decoding and individual 

fingerprinting for fMRI data [28]. In [29], GSP is used to 

predict autism spectrum disorder from resting-state fMRI data. 

In [30], by using a multi-modal imaging dataset consisting of 

EEG, MRI, and dMRI data, the role of structural connectivity 

in the representation of brain activity signals and their 

dynamics is explored in a GSP setting. A GSP-based method 

for feature extraction in near-infrared spectroscopy (NIRS)-

based BCI is presented in [31] that captures the spatial 

information of the NIRS signals. 

A number of studies have also shown promising results in 

applying GSP techniques in classification, dimensionality 

reduction, and denoising of EEG signals [32-37]. In [32], 

network harmonics of the brain structural connectivity graph 

are derived for tracking fast spatiotemporal cortical dynamics. 

In [33], a dimensionality reduction method for MI-BCI 

application is proposed via spectral graph decomposition of a 

brain structural graph. In [34], a GSP-based approach is 

presented for adaptive dimensionality reduction and 

classification of MI tasks exploiting geometrical and 
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correlation graphs of the brain. In [35], GSP techniques are 

used for emotion recognition using EEG data. In [36], a graph 

Laplacian denoising method is proposed which improves the 

separation of MI and resting mental states in MI-BCI EEG 

data. In [37], an MI decoding approach is proposed that 

utilizes graph Slepian functions [38], using which 

discriminative features for classification are extracted from a 

structural sub-graph of the brain. Inspired by the promising 

results of the use of GSP in brain imaging applications, we 

propose a GSP-based method for classification of MI EEG 

data. Despite the benefits of GSP, its successful application 

heavily relies on using a suitable graph that can capture subtle 

intrinsic relations between the data elements. This is not 

readily available in many applications, such as for EEG data 

for which, although there is exist a clear definition of graph 

vertices, there exists no gold standard definition of graph 

edges and edge weights. In the absence of a well-defined 

graph, given an ensemble set of signals, graph learning (GL) 

techniques can be employed to learn a graph from the data at 

hand. Different GL methods have been proposed in the 

literature [39]. Here we employ a sub-category of GL that 

leverages GSP and imposes constraints on graph sparsity and 

smoothness of graph signal on the resulting graph [40-42].  

The method proposed in this paper for EEG data 

classification is comprised of four stages. First, we use graph 

learning to learn subject-specific brain graphs; a conventional 

graph that uses Pearson correlation coefficients as the weight 

of the edges is also used for comparison. Second, by 

interpreting EEG data as graph signals, we transform them 

into the spectral domain of each graph. Third, we derive a 

discriminative spectral graph subspace that specifically aims at 

differentiating two-class data. Fourth, we use the extracted 

features for training and testing a binary classifier. 

The remainder of this paper is structured as follows. Section 

2 gives an overview of the fundamental concepts. A 

description of the proposed framework is presented in section 

3. Section 4 describes the experimental results and provides a 

discussion. Finally, section 5 presents our concluding remarks.  

II. MATERIALS AND METHODS 

A. Dataset 

To evaluate the proposed method, EEG data from the 

publicly available BCI Competition III-Dataset IVa [43] were 

used. The data, comprising of two classes of motor imagery 

EEG signals, were recorded from five healthy subjects 

(labeled as aa, al, av, aw, and ay) using 118 electrodes that 

were installed with the electrode arrangement in the extended 

international 10/20-system at a sampling rate of 100 Hz. A 

total of 280 visual cues of length 3.5 seconds were presented 

to subjects, interleaved with rest interval of random lengths 

1.75 to 2.25 seconds. Despite the limited number of subjects, 

the dataset is rich in the sense that it includes a lot of trials per 

subject, making it very suitable for use within a machine 

learning setting, and that it has been utilized in many studies. 

During the presentation of target cues, subjects were asked 

to perform right hand or right foot motor imageries, and 140 

trials were acquired for each class. According to the 

competition instructions the trials were divided into training 

and test sets in each class, wherein the set sizes differed across 

the five subjects. More precisely, for the first two subjects 

most trials are labeled (60% and 80%, respectively), while for 

the other three 30%, 20%, and 10% labeled trials are given, 

respectively, and the remaining trials composing their test sets 

(for more details, see http://www.bbci.de/competition/iii/). As 

such, performing classification is more challenging on 

subjects av, aw, and ay due to their small training set size. In 

this work, a GSP-based approach is provided to tackle the 

problem of MI tasks classification in this dataset. In the 

following section, the principles of GSP are briefly reviewed.  

B. Graph Signal Processing Fundamentals 

Let G = (V, E, A) denote a weighted, undirected graph, 

where V = {1, 2,…, N} represents the graph’s finite set of N 

vertices (nodes), E denotes the graph’s edge set, i.e., pairs (i, j) 

where i, jV, and A  is a symmetric matrix (
, ,i j j iA A ) that 

denotes the graph’s weighted adjacency matrix. The weights 

in the adjacency matrix indicate the strength of the connection, 

or similarity between two corresponding vertices, therefore, 

, 0,i j A  if there is no connection/similarity between vertices 

i and j. Moreover, it is assumed that there are no self-loops in 

the graph, which implies 
, 0.i i A  Let ℓ2(G) denotes the 

Hilbert space of all square-summable real vectors ,Nf  

with the inner product defined as 
1 2 1 2

1

, [ ] [ ],
N

k

k k


f f f f  and 

the l2-norm defined as 
2 2

1

, [ ] .
N

k

k


 f f f f  

A real signal defined on the vertices of G, :V ,f  can be 

thus seen as vector in ℓ2(G), whose 𝑛-th component represents 

the signal value at the 𝑛-th vertex of G. The graph's 

normalized Laplacian matrix is defined as 1 2 1 2= - , L I D AD  

where I is the identity matrix and D  is the diagonal matrix of 

vertex degrees, i.e., 
, , .i i i j

j

D A  Since L  is real, 

symmetric, and positive semi-definite, it can be diagonalized 

via eigenvalue decomposition as: 

 

= ,TL UΛU  (1) 

 

where T denotes the transpose operator, 
1 2= [ , , ..., ]NU u u  u  is 

an orthonormal matrix concatenating the eigenvectors 
k u

ℓ2(G) in its columns, and Λ  is a diagonal matrix that stores 

the corresponding real, and non-negative eigenvalues 

1 20 ... 2.N        The eigenvalues define the graph 

Laplacian spectrum, and the corresponding eigenvectors form 

an orthonormal basis that spans ℓ2(G). By using the Laplacian 

eigenvectors, a graph signal f  can be transformed into a 

spectral representation, commonly referred to as the graph 

Fourier transform (GFT) of f , denoted f̂ , obtained as: 
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ˆ = .Tf U f  (2) 

 

Given the orthonormality of the Laplacian eigenvectors, the 

inverse GFT of f̂  is obtained as 
1

ˆ ˆ= = [ ] .
N

k

k

k


f Uf f u  By 

synthesizing f  as a weighted sum of orthogonal graph 

frequency components 
ku , the GFT coefficients of f  entail 

the degree of signal variability of f  over G. That is, each GFT 

coefficient represents the contribution of its corresponding 

graph Laplacian eigenvector to the graph signal f . 

Importantly, the GFT satisfies Parseval’s energy conservation 

relation, i.e., 
22 ˆ .f f  

Graph Laplacian eigenvectors associated to larger 

eigenvalues entail a larger extent of variability, and as such, 

eigenvalues of the graph Laplacian matrix can be seen as an 

extension of frequency elements that define the Fourier 

domain in classical signal processing. To further illustrate the 

notion of frequency for graph signals, the total variation (TV) 

of a graph signal f  on graph G can be quantified as: 

 
2

2

,

( , ) 1, ,

[ ] [ ] ˆTV( ) = = [ ] ,T
N

i j k

i j E ki i j j

i j
k

 

 
  
 
 

 
f f

f f Lf A f
D D

-  (3) 

 

where larger values of TV( )f  indicate greater changes of f  

on G, i.e., higher spatial variability. By viewing each graph 

Laplacian eigenvector as a graph signal, it can be seen that its 

total variation is equal to its corresponding eigenvalue, i.e.: 

TV( ) .T

kk k k u u Lu  This relation shows that each 

eigenvalue is a quantification of the extent of variability of its 

corresponding eigenvector. Specifically, the graph Laplacian 

eigenvalues can be seen as graph frequencies, indicating how 

the eigenvectors vary with respect to the graph G [18, 19]. 

Graph signal f  is smooth on G if its elements associated to 

vertices connected via large edge weights have similar values. 

TV( )f  is a quantification of the extent of variation of f  with 

respect to the structure of G, thus, providing a measure of the 

degree of smoothness of f . A leading paradigm in graph 

learning exploits this notion of smoothness to learn a graph 

structure on which data comprise certain regularity. 

C. Learning Graphs from Smooth Signals 

A class of GL methods enforce data smoothness, deriving a 

graph Laplacian matrix via solving [41]: 

 
2

, ,

min trace( ) ,

s.t. trace( ) , 0 ,    = ,

T

F

i j j iN i j



   

L
F LF L

L L L L1 0
 (4) 

 

where F  is an N T  matrix of graph signals,   is 

regularization parameter, .
F

 denotes the Frobenius norm and 

[1,...,1] .T1  Minimizing the first term in the objective 

function guarantees smoothness of the signals on the learned 

graph, which can be seen via invoking (3): 

1 1

trace( ) TV( ).
T T

T T

t t t

t t 

  F LF f Lf f  The Frobenius norm 

controls sparsity by shrinking edge weights. The imposed 

constraints ensure finding a valid Laplacian matrix. 

Considering 
2 2 2

,
F F
 L A1 A  where A1  denotes the 

vertices degree vector, the optimization in (4) can be solved 

more efficiently via a more general-purpose formulation with 

respect to the graph's weighted adjacency matrix [42]: 

 
22

1

, ,

min ,

s.t. diag( ) , 0 ,

F

i j j i i j

  

   

A
A Z A1 A

A 0 A A

 (5) 

 

where Z  denotes the pairwise Euclidean distance matrix of 

the signals residing on the graph vertices, with entries given as 

,

2

,i j i j Z x x  where T

i x  denotes the signal vector 

residing on vertex i. The first term in this objective function 

finds the graph's adjacency matrix under the smoothness 

assumption; note the equivalence between the first terms in (4) 

and (5), i.e., 
1

trace( ) 0.5 ,T F LF A Z  where  is the 

Hadamard product. Intuitively, if smooth graph signals reside 

on well-connected vertices (i.e. vertices connected via large 

weight edges), it is expected that these vertices have smaller 

distances , .i jZ  Alternatively, the objective function (5) can be 

improved by replacing the l2-norm with a logarithmic barrier 

on the vertices degree vector as: 

 
2

1

, ,

min log( ) ,
2

s.t. diag( ) , 0 ,

T

F

i j j i i j


 

   

A
A Z 1 A1 A

A 0 A A

 (6) 

 

where the second term ensures graph degrees to be positive, 

thus improving the overall connectivity of the graph, and 

moreover, ensures each vertex having at least one edge.   

and   are regularization parameters, and the constraints 

guarantee to obtain a valid adjacency matrix. The third term 

controls the sparsity of the resulting graph; intuitively, smaller 

values of   yield sparser graphs by penalizing edges between 

vertices with larger ,i jZ [42]. In the following, we refer to the 

GL approaches given in (5) and (6) as the l2-penalized and 

log-penalized methods, respectively. 

D. Two-Class Discriminative Subspace via Simultaneous 

Diagonalization of Covariance Matrices 
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After defining a brain graph, the graph spectral 

representations of the EEG signals were considered to find a 

discriminative subspace for two-class (right hand and right 

foot) MI classification. To this end, inspired by the Fukunaga-

Koontz transform (FKT) [44], and the method presented in 

[29], simultaneous diagonalization of two covariance matrices 

was utilized. For graph signal f  defined on G, let f  denote 

the de-meaned and normalized version of f  obtained as [45]: 

 
2

1 1 1 1= ( - ) - .T Tf f u f u f u f u  (7) 

 

Let F  denote an N T matrix that contains a single trial of 

the EEG time series, with ,c tF  being the signal value at 

electrode c at time point t, and let 
ˆ
F  denote the GFT matrix of 

the de-meaned and normalized trial. The goal is to determine a 

projection matrix W  that simultaneously diagonalizes: 

 

1 2

ˆ ˆ
, trace( ), ,T

i i i i i i   Σ Σ Σ Σ C C C F F  (8) 

 

where 1Σ  and 2Σ  denote the ensemble averaged covariance 

matrices of the trials in class 1 (right hand) and class 2 (right 

foot), respectively. As Σ  is positive definite, it can be eigen-

decomposed, = ,TΣ VΓV  where V  is the matrix of 

eigenvectors of Σ  and Γ  is the diagonal matrix of the 

corresponding eigenvalues; using which a whitening transform 

P  can be obtained as: 

 
1 2= .TP Γ V  (9) 

 

By whitening Σ  with P , the variances in the space 

spanned by V  will become equal, resulting in all the 

eigenvalues becoming equal to one, i.e.: 

 

1 2 1 2= ( + ) .T T   PΣP P Σ Σ P S S I  (10) 

 

Consequently, eigenvalue decomposition of 1S  and 2S  

gives: 

 

1 1 2 1, ( - ) ,T T S BΓ B S B I Γ B  (11) 

 

where B  denotes the eigenvectors, which are the same for 

both 
1S  and 

2S , and their corresponding eigenvalues are 

complementary; i.e., by sorting the eigenvalues in descending 

order, the eigenvector associated with the largest eigenvalue of 

1S  is associated with the smallest eigenvalue of 
2S . 

Therefore, a small combination of the first and last 

eigenvectors of B  induces a suitable discriminatory transform 

for differentiating the two classes. Finally, the overall 

projection matrix can be obtained as .TW = B P  

By applying W  to the GFT coefficients, i.e. 
ˆ

=y Wf , we 

obtained a feature vector y , the variance of which is 

maximized in one class while minimized in the other class. 

These features were then used for classification. 

III. PROPOSED METHOD 

The proposed method for EEG-based MI task decoding is 

illustrated as a block diagram in Fig. 1. The training and test 

EEG signal sets for each subject are initially preprocessed, and 

then fed into the training and test phases, respectively. As 

temporal preprocessing, for each trial, we used the time points 

within the 0.5-2.5 second interval after the visual cue to 

construct graph signals; this 2-second interval has been 

previously used in related works [13, 15, 37]. Motor activity, 

be it real or imagined, modulates the mu and beta rhythms, 

therefore, we filtered the extracted signal with a third-order 

Butterworth filter with a passband of 8-30 Hz. Graph signals 

were then extracted from these filtered signals; in particular, 

we defined one graph signal per time instance, i.e., each signal 

represents EEG values across the 118 electrodes, which, thus, 

resulted in T=200 graph signals per trial.  

A. Graph-based Representation of Brain Signals 

In the training phase, we modeled the structure of the brain 

of each subject as a graph, in which vertices corresponded to 

the EEG electrodes and edges were defined by estimating the 

graph's weighted adjacency matrix using the log-penalized and 

l2-penalized graph learning frameworks. As a means of 

Fig. 1. A schematic overview of the proposed method. 
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comparison, we also defined a fully connected correlation 

graph in which edge weights were defined based on the degree 

of functional connectivity between electrode pairs; that is, for 

each electrode pair, the absolute value of the Pearson 

correlation coefficient between their time courses was defined 

as the edge weight, reflecting an estimate of the overall 

statistical dependency between the two electrodes [46].  

For each graph, the eigenvectors of L  were used to 

compute the GFT of each graph signal. Using FKT, a 

transformation matrix W  that maps the GFT coefficients into 

a discriminative graph spectral subspace was then derived. 

The mapped data were then treated as discriminative features. 

To determine the most effective graph frequency harmonics 

for classifying the EEG signals, a feature selection algorithm 

was used; we ranked the GFT coefficients based on their 

energy using MATLAB’s rankfeatures function that 

utilizes the Wilcoxon statistical test. GFT Coefficients with 

higher ranks correspond to more distinctive features. The 

number of selected features for each subject was determined 

using 10-fold cross-validation. 

B. Evaluation 

The classifier was trained using labelled training data, 

where labels indicate the class of each trial, and classification 

performance was evaluated with the labelled test data. The 

projection matrix W  and the index of discriminative GFT 

features were computed in the training phase and consequently 

used in the test phase. The logarithm of variance of the 

projected GFT coefficients on W  were used as features to 

train a support vector machine (SVM) classifier with a linear 

kernel. Since this projection maximizes the variance of the 

signals from one class while minimizing it for the signals from 

the other class, it provides discriminative features for 

classification. We used SVM due to its overall superior 

robustness and efficiency in the BCI applications compared to 

other classifiers [7]. The linear kernel was selected for its 

simplicity and low computational cost. 

IV. RESULTS AND DISCUSSION 

Fig. 2(a) shows the arrangement of the 118 electrodes on 

the head. Fig. 2(b-d) shows the three brain graphs and their 

corresponding adjacency matrices for subject aa. The nodal 

degrees are comparable between the learned graphs but are 

differently scaled for the correlation graph due to the large 

difference between the degree distributions. The correlation 

graph is fully connected as it is defined based on the 

correlation of all electrode pairs, whereas the two learned 

graphs are notably sparse, a result of sparsity-inducing terms 

used in the learning process. The log-penalized method yields 

sparser learned graphs compared to the l2-penalized method. 

For log-penalized, l2-penalized and correlation graphs, on 

average across subjects, the number of edges were 

1684.8±367.9, 2519.2±366.9, and 13806, respectively; 

additional quantitative comparison of the graphs is presented 

in the supplementary material. The sparsity of graphs is 

desirable because it plays a key role in reducing the 

computational burden of algorithms and makes them suitable 

for online BCI applications. Graphs constructed for the other 

four subjects are shown in Fig. S2 in the supplementary 

material. 

Distribution and histogram of the normalized Laplacian 

eigenvalues for three graphs of subject aa are shown in Fig. 

3(a). Most of the eigenvalues in the correlation graph are 

concentrated around one, whereas the eigenvalues of the 

learned graphs, especially the log-penalized graph, gradually 

increase, and are more widely distributed along the spectrum. 

Eigenvalues with high multiplicity around one (a high peak at 

1 ) in the correlation graph spectrum suggest vertex 

duplication, in which a new vertex to the graph has an 

0 

1 

0 

1 

0 

1 

(a)                                                       (b)                                                  (c)                                                    (d) 

Fig. 2. (a) Arrangement of EEG electrodes. (b, c, d) log-penalized, l2-penalized, and correlation graphs with their related adjacency matrices for subject aa, 
respectively. Edge widths and colors reflect edge weights, and vertex sizes reflect nodal degrees. For better visualization, only the top 50% of edges that have 

the largest weights are shown in the correlation graph. The graphs were plotted by modifying the base code provided in GSPbox [47]. 
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identical connectivity pattern to the duplicated vertex, 

resulting in vertices with the same connectivity profile [48]. 

Fig. 3(b) illustrates eigenvectors associated to several of the 

selected normalized Laplacian eigenvalues of the log-

penalized graph. The first eigenvector is almost evenly 

distributed over all the graph vertices and given that 

1 1TV( ) 0, u  there is no notable spatial variation. In the 

next eigenvectors, the increase in spatial variability is 

proportional to the increase in graph frequencies. The last 

eigenvector is highly localized, which is in line with 

normalized Laplacian matrices characteristics that manifest 

localized patterns of spatial variability in high frequencies.  

Fig. 4 shows several of the eigenvectors and their 

corresponding eigenvalues for the three studied graphs for 

subject aa. The eigenvectors of the learned graphs capture a 

wider range of variability compared to the correlation graph, 

many eigenvectors of which manifest spatial patterns with 

similar spatial variabilities corresponding to a spectral value 

around one. This suggests that in the correlation graph most of 

the vertices are connected to other vertices in a rather similar 

pattern. Given that graph Laplacian eigenvectors form an 

orthonormal basis that represent signals, their broader spatial 

variability with respect to the graph structure can provide a 

more precise representation of signals. Accordingly, in GFT, a 

graph signal is mapped to the graph frequency domain using 

the Laplacian eigenvectors, the spatial variability of which 

plays an important role in obtaining an effective 

decomposition. In the correlation graph, a small subset of the 

first eigenvectors captures a substantial portion of the total 

signal energy, whereas in the learned graphs, signal energy is 

distributed across a wider range of eigenvectors. The complete 

set of eigenvectors of the three studied graphs for subject aa 

are shown in supplementary material Fig. S3.  

Alternatively, a weighted measure of the number of zero 

crossings (WZC) can be used to quantify spatial variability of 

eigenvectors, or any graph signal in general. Strictly speaking, 

WZC is a weighted measure of changes in the sign of the 

eigenvectors at the adjacent graph vertices, wherein the 

adjacency matrix entries are used as weights, computed as: 

 

,

( , )

1
WZC( ) = ( [ ] [ ]),

2
k i j k k

i j E

H i j


u A u u  (12) 

 

where H(.) is the Heaviside step function. The WZC of the 

normalized Laplacian eigenvectors of the three studied graphs 

is shown in Fig. 5. Spatial variability of eigenvectors generally 

increases by increasing the eigenvalue indices. WZC gradually 

increases along the spectrum in the learned graphs, especially 

in the log-penalized one, whereas in the correlation graph, it 

sharply increases in the initial eigenvalue indices, and then 

only minimally changes in the remainder of the spectrum. 

These results corroborate visual interpretations made on 

spatial variability of eigenvectors as shown in Fig. 4, 

reflecting the superior capability of the learned graphs over the 

correlation graph in capturing a wide range of spatially 

varying pattern as manifested by EEG signals. 

 In the first experiment, five different sets of the GFT 

coefficients were utilized. The first set consisted of the entire 

                                              (a)                                                                          (b) 

Fig. 3. a) Distribution and histogram of eigenvalues in the log-penalized, l2-penalized, and correlation graphs for subject aa. b) Eigenvalues and some of the 

corresponding eigenvectors of the log-penalized graph. 
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set of GFT coefficients, denoted all frequencies (AF). Inspired 

by prior works on the application of GFT on brain imaging 

data [49, 50], three additional sets of GFT coefficients were 

defined by dividing the spectrum into three equal frequency 

bands, denoted low (LF), medium (MF) and high (HF) 

frequencies. Inspired by [36], a fifth subset was defined via 

the union of the LF and HF subsets, denoted LF+HF. These 

five sets of GFT coefficients were then used as inputs to the 

FKT to derive a discriminative matrix W  for each set. 

Consequently, features for classification were extracted by 

computing the logarithm of variance of the projected GFT 

coefficients on W . Table I presents classification accuracies 

using three different graphs for each individual subject and 

also on average across subjects.  

Using the LF GFT coefficients resulted in substantially 

higher classification accuracies compared to using the MF, HF 

or LF+HF components, in all subjects as well as on average 

across subjects. It also provided higher accuracies compared 

to using all the GFT coefficients, in subjects aa, aw, and ay. 

Moreover, the learned graphs achieved better results compared 

to the correlation graph in three out of five subjects (aa, av, 

and ay). To determine an optimal subset of the GFT 

coefficients that provide the most discriminative features for 

 

Fig. 5. Weighted zero crossings for the log-penalized, l2-penalized, and 

correlation graphs of subject aa. 
 

 

Fig. 4. Some of the selected eigenvectors  (k = 1, 2, 5, 10, 20, 30, 40, 60, 80, 100, 118) of the (a) log-penalized, (b) l2-penalized, and (c) correlation graphs of 

subject aa, respectively. 

  λ1= 0              λ2=0.065         λ5=0.218          λ10=0.458          λ20=0.825        λ30=1.016         λ40=1.084         λ60=1.112         λ80=1.131        λ100=1.155        λ118=1.251 

  λ1= 0             λ2=0.703          λ5=0.957         λ10=1.001          λ20=1.012        λ30=1.013         λ40=1.014           λ60=1.014         λ80=1.016         λ100=1.017      λ118=1.025 

(b) 

  λ1= 0             λ2=0.043          λ5=0.158         λ10=0.316         λ20=0.667        λ30=0.896         λ40=1.035         λ60=1.146         λ80=1.194         λ100=1.239        λ118=1.415 

(c) 

(a) 

 

TABLE I 
CLASSIFICATION ACCURACIES (%) ON THE TEST SETS FOR EACH SUBJECT AND 

ON AVERAGE ACROSS SUBJECTS USING THREE BRAIN GRAPHS AND IN FIVE 

DIFFERENT FREQUENCY BAND SETTINGS 

log-

penalized 
aa al av aw ay Mean ± std 

AF 74.11 100 70.41 90.18 74.21 81.78 ± 12.73 

LF 86.61 100 70.92 91.96 84.92 86.88 ± 10.68 

MF 55.36 66.07 52.55 63.39 54.36 58.35 ± 5.99 

HF 51.78 80.36 43.88 59.37 47.22 56.52 ± 14.53 

LF+HF 74.11 100 71.43 90.62 75.79 82.39 ± 12.35 
 

l2-penalized aa al av aw ay Mean ± std 

AF 69.64 100 70.41 89.73 72.22 80.40 ± 13.73 

LF 87.5 98.21 70.41 83.03 88.49 85.53 ± 10.10 

MF 54.46 67.86 53.06 62.05 55.16  58.52 ± 6.27 

HF 54.46 80.36 44.39 55.80 51.19 57.24 ± 13.66 

LF+HF 78.57 100 72.45 86.61 78.57 83.24 ± 10.63 
 

correlation aa al av aw ay Mean ± std 

AF 70.53 100 70.92 88.39 72.22 80.41 ± 13.25 

LF 86.61 100 68.88 94.2 87.7 87.47 ± 11.71 

MF 52.68 78.57 54.59 54.91 53.97 58.94 ± 11 

HF 55.36 71.43 56.12 51.34 48.41 56.53 ± 8.89 

LF+HF 66.96 100 71.43 91.96 84.13 82.9 ± 13.8 
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classification, we implemented feature selection. The 

logarithm of variance of the GFT coefficients was used as 

input to feature selection. Fig. 6 illustrates the scores of graph 

frequencies in the log-penalized graph for each subject and on 

average across subjects.  

 
The lowest one-third eigenvalue indices attained 

substantially higher scores than the rest of the spectrum, 

corroborating results presented in Table I. Therefore, we only 

used features from this sub-band as the most effective 

harmonics for each subject, classification accuracies for which 

are presented in Table II. To evaluate the effectiveness of 

using the FKT, results of classification using GFT coefficients 

(without FKT) are also provided in Table II. The direct use of 

the GFT coefficients is prone to overfitting due to the small 

size of the training samples in comparison to the dimension of 

the feature vectors, especially in the subjects with small 

training sets. Therefore, a subset of GFT coefficients as 

determined by the feature selection step were fed into the 

classifier. 

 
The results suggest that using FKT notably improves the 

classification accuracies compared to directly using the GFT 

coefficients. That is, mapping the GFT coefficients onto the 

subspace provided by FKT results in features that better 

discriminate the two MI classes. This FKT-based approach of 

extracting features from a temporal set of GFT coefficients is 

in contrast to prior related works [22, 27] wherein the 

temporal mean or variance of the GFT coefficients is 

considered as feature, which notably discards the temporal 

dynamics. The temporal evolution of GFT coefficients of two 

representative EEG trials is shown in Fig. S4 in the 

supplementary material. Overall, the best average accuracy 

was obtained in the proposed method by using the log-

penalized graph learning approach. 

Finally, the performance of the proposed method is 

compared to three alternative state-of-the-art methods; see 

Table III. The proposed method using log-penalized graph 

learning outperforms the three alternative methods, on average 

across subjects. The GSL method, which is GSP-based [37], 

shows the best classification accuracy in subject av, whereas 

the RCSSP method, which utilizes an extension of FKT [15], 

shows the best accuracy in subject aw. In the other three 

subjects, the proposed method yields higher classification 

accuracy. 

 

V. CONCLUSIONS 

We proposed a GSP-based method for classification of 

motor imagery tasks from EEG signals. We treated EEG 

signals as functions defined on the vertices of three different 

graphs, in particular, two classes of subject-specific graphs 

learned from the data. Our analysis showed that imagined 

motor activities are generally spatially smooth on the learned 

graphs, and can thus be effectively represented by using only a 

subset of their graph frequency components. Furthermore, we 

showed that temporal dynamics manifested in EEG signals 

can be captured by using the FKT transformation, resulting in 

a discriminative subspace that can better separate motor 

imagery classes. The classification results showed the superior 

performance of the proposed method compared to three prior 

related alternative methods, indicating the benefit of extracting 

features via integrating spatial and temporal characteristics of 

EEG signals within a GSP setting. In future work, to obtain 

more informative features at the resolution of multiple 

frequency bands rather than at the resolution of eigenvalues, 

we will investigate how EEG signals can be best abstracted 

based on the distribution of their energy in the graph spectral 

domain using filter banks [45, 51]. 
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Fig. 6. Scores of the graph frequencies in the proposed log-penalized graph 

for each individual subject and on average across subjects.  

 

TABLE II 

CLASSIFICATION ACCURACIES (%) FOR GFT AND THE PROPOSED METHOD 

WITH SELECTED FEATURES FROM THE LF SUB-BAND OF GRAPH SPECTRUM 

GFT aa al av aw ay Mean ± std 

log-penalized 61.61 87.5 60.71 70.53 81.75 72.42 ± 11.96 

l2-penalized 65.18 91.07 57.65 67.86 66.27 69.61 ± 12.62 

correlation 68.75 96.43 62.75 73.21 68.65 73.96 ± 13.1 
 

Proposed aa al av aw ay Mean ± std 

log-penalized 87.5 100 70.92 91.96 92.86 88.65 ± 10.88 

l2-penalized 87.5 98.21 72.96 84.82 88.49 86.4 ± 9.06 

correlation 90.18 100 68.88 94.2 88.89 88.43 ± 11.75 

 

 

TABLE III 

COMPARISON OF CLASSIFICATION ACCURACIES (%) FOR THE PROPOSED 

METHOD AND THREE ALTERNATIVE STATE-OF-THE-ART METHODS 

Method aa al av aw ay Mean ± std 

Proposed 

(log-penalized) 
87.5 100 70.92 91.96 92.86 88.65 ± 10.88 

GSL [37] 85.71 98.21 75 85.27 90.48 86.93 ± 8.46 

RCSSP [15] 82.14 96.42 68.87 98.21 88.88 86.91 ± 11.94 

l1-CSP [13] 78.57 98.21 54.08 80.35 83.33 78.91 ± 15.6 
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SUPPLEMENTARY MATERIALS: 

 

 

 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

TABLE SI 

NUMBER OF GRAPH EDGES FOR EACH SUBJECT AND ON AVERAGE ACROSS 

ALL SUBJECTS FOR THREE STUDIED GRAPHS.  THE GL METHODS PRESERVE 

THE CONNECTIVITY OF THE GRAPHS BY USING A LOWER NUMBER OF EDGES 

COMPARED TO THE FULLY CONNECTED CORRELATION GRAPHS. 

Graphs 
 

aa al av aw ay 
Mean 
± std 

log-penalized 1666 1756 2262 1322 1418 
1684.8 

± 367.9 

l2-penalized 2468 2588 3108 2200 2232 2519.2 
± 366.9 

correlation 13806 13806 13806 13806 13806 13806 

 

Fig. S1. Distribution of nodal degrees on average across five subjects. 
the log-penalized graphs are sparser graphs with larger edge weights 

compared to the l2-penalized graphs and the fully connected 

correlation graphs. 
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             log-penalized graph                                       l2-penalized graph                   correlation graph 

Fig. S2. The three studied brain graphs for each of the five subjects. Edge widths and colors reflect edge weights, and vertex sizes reflect nodal degrees. 

For the correlation graphs, only 50% of the top edges (with larger weights) are shown. In each type of graphs, differences are seen across the five 
subjects. the log-penalized graphs manifest a notable difference in their nodal degrees, and their structure in general, showing the added benefit of 

learning subject-specific graphs. 

0 1 

Subject aa: 

Subject al: 

Subject av: 

Subject aw: 

Subject ay: 
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a) log-penalized graph: 
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b) l2-penalized graph: 
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Fig. S3. The Laplacian eigenvectors of the (a) log-penalized, (b) l2-penalized, and (c) correlation graphs for subject aa. There are remarkable differences in 

the spatial patterns encoded by the three different graphs. The eigenvectors of the learned graphs capture a wider range of spatial variability compared to the 

eigenvectors of the correlation graph which manifest rather repetitive patterns. 

 

c) Correlation graph: 
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Fig. S4. (a, b) GFT coefficients of the log-penalized graph for a representative trial for each of the two MI classes of subject aa, and (c) the absolute 

value of the difference between the two. In the graph frequency domain, energy is localized in the lower end of the spectrum, where notable differences 

are seen between the two classes. The patterns are not constant across time, and this is what the FKT aims to capture in differentiating the two different 

MI tasks, which presumably manifest different temporal dynamics in their spatial manifestation in the EEG data. 

 

(a) (b) 

(c) 
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