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Abstract

The advent of abundant Earth observation data enables the development of novel
predictive methods for forecasting climate impacts on the state and health of terrestrial
ecosystems. Here, we target the spatial and temporal variations of land surface
reflectance and vegetation greenness, measuring the density of green vegetation and
active foliage area, conditioned on current and past climate and the local topography.
We train two alternative recurrent deep learning models that rely on convolutional
layers for forecasting the spatially resolved deviation of surface reflectance across a
heterogeneous landscape from a specified initial state (Baseline Framework). We
demonstrate efficiency of the Baseline Framework with respect to training convergence
speed. Using data from diverse ecosystems and land cover types across Europe and
following a standardized model evaluation framework (EarthNet2021 Challenge), results
indicate increased performance in predicting surface greenness during drought events of
the models presented here, compared to currently published benchmarks. Our results
demonstrate how deep learning methods enable early-warning of vegetation responses to
the impacts of climatic extreme events, such as the drought-related loss of green foliage.

1 Introduction 1

Recent hot and dry summers in Central Europe led to measurable and visible impacts 2

on the functioning and structure of forests [1, 2, 3]. Combined heat and drought stress 3

caused wide-spread premature canopy defoliation, tree mortality, and carbon (C) losses 4

from ecosystems [2, 3, 4]. The timings and locations of such extreme event impacts can 5

be identified from space as anomalously low vegetation greenness (browning), measured 6

by satellite remote sensing of the surface reflectance at high resolution and with global 7

coverage [5, 6]. Although such Earth observation data has yielded a wealth of 8

1/27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2022. ; https://doi.org/10.1101/2022.08.16.504173doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.16.504173
http://creativecommons.org/licenses/by-nc-nd/4.0/


information covering past climatic extreme events and vegetation responses, thresholds 9

at which lasting impacts are triggered are difficult to anticipate and are often identified 10

in retrospect [1, 2, 6]. Observed relationships of impacts and climate, including its 11

history, can inform predictions that are based on modelling their functional relationships 12

and thus forecast where and when impacts of unfolding meteorological extremes occur. 13

Large volumes of Earth observation and climate re-analysis data, combined with 14

detailed information about the local conditions (soil, topography, land cover type) 15

provide an opportunity to develop data-driven predictive models of impacts caused by 16

extreme heat and drought. However, suitable machine learning algorithms have to be 17

tailored to learn key factors that drive impacts by climatic extreme events across the 18

landscape and over the seasons and model the distinct temporal dependencies and 19

spatial heterogeneity of relationships. 20

Temporal dependencies arise because impacts of climate extremes and browning 21

depend on the climate of preceding months. A progressive depletion of plant-available 22

water stores evolves over several weeks [7]. Hence, for example, a dry spring can amplify 23

the sensitivity of vegetation to hot and dry weather in summer. Furthermore, an early 24

start of the season (early leaf unfolding dates) can enhance water losses during spring 25

and thus lead to an early onset of water-stressed conditions in summer [8]. Similarly, 26

favourable growth conditions in the early season can enable trees to develop a large 27

total foliage area, making them sensitive to excessive water loss during dry conditions in 28

the later season [9]. Hence, effective models must learn the temporal dependencies of 29

multiple co-varying drivers. 30

Spatial heterogeneity arises because environmental conditions vary substantially 31

across elevation, position along the hillslope (ridge vs. valley bottom), exposition (north 32

vs. south), or upstream drainage area [10], and with small-scale variations in soil 33

properties. Highly localized growth conditions and microclimates interact with 34

variations in ecosystem properties to determine drought and heat impacts. Varying soil 35

and plant rooting depth [11], vegetation access to water stored in weathered bedrock 36

[12] and groundwater [13] and large variations in incoming radiation across different 37

positions in the landscape drive large spatial variations in water stress [11]. This large 38

spatial heterogeneity of impacts across the landscape (100 m - 1 km), combined with 39

the fact that climate reanalysis data is commonly provided at much lower resolutions 40

(10 - 100 km), poses a challenge for reliable predictions of impacts. 41

Potentially suitable machine learning model architectures have been developed for 42

related tasks and may be applied for learning the distinct temporal dependencies and 43

spatial heterogeneity of vegetation greenness anomalies in response to climatic extremes. 44

In particular, a combination of convolutional and Long-Short Term Memory (LSTM) 45

cells in deep neural network architectures have been shown to perform well on video 46

prediction tasks [14, 15, 16] and may be repurposed for effectively forecasting the 47

near-term evolution of satellite images, conditioned on the evolution of climate and the 48

position in the landscape. 49

The high demand for reliable extreme events’ impact prediction and early warning, 50

combined with the availability of large data volumes and the development of powerful 51

machine learning algorithms, gave rise to EarthNet2021 - a formalized prediction 52

challenge for satellite image forecasting [17]. EarthNet2021 provides Sentinel 2 satellite 53

data for surface reflectance [18] and spatially aligned topography information, as well as 54

temporally and spatially aligned climate re-analysis data [19]. The EarthNet2021 55

Challenge also defines a common training and testing framework and a unified model 56

evaluation metric, enabling a standardized comparison and benchmarking of different 57

models, i.e., competing submission to the challenge. Here, we implemented two 58

alternative deep neural networks and show, using the EarthNet2021 data and their 59
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model evaluation framework, that both models are well-suited for the drought impact 60

prediction challenge at hand. 61

2 Methods 62

2.1 Prediction task 63

We followed the prediction task defined by the EarthNet2021 Challenge [17]. As 64

illustrated in Fig. 1, the task is to predict the future evolution of (high-resolution) 65

surface reflectance, given its past evolution, given past and future (mesoscale) climate, 66

and given high-resolution information of (time-invariant) topography. Datacubes (see 67

also Sec. 2.2) of remotely sensed surface reflectance contain ten frames (or images, i.e., 68

data arrays in longitude and latitude) from past and current time steps t = 1, . . . T1 as 69

context and twenty frames for time steps t = T1 + 1, . . . , T2 as target. Climate data for 70

all time steps and time-invariant topography information are used as model inputs for 71

past and present time steps and guide predictions for future time steps. Datacubes are 72

divided between a set used for model training and four distinct sets for testing, as 73

defined by EarthNet2021 (see Sec. 2.4). 74
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Figure 1. Illustration of the prediction task. Data is composed of
context frames (past and current time steps t = 1, . . . T1), and target
frames (future time steps t = T1 + 1, . . . , T2). High resolution remote
sensing data of the surface reflectance in four spectral bands (’RGBI’
for red, green, blue, and infra-red) are used as model input for the
context frames and are to be predicted as target for future time steps.
Multiple low-resolution climate variables are used as model input for
both the context and target time steps and thus guide predictions.
Elevation from a digital elevation model is provided as a time-invariant
model input for the context and the target time steps. The cloud mask
for the context time steps specifies information in the RGBI frames
that is to be ignored.

By targeting the prediction of future frames from past frames, the EarthNet2021 75

Challenge resembles a standard video prediction task. However, in contrast to the 76
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general video prediction framework, forecasting the motion of objects in the scene is not 77

relevant here. In other words, the spatial arrangement of the land cover within a remote 78

sensing data scene is largely constant and locomoting objects are absent or not relevant 79

for the prediction task. The forecasting target is limited to the distinct evolution of land 80

surface reflectance in separate, but fixed portions of the image. Furthermore, 81

predictions are guided by the information of future climate, while climate-surface 82

reflectance relationships are learned from their past dependencies and temporal 83

dynamics. Additionally, time-invariant information about the topographic arrangement 84

of the landscape is provided by the elevation map and may enable the learning of 85

spatially varying climate-surface reflectance relationships, modified by the topographical 86

setting. These features provide additional information for model predictions. We 87

therefore refer to the task as a strongly guided (SG) video prediction task and adopt 88

this term also for naming our models. 89

2.2 Data 90

The data used here were provided as part of the EarthNet2021 Challenge and consist of 91

23,904 training datacubes. Here, a datacube is a data array with two spatial dimensions, 92

longitude and latitude, and a dimension in time t. Each datacube covers a geographical 93

domain in longitude and latitude - a scene. Datacubes provided through EarthNet2021 94

are composed of high resolution data of remotely sensed surface reflectance, and of 95

mesoscale resolution climate data. 96

Remote sensing datacubes represent scenes from the Sentinel 2 mission [18], covering 97

a spatial extent of 128 × 128 pixels at 20 m resolution (2.56 × 2.56 km total extent), 98

and providing surface reflectance every 5 days in four wavelength bands (corresponding 99

to blue, green, red, and near-infrared light (RGBI)), complemented with a binary data 100

quality mask defining the presence of clouds. Climate datacubes from E-OBS climate 101

reanalysis data [20] are provided for each day. They have an extent of 80 × 80 pixels at 102

a resolution of 1.28 km (corresponding to ≈ 0.1◦, referred to as ’mesoscale resolution’, 103

covering 102.4 × 102.4 km total extent) and provide information on precipitation, sea 104

level pressure, daily mean, minimum and maximum temperature. Additionally, 105

time-invariant data layers of elevation from the EU-DEM digital elevation model [21] 106

are provided at both high and mesoscale resolutions. Remote sensing and climate data 107

cubes are spatially aligned such that within the geographical extent of a given climate 108

data cube, multiple remote sensing data cubes are provided. A more detailed 109

description of the data provided through EarthNet2021 is given by ref. [17]. 110

In order to use the data for modelling here, we applied additional processing steps. 111

The high-resolution elevation data were replicated for each time step. The mesoscale 112

elevation data was not used. The daily meteorological data were aggregated to 5-day 113

intervals, matching the frequency of the remote sensing data. From the original daily 114

mean temperature, daily total precipitation and daily mean atmospheric pressure, we 115

computed the mean across respective intervals of five days. For the daily minimum and 116

maximum temperature, we took the minimum and maximum values across the 5-day 117

interval, respectively. We used only the subset of climate data, matching the spatial 118

extent of the remote sensing data cubes. Climate data outside this domain was not 119

considered. Due to the presence of clouds, data completeness within the individual 120

datacubes varied strongly. We discarded three datacubes from the training set that 121

were affected by cloud-contamination of a subset of pixels throughout the entire context 122

period. 123
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2.3 Model 124

To address the temporal and spatial dependencies of the data and the prediction task, 125

we used two variants of the Convolutional Long Short-Term Memory (ConvLSTM) 126

network. The ConvLSTM is a convolutional adaptation of the standard LSTM [22] and 127

is designed for the purpose of processing sequential image data - suitable for the 128

spatio-temporal prediction task at hand. LSTMs are a subclass of recurrent neural 129

networks, chosen here to satisfy our prior assumption about the task that the time 130

dimension is shift-invariant. Recurrent neural networks predict sequences of values 131

(time steps) by consuming their own output of the previous time step as input at 132

subsequent time steps. In contrast to a traditional LSTM, in a ConvLSTM network, all 133

fully connected layers are replaced with convolutional layers. We resorted to purely 134

deterministic variants of these architectures. Models were implemented using the deep 135

learning framework PyTorch Lightning [23] which is built on top of PyTorch [24] and 136

enables improved scalability. The hyperparameters were tuned using an Optuna-based 137

[25] hyperparameter optimization procedure. 138

SGConvLSTM The first deep learning architecture we tested is a ConvLSTM
inspired by ref. [15]. It is termed here SGConvLSTM to reflect aspects related to the
strongly guided (SG) modelling task (see above). The model is composed of L cells,
stacked vertically. Each cell receives as input the hidden state (h) and memory (c) and
an input x from the previous layer. Then, it outputs the updated h′ and c′.

C(x,h, c) = h′, c′. (1)

The underlying formula for a single cell is:

i = σ(Wxi ∗ x+Whi ∗ h+Wci ⊙ c+ bi)

f = σ(Wxf ∗ x+Whf ∗ h+Wcf ⊙ c+ bf )

o = σ(Wxo ∗ x+Who ∗ h+Wco ⊙ c+ bo)

c′ = f ⊙ c+ i⊙ tanh(Wxc ∗ x+Whc ∗ h+ bc)

h′ = o⊙ tanh(c′).

(2)

Here, W are the weights of the function, ∗ indicates convolution, and ⊙ the 139

Hadamard product. Note that ∗ differs from matrix multiplication, which is used in 140

standard LSTM [22]. Finally, the L cells are stacked together as in a multilayer LSTM 141

[26] and we take only the h from the deepest cell as our output. The model implemented 142

here consists of 3 layers, where the first two layers’ cells output 20 channels and the last 143

layer cell outputs 4 channels, corresponding to the four spectral bands (RGBI) of 144

predicted surface reflectance. In all the convolutions, we use a kernel size of 5× 5. 145

SGEDConvLSTM The second model we tested was an Encoder-Decoder (ED) 146

architecture, here referred to as SGEDConvLSTM. The Encoder-Decoder consists of two 147

multilayer LSTM networks, as described by ref. [15]. This idea acts orthogonally to the 148

depth of an LSTM by feeding the sequential output (sequential in depth, not in time) of 149

the first network, the encoder, as input to a second network, the decoder, at each time 150

step. We note that the decoder is required to have the same depth as the encoder in 151

this setting. In such a manner, we add another dimension of parameterization to the 152

network without having to resort solely to stacking LSTM cells on top of each other. 153

For the SGEDConvLSTM, we mostly used the same hyperparameters as for the 154

SGConvLSTM, except for the number of hidden channels, which was increased to 22. 155
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Baseline framework We started by using a vanilla model, i.e., a model, which is 156

required to learn the complete image from scratch. We noticed, however, that this 157

renders the learning process much slower. In order to leverage the peculiarity of the 158

task (relatively small changes between subsequent images, but larger variations within 159

images), we enhanced the model with a baseline (Fig. 2). The baseline was inspired by 160

approaches such as residual connections [27] and offset regression [28]. The core idea is 161

that our model does not need to forecast the full satellite image at the next time step, 162

but rather only the change to the image, relative to the previous time step. The full 163

next image is then computed as the sum of the previous image and the predicted 164

change. In this manner, the model can focus on detecting how weather impacts surface 165

reflectance changes in a given scene. We refer to embedding a predictive model such as 166

a neural network into this general procedure as Baseline Framework. 167

Context Target 

+

NN

Figure 2. Enhancement of the recurrent model with a last frame
baseline. The model predicts the change compared to the previous
time step (the arrow coming from the right into the ’+’) which are
added (the ’+’ symbol) to the previous RGBI values.

We explored different definitions of the baseline. First, we tested a baseline defined 168

as the pixel-wise arithmetic mean across all context and previously predicted frames. 169

This baseline is similar to the persistence baseline model, published by ref. [17] as a 170

”null model” benchmark. They defined it as the pixel-wise mean across all context 171

frames. The persistence baseline is strongly affected by outdated information from the 172

context frames. When making predictions for future time steps, much of this data 173

becomes irrelevant, as the images undergo significant change throughout the time steps 174

of the target frames (multiple months). Based on this finding, we chose to use the last 175

image of the context as the baseline for the final model. For the baseline definition 176

based on the last image, we addressed cloud contamination in the last context frame by 177

pixel-wise replacement with data from the last available frame in which the respective 178

pixel was not cloud-covered. For the mean, we merely took the mean of the frames 179

which were not cloud contaminated. Due to its improved performance (as indicated by 180
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exploratory modelling, now shown) we henceforth show results only based on the ”last 181

image baseline”. 182

Model training 23401 datacubes (97.9% of the original EarthNet2021 training 183

dataset) were used for training, 500 datacubes for validation, and three datacubes were 184

discarded (see above). The model was trained using the L2 loss determined on the 185

predicted and observed RGBI channels (ignoring the cloud-contaminated pixels). The 186

EarthNet score (described in Sec. 2.4) is used for validation. The learning rate is set to 187

0.0003 and the batch size is set to 4. We opted to use the AdamW optimizer, which, 188

unlike the standard Adam optimizer [29], decouples the weight decay and has also 189

shown to improve on generalization [30]. The SGConvLSTM and the SGEDConvLSTM 190

were trained for 92 and 45 epochs, respectively. For completeness, a full list of the 191

model parameters is provided in Tabs. S1 and S2 in the Supporting information. 192

2.4 Evaluation 193

We evaluated models following three different approaches. First, we computed the 194

EarthNetScore (ENS) values, defined by ref. [17] and compared them to current entries 195

on the EarthNet2021 leaderboard. The ENS is defined as a harmonic mean of four 196

components, measuring complementary aspects of model performance. 197

ENS =
4

1
MAD + 1

OLS + 1
EMD + 1

SSIM

. (3)

MAD is the Mean Absolute Distance. OLS is the Ordinary Least Squares (also 198

known as L2 loss). EMD is the Earth Mover’s Distance, also known as Wasserstein 199

Distance, and measures the integrated displacement of the distributions of observed and 200

predicted values. SSIM is the Structural Similarity Index Measure and assesses the 201

similarity of structural information in the prediction and observation, mimicking human 202

perception of image similarity [31]. EMD and OLS are computed based on the observed 203

and predicted Normalized Difference Vegetation Index (NDVI). MAD and SSIM are 204

computed on all RGBI bands. The NDVI is defined based on reflectance in the red (R) 205

and near-infrared bands (I) [32] and is computed as 206

NDVI =
I− R

I + R
. (4)

The ENS is calculated on four separate test sets, measuring different aspects of 207

model generalizability. The independent, identically distributed (iid) set refers to test 208

datacubes covering the same locations as the training set, but taken from different time 209

intervals. The out-of-domain (ood) set refers to datacubes covering locations that were 210

not part of the training set. The extreme test set covers locations affected by the 2018 211

summer drought in Central Europe (here the number of context and target frame is 212

increased to 20 and 40, respectively). Lastly, the seasonal test set is similar to the iid 213

set, but extending the prediction time span to approximately two years (70 context, 140 214

target frames). We compare our results to the EarthNet2021 scores of the initially 215

published models Channel-U-Net and Arcon [17] 216

(https://www.earthnet.tech/docs/ch-leaderboard/, last visited 3.8.2022). More 217

recently published results by ref. [33] are used for comparison in the discussion section 218

(Sec. 4). 219

For the second evaluation approach, we considered a single representative example 220

datacube from a drought-affected scene and year (2018), taken from the extreme 221

evaluation set. The scene is located in Saxony (Germany) and the datacube spans dates 222

from January to November 2018, covering a reported summer drought [34, 6]. This is to 223
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visually assess model performance with a focus on the model’s ability to capture 224

drought impacts and to gain a more intuitive understanding of different aspects of 225

model performance than measured by aggregate metrics. In addition to the visual 226

inspection, we examined the predicted and observed scene-average NDVI over the 227

course of several months in summer, derived from the red and near-infrared channels of 228

the remotely sensed surface reflectance. 229

Third, using the same datacube from the extreme evaluation set, we evaluated the 230

predicted NDVI from a model that is forced by replaced climate data from a 231

non-drought year (2019), and thus generates a counterfactual prediction. The rationale 232

behind this is to assess the model’s ability to learn the climate-vegetation greenness 233

links under anomalous conditions and predict extreme event impacts as a function of 234

extreme climate. 235

3 Results 236

3.1 Model training efficiency 237

Model training on our hardware (NVIDIA GTX 1080 GPU) took ≈ 460 h. The 238

optimization was stopped once the validation score (ENS) repeatedly failed to improve 239

compared to the score evaluated from previous epochs. The model at the epoch with 240

the highest attained validation score was selected. We noted a significant acceleration of 241

convergence when employing the baseline framework, as shown in Fig. 3. The 242

SGConvLSTM model with the last frame as the baseline achieves a validation score of 243

0.31 already at epoch 22. In contrast, without using the baseline, the model requires an 244

additional 8 epochs to match this score. This illustrates that predicting a deviation on 245

top of a specified baseline renders a simpler task than predicting the scene ab initio. 246

0 5 10 15 20 25 30 35
Epoch

0.26

0.27

0.28

0.29

0.30

0.31

EN
S

Model
no baseline
baseline
U-Net
Arcon

Figure 3. Evolution of the EarthNetScore (ENS) for increasing SGConvLSTM model
training epochs, comparing alternative model setups with and without a specified baseline.
For comparison, the ENS of published results by initial benchmark models (Channel-U-
Net and Arcon) are plotted as dots.
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3.2 EarthNet Score benchmarking 247

Both, the SGConvLSTM and the SGEDConvLSTM models show improved performance 248

in comparison to the persistence baseline and the published results of the 249

Channel-U-Net and Arcon models (Tab. 1 and Fig. 4). SGConvLSTM achieves an ENS 250

of 0.3176 (an improvement of 0.0551 against the persistence baseline) on the iid set and 251

outperforms the previous best model, Channel-U-Net, which achieves 0.2902 here 252

(0.0277 better than the persistence baseline). SGEDConvLSTM achieves an ENS of 253

0.3164 on the iid set. In other words, our models’ improvements over the persistence 254

baseline are roughly twice the improvement of Channel-U-Net. 255

The negligible differences between the iid and ood scores of the SGConvLSTM and 256

SGEDConvLSTM models underline the models’ ability to generalize well to data 257

outside the training set. Here, our models’ score degrades only by 0.003 and 0.004, 258

respectively. In contrast, the score of Arcon declines by 0.015, thus showing a poorer 259

out-of-training-distribution generalization capability. 260

Overall, the performance of SGConvLSTM is slightly better than the performance of 261

SGEDConvLSTM, both on the iid and ood test sets, where it attained 0.3176 and 262

0.3146, respectively, compared to an ENS of 0.3164 and 0.3121 achieved by 263

SGEDConvLSTM for the iid and ood test sets. 264

The strength of models developed here is most evident for the evaluation using the 265

extreme test set. The SGConvLSTM (SGEDConvLSTM) reached an ENS of 0.2740 266

(0.2595), an increase of 0.080 (0.066) compared to the persistence baseline. In contrast, 267

Channel-U-Net only improves by 0.043 over the persistence baseline. This suggests that 268

our models provide more informative predictions of the development of vegetation 269

greenness under future extreme climatic conditions than current benchmarks. 270

The evaluation on the seasonal test set revealed generally weaker model performance 271

compared to performances on the other test sets. Neither of our models outperformed 272

the persistence baseline. This suggests that models presented here, as well as the other 273

published benchmarks, provide less reliable predictions at the seasonal-to-annual 274

timescale (here 140 frames, corresponding to roughly two years). 275

Test set IID OOD Extreme Seasonal
Persistence baseline 0.2625 0.2587 0.1939 0.2676
Channel-U-Net 0.2902 0.2854 0.2364 0.1955
Arcon 0.2803 0.2655 0.2215 0.1587
Diaconu 0.3266 0.3204 0.2140 0.2193
SGConvLSTM 0.3176 0.3146 0.2740 0.2162
SGEDConvLSTM 0.3164 0.3121 0.2595 0.1790

Table 1. Comparison of the ENS on the four different test tracks (iid, ood, extreme and
seasonal) of our models (SGConvLSTM and SGEDConvLSTM, in bold), Channel-U-Net,
Arcon and Diaconu models, and the persistence baseline.

Evaluating component metrics of the ENS score (Tab. S3 and Figs. S4-S7) reveals 276

additional information about the robustness of different models. Large differences in 277

model performance are evident in particular for the structural similarity metric (SSIM) 278

and for all metrics when comparing model performance on the extreme and the seasonal 279

test sets with performances on the iid and ood test sets. For example, for the extreme 280

test set, the models presented here (SGConvLSTM and SGEDConvLSTM) show 281

substantial improvements over the persistence baseline and over other Channel-U-Net 282

and Arcon models. This is most evident when considering the SSIM (Tab. S3 and Fig. 283

S7). Lacking robustness in long-term predictions (seasonal test set) of all models 284
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Figure 4. Visual comparison of the ENS on the four different test tracks (iid, ood, extreme
and seasonal) of our models (’SG’ for SGConvLSTM and ’SGED’ for SGEDConvLSTM),
published Channel-U-Net (’Unet’), Arcon [17], and Diaconu et al. (’Dia’) models [33],
and the published persistence baseline (’PBL’). Results from models developed here are
highlighted in orange color.

appears to be linked in particular to the pronounced deterioration in the SSIM. In 285

contrast, structural similarity is maintained better in the shorter-term predictions 286

assessed by the iid and ood test tracks. 287

3.3 Example scene analysis 288

The evaluation of the example scene (Figs. 5 and Fig. S1) reveals that models predict 289

the distinct evolution of vegetation greenness across different portions of the image, 290

representing different landscape elements, land cover, vegetation types, and individual 291

fields. However, although structural patterns are reliably modelled, distinct greenness 292

changes in different fields at different points in time appear to be outstanding challenges 293

for the models assessed here. 294

To further assess the reliability of our models, we provide as Supporting information 295

an equivalent image for a datacube in the iid dataset Fig. S2 and the ood dataset Fig. 296

S3. No clear differences in prediction accuracy are evident from visual comparison of the 297

scenes taken from the iid and the ood test tracks, reflecting also the similar ENS score 298

achieved on the iid and the ood test tracks (Tabs. 1 and S3). This corroborates the 299

out-of-distribution generalization properties of our models, identified above (Sec. 3.2). 300
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Figure 5. Observed (top row) and modelled (two bottom rows for the SGEDConvLSTM
and the SGConvLSTM models) real-color images of the surface reflectance in RGB
channels for an example scene from the extreme test set, located in Saxony, Germany,
and covering dates from February to November 2018. Data is shown for roughly evenly
distanced time steps, avoiding images with clouds where possible. The first two columns
are in the context section and are not forecasted by the models. Model predictions are
for 7 May and subsequent time steps.

3.4 Counterfactual analysis 301

Results for the SGConvLSTM model show substantially different simulated responses of 302

surface reflectance when using climate forcing data from a drought-affected year (2018) 303

versus data from a year without drought in the respective location (2019) (Figs. 6 and 304

7). The visual comparison of RGB images (Fig. 6) indicates unrealistic, excessively 305

green vegetation when the model is forced by counterfactual climate, taken for 306

corresponding days and months from year 2019. However, this visualisation also 307

indicates an overly sensitive simulated response (excessive browning) when the model is 308

forced by actual weather. When aggregating the mean NDVI across the same scene and 309

evaluating the temporal course of observed and modelled NDVI (Fig. 7), we find that 310

the onset of browning (i.e., decline of the NDVI after its seasonal maximum) is 311

simulated roughly half a month too early for both models (SGConvLSTM and 312

SGEDConvLSTM), but the NDVI attains similar levels in predictions and observations 313

around one month after the onset of browning. In contrast, when models are forced by 314

(counterfactual) 2019 climate, the NDVI remains too high compared to observations 315

throughout the period assessed. 316

4 Discussion 317

Drought stress limits vegetation activity across a large portion of the Earth’s land 318

surface [35, 36, 37], and, under extreme conditions, impacts land surface greenness [2], 319

ecosystem productivity [38], and plant health [39] and also in relatively moist regions. 320

Although retrospective analyses of remote sensing data allows an identification of the 321
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Ground Truth SGConvLSTM
(real weather)

SGConvLSTM
(2019 'replaced' weather)

Figure 6. (Left) Ground truth, (Middle) forecast satellite image using 2018 weather
and (Right) forecasted satellite image using 2019 weather in Saxony (Germany). All
images correspond to the 5th of June, the first day when significant browning is observed
in 2018, but not in 2019. This day corresponds to the vertical dotted line in Fig. 7.

timings and locations of discernible impacts of drought stress on surface reflectance and 322

vegetation greenness, only few studies have used these observations in combination with 323

data on environmental covariates to establish functional relationships and develop 324

predictive data-driven models (but see ref. [33]). Here, we developed deep learning 325

models that combine convolutional layers and LSTM, thus making use of the 326

spatio-temporal dependencies in the data. 327

4.1 Comparison to published models 328

Following the standardized EarthNet2021 evaluation protocol [17], we show that our 329

models clearly outcompete a ”null model” of a pixel-wise constant mean surface 330

reflectance and greenness (Persistence Baseline), and perform better that initially 331

published models (Channel-U-Net and Arcon [17]). Using additional analyses of an 332

example scene from a location and year that is known to have been affected by a 333

summer drought (2018 in Saxony, Germany), we demonstrate that the models presented 334

here make use of climate information to predict vegetation greenness and that models 335

predict anomalous land surface browning under anomalously dry conditions. The 336

demonstrated model skill (relative to the “null model”), assessed on out-of-sample 337

scenes (ood test track) further demonstrates the capability of our models to generalise 338

across space and to predict the evolution of surface reflectance at sites for which data 339

has not been used during model training. In other words, the models have potential to 340

scale vegetation greenness forecasts across space. 341

Our models show similar performance compared to recently published results by ref. 342

[33] who used a similar model (also a ConvLSTM), but with a different specification of 343

the target (not using the baseline framework as applied here). Following the extremes 344

evaluation track, models presented here exhibit improved performance over the model 345

presented by ref. [33]. Model performance on the extremes evaluation track is 346

particularly relevant in the context of early warning of forest damage or agricultural 347

yield loss as a consequence of drought conditions. However, the model presented by ref. 348

[33] appears to suffer less from longer-term ”drift” of the predicted distributions, 349
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Figure 7. Time series of the NDVI within a specific datacube in Saxony (Germany) in
2018. The black solid line indicates the median NDVI, the shaded area indicates the
region between the 0.25 quantile and the 0.75 quantile. Note that the ground truth is
subject to some missing NDVI data points: an artifact that originates from the presence
of clouds. This leads to the impossibility of computing the true NDVI for some time
steps. We address this issue by means of linear interpolation using available NDVI from
neighboring time steps. The 2019 weather refers to the experiment where we utilize 2019
weather features from the same location.

compared to the models presented here - as shown by comparing the EMD metric on 350

the seasonal test track. 351

Following the approach followed here (baseline framework), we used an initial 352

baseline for prediction, and target only the incremental deviations (delta) of the 353

subsequent time steps from the baseline. We chose this instead of directly predicting the 354

full RGBI features, as it rendered improved model training efficiency and final model 355

performance. This approach is neither specific to a particular underlying neural network 356

architecture (ConvLSTM or Encoder-Decoder ConvLSTM), nor to a specific choice of 357

the baseline, but comes with some limitations. We note that despite the significant 358

short-term performance gains of our models when evaluating on the iid, ood and the 359

extreme datasets, long-term predictions were poor compared to the simple persistence 360

baseline. This is likely due to the additive nature of error accumulation, and to the fact 361

that model training was performed on a much shorter target window compared to the 362

target sequence in the seasonal test track, and thus did not account for the full seasonal 363

cycle reflected in the latter. 364
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4.2 Prediction challenge specification 365

Data-driven drought impact prediction is in its infancy. The EarthNet2021 Challenge 366

fosters development of research in this direction and the present study is an attempt at 367

satellite image forecasting that yielded several insights to guide future work. Reliable 368

early warning for stakeholders requires accurate predictions of greenness changes for 369

different portions of the image, representing different land cover and land use classes. 370

E.g., forest managers require information of expected impacts on forest greenness - a 371

proxy for tree vitality. The task as defined here includes greenness predictions in 372

cropland areas. There, crop phenophases and dates of sowing, harvesting, and ploughing 373

strongly affect surface reflectance - the prediction target - and are thus implicitly part 374

of the prediction task. However, surface changes in cropland areas are subject to 375

deliberate decisions by the farmer and are affected by differences between crop types 376

and cultivars. A possibility is that future iterations of the EarthNet2021 Challenge 377

specify the prediction task to be more directly tailored to potential applications and 378

stakeholder interests and reduce the scope of evaluated predictions to corresponding 379

land cover classes. 380

Given the specification of the EarthNet2021 Challenge and its data, the prediction 381

target is likely dominated by structural aspects (large variations in surface reflectance 382

within a scene), and seasonal variations (20-140 target frames) in surface reflectance and 383

vegetation greenness. Slighter nuances in greenness within portions of the image and 384

distinct sensitivity within land cover types and within individual agricultural fields 385

constitute a smaller fraction of the overall variation of the data and are thus likely 386

treated by models as “second-order effects”. However, these nuances bear very relevant 387

information for process understanding, linked, e.g., to topographic effects that modify 388

climate impacts across the landscape [10]. Future work may develop models that reduce 389

the scope of the prediction task to learn these nuances and thus learn about 390

heterogeneity of climate impacts, depending on the topographic position, and (if 391

sufficiently high-quality and -resolution data is available) physical soil and bedrock 392

properties. Establishing these relationships will be important for addressing open 393

research challenges in ecohydrology [10] and may have to rely on methods of explainable 394

machine learning. By following the baseline framework, we implemented such a ”scope 395

reduction” by targeting only the deviation of the surface reflectance over time from an 396

initial baseline. This thus emphasizes the drought-related browning of vegetation in 397

summer, while the baseline with its large spatial variations within a scene is provided as 398

the initial state. 399

4.3 Methodological advances 400

Initial approaches to the EarthNet2021 challenge use existing video prediction solutions 401

[17]. The Channel-U-Net model uses an architecture roughly based on U-Net [40], 402

where all input data is stacked along the channel dimension and does not model the 403

temporal dependencies explicitly. The second model, Arcon, is an adaptation of the 404

Stochastic Adversarial Video Prediction (SAVP) [41] model which does model temporal 405

dependencies, but it was designed primarily for a highly stochastic setting (including 406

moving objects) in the general video prediction context. Both types of models appear to 407

be less well suited as deep learning solutions for satellite image predictions. 408

Various extensions to the ConvLSTM for sequential image prediction have been 409

proposed, leaving room for future methodological improvements. These include 410

ensembling multiple ConvLSTMs to better tackle the (in our case ecological and land 411

use) diversity of the data [42]. In order to ”encourage” the model to focus on noticeable 412

spatial features, attention mechanisms such as soft attention [43] have also been 413

integrated into ConvLSTMs successfully [44]. However, we also noticed that the models 414
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trained here exhibited no tendency to overfit and the training data volume may be 415

further increased by enlarging the sample of datacubes. Therefore, we expect that 416

further gains can be achieved without resorting to different model architectures, but by 417

developing architectures with higher parameterization, e.g., by adding more layers, 418

increasing the dimensionality of hidden channels, or increasing the kernel size. 419

Recurrent architectures are not the only means for capturing time dependencies 420

effectively. In recent years, Transformer-based architectures [45] have led to remarkable 421

successes in numerous applications - besides natural language processing [46, 47, 48]. 422

Since these are not conceived in a sequential manner, they exhibit multiple advantages 423

over recurrent architectures, including a more direct gradient flow, a higher level of 424

parallelizability [49] and allowing for effective self-supervised pre-training schemes [50]. 425

In our efforts to use a Transformer version for video prediction, called 426

ConvTransformer [16], we encountered significant memory limitations, even after 427

decreasing the hidden channel dimension and resorting only to single attention heads. 428

In the proposed architecture, the so-called values need to be replicated many times and 429

be kept in memory together with keys and queries all at once for efficient computation. 430

This procedure is rendered infeasible, e.g., in the seasonal setting where we aim to 431

predict 140 frames, using the hardware at our disposal (GPU with 12 GB memory). 432

5 Outlook and conclusion 433

While models are trained and evaluated here on data from the past - using observational 434

surface reflectance and climate from reanalysis - future applications may include 435

generating actual forecasts where drought impact models are forced by numerical 436

weather predictions. While our evaluation of the modelled surface reflectance suggests 437

relatively reliable predictions for twenty future frames (∼100 days), medium (15 days) 438

to and long-range (months) weather predictions have limited reliability [51] and will 439

therefore likely constitute a dominating source of error in an actual forecasting context. 440

The seasonal development of vegetation greenness is mechanistically linked to 441

ecosystem-level photosynthesis and vegetation primary productivity [52, 53]. Combined 442

with additional data sources and model ”layers”, greenness forecasts may thus provide 443

the basis for modelling additional targets, including agricultural yields or wood 444

production. 445

In this work, we demonstrate the benefit of Convolutional LSTMs for satellite image 446

prediction and drought response forecasting using incremental inference from a prior 447

baseline to predict future drought responses. Our methodology shows potential of using 448

general video prediction methods in capturing both temporal dependencies and spatial 449

structure across the landscape in response to climate drivers and to scale predictions in 450

space. 451
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S1 Supporting information 459

Parameter Meaning Value
n layers Depth of the network 3
h channel Number of hidden channels (width of the network) 20
kernel size Size of the kernel 5x5
epochs Number of training epochs 92

train loss Loss used for training L2
val loss Loss used for validation (and testing) ENS

learn rate Learning rate 0.0003
batch size Number of training datacubes in a batch 4
optimizer Optimizer used for training AdamW

Table S1. Hyperparameters for ConvLSTM.

Parameter Meaning Value
n layers Depth of the network 3
h channel Number of hidden channels (width of the network) 22
kernel size Size of the kernel 5x5
epochs Number of training epochs 44

train loss Loss used for training L2
val loss Loss used for validation (and testing) ENS

learn rate Learning rate 0.0003
batch size Number of training datacubes in a batch 4
optimizer Optimizer used for training AdamW

Table S2. Hyperparameters for EncoderDecoderConvLSTM
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IID
ENS MAD OLS EMD SSIM

Persistence baseline 0.2625 0.2315 0.3239 0.2099 0.3265
Channel-U-Net 0.2902 0.2482 0.3381 0.2336 0.3973

Arcon 0.2803 0.2414 0.3216 0.2258 0.3863
Diaconu 0.3266 0.2638 0.3513 0.2623 0.5565

SGConvLSTM (this paper) 0.3176 0.2589 0.3456 0.2533 0.5292
SGEDConvLSTM (this paper) 0.3164 0.2580 0.3440 0.2532 0.5237

OOD
ENS MAD OLS EMD SSIM

Persistence baseline 0.2587 0.2248 0.3236 0.2123 0.3112
Channel-U-Net 0.2854 0.2402 0.3390 0.2371 0.3721

Arcon 0.2655 0.2314 0.3088 0.2177 0.3432
Diaconu 0.3204 0.2541 0.3522 0.2660 0.5125

SGConvLSTM (this paper) 0.3146 0.2512 0.3481 0.2597 0.4977
SGEDConvLSTM (this paper) 0.3121 0.2497 0.3450 0.2587 0.4887

Extreme
ENS MAD OLS EMD SSIM

Persistence baseline 0.1939 0.2158 0.2806 0.1614 0.1605
Channel-U-Net 0.2364 0.2286 0.2973 0.2065 0.2306

Arcon 0.2215 0.2243 0.2753 0.1975 0.2084
Diaconu 0.2140 0.2137 0.2906 0.1879 0.1904

SGConvLSTM (this paper) 0.2740 0.2366 0.3199 0.2279 0.3497
SGEDConvLSTM (this paper) 0.2595 0.2304 0.3164 0.2186 0.2993

Seasonal
ENS MAD OLS EMD SSIM

Persistence baseline 0.2676 0.2329 0.3848 0.2034 0.3184
Channel-U-Net 0.1955 0.2169 0.3811 0.1903 0.1255

Arcon 0.1587 0.2014 0.3788 0.1787 0.0834
Diaconu 0.2193 0.2146 0.3778 0.2003 0.1685

SGConvLSTM (this paper) 0.2162 0.2207 0.3756 0.1723 0.1817
SGEDConvLSTM (this paper) 0.1790 0.2056 0.3585 0.1543 0.1218

Table S3. Extended ENS comparison, including the ENS components for our models
and the previous state-of-the-art (Channel-U-Net and Arcon).
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Figure S1. Three additional extreme datacube predictions (located in Germany in
2018).
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Figure S2. Observed (top row) and modelled (two bottom rows for the SGEDCon-
vLSTM and the SGConvLSTM models) surface reflectance in RGB channels for an
example scene from the iid test set, located in Portugal, and covering dates from June -
November 2017. Data is shown for roughly evenly distanced time steps, avoiding images
with clouds where possible. The first two columns are in the context section and are not
forecasted by the models.
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Figure S3. Observed (top row) and modelled (two bottom rows for the SGEDCon-
vLSTM and the SGConvLSTM models) surface reflectance in RGB channels for an
example scene from the ood test set, located in Andalusia, Spain, and covering dates
from July - November 2017. Data is shown for roughly evenly distanced time steps,
avoiding images with clouds where possible. The first two columns are in the context
section and are not forecasted by the models.

19/27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2022. ; https://doi.org/10.1101/2022.08.16.504173doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.16.504173
http://creativecommons.org/licenses/by-nc-nd/4.0/


extreme seasonal

iid ood

PBL Arcon Unet Dia SGED SG PBL Arcon Unet Dia SGED SG

PBL Arcon Unet Dia SGED SG PBL Arcon Unet Dia SGED SG
0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Model

S
co

re
MAD

Figure S4. Visual comparison of the MAD on the four different test tracks (iid,
ood, extreme and seasonal) of our models (’SG’ for SGConvLSTM and ’SGED’ for
SGEDConvLSTM), published Channel-U-Net (’Unet’), Arcon, and Diaconu et al. [33]
(’Dia’) models, and the persistence baseline (’PBL’).
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Figure S5. Visual comparison of the OLS on the four different test tracks (iid,
ood, extreme and seasonal) of our models (’SG’ for SGConvLSTM and ’SGED’ for
SGEDConvLSTM), published Channel-U-Net (’Unet’), Arcon, and Diaconu et al. [33]
(’Dia’) models, and the persistence baseline (’PBL’).
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Figure S6. Visual comparison of the EMD on the four different test tracks (iid,
ood, extreme and seasonal) of our models (’SG’ for SGConvLSTM and ’SGED’ for
SGEDConvLSTM), published Channel-U-Net (’Unet’), Arcon, and Diaconu et al. [33]
(’Dia’) models, and the persistence baseline (’PBL’).
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Figure S7. Visual comparison of the SSIM on the four different test tracks (iid,
ood, extreme and seasonal) of our models (’SG’ for SGConvLSTM and ’SGED’ for
SGEDConvLSTM), published Channel-U-Net (’Unet’), Arcon, and Diaconu et al. [33]
(’Dia’) models, and the persistence baseline (’PBL’).
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