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Cells possess functional diversity hierarchically. However, most1

single-cell analyses renounce the nested structures while detect-2

ing and visualizing the functional diversity. Here, we incorpo-3

rate cell hierarchy to study functional diversity at subpopula-4

tion, club (i.e., sub-subpopulation), and cell layers. Accordingly,5

we implement a package, SEAT, to construct cell hierarchies uti-6

lizing structure entropy by minimizing the global uncertainty7

in cell-cell graphs. With cell hierarchies, SEAT deciphers func-8

tional diversity in 36 data sets covering scRNA, scDNA, scATAC,9

and scRNA-scATAC multiome. First, SEAT finds optimal cell10

subpopulations with high clustering accuracy. It identifies cell11

types or fates from omics profiles and boosts accuracy from 0.3412

to 1. Second, SEAT detects insightful functional diversity among13

cell clubs. The hierarchy of breast cancer cells reveals that the14

specific tumor cell club drives AREG-EGFT signaling. We iden-15

tify a co-accessibility network of dense cis-regulatory elements16

specified by the cell club for GM12878. Third, the cell order17

from the hierarchy infers periodic pseudo-time of cells, improv-18

ing accuracy from 0.79 to 0.89. Moreover, we incorporate cell19

hierarchy layers as prior knowledge to refine nonlinear dimen-20

sionality reduction, enabling us to visualize hierarchical cell lay-21

outs in low-dimensional space.22

Introduction23

Cells in the biological system own functional diversity hier-24

archically, which signifies cell types or states during devel-25

opment, disease, and evolution, up to the biosystem (1, 2).26

The heterogeneity of the cell is observed with nested struc-27

tures (3). In the tumor microenvironment, infiltrated lympho-28

cytes include B cells and T cells. Furthermore, T cells can be29

classified into helper T cells and cytotoxic T cells (4). Spe-30

cific expression of the marker CD4 and CD8 will strengthen31

intra-similarity within helper and cytotoxic T cells, respec-32

tively, resulting in nested cell structures. The cellular het-33

erogeneity raised by tumor evolution presents another in-34

stance (5, 6). The copy number gain, neutral, and loss classify35

tumor cells into aneuploid, diploid, and hypodiploid groups,36

respectively. Fluctuations of copy numbers in focal genome37

regions further categorize tumor cells into amplification or38

deletion subtypes. The cell cycle is a rudimentary biological39

process for cell replications (7). Human cells undergo a cy-40

cle G1 - S - G2/M -G1 over a 24-hour period, which signifies41

that the cycling cells have three flat phase labels (G1, S, and42

G2/M). In addition, the cycling cells have a hierarchical or-43

der (pseudo-time) that records the exact timing in the G1, S,44

and G2/M phases.45

The recent maturation of single-cell sequencing technolo-46

gies offers opportunities to profile large-scale single cells for47

their transcriptomics (8), genomics (5), epigenomics (9), etc.48

These technologies have blossomed revolutionary insights49

into cellular functional diversity under the aegis of assign-50

ing cells with similar molecular characteristics to the same51

group (1, 2). However, most existing clustering tools gener-52

ate flat cell group (10–14). Moreover, the periodic pseudo-53

time inference tools neglect the hierarchical order of cycling54

cells (15–18). Renunciation of the underlying nested struc-55

tures of cells prevents full-scale detection of cellular func-56

tional diversity.57

To address the issue, we incorporate cell hierarchy to illus-58

trate the nested structure of cellular functional diversity. Cell59

hierarchy is a tree-like structure with multiple layers that cap-60

ture cellular heterogeneity. From the root to the tips, the cel-61

lular heterogeneity decays. This study focuses on four main62

layers: global, subpopulation, club, and cell. The global63

layer is the root that exemplifies the whole cell population,64

e.g., immune cells. In contrast, the cell groups in the second65

and third layers resemble cell subpopulations and cell clubs,66

respectively. The cell subpopulation is a broad category of67

cells, such as B cells and T cells (4). Cell clubs within one68

cell subpopulation catalog the cellular heterogeneity in a finer69

resolution; that is, the cells share high functional similarity70

within a single cell club. For example, T cell subpopulation71

owns CD4 T cell and CD8 T cell clubs (4). The tip layer72

holds individual cells carrying cell orders, which signify the73

dynamic nuance of cell changes within a cell club, e.g., cellu-74

lar heterogeneity varies along a periodic time course for cells75

undergoing a cell cycle process (7).76

The actual cell hierarchy is difficult to determine; here,77

we develop SEAT, Structure Entropy hierArchy deTection,78

to build a pseudo cell hierarchy leveraging structure en-79

tropy (19–22) by diminishing the global uncertainty in cell-80

cell graphs. SEAT constructs cell hierarchies using a raw or81

dimensionally reduced single-cell molecular profile as inputs,82

and computes the global-subpopulation-club-cell layers from83

the hierarchies. We apply SEAT to 36 data sets that cover84

single-cell RNA (scRNA), single-cell DNA (scDNA), single-85

cell assay for transposase-accessible chromatin (scATAC)86

and scRNA-scATAC multiome. SEAT detects the functional87

diversity of these single-cell omics data with cell hierarchy88

from three perspectives: cell subpopulation detection, cell89

club investigation, and periodic cell cycle pseudo-time infer-90

ence.91

Visualizing the functional diversity of single cells is essen-92
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tial since the visual inspection is the most direct approach to93

studying the structure and pattern of cells. Nonlinear dimen-94

sional reduction is a trending visualisation method for high-95

dimensional biological data (23). Nevertheless, state-of-the-96

art single-cell visualization tools neglect the nested structure97

of cells by merely capturing at most two levels (global or lo-98

cal) of cell structures (24–26). To tackle the issue, SEAT pro-99

vides a component to embed the cells into a low-dimensional100

space by incorporating the multiple layers from the cell hi-101

erarchy as prior knowledge. Experiments demonstrate that102

SEAT consistently visualizes the hierarchical layout of these103

cells in the two-dimensional space for the above single-cell104

datasets.105

Result106

Overview of SEAT. SEAT builds a cell hierarchy annotated107

with global-subpopulation-club-cell layers computationally108

from single-cell data (Fig. 1). First, SEAT constructs a109

pair of dense and sparse cell-cell similarity graphs with a110

raw or dimensionally reduced single-cell molecular profile111

as input (Fig. 1 A). Second, we detect cell clubs, deter-112

mine the order of cells within each cell club, and build113

the pseudo club hierarchies by minimizing the structure en-114

tropy of the sparse graph with agglomerative and divisive115

heuristics, namely, Agglo(club), Agglo(order), Agglo, Divi-116

sive(club), Divisive(order), Divisive (Fig. 1B, Online Meth-117

ods). Next, we use dynamic programming to find optimal118

subpopulations from agglomerative and divisive hierarchies,119

namely, Agglo(sub) and Divisive(sub). We choose the hier-120

archy carrying the lower subpopulation structure entropy as121

the final cell hierarchy (Fig. 1C, Online Methods). After that,122

SEAT outputs the final cell hierarchy carrying with subpop-123

ulations, clubs, and orders, namely, SEAT(sub), SEAT(club),124

and SEAT(order) (Fig. 1A). Furthermore, by incorporating125

hierarchical cell partition layers, SEAT provides a compo-126

nent, SEAT(viz), to embed cells in a low-dimensional space127

while preserving their nested structures for improved visual-128

ization and interpretation (Fig. 1A).129

To detect cell subpopulations, some clustering methods re-130

quire the number of clusters prespecified, while others can131

determine the number of clusters automatically. The SEAT132

package supports both. Our package requires no prespeci-133

fied number of cluster by default, that is, SEAT(sub). If the134

number of clusters required is as k, we denote the method135

as SEAT(k). When the context is clear, we refer to them as136

predefined-k and auto-k modes, respectively.137

Cell hierarchy catalogs functional diversity at the138

subpopulation and club level from scRNA data. We139

applied SEAT to nineteen scRNA datasets carrying gold140

standard cell type labels. The first nine sets are cell line141

mixtures, including p3cl (27), 3Line-qPCR (28), sc_10x,142

sc_celseq2, sc_dropseq, sc_10x_5cl, sc_celseq2_5cl_p1,143

sc_celseq2_5cl_p2, and sc_celseq2_5cl_p3 (29). We have144

four datasets Yan (30), Deng (31), Baise (32), and145

Goolam (33) which sequence single cells from human or146

mouse embryos at different stages of development (zygote,147

2-cell, early 2-cell, mid 2-cell, late 2-cell, 4-cell, 8-cell, 16-148

cell, 32-cell, early blast, mid blast, and late blast). The last149

six datasets are Koh (34), Kumar (35), Trapnell (36), Blake-150

ley (37), Kolodziejczyk (38), and Xin (39), which profile dif-151

ferent cell types in single-cell resolution.152

To access the efficacy of SEAT in cell subpopulations detec-153

tion, we utilize the adjusted rand index (ARI) and adjusted154

mutual information (AMI) as clustering accuracy and bench-155

mark SEAT with state-of-the-art clustering tools (spectral156

clustering (10), K-means (11), hierarchical clustering (12),157

Louvain (13), and Leiden (14)) with predefined-k and auto-158

k modes (Online Methods). In predefined-k mode, SEAT(k)159

demonstrates comparable or higher clustering accuracy com-160

pared to other clustering baselines on most datasets (Fig.161

2A). Notably, Louvain(k) and Leiden(k) are unable to gen-162

erate a clustering that exactly matches the number of ground163

truth labels after 20 different resolution trials for the Goolam164

and Kolodziejczyk (Fig. 2A). Under the auto-k mode,165

SEAT(sub) outperforms Louvain and Leiden on all nineteen166

sets. The clustering accuracies of SEAT(sub) are comparable167

to or better than the best clustering results with predefined-168

k clustering tools with the ground truth cluster number pro-169

vided. This is attributed to the fact that SEAT(sub) finds a170

cluster number close to the ground truth (Fig. 2 B). Louvain171

and Leiden have the lowest clustering accuracy because they172

prefer more clusters. The two-dimensional data embedded by173

UMAP from raw single-cell expression profiles are inputs of174

all clustering tools; and the visualizations of them show that175

the ground truth labels are mixed for the majority of datasets,176

explaining the low clustering accuracy of both predefined-k177

and auto-k clustering tools.178

SEAT relies on hierarchical structures to study cellular func-179

tional diversity. We leverage differential gene expressions to180

investigate the biological interpretations of these hierarchies.181

Differentially expressed genes (p < 0.05) between cell hierar-182

chy clubs reveal distinct patterns that match ground truth cell183

subpopulations. Furthermore, visible marker gene patterns184

reveal the functional diversity among cell clubs within one185

cell subpopulation. We focus on the top five differentially ex-186

pressed genes for each data set. As the subpopulation detec-187

tion accuracy of agglomerative hierarchy is 1 for p3cl dataset,188

we investigate the functional diversity revealed from agglom-189

erative hierarchy other than the divisive hierarchy. The ag-190

glomerative hierarchy revealed three cell subpopulations for191

p3cl, which correspond to the three ground truth cell types,192

basal (KRT81), luminal (TFF1), and fibroblast (COL1A2 and193

VIM) (Fig. 2D). We observe that each of the basal, luminal,194

and fibroblast has two major subclasses, controlled by the195

expression of cell cycle genes (HIST1H4C, CDC20, CCNB1,196

and PTTG1). Cell-cell communication analysis finds a total197

of 109 significant (p < 0.05) ligand-receptor (LR) pair inter-198

actions among seven agglomerative hierarchy clubs for breast199

cancer basal-like epithelial cell line in p3cl, the LR interac-200

tions belong to nine signaling pathways AGRN, CD99, CDH,201

EGF, JAM, LAMININ, MK, NECTIN, and NOTCH (Fig.202

2D). In particular, there is a distinct breast cancer cell club203

(basal-club0) that drives AREG -EGFR, an oncogenic signal-204
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ing (40) in breast cancer, to all basal cells, resulting in a high205

level of AREG activated EGFR expression (Fig. 2E). The two206

cell clubs from the luminal subpopulation have six signifi-207

cant (p < 0.05) LR interactions involving MK, SEMA3, and208

CDH signaling pathways. The fibroblast has three significant209

(p < 0.05) LR interactions, including two signaling pathways210

FN1 and ncWNT. The cell club fibro-club10 release WNT5B211

and then bind FZD7 from fibro-club9, consistent with the ob-212

servation that ncWNT is the predominant signaling pathway213

in skin fibroblasts (41).214

Chen et al. 3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2022. ; https://doi.org/10.1101/2022.08.17.504240doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504240
http://creativecommons.org/licenses/by-nc/4.0/


Fig. 2. Applying SEAT on nineteen scRNA datasets. A. The adjusted rand index (ARI) and adjusted mutual information (AMI) of predefined-k and auto-k clustering
tools. Spectral: spectral clustering. HC(single), HC(average), HC(complete), and HC(ward): hierarchical clustering with single, average, complete, and ward linkage.
Louvain(k) and Leiden(k): Louvain and Leiden in predefined-k mode. Divisive(k) and Agglo(k): the cell subpopulations from divisive and agglomerative hierarchy
in predefined-k mode. SEAT(k): the cell subpopulations from SEAT cell hierarchy in predefined-k mode. Divisive(club) and Agglo(club): the cell clubs from divisive
and agglomerative hierarchy. Divisive(sub) and Agglo(sub): the cell subpopulations from divisive and agglomerative hierarchy in auto-k mode. SEAT(sub): the
optimal subpopulations from SEAT cell hierarchy in auto-k mode. B. The number of clusters detected for auto-k clustering tools. C. The top five differentially
expressed genes in agglomerative hierarchy clubs for p3cl. LR: ligand-receptor. D. The cell-cell communication among seven agglomerative hierarchy clubs for breast
cancer basal-like epithelial cell line in p3cl. E-F SEAT hierarchical visualization, UMAP, TSNE, and PHATE plots for p3cl and sc_10x_5cl. The cells are colored
with subpopulations, clubs, and ground truth. SEAT(viz): the hierarchical visualization from SEAT cell hierarchy.
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Visualizations of two-dimensional data by UMAP from raw215

single-cell expression profiles reveal a dense layout. The216

ground truth cell subpopulations are indistinctly separated in217

some high clustering accuracy datasets, and the cell clubs are218

densely arranged in each subpopulation clump. Here, we per-219

form a visualization refinement to check whether SEAT hier-220

archical visualization eliminates the dense layout of clubs.221

We use the cell-cell graph constructed by SEAT as input and222

execute SEAT hierarchical visualization, UMAP, TSNE, and223

PHATE, independently. In Fig. 2E-F, SEAT hierarchical vi-224

sualization, UMAP, TSNE, and PHATE separate the ground225

truth cell type for most datasets. It should be noted that the226

patterns from SEAT(viz), UMAP, TSNE, and PHATE also227

correspond to the subpopulation layer annotations, validat-228

ing SEAT subpopulation finding efficacy. At the cell club229

level, SEAT(viz) show a clear layout of cell clumps that cor-230

respond to the cell hierarchy; each cell club owns a distinct231

clump, and the distance between clubs belonging to the same232

subpopulation is within proximity. Although UMAP, TSNE,233

and PHATE capture the local structures of the clubs, the cell234

clubs are unclearly segregated.235

Cell hierarchy deciphers periodic cell cycle pseudo–236

time from single-cell data. We collect six scRNA cell237

cycle datasets, H1-hESC (42), mESC-Quartz (43), mESC-238

SMARTer (44), 3Line-qPCR_H9, 3Line-qPCR_MB, and239

3Line-qPCR_PC3 (28) with gold standard G0/G1, S, or240

G2/M stages and build the cell hierarchies. In predefined-k241

and auto-k clustering benchmarking, SEAT illustrates higher242

or comparable clustering accuracy in the six datasets. SEAT243

predicts the optimal number of clusters closest to ground244

truth three, while Leiden and Louvain generally predict more245

clusters than SEAT. Further investigation shows that ground246

truth labels are mixed or not distinctly separated in two-247

dimensional data by UMAP for all datasets, explaining the248

poor performance of 3Line-qPCR data. Likewise, hierarchi-249

cal visualization plots depict nested layouts corresponding to250

the cell hierarchies in visualization refinement experiments.251

If we order the cells in cell cycle progress, cells from the252

same phase share higher similarity and they should be lined253

up adjacently. Thus, the cell order obtained from the ideal254

hierarchy could present a periodic pseudo-time order for cell255

cycle data. We visualize the cell order periodically with an256

oval plot, The placements of the cells in the oval represent257

their pseudo-time in the cell cycle (Fig. 3A). We access258

the cell ordering accuracy with the change index (CI), which259

computes how frequently the gold standard cell cycle phase260

labels switch along the cell order. The benchmark methods261

are four conventional HC strategies (12) that offer a cell or-262

der. We also recruit state-of-the-art tools dedicating to predict263

the cell cycle pseudo-time, CYCLOPS (15), Cyclum (16),264

reCAT (17), and CCPE (18). CCPE fails the tasks. SEAT265

demonstrates the highest ordering accuracy for all datasets,266

except for 3Line-qPCR_PC3, where SEAT wins the top two267

(Fig. 3B). Hence, this suggested that cell hierarchy obtained268

from SEAT facilitates the cell cycle pseudo-time order infer-269

ence.270

SEAT orders cells in H1-hESC, mESC-Quartz, and mESC-271

SMARTer alongside the oval that closely matches the G0/G1-272

S-G2/M cycle (Fig. 3A). Differential expression analysis273

among ground truth phases reveals distinct cell cycle phase274

markers. These visible cell cycle marker patterns remain con-275

sistent when rearranging with SEAT cell order. The top 20276

differential expression genes (p < 0.05) for hESC and mESC277

cells include well-known cell cycle markers UBE2C, TOP2A,278

CDK1, and CCNB1. Their expressions rise progressively279

with SEAT recovered pseudo-time order and are peaked with280

significant fold changes at the M phase (Fig. 3C).281

In H9, MB, and PC3 cell lines, cells in the S and G2/M phases282

are partially arranged according to the exact time course283

(Fig. 3A). The differential expression makers of ground truth284

phases show that there are subpatterns within the S and G2/M285

phases and similar patterns between the S and G2/M phases,286

suggesting the cause of poor performance in pseudo-time287

ordering. Interestingly, after rearranging marker expression288

with SEAT, we observe distinct marker gene patterns among289

SEAT discovered cell subpopulations. For the H9 cell line,290

SEAT detected four cell subpopulations (Fig. 3D), G0/G1291

phase corresponds to sub2. Cell cycle S and G2/M phases292

have three cell subpopulations, sub0, sub1, and sub3. The top293

20 differential expression genes (p < 0.05) have two groups294

(Fig. 3D). The genes from the first group enriched GO cell295

cycle signaling pathways. The genes from the second group296

enriched in GO chemokine-mediated signaling and immune297

response pathways with CXC and IL gene family, respec-298

tively. We demonstrate the top 20 differential expression299

genes for MB and PC3. Finally, we verify the cellular inter-300

actions among cell subpopulations with cell-cell communi-301

cation analysis. We find a total of 124, 87, and 77 significant302

(p < 0.05) LR pair interactions among cell subpopulations303

for H9, MB, and PC3 cell lines, respectively. All datasets304

exhibit CXCL, CCL, COMPLEMENT, and CD40 signaling305

interactions among cell subpopulations (Fig. 3E).306

Cell hierarchy detects rare subclones on scDNA data.307

With seven scDNA datasets, SEAT catalogs the clonal sub-308

populations in solid tumor and circulating tumor cells. It309

identifies the CNV substructures in neuron and gamete cells.310

Owning to the unique characteristics of CNV profiles, we311

only adopt SEAT agglomerative hierarchy to investigate the312

functional diversity of CNV substructures.313

Navin et al. profiled 100 cells from a genetically heteroge-314

neous (polygenetic) triple-negative breast cancer primary le-315

sion T10 (45). Fluorescence-activated cell sorting (FACS)316

analysis confirmed that T10 carried four main cell subpop-317

ulations: diploid (D), hypodiploid (H), aneuploid A (A1),318

and aneuploid B (A2). Furthermore, Navin et al. reported319

pseudo-diploid cells (P) with varying degrees of chromosome320

gains and losses from diploids. They are unrelated to the321

three tumor cell subgroups (H, A1, and A2) (45). There-322

fore, given whole-genome single-cell CNV profiles as in-323

put, we verify whether SEAT and the state-of-the-art cluster-324

ing tools identify the four major cell groups and the distinct325

pseudo-diploid cell group (Fig.4A). In predefined-k mode,326

SEAT agglomerative hierarchy successfully recognizes five327

cell subpopulations consistent with the patterns of CNV pro-328
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Fig. 3. Applying SEAT on six scRNA cell cycle datasets. A. The oval visualization of cell pseudo-time. From left to right are H1-hESC, mESC-Quartz, mESC-
SMARTer, 3Line-qPCR_H9, 3Line-qPCR_MB, and 3Line-qPCR_PC3. From top and bottom are cell orders obtained from agglomerative hierarchy (Agglo(order)),
divisive hierarchy ((Divisive(order))), and SEAT cell hierarchy ((SEAT(order)). B. The accuracy of cell pseudo-time order is measured by change index (CI) for
hierarchy-building tools. HC(single)(order), HC(average)(order), HC(complete)(order), and HC(ward)(order): the cell order from hierarchical clustering with single,
average, complete, and ward linkage. C. The normalized expression of M phase marker genes alongside the SEAT cell order. D. The top 20 differentially expressed
genes in G0/G1, S, and G2/M phases for p3cl, structured with SEAT. SEAT(club): the cell clubs from SEAT cell hierarchy. SEAT(k): the cell subpopulations
from SEAT cell hierarchy in predefined-k mode. SEAT(sub): the optimal subpopulations from SEAT cell hierarchy in auto-k mode. E. The cell-cell communication
among SEAT cell subpopulations for H9, MB, and PC3 cell lines.

files. From top to bottom, the ranks are cancer normal cell329

group (D), pseudo-diploid cell subgroups (P), subgroups H,330

and two tumor aneuploid groups, A1 and A2 (Fig. 4A).331

Leiden(k) and Louvain(k) fail with the same cell-similarity332

graph as input. Four HC strategies and K-means fail to dis-333

tinguish the four pseudo-diploid cells as in the Navin et al.334

HC trial (45). Spectral clustering performs poorly by mix-335

ing tumor and normal cells. Regarding auto-k clustering al-336

gorithms, agglomerative hierarchy identifies five concordant337

clusters as predefined-k mode. Leiden and Louvain fail at338

this task. Then, we leverage CNV density signals detected339

by aCGH from FACS identified D, H, A1, and A2 dissec-340

tions of T10 (46) as silver-standard to validate the cluster-341

ing result. We calculate the pairwise Spearman correlation342

and Euclidean distance (L2-norm) between scaled single-cell343

CNV profiles and aCGH CNV signals. As a proof of concept,344

the three bottom clusters own a higher correlation and a lower345

distance to aCGH H, A1, and A2 sections, respectively. The346

cells in the first top cluster detected by SEAT have almost347

zero correlation and the lowest distance with aCGH D sec-348

tions, suggesting that they are diploid cells. Pseudo-diploid349

cells illustrate a low correlation with all aCGH sections, val-350

idating their unique CNV profiles. Navin et al. sequenced351

100 cells from a monogenomic triple-negative breast cancer352

tumor and its seeded liver metastasis, Navin_T16 (45). SEAT353

clusters the 100 samples into four distinct subpopulations.354

Two are primary and metastasis aneuploid cells, correspond-355

ing to the published population structure. Notably, SEAT cat-356

alogs diploid cells and pseudo-diploid cells while other tools357

failed.358
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Fig. 4. Clustering on scDNA datasets. A. The clustering result of Navin_T10. From left to right is the agglomerative tree yielded by SEAT, clustering results for
predefined-k (k = 5) and auto-k clustering tools, the whole genome single-cell CNV heatmap of T10, the Spearman correlation, and Euclidean distance (L2-Norm)
between scaled copy number profiled by scDNA and copy number density profiled by aCGH, respectively. Spectral: spectral clustering. HC(single), HC(average),
HC(complete), and HC(ward): hierarchical clustering with single, average, complete, and ward linkage. Louvain(k) and Leiden(k): Louvain and Leiden in predefined-k
mode. Agglo(k): the cell subpopulations from agglomerative hierarchy in predefined-k mode. Agglo(club): the cell clubs from agglomerative hierarchy. Agglo(sub):
the cell subpopulations from agglomerative hierarchy in auto-k mode. B. The stacked area plot illustrates the SEAT subpopulation assignments across 10x_breast_S0
tumor sections. Cluster c6 (blue) signifies the diploid cells. C. The mean ploidy of SEAT subpopulation assignments across 10x_breast_S0 tumor sections. D. The
whole-genome single-cell CNV heatmap of SEAT subpopulation assignments across 10x_breast_S0 tumor sections.

We collect a large-scale 10x scDNA-seq dataset without359

known subclone labels, 10x_breast_S0, where 10,202 cells360

from five adjacent tumor dissections (A, B, C, D, and E)361

of triple-negative breast cancer are sequenced. We check362

whether SEAT seizes the substantial intra-tumor heterogene-363

ity. In Fig. 4B-D, SEAT automatically detects seven subpop-364

ulations, and the proportions of the cell subpopulations vary365

across the five lesions. The blue subpopulation c6 gathers366

normal cells, with the mean cellular ploidy being diploid for367

all sections. The number of cells gradually decreases from368

sections A to E. SEAT identifies six clonal subpopulations369

(c0-c5), where c3 manifests the highest average ploidy. The370

distinct amplification events on chr3 and chr4 are mutually371

exclusive on subclones c0, c1, and c2, indicating an early372

branching evolution hypothesis consistent with the findings373

by Wang et al.’s (47).374

Furthermore, SEAT distinguishes cells with CNV gains and375

losses in circulating tumor cells in seven patients with lung376

cancer (48) and human cortical neurons (49). SEAT also de-377

tects the loss of heterogeneity event, validating by success-378

fully classifying chrX-bearing, chrY-bearing, and aneuploid379

sperm cells (50, 51).380

Cell hierarchy catalogs the accessibility heterogene-381

ity of single-cells. SEAT catalogs accessibility heterogene-382

ity of single-cells. We utilize three public scATAC-seq data383

as benchmarking sets with gold-standard cell type labels.384

scatac_6cl is a mixture of six cell lines (BJ, GM12878, H1-385

ESC, HL60, K562, and TF1) (52). Hematopoiesis consists of386

eight types of human hematopoiesis cells (CLP, CMP, GMP,387

HSC, LMPP, MEP, MPP, and pDC) (53). T-cell composes388

of four T-cell subtypes (Jurkat_T_cell, Naive_T_cell, Mem-389

ory_T_cell, and Th17_T_cell) (54). We collect a multiome390

of scRNA and scATAC dataset, PBMC, for peripheral blood391

mononuclear cells (PBMCs) with 14 cell types.392

The order of the cells in agglomerative and divisive hierarchy393
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Fig. 5. Clustering on three scATAC datasets and one scRNA-scATAC multiome dataset. A. The adjusted rand index (ARI) and adjusted mutual information (AMI) of
predefined-k and auto-k clustering tools. Spectral: spectral clustering. HC(single), HC(average), HC(complete), and HC(ward): hierarchical clustering with single,
average, complete, and ward linkage. Louvain(k) and Leiden(k): Louvain and Leiden in predefined-k mode. Divisive(k) and Agglo(k): the cell subpopulations from
divisive and agglomerative hierarchy in predefined-k mode. SEAT(k): the cell subpopulations from SEAT cell hierarchy in predefined-k mode. Divisive(club) and
Agglo(club): the cell clubs from divisive and agglomerative hierarchy. Divisive(sub) and Agglo(sub): the cell subpopulations from divisive and agglomerative hierarchy
in auto-k mode. SEAT(sub): the optimal subpopulations from SEAT cell hierarchy in auto-k mode. B-D. The co-accessibility score among peak pairs at chr22 for
cells at SEAT club1 and club 2 from scatac_6cl GM12878 cell type. E. The number of cis-co-accessibility networks (CCANs) among pair of peaks at chr22 for cells
at SEAT club1 and club 2 from scatac_6cl GM12878 cell line. F. The co-accessibility connections among cis-regulatory elements in chr22:20,827,398-21,441,482.
The height of links signifies the degree of the co-accessibility correlation between the pair of peaks. The top panel illustrates cells in scatac_6cl GM12878-club1,
while the bottom shows cells in scatac_6cl GM12878-club2. G. The co-accessibility connections among cis-regulatory elements in chr22:39,778,355-40,451,820.
The height of links signifies the degree of the co-accessibility correlation between the pair of peaks. The top panel illustrates cells in scatac_6cl GM12878-club1,
while the bottom shows cells in scatac_6cl GM12878-club2. H-I SEAT hierarchical visualization, UMAP, TSNE, and PHATE plots of scatac_6cl and PBMC. The
cells are colored with subpopulations, clubs, and ground truth. SEAT(viz): the hierarchical visualization from SEAT cell hierarchy.
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is consistent with their ground truth cell types. The cluster-394

ing accuracy of SEAT against its competitors is in Fig. 5A.395

For the predefined-k mode, SEAT(k) demonstrates the high-396

est clustering accuracy on scatac_6cl and T-cell sets. For397

auto-k clustering, SEAT(sub) beats Louvain and Leiden on398

all four sets. For scatac_6cl and T-cell, the optimal number399

of clusters obtained by SEAT matches the ground truth, thus400

yielding the comparable ARI to predefined-k clustering algo-401

rithms. Leiden and Louvain have lower performance due to402

predicting more clusters than ground truth.403

We check whether SEAT reveals the functional diversity404

of single-cell chromatin accessibility. We conduct cis-405

regulatory DNA interaction analysis on chr22 for cells at406

club1 and club2 predicted by SEAT from the scatac_6cl407

GM12878 dataset. Fig. 5B-C depicts the cis-regulatory408

map on chr22 from club1 and club2 cells, respectively.409

The co-accessibility correlation among peaks from club2410

cells is significantly higher (p < 0.05) than in club1 cells411

(Fig. 5D). Meanwhile, we identify 29 and 179 cis-co-412

accessibility networks (CCANs) from GM12878-club1 and413

GM12878-club2, respectively (Fig. 5E). The genome re-414

gion where the CCANs are affected shows heterogeneity be-415

tween GM12878-club1 and GM12878-club2. Fig. 5F shows416

a GM128780-club1 specified CCANs at chr22:20,827,398-417

21,441,482. There cis-regulatory elements surrounding gene418

SNAP29 are co-accessible only in GM128780-club1. More-419

over, we found a dense pairwise connection among peaks at420

chr22:39,778,355-40,451,820 in GM12878-club2 (Fig. 5G),421

harboring genes TAB1, MGAT3, MIEF1, CACNA1I, EN-422

THD1, GRAP2, FAM83F, TNRC6B, etc.423

Similar to the scRNA visualization refinement experiments,424

the SEAT hierarchical visualizations reveal a clear pattern425

of cells corresponding to ground truth, and the nested lay-426

outs of subpopulations and clubs are clearly illustrated (Fig.427

5H-I). However, UMAP visualizations derived from high-428

dimensional data mix ground truth cell subpopulations in one429

clump. Furthermore, UMAP, TSNE, and PHATE visualiza-430

tions derived from cell-cell graphs fail to place cells from431

K562 (light green) and TF1 (yellow) within proximity in432

scatac_6cl; and they fail to place effector CD8 T cells (ma-433

genta) together in PBMC (Fig. 5H-I).434

Discussion435

Detecting and visualizing inherent functional diversity is es-436

sential in single-cell analysis. Renunciation of the underly-437

ing nested structures of cells prevents the capture of full-scale438

cellular functional diversity. To address this challenge, we in-439

corporate cell hierarchy to investigate the functional diversity440

of cellular systems at the subpopulation, club, and cell layers,441

hierarchically. The cell subpopulations and clubs catalog the442

functional diversity of cells in broad and fine resolution, re-443

spectively. In the cell layer, the order of cells further records444

the slight dynamics among cells locally. Accordingly, we445

establish SEAT to construct cell hierarchies utilizing struc-446

ture entropy by diminishing the global uncertainty of cell-447

cell graphs. In addition, SEAT offers an interface to embed448

cells into low-dimensional space while preserving the global-449

subpopulation-club hierarchical layout in cell hierarchy.450

Currently, state-of-the-art clustering tools for cell subpopu-451

lation or club investigation renounce the underlying nested452

structures of cells. Flatten clusterings, such as K-means (11)453

and spectral clustering (10), do not support the cell hierar-454

chy. Although conventional hierarchical clustering (12), Lou-455

vain (13) and Leiden (14) derive cell hierarchy layer by layer456

via optimizing merging or splitting metrics, computing these457

metrics merely uses single-layer information. When con-458

structing subsequent layers, they have not incorporated the459

built-in cell hierarchy in the previous layers. Structure en-460

tropy is a metric that encompasses the previously constructed461

internal cell hierarchy. Experiments validate that SEAT de-462

livers robust cell-type clustering results and forms insightful463

hierarchical structures of cells.464

SEAT is good at finding the optimal subpopulation number465

with high accuracy. We have collected scRNA, scDNA, and466

scATAC profiles with the number of cell types ranging from467

2 to 14. SEAT consistently predicts the optimal cluster num-468

ber closest to the gold or silver standards, while Louvain and469

Leiden predict too many clusters. Especially for scRNA set470

Kumar, SEAT boosts the accuracy from 0.34 to 1 compared471

to Louvain and Leiden. Auto-k clustering mode of SEAT472

is comparable to or better than the best clustering results of473

predefined-k clustering methods for most datasets.474

SEAT specializes in hierarchically deciphering cellular func-475

tional diversity at subpopulation and club levels. We observe476

visible marker gene patterns that match cell clubs within one477

cell subpopulation. For the p3cl set, the basal, luminal, and478

fibroblast cell subpopulations have significant cell clubs, de-479

termined by the expression of cell cycle genes (HIST1H4C,480

CDC20, CCNB1, and PTTG1). Looking at the seven ag-481

glomerative clubs for the basal subpopulation, we find a dis-482

tinct breast cancer cell club that drives oncogenic AREG-483

EGFR signaling in all basal cells, suggesting a promoting484

role in tumorigenesis. Cell hierarchy obtained from copy485

number profiles of 10x_breast_S0 demonstrates a mutually486

exclusive subclones layout, indicating an early branch evo-487

lution. Furthermore, we find that there is a cell club spec-488

ified dense cis-regulatory elements co-accessible network at489

chr22:39,778,355-40,451,820 in GM12878-club2, harboring490

genes TAB1, MGAT3, MIEF1, CACNA1I, ENTHD1, GRAP2,491

FAM83F, TNRC6B, etc.492

Inferring the periodic pseudo-time for the cell cycle data is493

crucial as it reveals the functional diversity of cells under-494

going the cell cycle process. Several tools are dedicated to495

cell cycle pseudo-time inference. CYCLOPS (15) and Cy-496

clum (16) utilize deep autoencoders to project expression497

profiles into cell pseudo-time in the periodic process, which498

act as black boxes and lack explainability. reCAT (17) em-499

ploys the Gaussian mixture model to group cells into clus-500

ters, and constructs a cluster-cluster graph weighted by the501

Euclidean distance between the mean expression profile of502

each cluster, then leverages the traveling salesman path to503

walk through those clusters with an order. Finding a traveling504

salesman path is NP-hard, and no polynomial time algorithms505

are available. CCPE (18) learns a discriminative helix to rep-506
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resent the periodic process and infer the pseudo-time. How-507

ever, we fail to run CCPE according to its Github instruction.508

Moreover, CYCLOPS, Cyclum, reCAT, and CCPE bypass509

the nested structure of cells when inferring the pseudo-time.510

In this study, we propose that the cell layer of cell hierarchy511

encodes the pseudo-time of cells for cell cycle data. We mini-512

mize the structure entropy of the kNN cell-cell graph to build513

the cell hierarchy that carries the nested order between indi-514

vidual cells and their ancestral cell partitions. Then, the order515

of individual cells is acquired with an in-order traversing of516

the hierarchy. scRNA data exemplify that SEAT cell orders517

outperform CYCLOPS, Cyclum, reCAT, and CCPE by ac-518

curately predicting the periodic pseudo-time of cells in the519

cell cycle process. The expressions of M phase marker genes520

CDK1, TOP2A, and CCNB1 rise progressively alongside the521

SEAT recovered order and are peaked at the M phase with522

significant fold changes.523

Visualizing the hierarchical functional diversity of cells in bi-524

ological systems is crucial for obtaining insightful biological525

hypotheses. TSNE (25) preserves the local cell structures.526

UMAP (24) intends to maintain the global cell structures by527

minimizing the binary cross entropy. PHATE (26) tackles the528

general shape and local transition of cells. However, none of529

them impart the nested structures of cells into the visualiza-530

tion. This study proposes a nonlinear dimension reduction re-531

finement based on UMAP by incorporating a supervised cell532

hierarchy. We acquire three cell-cell graphs that only store533

the intra-connections of cells within each global, subpopu-534

lation, and club partition. Then, we minimize the weighted535

binary cross-entropy of the three cell-cell graphs. This ap-536

proach guarantees the global structure of the cells. Moreover,537

it ensures that cells within one cell club and cell clubs within538

one subpopulation are closely placed in the visualization. In539

contrast, cells from different clubs and subpopulations are540

kept at a considerable distance. One can adjust the weights541

of global-subpopulation-cell layers so that the patterns in vi-542

sualization retain a desired degree of hierarchy. Experiments543

with scRNA and scATAC data demonstrate that SEAT hier-544

archical visualization consistently produces a clear layout of545

cell clumps corresponding to the cell hierarchy.546

The structure entropy evaluates the global uncertainty of ran-547

dom walks through a network with a nested structure. The548

minimum structure entropy interprets a stable nested struc-549

ture in the network. Li et al. has used structure entropy to de-550

fine tumor subtypes from bulk gene expression data (19) or551

to detect the hierarchical topologically associating domains552

from Hi-C data (20). These works utilize greedy merging553

and combining operations to build a local optimal multi-554

nary cell hierarchy and cutting hierarchy roughly by keeping555

the top layers. As we have proven that a binary hierarchy556

of minimum structure entropy exists for a graph (21), Li et557

al.’s strategy to search for a multi-nary hierarchy is not opti-558

mized. Adopted by Louvain and Leiden, modularity is a pop-559

ular optimization metric to capture community structure in a560

single-cell network. Agglo(club) is analogous to Louvain’s561

if we switch the merging metric to modularity. Agglo(club)562

achieves better or comparable performance against Louvain563

in most benchmark sets, suggesting the superiority of struc-564

ture entropy over modularity in measuring the strength of hi-565

erarchically partitioning a network into subgroups.566

SEAT detects the cell hierarchy, assuming that the entropy567

codes nested structures of cells. There is no assurance that the568

resultant cell hierarchy will resemble accurate nested struc-569

tures of cells. SEAT finds a pseudo cell hierarchy of cells.570

We show that the pseudo cell hierarchy showcases profound571

subpopulation detection accuracy and biological insights in572

single-cell data benchmarking experiments. In future work,573

we aim to refine the algorithm to find a more accurate and574

insightful pseudo cell hierarchy.575

Recall that the cell hierarchy has multiple layers to present576

cellular heterogeneity. In this study, we merely utilize four577

main layers (global, subpopulation, club, and cell) to inter-578

pret and visualize functional diversity. In the future, we in-579

tend to investigate possible biological insights and visualiza-580

tion layouts derived from more cell hierarchy layers.581

Moreover, the order of the cell clubs can be flipped in the cell582

hierarchy. There is only a partial order among cells bounded583

by the cell hierarchy. We plan to refine the algorithm to pro-584

vide a proper non-partial one-dimensional order, which might585

infer the nuance of pseudo-time or development trajectory586

among cells outside the periodic cell cycle.587
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scRNA data. We collect nineteen scRNA datasets with cell606

type labels (27–39) . For these scRNA datasets, the dimen-607

sion reduction transformer is UMAP (24). We adopt Seu-608

rat (55) for differential expression analysis. Cell-cell commu-609

nication analysis is conducted with CellChat (41) with default610

database and parameters. Any ligand-receptor (LR) interac-611

tion with less than ten supporting cells is filtered.612

We also collect six scRNA datasets with gold standard cell613

cycle labels. Dataset H1-hESC has 247 human embryonic614

stem cells (hESCs) in G0/G1, S, or G2/M phases identified615

by fluorescent ubiquitination-based cell cycle indicators (42).616

The count expression profile and cell cycle labels are ob-617

tained with accession code GSE64016. Datasets mESC-618

Quartz and mESC-SMARTer have 23 and 288 mouse em-619

bryonic stem cells (mESCs) sequenced by Quartz-seq and620

SMARTer, respectively (43, 44). Their G0/G1, S, and G2/M621

phases are labeled by Hoechst staining. The count expression622

profile and cell cycle labels are obtained with accession codes623

GSE42268 and E-MTAB-2805. Datasets 3Line-qPCR_H9,624

3Line-qPCR_MB, and 3Line-qPCR_PC3 owns 227 H9 cells,625

342 MB cells, and 361 PC3 cells, respectively. The cell cycle626

stages G0/G1, S, and G2/M are marked by Hoechst stain-627

ing (28). The raw log2 count expression profiles and cell628

labels are from the paper’s Data Set S2. The imputation629

and dimension reduction are conducted by SMURF (56) and630

UMAP (24). We adopt Seurat (55) for differential expression631

analysis. Cell-cell communication analysis is conducted with632

CellChat (41) with default database and parameters. Any633

ligand-receptor (LR) interaction with less than ten support-634

ing cells is filtered. Gene Ontology (GO) is performed with635

ShinyGO 0.76 (57).636

scDNA data. We collect seven scDNA datasets. Navin_T10637

contains 100 cells from a genetically heterogeneous (polyge-638

netic) triple-negative breast cancer primary lesion T10, in-639

cluding five cell subpopulations: diploid (D), hypodiploid640

(H), aneuploid 1 (A1), aneuploid 2 (A2), and pseudo-641

diploid (P) (45). Navin_T16 holds 52 cells from geneti-642

cally homogeneous (monogenetic) breast cancer primary le-643

sion T16P and 48 cells from its liver metastasis T16M, in-644

cluding four cell subpopulations: diploid (D), primary ane-645

uploid (PA), metastasis aneuploid (MA), and pseudo-diploid646

(P). The Ginkgo CNV profile of T10 and T16 are downloaded647

from http://qb.cshl.edu/ginkgo (58). The silver-648

standard array comparative genomic hybridization (aCGH)649

data of T10 and T16 are downloaded with GEO accession650

code GSE16607 (46).651

Dataset 10x_breast_S0 is a large-scale 10x scDNA-seq set652

without known cell population labels, where 10,202 cells653

from five adjacent tumor dissections (A, B, C, D, and E)654

of triple-negative breast cancer are sequenced. The Bam655

files are downloaded from 10x official site https://www.656

10xgenomics.com/resources/datasets. We in-657

ferred the total CNV profile utilizing Chisel (59).658

Ni_CTC sequenced 29 circulating tumor cells (CTCs) across659

seven lung cancer patients (48). McConnel_neuron profiles660

110 cells from human frontal cortex neurons, with an exten-661

sive level of mosaic CNV gains and losses (49). Lu_sperm662

sequenced 99 sperm cells with chrX-bearing, chrY-bearing,663

and aneuploid groups (50). Wang_sperm performed single-664

cell sequencing on 31 sperm cells with CNV gains and losses665

(51). The Ginkgo CNV profile of these datasets are down-666

loaded from http://qb.cshl.edu/ginkgo (58).667

scATAC and scRNA-scATAC multiome data. We collect three668

public scATAC-seq data as benchmarking sets with gold stan-669

dard cell type labels. scatac_6cl is a mixture of six cell670

lines (BJ, GM12878, H1-ESC, HL60, K562, and TF1) with671

1224 cells (52). Hematopoiesis owns 2210 single-cell chro-672

matin accessibility profiles from eight human hematopoiesis673

cell populations (CLP, CMP, GMP, HSC, LMPP, MEP,674

MPP, and pDC) (53). T-cell composes of four T-cell sub-675

types (Jurkat_T_cell, Naive_T_cell, Memory_T_cell, and676

Th17_T_cell) with a total of 765 cells (54).677

We collect a multiome of scRNA and scATAC dataset.678

PBMC is human peripheral blood mononuclear cells679

(PBMCs) with 10,032 cells across fourteen cell types.680

We downloaded the scOpen (60) processed accessibility681

profiles and cell labels from https://github.com/682

CostaLab/scopen-reproducibility. UMAP (24)683

embedded data are used to construct the kNN graphs for each684

dataset. We adopt Cicero (61) to explore the dynamically ac-685

cessible element status in different scatac_6cl GM12878 cell686

clubs.687

Evaluating cell subpopulation detection. We access the clus-688

tering accuracy of SEAT cell hierarchy, agglomerative hier-689

archy, and divisive hierarchy with predefined cluster num-690

ber k, namely SEAT(k), Agglo(k) and Divisive(k), given by691

the actual number of ground truth cell types. Competitors692

are hierarchical clustering (HC) with four linkage strategies693

(ward, complete, average, and single) (12), K-means (11),694

and spectral clustering (10). As the leading tool for single-695

cell clustering, Louvain (13) and Leiden (14) automatically696

detect how many communities are inside the cell-cell simi-697

larity graph. They obtain different numbers of communities698

at various resolutions. To benchmark Leiden and Louvain in699

the predefined-k setting, namely Leiden(k) and Louvain(k),700

we heuristically adjusted the resolution 20 times to see if the701

number of communities was the same as the predefined clus-702

ter number k.703

As the predefined k is undetermined in most real-world sce-704

narios, we evaluate the auto-k clustering efficacy of SEAT705

against Leiden and Louvain. We also assess the clustering ob-706

tained from agglomerative divisive hierarchy clubs, namely707

Agglo(club) and Divisive(club).708

Adjusted Rand index (ARI) (62) and adjusted mutual in-709

formation (AMI) (63) are adopted as clustering accuracy.710

They measure the concordance between clustering results711

and ground truth cell types. A perfect clustering has a value712

of 1, while random clustering has a value less than or near 0.713

Evaluating cell cycle pseudo-time inference. SEAT cell hierar-714

chy generates cell order representing the cell cycle pseudo-715

time for scRNA data. We access the pseudo-time inference716

accuracy of SEAT given by the actual order of ground truth717
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cell cycle phases. Benchmark methods are hierarchical clus-718

tering (HC) with four linkage strategies (ward, complete, av-719

erage, and single) (12). An in-order traversal of these hier-720

archies also generates cell orders. Furthermore, We bench-721

mark our methods with four state-of-the-art tools predicting722

the cell cycle pseudo-time, CYCLOPS (15), Cyclum (16),723

reCAT (17), and CCPE (18). CCPE fails the tasks when we724

follow its Github instruction, so we exclude CCPE for final725

comparison.726

The change index (CI) is used to quantitatively assess the ac-727

curacy of cell pseudo-time order against known cell cycle728

phase labels (17). An ideal cell order changes label k − 1729

times, where k = 3 is the ground truth cell cycle phase num-730

ber. The change index is defined as 1 − c−(k−1)
n−k , where c731

counts the frequency of label alters between two adjacent732

cells, and n is the number of cells. A value of 0 suggests733

the cell order is completely wrong with c = n−1, while 1 in-734

dicates a complete match between cell order and ground truth735

cell cycle phase with c = k −1.736

Evaluating hierarchical visualization. We evaluate the efficacy737

of SEAT hierarchical visualization with state-of-the-art visu-738

alization tools UMAP (24), TSNE (25), and PHATE (26).739

The dense cell-cell similarity graph G is used as input,740

UMAP, TSNE, and PHATE are run with default parameters.741
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