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27 Abstract

28 Schistosomiasis is a major neglected tropical disease (NTD) affecting both humans 

29 and animals. The morbidity and mortality inflicted upon livestock in sub-Saharan Africa has 

30 been largely overlooked, in part due to a lack of validated sensitive and specific tests, which 

31 do not require specialist training or equipment to deliver and interpret. Inexpensive, non-

32 invasive, and sensitive diagnostic tests for livestock-use would also facilitate both prevalence 

33 mapping and appropriate intervention programmes. The aim of this study was to assess the 

34 sensitivity and specificity of the currently available point-of-care circulating cathodic antigen 

35 test (POC-CCA), designed for Schistosoma mansoni detection in humans, for the detection of 

36 intestinal livestock schistosomiasis caused by Schistosoma bovis and Schistosoma curassoni. 

37 POC-CCA, together with the circulating anodic antigen (CAA) test, miracidial hatching 

38 technique (MHT) and organ and mesentery inspection (for animals from abattoirs only), were 

39 applied to samples collected from 195 animals (56 cattle and 139 small ruminants (goats and 

40 sheep) from abattoirs and living populations) from Senegal. POC-CCA sensitivity varied by 

41 ruminant group and by location/parasite species: sensitivity was greater in Barkedji (cattle: 

42 mean 81% (95% credible interval (CrI): 55%-98%); small ruminants: 49% (29%-87%), 

43 where livestock were primarily infected by S. curassoni, than in Richard Toll (cattle: 62% 

44 (41%-84%); small ruminants: 12% (1%-37%), where S. bovis was the main parasite species. 

45 Mean POC-CCA specificity across sites in small ruminants was 91% (77%-99%) with little 

46 variation between locations/parasites (Barkedji: 91% (73%-99%); Richard Toll: 88% (65% -

47 99%). Specificity could not be assessed in cattle owing to the low number of uninfected cattle 

48 surveyed. Overall, our results indicate that, whilst the current POC-CCA does represent a 

49 potential diagnostic tool for animal schistosomiasis, future work is needed to develop a 
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50 livestock-specific affordable and field-applicable diagnostic tests to enable determination of 

51 the true extent of livestock schistosomiasis.

52 Keywords

53 Schistosomiasis, One Health, diagnostics, POC-CCA, Bayesian analysis, sensitivity, 

54 specificity, NTDs, Livestock, , Schistosoma bovis, S. curassoni, Ruminants, Senegal, Africa.

55 Author summary

56 Schistosomiasis is a debilitating neglected tropical and zoonotic disease, infecting 

57 over 230 million people and multiple millions of animals worldwide, most notably amongst 

58 the poorest regions and populations. The potential contribution of livestock schistosomiasis 

59 to disease transmission in human populations has implications for the design of effective 

60 disease management and elimination programmes. However, our understanding of the true 

61 prevalence, transmission and impact of animal schistosomiasis is severely limited, in part due 

62 to a lack of inexpensive, accessible, sensitive and specific diagnostic tools. As a point-of-care 

63 circulating cathodic antigen (POC-CCA) diagnostic test is now in widespread use to assess 

64 intestinal schistosomiasis caused by Schistosoma mansoni in humans, we hypothesised that 

65 the same test could be used to detect livestock intestinal schistosomiasis caused by 

66 Schistosoma bovis and Schistosoma curassoni. The aim of this study was thus to evaluate the 

67 sensitivity and specificity of the POC-CCA for the detection of intestinal livestock 

68 schistosomiasis in Senegal. POC-CCA sensitivity varied by ruminant group and by 

69 location/parasite species, while POC-CCA specificity in small ruminants, at least, did not 

70 vary across sites. We conclude that the currently-available POC-CCA does represent a 
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71 potential diagnostic tool for animal schistosomiasis, but that the factors determining test 

72 performance warrant further investigation.

73 Introduction

74 The development and application of sensitive and specific diagnostic techniques for 

75 detection of infectious diseases is vital for the monitoring and evaluation of all treatment 

76 programs in endemic areas, especially whenever considering elimination and/or drug-

77 resistance pharmacovigilance. Within this, point-of-care diagnostic testing is particularly 

78 needed wherever there is a necessity for a fast diagnostic outcome that is independent from 

79 sophisticated, time-consuming, labour-intense and/or expensive laboratory procedures [1]. 

80 This need may be most exemplified for the neglected tropical and zoonotic diseases 

81 (NTDs/NZDs), as clearly stressed within the new World Health Organization’s (WHO) NTD 

82 Roadmap for 2021-2030 [2] and revised WHO Guideline for the control and elimination of 

83 human schistosomiasis, most notably that of recommendation 6 [3, 4].

84 Schistosomiasis is one of the major debilitating NTDs/NZDs, caused by snail-borne 

85 dioecious Schistosoma blood-flukes. Approximately 90% of the 230 million people infected 

86 worldwide live in sub-Saharan Africa [2]. Animal schistosomiasis is also of major veterinary 

87 and socio-economic importance, causing significant mortality and morbidity to livestock, as 

88 well as reduced productivity for their owners, although the contribution and consequences of 

89 this within sub-Saharan Africa are only just beginning to be realised [2, 5-8]. The main 

90 Schistosoma species found amongst livestock in Africa are the intestinal Schistosoma bovis 

91 and Schistosoma curassoni in West Africa and Schistosoma mattheei in East Africa. These 

92 species are phylogenetically close to the human urogenital parasite Schistosoma 

93 haematobium and have been found to regularly form viable hybrids within humans, both 
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94 across Africa [8-13], and even within its recent expanse to Europe [14, 15]. Outside of Asia, 

95 the contribution of zoonotic schistosomes to human schistosomiasis cases have been largely 

96 ignored, despite prevalence levels in humans often remaining unacceptably high following 

97 high coverage mass drug administration (MDA) programmes across much of West Africa in 

98 particular [8, 16, 17]. Furthermore, recent work combining epidemiological, molecular and 

99 mathematical modelling work has demonstrated that the relative role of zoonotic transmission 

100 from livestock in Africa is likely to increase as disease control efforts move towards 

101 elimination [18].

102 The newly launched WHO NTD 2021-2030 Roadmap and Guideline for the control 

103 and elimination of human schistosomiasis therefore poses the question of anti-

104 schistosomiasis treatment of livestock across Africa in order to achieve the new targets of 

105 Elimination as a Public Health Problem (EPHP) in all 78 currently-endemic counties and 

106 Interruption of Transmission (IoT) in selected African regions by 2030 [2, 3]. Widespread, 

107 indiscriminate use of anthelmintics in livestock have increased drug-resistance [19, 20]. This 

108 is particularly pertinent for schistosomiasis as there is currently only one efficacious drug, 

109 praziquantel (PZQ), available for both humans and livestock. Recent work has highlighted 

110 examples of use and misuse of PZQ in livestock, including, but not exclusive to, PZQ tablets 

111 donated free via the WHO MDA programmes for school-aged children being used instead for 

112 infected livestock, with little knowledge of application or dosage requirements [5, 7]. 

113 Furthermore, recent surveys and socio-economic analyses have revealed highly important, if 

114 also often overlooked, animal welfare, productivity, and financial impacts of animal 

115 schistosomiasis, which further jeopardize livelihoods, food security and nutrition amongst 

116 neglected communities [5]. Indeed the financial costs incurred to subsistence farmers of 

117 infected animals was projected to be significantly greater than would be those of a theoretical 

118 test and treat programme [5]. 
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119 To promote sustainable livestock schistosomiasis prevention and treatment in sub-

120 Saharan Africa (SSA), there is therefore a need to both easily and inexpensively diagnose 

121 animal schistosomiasis, and subsequently effectively treat only infected individuals and/or 

122 herds, such as through a targeted test-and-treat (TnT) or T3: Test, Treat, Track design for 

123 livestock schistosomiasis in SSA, which anchors the key recent WHO policy 

124 recommendations on diagnostic testing, treatment and surveillance in general.

125 There are, however, currently limited diagnostic techniques that can detect 

126 schistosomiasis in livestock with sufficient levels of sensitivity and specificity, as well as 

127 logistical ease, that can fully inform disease management decisions [21]. Of those available, a 

128 recent systematic review (although data analysed were exclusive to Schistosoma mansoni and 

129 Schistosoma japonicum infections) has recommended the formalin-ethyl acetate 

130 sedimentation-digestion with quantitative polymerase chain reaction, as the most promising 

131 field-applicable techniques in non-human animal hosts [22], although both are time 

132 consuming and/or expensive. A recent extensive field survey of both abattoir and live-

133 sampled livestock within Senegal found some utility with both the Kato-Katz technique and 

134 miracidial hatching technique (MHT), but the latter was again labour-intensive and showed 

135 significant differences in sensitivities by host and/or parasite species [8].

136 Tests for antigens, rather than antibodies, are preferred in endemic areas due to the lag 

137 in clearance of parasite-specific antibodies after infection subsides [23] and therefore 

138 immunochromatographic circulating cathodic antigen (CCA) and circulating anodic antigen 

139 (CAA) tests for adult worm antigens in urine (or serum) were developed specifically for 

140 current Schistosoma infections amongst humans [24]. Whilst a high sensitivity laboratory-

141 based lateral flow (LF) test platform utilizing luminescent up-converting reporter particles 

142 (UCP) comprises assay formats for quantitative detection of circulating cathodic and anodic 

143 antigen detection in urine (respectively, UCCA and UCAA assays) is available [25, 26], rapid 
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144 point-of-care testing with visual detection is currently only available for the CCA (POC-

145 CCA, Rapid Medical Diagnostics, Pretoria, South Africa) [27, 28]. Given its utility and field-

146 friendly application, this semi-quantitative (negative, trace, “single positive” +, “double 

147 positive” ++ or “triple positive” +++) POC-CCA is now recommended by the WHO for 

148 mapping human S. mansoni prevalence in endemic areas [29, 30]. The application for 

149 detection of human urogenital S. haematobium infections with POC-CCA is less efficient i.e. 

150 to find the lower worm burden infections [31-34].

151 The POC-CCA has been used to assess S. mansoni infection in one non-human-

152 primate study [35]). Given that S. bovis and S. curassoni (as well as S. mattheei) are intestinal 

153 schistosomes of livestock, we predicted that the current POC-CCA could also provide a 

154 useful rapid and inexpensive diagnostic for animal intestinal schistosomiasis, as it does for 

155 human intestinal schistosomiasis. The aim of this study was therefore to evaluate the 

156 sensitivity and specificity of the currently available, human-focused, POC-CCA for the 

157 detection of intestinal livestock schistosomiasis caused by S. bovis, S. curassoni and their 

158 hybrids in Senegal, by host species, in relation to traditional and novel alternative 

159 parasitological and immunological diagnostic methods currently available, employing 

160 Bayesian latent class models. 

161 Methods

162 Study design and sites 

163 Cross-sectional livestock parasitological surveys were conducted from May to August 

164 2016 and from October 2017 to January 2018 in two areas in Northern Senegal, West Africa; 

165 the town of Richard Toll, in the Senegal River Basin, and villages around the Lac de Guiers 

166 (area hereafter referred to as Richard Toll), and the town of Linguere and villages around 
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167 Barkedji along the Vallée du Ferlo (area hereafter referred to as Barkedji). Following the 

168 construction of the Diama Dam in 1986, situated on the Senegal River over 100 km 

169 downstream from Richard Toll, the environment surrounding this location has undergone 

170 important permanent alterations. Desalination, creation of irrigation canals and creation of 

171 permanent freshwater bodies have facilitated the expansion of Schistosoma snail intermediate 

172 host and human-livestock water contact points throughout the year, supporting the co-

173 occurrence and interspecific interactions between S. haematobium, S. mansoni, and other 

174 Schistosoma spp. of veterinary importance [36-38]. The main livestock schistosome species 

175 circulating in Richard Toll is S. bovis and cattle is the most affected host species. The 

176 Barkedji area presents temporary water sources that disappear during the dry season, leading 

177 to important seasonal migration of livestock-keeping communities, and annual interruption in 

178 schistosomiasis transmission. Small ruminants are the most important livestock host species, 

179 infected by S. curassoni. However, both schistosome species and hybrids are present in the 

180 two areas and all livestock species can be found infected to a lesser extent. Full details on the 

181 infection prevalence amongst definitive and intermediate hosts, together with the habitat of 

182 two areas, can be found in [8].

183 Animal sampling was part of a larger survey conducted in these two areas [8]. All 

184 animals (cattle, sheep, and goats) routinely slaughtered as part of the normal work of the 

185 abattoirs and available for inspection at the time of the surveys were examined post-mortem. 

186 Living animals were randomly selected in each village with the initial randomisation carried 

187 out at the unit level (owner in this case) and a maximum of five animals of each species 

188 (cattle, sheep and goats) then randomly sampled from each selected owner (fewer if the 

189 owner had fewer than five animals). Randomisation was carried out using random number 

190 generators. 
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191 Diagnostic methods

192 Whilst adult worms can only be extracted from dead animal (e.g. abattoir or culled 

193 animals), infectious status of live animals can be assessed indirectly through parasitological, 

194 molecular or immunological methods. Direct and indirect assessment were carried out post-

195 mortem at slaughterhouses and indirect evaluations were applied ante-mortem within the 

196 community livestock (see S1). The mesenteric vessels of slaughtered animals were visually 

197 inspected for Schistosoma adult worms (single males, single females, and paired worms) and 

198 those found were stored in RNA-later for molecular analysis (see S2). Faecal, urine, lung, 

199 and liver samples were collected post-mortem and were examined for infection using the 

200 miracidial hatching technique (MHT) (see S1). Free-swimming miracidia were individually 

201 pipetted onto Whatman FTA cards (GE Healthcare Life Sciences, UK) for deoxyribonucleic 

202 acid (DNA) storage and subsequent genotyping (see S2). Only faecal and urine samples were 

203 obtained from live animals. Faecal samples were assessed for the presence of Schistosoma 

204 eggs via two Kato-Katz (KK) slides and MHT (see S1 and S2). Animals for which a 

205 sufficient volume of urine (15 mL) was collected were tested on-site for schistosomiasis 

206 with a single point of care-circulating cathodic antigen (POC-CCA) cassette (Rapid Medical 

207 Diagnostics, Pretoria, South Africa) and for haematuria with a single Hemastix strip 

208 (Siemens Healthcare Diagnostics, Surrey, UK) (see S1). The remaining urine was frozen and 

209 transported to Leiden Medical University in the Netherlands for application with the up-

210 converting phosphor-lateral flow (UCP-LF) based assays formats (UCCA and UCAA) for the 

211 detection and quantitation of circulating cathodic and anodic antigen in urine (see S1) [39]. 

212 Definitions of positive results are described in Table S1. 
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213 Statistical analyses

214 Association between haematuria and POC-CCA results

215 When extracting urine from abattoir animals, some samples became contaminated 

216 with blood. As false-positive POC-CCA tests in humans have been associated with 

217 haematuria [40], it was of interest to assess whether POC-CCA results were affected by the 

218 blood in urine. Hemastix results were dichotomised as negative (score 0) or positive (scores 1 

219 and 2) and by means of logistic regression we tested the hypothesis that POC-CCA results 

220 were independent of blood-contamination status.

221 Composite reference standard and Bayesian latent class model 

222 specification

223 Due to the absence of a gold standard for the diagnosis of schistosomiasis against 

224 which we could evaluate the performance of POC-CCA, we derived a composite reference 

225 standard (CRS) that was based on three additional diagnostic methods, namely MHT, KK and 

226 UCAA. CRS is based on a combination of tests with moderate sensitivity and high specificity 

227 [41]. CRS results were considered positive if animals tested positive for either UCAA, MHT 

228 or KK. CRS results were assumed to be negative if animals tested negative for all three tests. 

229 We then developed a Bayesian latent class model (BLCM) to assess the sensitivity 

230 and specificity of POC-CCA for the detection of active schistosomiasis in cattle and small 

231 ruminants [42-44] that took account of the imperfect reference diagnostic tests employed. 

232 Two latent (i.e. non-observed) classes were assumed, corresponding to either an infected or 

233 non-infected status, and these classes were related to the outcomes of POC-CCA, CRS and 

234 UCCA by means of a multinomial distribution [42, 45, 46]. We developed a two-test model 

235 and a three-test model. The diagnostic tests included in the two-test model were POC-CCA 
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236 and CRS. The three-test model made use of the UCCA results and comprised POC-CCA, 

237 CRS and UCCA outcomes, albeit at the expense of lower sample sizes in each combination 

238 of diagnostic tests. 

239 Accuracy model assumptions

240 Latent class models (LCM), as proposed by Hui and Walter [43], involve three 

241 assumptions. Firstly, more than one population needs to be assessed, each with distinct 

242 disease prevalence. Secondly, diagnostic test accuracy must remain constant across 

243 populations. Thirdly, the accuracy of the tests must be conditionally independent, so that the 

244 sensitivity or specificity of one test is independent of the results of a second test [42, 45, 46]. 

245 In the present study we were planning to model abattoir and live animals as two distinct 

246 populations. However, as schistosomiasis observed prevalence in these two populations were 

247 similar (see Table S4), it was likely that the assumption of different prevalences amongst 

248 populations was not satisfied. Hence, abattoir and live data were combined and a one 

249 population approach was adopted for each site and host species group [44]. However, and in 

250 order to assess whether test accuracy differed in these two populations, independent abattoir 

251 and live estimates were subsequently derived and compared. To help overcome potential 

252 identifiability problems that a one population approach could entail and taking into account 

253 the assumed high specificity and medium sensitivity of CRS, we employed moderately 

254 informative priors for the CRS (see Table S3). Equally, prevalence priors were moderately 

255 informative and their values were based on results from a study carried out in the same area 

256 [8]. The impact that these moderately informative priors had on the accuracy estimates 

257 (sensitivity/specificity) was assessed through a sensitivity analysis (see S6).

258 Conditional independence of POC-CCA and CRS in the two-test model was assessed 

259 in two ways. Firstly, the Deviance Information Criterion (DIC) [47] of model variants that 
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260 included (dependence) and excluded (independence) covariance terms were estimated and 

261 compared. Models with lower DIC were preferred over models with higher DIC. Secondly, 

262 95% CrI of covariance parameters were assessed [46], with CrIs intersecting zero indicative 

263 of conditional independence. Three-test models included dependence terms for POC-CCA 

264 and UCCA only as the two tests measure the same antigen (CCA) and their outcomes may 

265 not be independent of each other. Furthermore, the covariances between POC-CCA and CRS 

266 had been found not to be relevant (see results section “POC-CCA accuracy”).

267 Selection of priors and priors’ sensitivity analyses

268 The beta distributions used to model the multinomial distribution parameters (Table 

269 S3) were parameterized by specifying the mode and the minimum/maximum accuracy value 

270 that was believed to be true for each variable, with 95% certainty. Priors for UCAA and 

271 UCCA sensitivity and specificity were established based on expert knowledge and published 

272 records of high performance [48-51]. Priors for POC-CCA accuracy were non-informative 

273 beta (1,1) distributions. Prevalence priors were based on post-mortem examination of abattoir 

274 specimens from a previous study [8], where 81% and 82% of cattle were found to be infected 

275 in Barkedji and Richard Toll, respectively, and 26% and 16% of small ruminants were found 

276 to be infected in Barkedji and Richard Toll, respectively. As the proportion of infected 

277 animals were similar at the two sites, only one prior distribution per ruminant group was 

278 defined (Table S3). The sensitivity of the results to the prior parameterisations was 

279 undertaken by re-estimating POC-CCA accuracy assuming more diffuse priors for prevalence 

280 and CRS accuracy (see S6). 
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281 Accuracy comparisons between sites

282 In order to assess whether test accuracy differed between sites, differences in the 

283 posterior distributions of accuracy between sites were calculated and the probability that the 

284 accuracy in one location was greater than in the other was calculated (the Bayesian p-value) 

285 by means of the JAGS “step” function [52, 53]. When accuracy did not differ between sites, 

286 combined accuracy values were calculated.

287 Software

288 Statistical analyses were carried out in R (BC7) version 4.0.5 (see S3)

289 Ethics approval and consent to participate

290 For all primary data collection activities, the researchers first explained what the study 

291 was about, how the data collection would work and the rights of the participants. Following 

292 that, each participant was asked to give their written consent. Ethical approval was sought 

293 and granted by i) the Clinical Research and Ethical Review Board at the Royal Veterinary 

294 College; approval number URN 2019 1899-3, and (ii) the Comité National d’Ethique pour la 

295 Recherche en Santé (Dakar, Senegal) approval number SEN15/68 and SEN 19/68. Urine 

296 samples were imported from Senegal to the RVC in the UK with the import licence 

297 ITIMP19.0161 and from the UK to LUMC in the Netherlands with the import licence 

298 VGM_IN17-1416-GvW.
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299 Results

300 Descriptive statistics

301 Abattoir surveys were carried out on 89 animals routinely slaughtered, whilst live 

302 animal samples were obtained from 106 cattle, sheep and goats from communities within the 

303 study area. Given the low number of goats and sheep that were infected in the present study, 

304 their data were grouped and analysed as “small ruminants” (see Table 1). POC-CCA 

305 diagnostic results were obtained for all 195 animals, 56 of which were cattle and 139 were 

306 small ruminants. The distributions of samples across sites and sources of animals (live or 

307 abattoir) are shown in Table 1. Barkedji livestock was primarily infected by S. curassoni, 

308 whilst animals from Richard Toll shed mainly S. bovis eggs (see Table S5). 

309 Table 1. Number of live and abattoir livestock animals surveyed in Barkedji and 

310 Richard Toll.

Site Total Bovine
Small ruminants

(goat + sheep)

Barkedji Abattoir 35 13 22 (19+3)

Live 76 8 68 (11+57)

Total 111 21 90 (30+60)

Richard Toll Abattoir 54 28 26 (25+1)

Live 30 7 23 (2+21)

Total 84 35 49 (27 +22)

Total (both sites) Abattoir 89 41 48 (44 +4)

Live 106 15 91 (13 + 78)
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Total 195 56 139 (57 + 82)

311 Association between haematuria and POC-CCA results 

312 Logistic regression results indicated that abattoir POC-CCA results did not depend on 

313 Hemastix outcomes, either in cattle (coefficient z value: -0.36, p-value: 0.719) nor in small 

314 ruminants (coefficient z value: 0.773, p-value: 0.444). Consequently, in all subsequent 

315 analyses, no distinction was made between blood-positive or negative samples.

316 Cross-tabulated results

317 The cross-tabulated results for CRS and POC-CCA are shown in Table 2. The number 

318 of small ruminants’ discordant pairs (POC-CCA -, CRS +) was relatively large, suggesting 

319 that POC-CCA sensitivity in small ruminants might be low. Cattle were CRS negative in 8 

320 out of 56 animals, showing that most animals were infected, which limited our ability to 

321 estimate POC-CCA specificity in cattle. The number of (+, +) concordant pairs was greater in 

322 cattle than in small ruminants and the number of (-,-) concordant pairs were greater in small 

323 ruminants than in cattle, suggesting that the test behaved differently in each ruminant group. 

324 Table 2. Cross-tabulated results for POC-CCA and CRS, by site and ruminant group. 

Number of concordant and discordant pairs 

(POC-CCA, CRS)*

Site Ruminant (+, +) (+, -) (-, +) (-, -)

Cattle 13 1 3 1
Barkedji

Small ruminants 19 6 29 35

Cattle 17 2 11 4
Richard Toll

Small ruminants 3 2 26 18
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325 * POC-CCA = point-of-care cathodic circulation antigen, CRS = composite reference 

326 standard 

327 POC-CCA accuracy

328 Conditional dependence between tests and selection of the best fitting 

329 models

330 BLCM results from the two-test dependence and two-test independence models, by 

331 site and ruminant group (Table 3), indicate that POC-CCA and CRS are conditionally 

332 independent as: 1) the 95% CrIs of the covariance terms in the two-test model intersected 

333 zero; and 2) independence models had lower DIC values than the dependence ones. Results 

334 from the three-test model indicate that POC-CCA and UCCA sensitivities were conditionally 

335 dependent (lower 95% CrI limit was greater than zero) in all cases with the exception of the 

336 small ruminants from Richard Toll (where the CrI contained zero) (Tables 3 and 4). By 

337 contrast, POC-CCA and UCCA specificities were conditionally independent, their 95% CrI 

338 intersecting zero (Tables 3 and 4). Given the DIC of the two-test independence models were 

339 the lowest, we adopted these as the best fitting models and the following conclusions on 

340 POC-CCA accuracy were derived from them. 

341 POC-CCA accuracy in cattle 

342 POC-CCA sensitivity in Barkedji was 81% (95% CrI: 55% to 98%) and in Richard 

343 Toll it was 62% (95% CrI: 41% to 84%). As the probability that the sensitivity in Barkedji 

344 was greater than in Richard Toll was high (0.88, see Pr in Table 3), a combined sensitivity 

345 value for both sites was not calculated. 
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346 This study was not able to estimate POC-CCA specificity in cattle with precision due 

347 to the low number of animals that were not infected. This is shown by the wide credible 

348 intervals obtained in the analyses (see Table 3). 

349 Table 3. Cattle Bayesian latent class models results from two-test and three-test models 

350 showing parameter means (95% CrI) for POC-CCA sensitivity (Se %) and specificity 

351 (Sp %) and for covariance (cov), model deviance information criterion (DIC) and 

352 Bayesian p-values (Pr) comparing accuracy results between sites. The best fitting model 

353 was the two-test independence model. “B & R” rows shows the pooled results for 

354 Barkedji (B) and Richard Toll (R).

Site Variable
Two-Test 

Independence

Two-Test

Dependence
Three-Test

Sensitivity 81 (55, 98) 77 (52, 97) 72 (48, 94)

Specificity 55 (5, 98) 51 (3, 97) 61 (13, 96)

Se cov n.a. 0.04 (-0.04, 0.14) 0.13 (0.01, 0.22)

Sp cov n.a. 0 (-0.12, 0.12) -0.03 (-0.3, 0.14)

B

DIC 47.96 49.38 66.98

Sensitivity 62 (41, 84) 58 (38, 82) 60 (41, 80)

Specificity 70 (16, 98) 63 (10, 98) 82 (40, 99)

Se cov n.a. 0.03 (-0.06, 0.11) 0.19 (0.1, 0.23)

Sp cov n.a. 0.01 (-0.1, 0.14) 0.04 (-0.09, 0.19)

R

DIC 54.27 54.87 76.05

Sensitivity -- 66 (49, 86) 64 (48, 80)

Specificity -- 61 (8, 98) 71 (31, 97)B & R

Se cov n.a. 0.03 (-0.04, 0.1) 0.19 (0.12, 0.23)
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Site Variable
Two-Test 

Independence

Two-Test

Dependence
Three-Test

Sp cov n.a. 0.01 (-0.11, 0.14) 0.05 (-0.06, 0.17)

DIC 54.40 55.23 77.89

Pr(Se B > Se R) 0.88 0.86 0.78

Pr(Sp B > Sp R) 0.36 0.38 0.26

355 n.a. = not applicable; Pr = probability

356 POC-CCA accuracy in small ruminants 

357 POC-CCA sensitivity in Barkedji was 49% (95% CrI: 29% to 87%) and in Richard 

358 Toll it was 12% (95% CrI: 1% to 37%) (see Table 4). The probability that the sensitivity in 

359 Barkedji was greater than in Richard Toll was 0.99 (see Pr in Table 4). As this difference was 

360 large, overall sensitivity across sites was not estimated. 

361 POC-CCA specificity in Barkedji was 91% (95% CrI: 73% to 99%) and in Richard 

362 Toll it was 88% (95% CrI: 65% to 99%). The probability that the specificity in Barkedji was 

363 greater than in Richard Toll was 0.60. The overall specificity was 91% (95% CrI: 77% to 

364 99%).

365 Table 4. Small ruminants Bayesian latent class models results from two-test and three-

366 test models showing parameter means (95% CrI) for POC-CCA sensitivity (Se %) and 

367 specificity (Sp %) and for covariance (cov), model deviance information criterion (DIC) 

368 and Bayesian p-values (Pr) comparing accuracy results between sites. The best fitting 

369 model was the two-test independence model. “B & R” rows shows the pooled results for 

370 Barkedji (B) and Richard Toll (R).
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Site Variable
Two-Test 

Independence

Two-Test 

Dependence
Three-Tests

Sensitivity 49 (29, 87) 42 (7, 85) 41 (25, 66)

Specificity 91 (73, 99) 85 (58, 99) 91 (75, 99)

Se cov n.a. 0 (-0.1, 0.1) 0.09 (0, 0.16)

Sp cov n.a. 0.03 (-0.03, 0.17) 0.02 (-0.03, 0.12)

B

DIC 55.92 55.94 107.55

Sensitivity 12 (1, 37) 13 (1, 40) 26 (8, 68)

Specificity 88 (65, 99) 89 (65, 99) 93 (74, 100)

Se cov n.a. -0.02 (-0.13, 0.03) 0.12 (-0.01, 0.21)

Sp cov n.a. 0.02 (-0.03, 0.11) 0.01 (-0.05, 0.1)

R

DIC 46.53 55.92 92.92

Sensitivity n.a. 30 (3, 69) 34 (19, 65)

Specificity 91 (77, 99) 86 (61, 99) 92 (80, 99)

Se cov n.a. -0.01 (-0.1, 0.07) 0.12 (0.04, 0.19)

Sp cov n.a. 0.03 (-0.02, 0.16) 0.02 (-0.01, 0.09)

DIC 54.01 54.51 106.18

Pr(Se B > Se R) 0.99 0.91 0.80

B 

& 

R

Pr(Sp B > Sp R) 0.60 0.41 0.45

371 n.a. = not applicable; Pr = probability
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372 Prior sensitivity analysis and comparison of accuracy in abattoir and 

373 live populations

374 The results of the prior sensitivity analyses indicate that the baseline prior models 

375 adopted were robust and that the priors were not exerting an unduly effect on the POC-CCA 

376 accuracy estimates (see S6).

377 Mean POC-CCA accuracy in abattoir and live populations were similar (not shown), 

378 although their 95% CrI were wider than those of pooled samples.

379 Discussion

380 In multi-host, multi-parasite systems, all reservoir hosts must be considered in order 

381 to achieve disease elimination. Accurate detection of Schistosoma infection in animals would 

382 provide not only critical information to guide surveillance and inform control [2-4], but also 

383 help to improve livestock-keeping communities wellbeing, finances, and animal welfare [5, 

384 7]. As WHO therefore calls for consideration of the need to treat livestock within Africa in 

385 order to minimize zoonotic transmission to humans, as well as for improved diagnostics in 

386 general [2-4], accurate diagnosis of schistosomiasis at both the individual and population 

387 levels is required for sustainable control programmes as well as assessing, and mitigating 

388 against, changes in drug efficacy. This study thereby evaluated the clinical performance of 

389 the commercially-available POC-CCA, a diagnostic test routinely used for the detection of 

390 the human intestinal parasite, S. mansoni, for intestinal S. bovis, S. curassoni and hybridized 

391 schistosomiasis infections within ruminant livestock of Senegal, West Africa.

392 We compared the accuracy results obtained in this study with those of the routinely-

393 employed diagnostic techniques, MHT and KK, reported from Senegal by ruminant and 

394 parasite species [8], and found that POC-CCA sensitivity was better than that of MHT and 
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395 KK in Barkedji, where S. curassoni was the main parasite species, and similar or inferior in 

396 Richard Toll, where S. bovis was the main parasite. We are not aware of other studies in the 

397 literature reporting accuracy results for the detection of CCA in S. bovis or S. curassoni 

398 infections in livestock. However, CCA has been reported as being strongly associated with S. 

399 bovis worm and faecal egg counts in goats [54, 55] and CAA were detected in S. mattheei 

400 infected cows [56]. 

401 The test manufacturers have found POC-CCA accuracy to vary by parasite species, 

402 indicating that the test was particularly useful for the detection of human intestinal 

403 schistosomiasis caused by S. mansoni, and less so in the diagnosis of S. haematobium [57]. 

404 Kittur et al. suggested that S. haematobium and S. mansoni worms may produce different 

405 amounts of CCA or that S. haematobium may metabolise it more efficiently [58]. It is 

406 plausible that S. bovis and S. curassoni similarly have different patterns of CCA excretion 

407 and metabolic pathways, and thus respond differently in POC-CCA accuracy. For instance, if 

408 the maximum number of adult worms a host can carry falls beneath the test’s minimum level 

409 of detection, infected hosts would be misdiagnosed as uninfected. These maxima may differ 

410 with parasite species, resulting in differential misclassification. To our knowledge, the 

411 respective maximum number of worms each host can carry, by parasite species and ruminant 

412 group, has not been determined. The test manufacturers have also found that, in the case of S. 

413 haematobium, CCA levels vary by region. Moreover, a study comparing POC-CCA 

414 performance across five countries found that S. mansoni results varied between countries 

415 [29]. The present study could not discern between the effects of location and parasite species, 

416 as S. curassoni was the predominant parasite in Barkedji whilst S. bovis was primarily 

417 present in Richard Toll. Hence, differences in test accuracy between the two locations could 

418 have arisen due to differences in parasite species/hybrid distributions, as well as local factors 

419 determining intensity of infection such as intermediate snail distributions. The disparity 
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420 between each host species’ test performance might be attributable to the factors such as 

421 consistency of urine, rate of metabolising CCA, or cross-reaction with other infections.

422 Our study also found that there were no differences in POC-CCA specificity in small 

423 ruminants across sites and parasite species, and that POC-CCA specificity was not affected 

424 by haematuria. This contrasts with results in humans, where POC-CCA specificity has been 

425 found to be affected by the host’s age (in pre-school aged children < 5 years), their pregnancy 

426 status, and whether or not they have haematuria or a urogenital infection [40, 59].

427 POC-CCA accuracy has been found to vary depending on production batch, raising 

428 questions regarding production quality control and calls for the optimisation and 

429 standardisation of production [60-62]. This is of particular relevance if POC-CCA is to 

430 become reliable a tool with which to determine whether to treat human and livestock 

431 populations [2-4].

432

433 Limitations

434 Due to the absence of a gold-stand diagnostic test for schistosomiasis, this study 

435 derived a composite reference standard (CRS) that was based on KK, MHT and UCAA 

436 results. The sensitivities of KK and MHT are relatively low, partly due to the technical 

437 difficulties associated with the management of large volumes of faecal material. These 

438 methods are highly specific, although misclassification of eggs and miracidia can occur. On 

439 the other hand, UCAA assays had been labelled as ultrasensitive for human schistosomiasis 

440 detection [51, 63], but have not been optimised for livestock. By combining these tests into a 

441 CRS we aimed to obtain a composite measure that was highly specific and moderately 

442 sensitive. However, we found eight cases where UCAA was negative and KK or MHT were 

443 positive, indicating that the high sensitivity UCAA test may not detect all the infections 
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444 despite its lower limit of detection of 0.6 pg/mL CAA [63]. Given the variable quality of the 

445 urine samples, it was unfortunate that paired serum samples were not available to validate 

446 urine testing. Following recommendations in the literature for human schistosomiasis and in 

447 order to identify the most infections [64], the present study considered POC-CCA trace as a 

448 positive result. The relatively low sample sizes for goats, sheep and infected cattle had an 

449 impact on the precision (wide 95% CrI) of our estimates and our ability to analyse goat and 

450 sheep data separately. Lastly, we were not able to assess the interactions between location, 

451 ruminant group and parasite species. It is likely that POC-CCA accuracy in Barkedji and 

452 Richard Toll can be assimilated to accuracy for S. curassoni and S. bovis detection, 

453 respectively. However, this need to be further investigated. The observed high probabilities 

454 of sensitivity differences point to novel evidence of variation between host and parasite spp. 

455 that can inform the design and analyses of future diagnostic evaluations.

456 Implications for practice

457 Overall, our results indicate that POC-CCA represents a potential diagnostic tool for 

458 schistosomiasis in ruminant livestock populations. However, in order to move towards the 

459 interruption of transmission, the elimination of this zoonotic transmitted disease [2, 3] and to 

460 safeguard the welfare of livestock and the livelihoods of the communities that depend on 

461 them [5], it is of great importance to develop inexpensive livestock-specific POC-CCA tests 

462 that enable us to formulate accurate assessments of disease prevalence. Furthermore, the 

463 observed variation in test performance across sites and parasite species has implications for 

464 the applicability of this diagnostic method, as it may hinder our ability to establish 

465 universally valid thresholds for disease prevalence that inform control programmes. Hence, 

466 the factors that determine test performance need to be investigated further so that region-

467 specific guidelines could be derived if needed. Lastly, manufacturers quality control must be 
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468 a foremost priority if POC-CCA diagnostic tests are implemented for the assessment of 

469 schistosomiasis, both in humans and animals.
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