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Abstract

Animals employ a neural system to map physical environmental posi-
tion to neural activity and encode allocentric location. Grid cells, propos-
edly a vital component of this system, form a population code of space by
firing in characteristic tessellated triangles of locations. This population
code remaps across environments and behavioural states, independently
of specific sensory inputs, pointing to a substrate of standard computation
across environments, which many speculate to be path integration. How-
ever, testing whether these cells are crucial for path integration is outside
the scope of current experiments and calls for complementary methods,
possibly given by computational models. Recently, normative artificial
neural network models have shown that path integration and grid-cell-
like activity can be found in recurrent neural networks (RNNs) trained
to navigate in a simulated two-dimensional environment. Remarkably,
the emergent spatial profile of these grid-like cells is similar to biological
cell responses in that they set up a toroidal structure. Here, we extend
the RNN normative model to multiple environments and show that cells
that form the toroidal structure are crucial for path integration. However,
cells selected through the grid cell score, a common defining property of
grid cells, are much less important and comparable to randomly selected
cells. Moreover, we show that the model can navigate multiple environ-
ments and that toroidal cells remap across environments in a biologically
plausible way. Results demonstrate a causal relation between toroidal
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cells and path integration in virtual agents and propose a mechanism of
remapping in grid cells based on remapping in place cells. The work is
anticipated to impact both experimental and computational neuroscience
and machine learning due to the methods employed and the evaluation of
results. For example, we propose explicit experiments that can evaluate
both the model’s validity and the role of grid cells in navigation. More-
over, the model may elucidate how high-dimensional data is mapped to
low-dimensional structures, possibly providing a substrate for interpola-
tion.

1 Introduction

The ability to navigate is fundamental to all animals. Understanding the basic
principles underlying this computation can give clues to how the brain works.
During the past few decades, experimental findings of place cells [1] and grid cells
[2], [3] in rodents have provided important insights into the underlying neural
processes that support navigation. However, experiments in vivo are restricted
by several acquisitional bottlenecks. Therefore computational modelling can
provide an important auxiliary axis of investigation. In this work, we take a
normative [4] computational approach [5] to study neural representations of
space during navigation in multiple environments.

When sensory inputs that provide allothetic (external) cues are restricted,
path integration using idiothetic (self-motion) cues provides the primary source
of location information. Accumulating evidence points to grid cells as a likely
source of path integration [3], [6]–[11], in which the activity forms firing fields
in tessellated triangles. It has been repeatedly shown that idiothetic cues gov-
ern the activity of grid cells. Specifically, grid cells remain active in darkness,
i.e., in the absence of visual cues [3], [11] and are conversely inactivated during
passive transportation [9] (no idiothetic cues). Moreover, when modulating a
self-motion gain signal compared to a virtual reality scene, the grid cell pattern
stretches in accordance [6]–[8], indicating a direct causal link between idiothetic
sensory input and grid cell activity. However, the actual impact of grid cells on
path integration remains elusive. Ideally, experiments could target and prune
specific cell types and subsequently test path integration performance. In ani-
mals, however, it is currently not feasible to select and prune specific individual
cells, making such a test seemingly out of scope using today’s experimental
techniques. However, recent normative models of virtual agents doing path
integration learn various emergent spatial cell types, including grid-like cells.
Importantly, one can prune specific cells and measure path integration perfor-
mance in such models, consequently allowing testing of the effects different cell
types have on path integration.

Grid cells form modules [12], and there is evidence for low dimensional con-
tinuous attractor dynamics in grid cells [13]. For a module of grid cells, the
spatial periodicity sets up a torus in activity space [10], [14]. Individual tuning
curves of grid cells, typically quantified by the grid score, do not respect this
periodic property. In other words, a high grid score can ”wrongly” assign cells
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into a grid module [15] that do not share the same periodic property of the
ensemble. Moreover, navigation requires a spatial representation and a path in-
tegration mechanism that generalises across space, i.e. can interpolate between
observed positions, in contrast to memorising certain positions and velocity up-
dates. Generality has been accredited to smooth representations, compared to
memorisation encoding fractal manifolds [16]. In other words, cells encoding a
smooth manifold, such as a twisted torus, appear to constitute a general com-
putational mechanism for the network. This indicates that the function of grid
cells is found at the population or ensemble level, not at the level of individual
cells.

When rodents are faced with environmental changes in enclosure geometry,
the surrounding room, or smaller changes such as odour, or wall colour, place
cells and grid cells may change their spatial representations [17]–[19]. The na-
ture of this representational change indicates that this system can carry and
bind both specific (context) and general (spatial) information. Both drastic
contextual changes (moving the same box between two different rooms) and ge-
ometrical manipulations (changing the box within the same room) induce global
remapping [17]. In this case, the place cell ensemble representation in one en-
vironment can not predict the place cell ensemble representation in another
environment. On the other hand, smaller contextual changes, such as changing
the colour of one of the walls in a box, also induces representational changes
in the place cells, called rate remapping. In this case, the firing fields of the
place cells remain in the same locations but with a reduced firing rate. During
the same contextual manipulations inducing global place cell remapping, grid
cells sharing spacing and orientation (within modules [12]) remap coherently by
a shift in phase and orientation. Our understanding of the mechanistic under-
pinning of grid cell remapping remains sparse. Existing theories propose that
place cell remapping results from grid cell remapping due to the persistence of
grids in all environments [20], [21] and because of the strong projections from
layers II and III of the Medial Entorhinal Cortex (MEC) to the dorsal hip-
pocampus. However, there are reciprocal connections between the hipocampus
and the MEC [22], [23], and silencing the dorsal hippocampus has detrimental
effects on grid cells [24]. Moreover, place cells form before grid cells in devel-
opment [25]–[27] and place cell remapping can (possibly) occur without MEC
input [28]. We, therefore, hypothesise that place cell remapping is sufficient to
explain grid cell remapping.

Understanding the neural mechanism of path integration has been of great
interest to the field ever since the discovery of the place cells decades ago. The
most prevalent mechanistic model of path integration and grid cells to date is
the Continuous Attractor Neural Network (CANN) model [10]. Recently, in a
normative approach, representations within Recurrent Neural Network (RNN)
models have shown emergent spatial profiles like grid cells when trained to path
integrate in a simulated two-dimensional environment [5], [29], [30]. Notably,
Sorscher et al. [5] showed a close relation to the CANN model by introducing
an interplay between grid cell and place cell representations. This interplay
is introduced by including an initial linear projection from place cells into the
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hidden state of the RNN (containing grid cells) and a linear readout from the
hidden state to place cells. However, whether this model, which we call the Con-
tinuous Attractor Recurrent Neural Network (CARNN) model, can incorporate
grid cell remapping due to place cell remapping remains unexplored.

In the present work, we extend the CARNN model to multiple environments
by introducing global remapping in the place cells. This perturbation aims to
show whether a minimal model of the grid- and place cell system can replicate
the remapping behaviour of grid cells observed in the brain [17]. Second, we
investigate the role of grid cells in path integration through pruning and mea-
suring path integration degradation. Importantly, the pruning effect on path
integration performance depends on which cells are pruned. Moreover, pruning
grid cells categorised with high Grid Cell Score (GCS) has comparable effects
on path integration as random pruning, as previously observed by Nayebi et
al. [31]. Pruning grid cells categorised as belonging to an ensemble collectively
encoding a torus, however, have detrimental effects on path integration. We in-
vestigate the extent of grid cell remapping with two complementary techniques;
First, by measuring and analyzing the orientations, scale, and phase statistics
of cells between environments, and second by applying recent dimensionality
reduction techniques [14]. Using these methods, we find a persistent toroidal
structure across environments. The neural responses setting up this structure
show stable orientation and spacing across environments and shift coherently in
phase. Our findings suggest that the model can find a general structure solving
the underlying task independently of the particular choice of place cell basis in
multiple environments. This is important because it points to a computation
that can be reused across environments. However, path integration performance
and the spatial profile of the recurrent cells decay as a function of training the
model in an increasing number of environments. Moreover, when the model is
trained in multiple environments consecutively, it catastrophically forgets pre-
vious environments. This suggests that this particular model of remapping is
insufficient to explain all aspects of biological grid cell remapping. Moreover, it
highlights fundamental issues with regard to continual learning and memoriza-
tion versus out-of-distribution generalization, providing a possible playground
for basic research on these essential topics of machine learning.

2 Results

2.1 Grid cells emerge during training for path integration
in multiple environments.

Several normative models of grid cells [5], [29], [30] using RNNs to solve a path
integration problem have recently been introduced. In path integration, an
agent is required to navigate by integrating an initial position and head direction
given a vector with a sequence of displacements as illustrated in fig. 1 c). Here,
we apply the model developed by Sorscher et al. to assess the performance
and activity profiles of recurrent cells when trained on multiple environments

4

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2022. ; https://doi.org/10.1101/2022.08.18.504379doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504379
http://creativecommons.org/licenses/by-nc-nd/4.0/


simultaneously. In this model, an agent is trained to determine its position in
the environment by the firing rates of a population of place cells with a Mexican
hat profile (fig. 1 b) and in this process, grid cells emerge in the recurrent layer.
The population firing rate of the place cells depends on (i) the position of the
agent as illustrated in fig. 1 c), and (ii) the configuration (placement) of the
place cells. In principle, the agent’s position can be uniquely determined by
triangulation from three place cells with infinite numerical precision. In practice,
however, more place cells may be needed to uniquely represent positions in
an environment and increase triangulation accuracy. Moreover, moving the
agent from one environment to another can be represented by changing the
place cell configuration so that a place cell in one environment corresponds
to a different position in another environment. This means that place cells
contain information on environment identities, the agent’s environment and
positions within environments. This way of representing environments allows
us to remap place cells and address the resulting grid cell remapping within a
single modelling framework.

Sorscher et al. [5] demonstrate that nodes in the RNN layer of the trained
model produce hexagonal firing field patterns during inference, similar to those
observed for grid cells in the MEC. We first assessed whether the model could
robustly solve path integration and develop grid cell profiles across different
environments. Secondly, we investigated whether the model could learn multi-
ple environments simultaneously and how this affected the spatial profile of the
recurrent cells. Finally, when training the model on multiple place cell config-
urations simultaneously, we assessed how sets of hexagonal firing fields across
environments coincided with training metrics (fig. 2).

On initialisation, all firing fields were random with maximal training metrics.
During training, we selected three time-points (t = 50, t = 420, and t = 1930) to
evaluate spatial profiles of cells that showed hexagonal firing fields at inference in
the fully trained model as measured by the GCS. Initially, the L2 regularization
loss decays strongly (fig. 2 b)), leading to increased prediction error (fig. 2 c)).
During the first optimisation phase, the L2-penalty of the recurrent weights
remains minimal while improving the decoding error. In doing so, however,
the Kullback-Leibler divergence (KL divergence) remains high, leaving both the
decoding error high (fig. 2 c)), and the spatial profile of the recurrent cells flat
and noisy. This can be seen in the first row of fig. 2 d), where the group of
four cells do not change significantly across environments and training time
snapshots. The beginning of the second phase, around epoch 420 marks a
substantial decrease in the total loss by allowing the L2-penalty to be lifted.
This phase coincides with the sudden emergence of periodic structures that, in
many cases, resemble grid cells in the firing fields of recurrent cells as shown in
fig. 2 d) the second row at t = 420. Finally, hexagonal firing fields emerge in
the recurrent layer after an exponential decrease and consecutive saturation in
prediction error (t = 1930) shown in fig. 2 c). This saturation characterises the
third training phase. Figure 2 a-c) shows that the optimiser still manages to
minimise the loss, refining the hexagonal structures as seen in fig. 2 d) third row
at t = 1930. The improvements in the model’s performance become comparably
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Figure 1: The Continuous Attractor Recurrent Neural Network
(CARNN) and global remapping. a) Three environments with identi-
cal geometry but different randomly distributed place cell centres. Circles with
numbers indicate the identity of a cell, and the figure shows how each cell is
remapped to other positions in the other environments. b) Spatial profile of a
place cell firing field given by a 1D cross-section of a 2D Mexican hat. c) An
example of a random path within an environment. The initial position is given
as the yellow dot. The red and orange lines define the hard and soft boundaries
of the environment, respectively. Arrows are added to the path to indicate the
agent’s current head direction and speed. The grey level indicates time, whereas
lighter grey corresponds to early steps in the trajectory. d) Schematic of the
model architecture following Sorscher et al. The initial position of the trajectory
x0 in place of cell representation p(x0) is linearly fed into the recurrent layer,
which sets the initial state of the RNN. The network updates its internal state
using a sequence of Euclidean velocity vectors {vt}t∈{1,2,...,T} and predicts sub-
sequent positions in a place cell representation p̂(x̂T ), through path integration.

small as the training has reached a saturated regime.
In summary, this shows that hexagonal grid structures emerge in the firing

fields of the recurrent nodes in the model as the model is optimised for accurate
path integration within three environments simultaneously. As they emerge,
the same nodes produce such grid structures across environments. Between
environments, the quality of the hexagonal pattern is different. One node can
achieve a high GCS in one environment while scoring notably lower values in
the other two.

6

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2022. ; https://doi.org/10.1101/2022.08.18.504379doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504379
http://creativecommons.org/licenses/by-nc-nd/4.0/


a)

b)

c)

Familiar 

Environment 2
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Figure 2: Training metrics and firing fields of selected neurons in the
recurrent layer of the model during training. a): KL divergence versus
training time t (in epochs) measuring the discrepancy between the predicted
and labelled place cell population activity. Optimally, this asymptotically ap-
proaches zero. b): L2 penalty of the weights during training. c): Distance be-
tween predicted and estimated true position in decoded Euclidean coordinates
during training. d): Firing fields of 4 selected neurons in the recurrent layer of
the model. Neurons were selected for highest GCS in (familiar) Environment 0,
1, 2 respectively. Unit 4 was selected randomly. Firing fields are shown at three
phases of training (i) initial t = 50, (ii) onset of exponential decrease t = 420,
(iii) saturation in decoding error t = 1930).
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2.2 Toroidal grid cells are crucial for path integration.

The emergence of grid cells seems closely related to solving the path integration
task given the training dynamics shown in fig. 2. To further study this question,
we performed multiple assessments, pruning different subsets of the recurrent
hidden cells while measuring path integration performance.

Following the methods of Gardner et al., we evaluated toroidal structures
as seen in fig. 3 a-b). Briefly, 36 non-noise clusters were identified using the
UMAP/DBSCAN clustering procedure [14]. Three clusters displayed a toroid-
like structure once subjected to PCA/UMAP dimensionality reduction. We
selected the cluster with the qualitatively best torus-like features across envi-
ronments. The cluster contained 315 cells. Figure 3 a-b) displays the low-
dimensional representation of the cluster’s spatially binned and averaged popu-
lation activity. Four distinct camera angles of the low-dimensional point cloud
for each pruning stage are displayed in fig. 3 b). Each point is shaded by the
value of the first principal component of the PCA dimensionality reduction.
Each point corresponds to a low-dimensional representation of the activity of
all 315 units at a particular spatial bin.

The network decoding error was evaluated at the 20th path integration step.
Pruning toroidal grid cells significantly deteriorates decoding error fig. 3 c), pro-
viding strong evidence that these cells are vital for path integration. Pruning
315 randomly or sorted by high GCS, on the other hand, has a substantially
smaller effect on the model’s capability to path integrate fig. 3 c). The ”Full
Model” in fig. 3 c) is the trained model with no pruning - showing the aver-
age best path integration error. The ”Full Untrained Model” in fig. 3 c) shows
the path integration of a model with randomly initialised weights (no training,
no pruning) - showing baseline average worst path integration error. For the
”Random Pruning”, ”High GCS Pruning”, and ”Random Torus Pruning”, the
recurrent units are pruned, either randomly or according to high GCS, or from
the cells that are assigned to the torus manifold. For example, pruning just
a few torus cells (e.g. 100 cells) has detrimental effects on the decoding error
(around 0.6) compared to random and high GCS pruning the same amount of
cells having almost negligible effects (up to around 0.1 decoding error for 100
cells) on path integration. Moreover, pruning more torus cells keeps degrading
the path integration performance. The manifold in fig. 3 a) persistently resem-
bles a twisted torus despite randomly pruning large numbers (20, 50 and 200)
of recurrent cells. When pruning more than 20 cells of the manifold in fig. 3 b),
however, the manifold degrades from a torus into a complex, less smooth man-
ifold. The degrading structural integrity of the toroid follows the degradation
in the ability to path integrate.
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Figure 3: Toroidal grid cells are crucial for path integration while grid
score selected cells are less important similar to randomly selected
cells. a) Low-dimensional projection of 315 toroidal grid cells in three stages of
pruning random cells. Each stage shows the manifold at four different viewing
angles. b): Same as a) but with pruning of toroidal grid cells. c): Decoding
error as a function of pruning.
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2.3 Toroidal grid cells are stable across environments and
show biologically plausible coherent phase remapping

As observed in fig. 2, cells seemingly change their representation across envi-
ronments. Experimentally, grid cells remap when place cells globally remap.
Grid cell remapping is characterised by a change in spatial phase and orien-
tation while the spatial frequency remains stable. This frequency is inversely
related to the spacing between grid points in their rate maps. Experimental
observations of grid cells in different environments show coherent remapping,
which may be quantified [17]. The model explores three geometrically iden-
tical environments with uniquely sampled uniform random place cell centres.
This creates a natural test bed for the remapping behaviour of the cells in the
CARNN model resembling grid cells.

We hypothesised that if cells with hexagonal firing fields performed coherent
remapping across environments, we would be able to quantify this in the distri-
bution of pairwise shifts in the orientation, spacing, and phase. To verify this,
we simulated synthetic grid cells as the superposition of three plane waves of 60
degrees relative directional shift [32] as shown in fig. 4. Synthetic grid cells are
parameterised by orientation, spacing and shift, which we altered in different
ways to highlight remapping phenomenons. We created three synthetic grid cell
modules. Each module has the same spacing (corresponding to the average of
the experimental cells). Modules 0 and 2 were made to have coherent orienta-
tions, but module 2 is reoriented 40 degrees to module 0. Module 1 has cells
with randomly sampled orientations (at the full 360 degrees). Module 0 and 2
have phases random uniformly sampled in the unit (Wigner-Seitz) cell, while
module 1 copies the phases from module 0. Module 1 also includes a coherent
phase shift (0.25 of the pattern period in both cardinal directions) relative to
the other two modules. The shift in spacing between modules is centred at
zero, and the distributions are narrow, which is expected from coherent zero
remapping. The shifts in orientation show one narrow and two broad distribu-
tions. The narrow peak shows a coherent non-zero remapping between module
0 and 2. Because module 1 has random orientations, remapping becomes inco-
herent (broad) relative to modules 0 and 2. Remapping from modules 0 and 1
expresses a prominent peak at (0.25, 0.25), indicating a coherent remapping as
expected because they share the same sampled phases. Conversely, remapping
relative to module 2 shows a washed-out distribution, representing an incoherent
remapping.

With the analysis of the synthetic remapping at hand, we can analyse the
population of cells with grid cell-like properties in the CARNN model across
environments. We assess whether random global place cell remapping can cause
biologically plausible remapping in grid cells when the model transitions from
one environment to another. Following the methods of Gardner et al., we eval-
uated toroidal structures across environments as seen in fig. 5. Notably, the
global, toroid-like structure persists across all environments. Visual inspection
of a subset of toroidal grid cells showed that the ratemaps changed across envi-
ronments (fig. 5 a)). Figure 5 b) displays the low-dimensional representation of

10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2022. ; https://doi.org/10.1101/2022.08.18.504379doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504379
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 0 2
Orientation Shifts [rad]

0

1

2

D
e
n
si

ty

0 1

0 2

1 2

1 0 1
Spacing Shift [m]

0

10

20

30

40
D

e
n
si

ty

0 1

0 2

1 2

0.5 0.0 0.5

0.5

0.0

0.5

0 1

0.5 0.0 0.5

0.5

0.0

0.5

0 2

0.5 0.0 0.5

0.5

0.0

0.5

1 2

0.0 0.5 1.0
Phase shift [m]

0

2

4

6

D
is

tr
ib

u
ti

o
n

0 1

0 2

1 2

a) b) c)

d)

Figure 4: Remapping hypothesis from synthetic grid cells. a) Distribu-
tion of shifts in spacing between modules. b) Distribution of shifts in orientation
between modules. c) Distribution of shifts in 1D phase (magnitude) between
modules. d) Distribution of shifts in 2D phase between modules.

the spatially binned and averaged population activity. For each environment,
four distinct camera angles of the low-dimensional point cloud are displayed in
fig. 5 b). The torus’s persistence indicates this cell ensemble’s general func-
tional role across environments. This persistence requires that cells have co-
herent remapping or no spacing, orientation, and phase remapping. Incoherent
remapping of phase, however, would break local neighbourhood relations while
still being perceived as a torus. We thus continued to analyse these cells for
remapping. In fig. 5 c) and d), we see two unimodal, relatively narrow distribu-
tions centred around zero for both shifts in spacing and orientation. This shows
coherent zero remapping of spacing and orientation between environments. For
the phases, however, the distributions have peaks at non-zero with a relatively
unimodal and narrow distribution, as seen in fig. 5 e) and d). This shows that
the toroidal structure is persistent across environments with coherent non-zero
phase remapping.
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Figure 5: Toroidal grid cells are stable and coherently phase-remap
across environments. a) Ratemaps of toroidal grid cells in three environ-
ments. b) Low-dimensional projection of toroidal grid cells in three environ-
ments. Each environment shows the manifold at four different viewing angles.
c) Distributions of spacing, orientation and phase shifts across environments.
d) 2D phase shift (including direction).
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2.4 Many environments and continual learning degrades
pattern formation and training metrics

The common structure observed across environments in the multi-learning set-
ting suggests that the model has learned a general structure that is used across
environments. Experimentally, we know that rats can encode and navigate in
many (eleven) environments [33], despite place cell ensembles having orthogonal
representations. However, in deep learning models continual learning is a com-
mon issue [34], due to catastrophic forgetting. The natural question is, thus,
whether this structure can persist if we (i) increase the number of environments
or (ii) if new environments are given to the model continually. To investigate
the model’s ability to generalise, we first trained the model with an increasing
number of environments, as shown in fig. 6. In fig. 6 a), we see that an example
cell exhibits smooth and clear spatial tuning for one and three environments.
For 10 and 50 environments, however, the spatial tuning becomes noisy and
washed out. We confirm our intuition with the training metrics shown in fig. 6
b). Here, we see that the training metrics of the model trained in three en-
vironments simultaneously have a similar functional form but are delayed in
training time. The models are trained for a number of epochs proportional to
the number of environments required to learn. However, the 10 and 50 environ-
ment models are unable to reach the same levels in KL divergence and decoding
error, despite every model having comparable training times. Moreover, the 50
environment model shows clear signs of saturation, indicating that more train-
ing will not considerably improve training metrics. In summary, the model can
learn to navigate multiple environments but does not generalise to arbitrary
many environments.

While the model shows signs of deteriorating when learning many environ-
ments simultaneously, we hypothesised that this could be a result of how the
model is trained. Animals learn multiple environments sequentially by visiting
one after another. This procedure may help the model to reuse and generalise
previously found structures rather than having to find general structures across
all environments simultaneously. Figure 7 shows the training metrics and the
spatial tuning of selected recurrent cells of the model when continually learning
multiple environments. In fig. 7 a), the model achieves low KL divergence val-
ues in a familiar environment after 1000 epochs. However, when the model is
moved to a novel environment, the KL divergence resets to high values. More-
over, during training in one environment, the model degrades when evaluated in
another novel environment. However, the peak after continually learning three
environments seems to decay slightly. Finally, the model seems to saturate more
rapidly when learning new environments. Interestingly, fig. 7 b) shows that the
L2-penalty increases after being introduced to new environments, followed by
a smooth reduction. This is the inverse process to learning the first environ-
ment, where the L2-penalty has a large and sharp drop. Notably, the L2-penalty
shows that the connectivity of the recurrent cells, and hence the recurrent cells
themselves, changes while learning new environments. This indicates that these
cells do not directly generalise across environments. The decoding error, as seen
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Figure 6: a) shows high grid score example cells from the recurrent layer of
the model trained in one (default), three (3ME), ten (10ME) and fifty (50ME)
environments. b) displays the KL divergence, decoding error and l2-penalty
training metrics for the models, where training time is given in log-scale.

in fig. 7 c), shows a similar development as the KL divergence in fig. 7 a), but
with sharper saturation. In addition, the decoding error in a novel environment
seems reasonably stable, with a slightly decreasing slope while learning multi-
ple environments continually. Finally, in fig. 7 d), we see the ratemaps of four
selected recurrent units of the model at the end of learning each environment.
The cells are selected such that the upper-left cell (in blocks of four) has high
GCS in Environment 0, the upper-right cell has high GCS in Environment 1,
the bottom-left cell has high GCS in Environment 2. The fourth cell is chosen
at random. From the first row (t = 990), we see that the recurrent cells are
spatially pronounced in the environment they are trained in (Environment 0).
In contrast to that, the ratemaps in novel environments (Environment 1 and
Environment 2) appear washed out and noisy. In the second row (t = 1990), it
is clear that the spatial tuning has completely changed when the cells are eval-
uated in the previously learned environment (Environment 0). While we have
already seen that the spatial profile of cells can change between environments,
as shown in fig. 2, these ratemap changes are incoherent. In the newly learned
environment (Environment 1), however, the cells again show a pronounced spa-
tial tuning. In the still unvisited environment, the cells continue not to show a
clear spatial tuning. Finally, in the third row (t = 2990), we again see that the
cells in Environment 0, but also now in Environment 1 show faint spatial tuning.
In the newly learned environment (Environment 2), however, the ratemaps are
characterised by a clearly tuned spatial profile.

In summary, the model is not able to learn many environments simultane-
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Figure 7: Sequentially training the model in multiple environments allows the
model to adapt to new environments.

ously nor multiple environments continually. Moreover, despite learning mul-
tiple environments, the model does not show clear signs of out-of-distribution
(novel environments) generalisation. This relatively simplistic modelling setup
thus provides an interesting entry for investigating this type of generalisation
and may provide important insights into future studies.

3 Discussion and conclusion

The impact of grid cells on path integration remains elusive, and seems out-
of-scope using today’s experimental techniques. We evaluate this relationship
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by considering models where grid cells emerge as a consequence of solving path
integration. In this paper, we study the model introduced by Sorscher et al. [5]
in multiple environments with identical geometries (square box) while globally
remapping place cells. During optimisation, spatially hexagonal grid patterns
in recurrent nodes emerge and are refined simultaneously as the loss decreases
towards asymptotic minima. These patterns are similar to those of grid cells in
the rodent brain. The model shows a clear correlation between solving path in-
tegration and the emergence of hexagonal grids, even in multiple environments.
This relation suggests that grid cells may be a necessity for optimally solving
path integration.

There is a converging understanding in neuroscience that functionality is
encoded in ensembles of cells [14], [35], rather than in single cells. In this work
we therefore assess the function of toroidal grid cells as found by [14]. When
pruning toroidal cells, path integration deteriorates, indicating that the associ-
ated patterns are necessary for optimal path integration. While the variation
in decoding error when pruning random cells is much higher than GCS, the
average is quite similar. This value shows that cells with high GCS are equally
important for path integration as random cells, confirming results from [31]. Ex-
citingly, however, there is a stark difference between pruning cells belonging to
the torus compared to random pruning and pruning of cells with high GCS. In
particular, the decoding error substantially increases when pruning torus cells.
Pruning all 315 torus cells leaves the decoding error at comparable levels as the
untrained (guess) network. In other words, these cells are vital for the model
to do path integration.

Natural grid cells change their spatial profile between environments while
retaining similar patterns by remapping coherently in phase and orientation.
These attributes allow for comparing experimental grid cells with grid-like cells
in the CARNN. After training the model in multiple environments simulta-
neously, we observe that the spatial tuning of the cells also changes between
environments. To quantify remapping in the CARNN we first synthesise and
assess idealised grid cells with idealised (in)coherent (zero-)remapping. Further-
more, because experimental remapping of grid cells is coherent in a population
(module), we search for selected cells that encode a persistent toroidal structure
across environments. We find that these selected recurrent units remap coher-
ently between environments. In particular, this coherent remapping is zero in
spacing, zero in orientation, and non-zero in phase. These results show that
grid-like cells in the CARNN are similar to natural grid cells regarding remap-
ping in phase and spacing but not in orientation.

The zero remapping in orientation might seem to limit the explanatory power
of the CARNN model for biological systems, but we argue that the model still
has important implications. Purely translational grid cell remapping has been
reported in experimental studies. In particular, [36] found that non-geometric,
contextual manipulations of an environment resulted in pure phase remapping.
Their experimental protocol followed Anderson et al., where either the colour
or the odour of the environment was varied, inducing partial place cell remap-
ping. Moreover, the CARNN model path integrates its current state (agent
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pose estimate in cell population activity space) with Cartesian velocities similar
to CANNs [10]. Coherent remapping of orientation (and scale) can be directly
manipulated by rotating the cardinal axes of the incoming Cartesian velocity
signal. This process can be interpreted as either (i) a rotation of physical space
or (ii) a rotation of the perception of physical space. The head direction cir-
cuit found in the subiculum [38] provides the biological neural equivalent to
the cardinal axes of the Cartesian velocity input signal to the CARNN model.
Experimentally, the head direction circuitry has been shown to be anchored to
distal cues, retaining its internal cardinal axes when an environment is rotated
[39]. With these perspectives combined, we are tempted to speculate that orien-
tation remapping in natural grid cells is driven by a remapping in head direction
circuitry e.g., in the dorsal presubiculum [40]. Moreover, given that the shift in
orientation in the CARNN model is coherent, we would expect that rotating the
cardinal axes relative to a fixed environment would induce a coherent remap-
ping in grid cells with magnitude given by the degree of rotation. The biological
plausibility of the orientation-remapping result could be better revealed by an
experiment which can distinguish between head direction remapping and grid
cells remapping.

Mechanisms underlying global remapping in natural grid cells have yet to
be determined. Therefore, it is interesting to study how the remapping of place
cells may influence grid cell remapping. In particular because place cells appear
before grid cells in prenatal rats [25], [26] and place cell remapping can occur
during silencing of MEC activity [28]. Moreover, it is yet to be shown (to our
knowledge) that global remapping in place cells can occur independently of
global remapping in grid cells. Models of emergent grid cell remapping are also
falsifiable because they have several testable properties such as coherent changes
in phase, spacing and orientation. In another line of thought, contextual input
from Lateral Entorhinal Cortex (LEC) has been hypothesised to drive place cell
remapping. With e.g. TEM [41], TEM-t [42], and the Context Gating (CG)
model [21], context information binds with spatial information carried by the
grid cells in MEC to form place cells in the Hippocampus. Here, remapping is
seen as a consequence of manipulating the upstream context cells and grid cells.
However, this context binding allows place cells to remap independently of grid
cell remapping. Therefore, experiments with large cell counts and preferably
combined measurements in CA1, LEC, and MEC during remapping can bring
novel insights and improve models of these systems.

When the CARNN model is forced to learn many environments, training
metrics deteriorate, and recurrent cell spatial tuning degrades. Further, the
model cannot learn multiple environments continually due to catastrophic for-
getting. This essentially points towards two axes of possible future research (i)
finding an alternative place cell remapping that does not conflict with global
place cell remapping as observed in experiments, or (ii) that the brain may in-
clude additional functionality for mapping place cell activities to and from grid
cell activities. More concretely, this mechanism may provide a form of permu-
tation invariance that maps place cell permutations to grid cell phase shifts.
Intriguingly, suppose the biological mechanism of grid cell remapping is proven
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to be global random place cell remapping. In that case, the results presented
here indicate that such biological systems require some form of permutation
invariance. Computationally, this may also provide mechanisms for generalising
the model to learn many environments, either simultaneously or continually.
One final discrepancy between the CARNN model and the biological system
is that the model optimiser only finds approximations to a local optimum in a
complex loss landscape in a vast parameter space. On the other hand, one may
argue that the biological system is optimal. Consequently, the CARNN model
and place cell global remapping may be correctly modelled, but the system has
not reached the solution that remaps in a manner that is consistent with the
biological system. However, this explanation seems relatively weak, as it means
that the biological system has found a very unlikely optimum across all test
subjects in experiments.

The CARNN model has a strong link to CANN models as shown by Sorscher
et al. An important distinction between the CANN and the CARNN, however,
is that the CARNN allows for relating the recurrent state to absolute positions
in space. This is possible for two reasons (i) because the place cell ensemble
activity is determined by a Cartesian position which initialises (through a linear
transform) the state of the RNN in the CARNN, and (ii) because of a linear
decoding layer from the recurrent state that predicts the activity of an ensemble
of place cells. This added mechanism creates a direct and recurrent connection
between place and grid cells. In this interaction, one of the roles of the place
cells is to (re)initialise the population activity of the grid cells. Suppose the
low-dimensional projection of the grid cell population activity maps a persistent
(twisted) torus, and the place cells initialise the population activity of the grid
cell ensemble. In that case, place cells initialise a point on (or near, in the case
of an attractor) the torus. This is equivalent to a coherent phase shift in the rate
maps of the grid cells. Whether or not the place cells have such a functional role
on the activity of a grid cell population in the CARNN can be investigated by (i)
finding a persistent torus across environments (which can be further confirmed
with coherent (zero) remapping in orientation and scale), and (ii) finding the
initial state on the torus, or finding coherent remapping of phase.

When analysing the spacing of cells with high grid score we could not find
multiple modules; see Sup. A. This finding contradicts the work from Banino
et al., Sorscher et al. Given that the grid cells follow directly from the place
cell input, it is reasonable that the grid cells follow a scaling given by the place
cells, elaborated in [15]. Reintroducing multiple scales to the CARNN model
will provide an exciting additional level of remapping investigation. In particu-
lar, to see whether different grid modules are reused and remapped coherently
between environments. These multiple scales would provide more examples and
further establish whether remapping place cells cause coherent grid cell remap-
ping across scales. Moreover, this could provide model predictions on how grid
modules remap about each other. These predictions would consequently be
fascinating to confirm or dispute with new experiments.
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4 Methods

In this work we reimplement the CARNN model [5] as closely as possible. The
first goal is to perturb the CARNN with global place cell remapping while
studying the emergent remapping of grid cells. The second goal is to investigate
the importance of different cell types on path integration performance. In this
section, we summarise the CARNN, the dataset and the training. Following,
we introduce the remapping experiment and how we investigate the network
behaviour in multiple environments. Finally, we describe the pruning method.

4.1 Generating the dataset trajectories — a random walk

The dataset used to train and test the model is generated by a random walk in
a square box, similar to the random walk used in [5]. In brief, the walk’s initial
position and head direction are random uniformly sampled within the square box
and all 360 degrees. The consecutive positions in the walk are a cumulative sum
(discrete integration) of the initial position with generated cartesian velocities.
The velocities are created from i.i.d sampling speed and turn at each discrete
time step. The speeds are sampled from a Rayleigh distribution with scale
parameter set to b = 2·0.13π. The turns are sampled from a normal distribution
with mean at the head direction from the previous time step and standard
deviation set to σ = 2 · 5.76. The integration time constant is set to τ = 0.02.

The environment has soft boundaries with margins of 0.03 to the chosen
box size. When the agent is in the soft boundary, the speed is reduced to 75%.
The random walk is corrected when the agent is outside the soft boundary and
facing toward a wall. This correction is brutal and twists the head 90 degrees
instantaneously towards the nearest inward direction of the box. The agent can
technically walk beyond the defined box size, but this is unlikely because of the
speed regulation. An example of the square arena with rigid boundaries (red),
soft boundaries (orange) and the random walk at the initial position (yellow
dot) is provided in fig. 1 c). Note the sharp turns when the agent is interacting
with the walls.

We also created a smoother boundary interaction method for investigating
how the inferred dataset affected the spatial tuning of the recurrent cells. This
smooth boundary interaction maximally walks half the distance to the intercep-
tion between the current head direction and the incoming wall. The agent also
smoothly turns away from the wall by using the absolute of the sampled turn
signed by the closest escape direction. No empirical differences were observed in
the spatial tuning of the cells to this alternative boundary interacting random
walk, and these approaches were therefore not pursued further.

4.2 Positions in place cell basis

The initial position to the RNN, the position estimate of the model, and the
training targets are encoded in place-cell-coordinates [5]. Each place cell is a
radial basis function with centres random uniformly sampled within the square
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box. Their tuning curve has a Mexican hat shape, as shown in fig. 1 b). The
model is trained using a cross-entropy loss function which measures the discrep-
ancy between two distributions. Therefore, the place cell ensemble activities are
shifted and scaled to be positive everywhere and sum to one. Place cell activity
is modelled as

pi(x) = σ

(
−∥x− ri∥22

2s21

)
− σ

(
−∥x− ri∥22

2s22

)
(1)

where s1 = 0.12 and s2 = 2s1 are free parameters shared across all place cells,
setting the spatial width of the place cell tuning curve. ri ∈ R2 is the cartesian
center of place cell i, x ∈ R2 is the current cartesian position of the agent, and
σ denotes the softmax function.

The position in place cell basis forms the target of the model. These targets
are almost a uniform distribution because the ensemble activity is shifted by the
minimum of the Mexican hat function. In contrast to, e.g., image classification,
the minimum of the cross entropy loss function will not be at zero because the
entropy of the labels is non-zero. Instead, the minimum is at the entropy, which
is high because the label distribution is close to a uniform distribution.

Decoding place cell position to Cartesian position is done using the average
distance to each of the top k (=3) active place cell centres (triangulation). This,
moreover, ignores the strength of the place cell activities and thus creates a small
decoding error.

4.3 The model

The model consists of an initial position in place cell basis, which is linearly
projected into the initial state of a simple recurrent neural network. For each
time step in the RNN, the network receives a 2d cartesian velocity. The following
time steps are linearly transformed to the output, which is also endowed with
a softmax transformation during training. Each output predicts subsequent
positions in the path integrated random walk from the initial position in place
cell basis. The model may also be viewed as an autoregressive model where the
outputs depend on the previous states and a stochastic term, i.e., the randomly
sampled velocities. One path integration step of the model may be summarised
as

p̂
1
= WP g

(
WRWIp(x0) +WV v1

)
(2)

where WP ,WR,WI ∈ RNp×Ng ,RNg×Ng ,RNg×Np and WV ∈ RNg×2 are trainable
matrices between the recurrent and predicted next place cell states, the recurrent
states, the initial place cell to recurrent cell state and the cartesian velocities
onto the grid state, respectively. p(x0) ∈ RNp is the ensemble activity of the

place cells in some initial cartesian position. v1 ∈ R2 is a cartesian velocity input
to be path integrated by the model. g(·) is a non-polynomial activation function.
Finally, p̂

1
is the predicted next state of the place cell ensemble activity. For

subsequent integration steps in a trajectory, the initial state WIp(x0) is replaced
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by the state of the recurrent cells from the previous step. All models in this
work are trained on trajectories with 20 path integration steps.

4.4 The training objective

Each integrated position in the random walk is also encoded in place cell basis.
These positions form the self-supervised, autoregressive targets of the model.
Together with the predictions from the network, the learning objective (as in
Sorscher et al. [5]) can be formulated as

L = LCE + LL2 with

LCE = −
N∑
i=1

p (xi) ln p̂i and

LL2 = −λ
∑
i∈IW

∥W i
R∥2 .

(3)

where p (xi), see Equation 1, encode the place cell ensemble activity of each
position xi in the path integrated random walk. p̂

i
is the CARNN model path

integrated place cell ensemble activity prediction, as described in Equation 2.
Finally, the LL2 = 10−4 defines the L2-penalty on the recurrent weights of the
model, where the λ is a freely chosen scaling parameter.

We formulate and use the Cross Entropy (CE) as a training objective, but
we interpret and think of the training objective as the KL divergence. The
difference is that the KL divergence includes the entropy of the label distribu-
tion. However, because the labels are constant, the gradient of the loss with
respect to the model weights removes the label entropy. Thus, the change in
ackl divergence is equivalent to the change in CE. Consequently, with respect
to gradient-based training, the KL divergence divergence and CE provide the
same information and it becomes unnecessary to compute the entropy. Since
interpreting training convergence is easier when the optimum of the loss is at
zero, the CE can be shifted by the the constant entropy value for visualisation.
For this reason, we define the loss in terms of CE, but interpreting it as the
KL divergence divergence.

4.5 Miscellaneous training details

As close as possible, free parameters are set following Sorscher et al. The model
is trained using the adam optimiser [44]. The learning rate and the L2-penalty
are set to 10−4. A training trajectory includes 20 path integration steps. Each
training mini-batch consists of 200 trajectories. The model dimensions are Ng =
4096 recurrent cells, and Np = 512 place cells.

4.6 Multiple environments

Every environment modelled in this work has identical geometry. Different
environments are modelled by place cell positions, ri in Equation 1. In an ex-
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periment, the model trains on 20 million trajectories. When the model is trained
to learn multiple environments, e.g. three, the model is trained on 60 million
trajectories, 20 million trajectories in each environment. These trajectories are
uniformly distributed in the mini-batches across environments when the model
is trained in multiple environments simultaneously. When the model is trained
sequentially, all 20 million trajectories from one environment are presented (with
stochastic gradient descent), then 20 million trajectories are presented from the
new environment, et cetera.

4.7 Pruning

Pruning refers to and is done by effectively removing specific units in the neural
network architecture. This is primarily interesting for trained networks; other-
wise, it essentially constitutes another (smaller) network architecture. In this
work, we limit pruning to the recurrent units of the network after training. In
practice, we prune a unit by selecting and setting all weights (connections) to
and from that unit to zero. For a recurrent unit, this includes the recurrent
outgoing and incoming connections and the velocity input connections to that
unit.

There are 60 uniform steps for each graph in the pruning plot. Each step
prunes an additional 315/60 ≈ 5 cells. There are two elements of stochasticity
when evaluating the effects of pruning (i) resampling (path integration) trajec-
tories and (ii) randomly (without replacement) adding new units to prune from
the previous step. We ran the experiment (random sampling pruning and tra-
jectories) 30 times to calculate error shading for the graphs in the pruning plot.
Interestingly, there is quite a lot of variability in path integration degradation
in the random pruning, including a few outliers. Investigating such cells further
is a possible exciting future axis of research. Nevertheless, for a truer picture
of the distribution errors in pruning against decoding error, we calculate and
plot the median +- the mean absolute deviation (MAD). This measure is less
sensitive to outliers and, therefore, shows more clearly the error density.

4.8 Synthetic grid gells

We model idealised grid cells to validate and hypothesise on the statistical meth-
ods for investigating grid cell remapping. We follow Solstad et al. [32] and gen-
erate grid cells through constructive and destructive interference of three plane
waves oriented at 60 degrees to one another. Identical to the activation func-
tion of the CARNN as described in Equation 2, the synthetic grid cell rates also
undergo a rectified activation function. Concretely, a grid cell is modelled as

gi(r) = max

 2∑
j=0

cos

(
Rj·60ex ·

(
2πf√
3/2

RIr − r0

))
, 0

 (4)

where r, r0 ∈ R2 are two 2D cartesian spatial positions, the first encodes the cur-
rent position of the agent, and the latter is a free parameter for phase-offsetting
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the grid cell pattern, respectively. Rθ, Ri·60 ∈ SO(2) are two-dimensional ro-
tational matrices rotating the pattern (each plane vector direction) by a free
angle θ, and the plane waves with 60 degrees to one another, respectively. ex
denotes the unit vector in x-direction. The spatial frequency f of the pattern
is also freely chosen. Finally, the scale

√
3/2 allows the user of the formula

to intuitively set the scale of the generating pattern with respect to the unit
(Wigner-Seitz) cell, i.e. the phase-period.

Using this formula (Equation 4), we can easily create a grid module – a set
of grid cells. We can, for example, design a grid module following experimental
grid modules. In particular, each grid cell has a common orientation-offset and
scale. Finally, experimentally, we know that grid cells have different phases
in a module. However, the specific distribution of phases grid cells follow is
unknown. The arguable most intuitive distribution that grid cell phases follow
is a uniform distribution because we do not expect a bias of spatial phases
anywhere in space. One crucial detail is to sample the unit (Wigner-Seitz) cell,
which defines the periodicity of the pattern.

On the other hand, we can also choose free parameters not following quan-
tities observed experimentally. This allows us to model counterfactual grid
modules and remapping. In other words, we can hypothesise what to expect if
grid cells behaved differently. We show examples of counterfactual grid modules
and remapping in fig. 4.

4.9 Cell statistics

Ratemaps are created by synchronously binning agent positions with cell
activities. Positions are given by a set of simulated trajectories, while the model
unit activities give cell activities. Trajectory length is the same in inference as
for training.

Grid score is calculated following Banino et al. [29]. It can be described in
three steps (i) by 2d spatially autocorrelating a ratemap, (ii) using an annulus
mask to remove the centre peak and edges of the autocorrelogram, and lastly,
(iii) autocorrelating with 60 and 90 degrees rotations. High 60-degree corre-
lations and low 90-degree correlations yield high grid scores. In other words,
grid score assigns high values to ratemaps with 60-degree symmetries (triangu-
lar, and thus also, hexagonal patterns) and low scores to 90-degree symmetries
(square grid patterns).

Recovering grid orientation from the ratemap of a cell is done in a few
steps. First, we find peaks in the autocorrelogram. Then, we robustly select
the closest isodistant peaks from the centre of the autocorrelogram. We start
by sorting each peak by the distance to the centre and subsequently search-
ing for outliers. Outliers are defined as peak-distance differences larger than
two times the standard deviation of the mean peak-distance difference. After-
wards, the angles of the peaks relative to the cardinal axes of the environment
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are computed and sorted. We then select the smallest angle (in idealised grid
cells, five consecutive angles follow in 60 degree increments), which defines the
statistically recovered orientation of the cell.

Recovering grid scale is defined as the median of the nearest isodistant
peaks in the ratemap autocorrelogram.

Recovering grid phase is implemented to find the closest peak to the centre
of the environment. This defines the phase of the pattern. In other words, the
pattern has zero-phase when it peaks at the centre of the box.

Differences in pattern statistics in orientation and scale between a cell in
two environments can and are calculated as differences directly. However, the
difference between the phases of the cells in two environments is not directly
comparable because it depends on a zero-orientation difference to be valid. Here,
we calculate a cell’s orientation and phase separately in both environments.
Then, the phases are inversely rotated to this orientation, aligning the cardinal
axes of the two phases. Finally, the difference between these rotated phases
defines the phase-shift of the cell between two environments.

4.10 Clustering and grid module identification

To investigate whether the hidden state representations of the trained network
self-organised into grid-cell-like modules of units, we employed the clustering
procedure proposed by Gardner et al. [14]. The hidden state activations were
spatially binned for each unit in the network and averaged into 15 × 15 bin
ratemaps. Activities were generated by running the network on a set of 5000,
21-timestep trajectories. For ratemap computations, only the last ten timesteps
were included. For every ratemap, a corresponding autocorrelogram was com-
puted. The centre peak of the autocorrelogram, as well as the outermost region,
was removed, leaving an annulus. Each annulus was then z-standardized across
spatial bins and flattened into a single vector. The flattened correlation vectors
of all units were then stacked into a matrix, with each column consisting of the
standardised autocorrelations of all units at a particular spatial bin. We then
applied UMAP [45] to this matrix, reducing the number of features to two. Clus-
tering using DBSCAN [46] was then performed on the resulting 2D point cloud.
All clusters containing more than six units were then subjected to the PCA +
UMAP dimensionality procedure. Following, we select the representations that
consistently appear toroid-like across environments.
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A Supplementary information

Similar to the remapping statistics of toroidal cells (fig. 5), fig. 8 displays the
remapping statistics of high grid score cells between all environments (panel
c-d) ). Also, these cells show shift statistics with coherent zero-remapping in
both, spacing and orientation. Moreover, the phases appear to be coherent as
well. Between environment Environment 0 and Environment 1, the phase shift
appears to be close to zero, whereas phase shifts with respect to environment
Environment 2 are clearly offside from zero. In the latter cases (fig. 8 d) 0 → 2,
1 → 2), two distinct peaks are identifiable, contradicting coherence in remap-
ping. However, we want to point out that this might also be a symmetry-related
artefact as both peaks appear close to the spatial period of the grid cell lattice.
In contrast to toroidal cells, however, we see in fig. 8 b) that the ensemble of high
grid score cells does not collectively encode a (twisted) torus. Nor is the latent
manifold smooth, but appears rather ragged and complexly shaped. Arguably,
this may reflect that high grid score cells do not necessarily have the symmet-
ric properties that yield setting up a smooth persistent toroidal structure in the
model’s latent phase space. For example, viewing the fourth ratemap in the first
row of fig. 8, we see that the pattern is triangular (especially in Environment 1
and Environment 2) with only three clear peaks as opposed to hexagonal as in
the first ratemap of the first row. Therefore, the fourth ratemap appears to lack
periodicity in the pattern, only showing a subset of the full hexagonal lattice.

Figure 9 shows the distribution of orientation, spacing and phases of toroidal
cells and high grid score cells. This contrasts the remapping statistics, which
show the differences in these quantities between environments. Notably, as also
found and elaborated in [15], we do not find multiple peaks in cell spacing, which
means the model does not produce multiple grid modules, which contradicts the
results reported in [43].

For transparency and convenience, Figure 10-12 shows the ratemaps of more
than half of randomly selected recurrent cells in the model across environments.
Interestingly, we see a wide range of cells with different spatial responses within
and across environments.
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d)

c)

Environment 2Environment 1Environment 0

b)

a)

Figure 8: Cells with high grid score statistics across environments.
a) Ratemaps of cells with high grid score across (intersection) all three envi-
ronments. b) Low-dimensional projection of the cell population. c) Spacing,
orientation and phase shift statistics, i.e. remapping. d) Distribution of shifts
in 2D phase between modules.
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Figure 9: Absolute cell statistics for toroidal and high grid score cells.
a) and d) Recovered orientation distribution. b) and e) Recovered spacing dis-
tribution. c) and f) Recovered 2d-phase distribution.
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Figure 10: 2052 ratemap examples from familiar environment Envi-
ronment 0. Each ratemap in a given position is comparable to the ratemaps
from familiar environment Environment 1 (fig. 11) and Environment 2 (fig. 12)
(identical cells, different environment).
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Figure 11: 2052 ratemap examples from familiar environment Envi-
ronment 1. Each ratemap in a given position is comparable to the ratemaps
from familiar environment Environment 0 (fig. 10) and Environment 1 (fig. 12)
(identical cells, different environment).
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Figure 12: 2052 ratemap examples from familiar environment Envi-
ronment 2. Each ratemap in a given position is comparable to the ratemaps
from familiar environment Environment 0 (fig. 10) and Environment 1 (fig. 11)
(identical cells, different environment).
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