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Working memory is the ability to briefly remember and manipulate
information after it becomes unavailable to the senses. The mecha-
nisms supporting working memory coding in the primate brain remain
controversial. Here we demonstrate that microcircuits in layers 2/3 of
the primate lateral prefrontal cortex dynamically represent memory
content in a naturalistic task through sequential activation of single
neurons. We simultaneously recorded the activity of hundreds of
neurons in the lateral prefrontal cortex of macaque monkeys during
a naturalistic visuospatial working memory task set in a virtual envi-
ronment. We found that the sequential activation of single neurons
encoded trajectories to target locations held in working memory. Neu-
ral sequences were not a mere successive activation of cells with
memory fields at specific spatial locations, but an abstract represen-
tation of the subject’s trajectory to the target. Neural sequences were
less correlated to target trajectories during perception and were not
found during working memory tasks lacking the spatiotemporal struc-
ture of the naturalistic task. Finally, ketamine administration distorted
neural sequences, selectively decreasing working memory perfor-
mance. Our results indicate that neurons in the lateral prefrontal
cortex causally encode working memory in naturalistic conditions via
complex and temporally precise activation patterns.

Introduction

Working memory is the ability to briefly maintain and manipu-
late information ‘in mind’ to achieve a current goal (Baddeley,
1986; Baddeley, 2003). Brain circuits supporting working
memory differ from those for sensory processing in that they
must represent precise information in naturalistic contexts in
the absence of sensory inputs (Goldman-Rakic, 1990; Arnsten,
Wang, & Paspalas, 2012; Wang, 2021; Roussy et al., 2021a).
They also differ from long-term memory circuits in that the
information is only maintained for short time intervals - just
long enough to complete a specific task. Despite five decades
of study, the neural mechanisms underlying working memory
remain controversial.

The primate lateral prefrontal cortex (LPFC) has been
widely implicated in working memory function as evidenced
by previous lesion and electrophysiological studies in macaque
monkeys (Curtis & D’esposito, 2004; Constantinidis., et al.,
2018; Leavitt et al., 2017a; Pasternak et al., 2015). A long-
supported mechanism for coding of working memory represen-
tations in LPFC of primates during delayed response tasks is
persistent firing in single neurons selective for the memorized

information (Fuster & Alexander, 1971; Constantinidis., et
al., 2018). During such tasks, subjects must remember the
location or features of a sample item for a few seconds after its
disappearance, and then produce a behavioral response, e.g.,
a saccade to a remembered location. However, most delayed
response tasks used to explore the neural mechanisms of work-
ing memory lack the spatiotemporal structure of naturalistic
behavior (i.e., they use simple stationary displays and con-
strain eye movements during memory maintenance). During
many natural behaviors involving working memory eye gaze
is unconstrained and the visual scenery is rich and dynamic
(Roussy, et al., 2021a).

Studies using delayed response tasks with increased spa-
tiotemporal complexity report few single neurons with per-
sistent firing during the entire delay period. Instead, many
neurons fire transiently, during brief time intervals (Batuev et
al., 1979; Lundqvist et al., 2016; Roussy et al., 2022). Thus,
researchers have proposed alternative mechanisms to persis-
tent firing, such as short-term synaptic storage (Stokes, 2015;
Pals et al., 2020), or dynamic coding (Lundqvist et al., 2016;
Parthasarathy et al., 2019). However, evidence in favor of
such mechanisms is highly debated (Wang, 2021). Here, we
hypothesize that a mechanism for working memory coding
in naturalistic conditions must preserve the spatiotemporal
structure of natural behavior while being robust to interference
by concomitant sensory and motor signals. We specifically
hypothesize that working memory coding during naturalistic
tasks, in the presence of eye movements and rich visual scenery,
relies on sequential activation of neurons in primate LPFC.

Neuronal sequences, consisting of temporally precise pat-
terns of neural activity, have been reported to encode the
varying spatiotemporal structure of motor signals in the high
vocal center (HVC) of songbirds (Chi & Margoliash, 2001;
Tang et al., 2014; Srivastava et al., 2017; Okubo et al., 2015;
Daliparthi et al., 2019), and of spatial trajectories to remem-
bered locations during navigation in the parietal cortex (Har-
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vey et al., 2012) and the hippocampus of rodents (Itskov, et
al., 2011; Eichenbaum, 2014; Zhou et al., 2020). Early in-
vestigations in macaque monkeys suggested that the spiking
activity of a few single neurons in LPFC could have a precise
and informative spatiotemporal structure (Abeles et al., 1993).
However, sequences of single unit spiking activity have not
been directly observed or causally linked to working memory
during naturalistic behavior in primates (Wang, 2021).

We use microelectrode arrays to record neuronal activity
in LPFC layers 2/3 of macaque monkeys during a naturalistic
working memory task set in a 3D virtual environment. We find
that temporally precise sequential patterns of neural activity
in LPFC, extending over behaviorally relevant timescales of
several seconds, represent important task variables for the
successful maintenance of and navigation to remembered tar-
get locations in the 3D environment. These neural sequences
robustly and flexibly represent trajectories to remembered lo-
cations during shifts in eye positions toward various elements
of the environment. Sequences were not found when we ex-
amined an oculomotor delayed response task (ODR) which
has been commonly used to explore working memory in pre-
vious studies. Further, pharmacological blockade of NMDA
receptors with sub-anesthetic doses of ketamine demonstrates
a causal link between sequences and working memory.

Results

We trained two rhesus macaque monkeys on a visuospatial
working memory task that took place in a virtual circular arena
containing naturalistic elements (see Fig. 1a, b). We recorded
neuronal activity using two 96-channel microelectrode Utah
Arrays (Blackrock Neurotech, UT, USA) implanted in the left
LPFC of both animals (Brodmann area 8a, 9/46 (Petrides,
2005)) (see Fig. 1c). The task began with a three second
presentation of a target in one of nine possible locations in
the arena (cue epoch). The target then disappeared, and
after a two second delay period, the animal was required to
navigate towards the cued target location using a joystick (see
Fig. 1d). Virtual navigation within the environment was ex-
clusively available during the navigation epoch. Animals were
able to successfully perform this naturalistic working memory
task (average correct trial rates across sessions were: NHP B:
mean = 87%, NHP T: mean = 57%; chance = 11%) (Fig.
1e; Extended Data Fig. 1a-d). Eye movement was recorded
throughout the task using a video eye tracker. Animals made
frequent saccades to explore different scene elements through-
out all trial epochs. Firing rates across the recorded neuronal
population were poorly tuned for the direction and amplitude
of saccades (Roussy et al., 2021b; Roussy et al., 2022) (see
Extended Data Fig. 1e-k for eye behavior analyses).

Neural sequences in LPFC neurons. Precise patterns of neural
activity have been identified as a mechanism for represent-
ing complex processes in mammalian brains (Buzsáki, 2010);
however, such patterns have not been identified during visu-
ospatial WM tasks in primates. We hypothesize that WM
representations during our naturalistic task are maintained
by temporally precise neural sequences (Fig. 1f). Neural
sequences are typically described by temporally precise ac-
tivation of neurons above their background rates of activity.
We observed that LPFC neurons exhibited brief (duration of
80% of max firing value = 220 ms) elevations of spike rate
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Fig. 1. Experimental design. a, A monkey depicted in the virtual reality experimental
setup. b, Overhead view of the nine target locations in the virtual environment. c,
Locational representation and surgical image of the two Utah arrays implanted in the
left LPFC of NHP T. d, Working memory trial timeline. e, Percent of correct trials for
NHP B and NHP T. The dark gray lines represent mean values per animal and the
gray dashed line represents chance behavioral performance. Data points represent
data from individual sessions. f, Illustration of temporally tiled activation of individual
neurons which may generate sequential patterns of activity at the population level.
g, Normalized firing rates for simultaneously recorded neurons over trial time in one
trial. h, Raster plot for the same example trial as ‘g’ in which each small vertical line
represents an action potential. Pink vertical lines separate the task epochs.

above their background levels of firing (Extended Data Fig.
2) at specific points during the task. To identify potentially
relevant population-level patterns in these elevations of spike
rate, we sorted neurons by their normalized peak firing time.
Sequential patterns emerge in single trials, visualized here
using spike density functions (Fig. 1g) and population rasters
(Fig. 1h).

A code that relies on neural sequences implies temporally
precise activation of single neurons (see Fig. 2a for schematic)
(Buzsáki, 2010; van der Meij & Voytek, 2018). We examined
the firing properties of 3543 neurons in 17 recording sessions
(mean of 208, median of 229 simultaneously recorded neurons
per session). Many neurons transiently fired during the same
time in single trials of the same target condition (Fig. 2b,
c, d, more examples in Extended Data Fig. 3). To quantify
this regularity, we calculated the standard deviation (time
consistency) of peak firing time between correct trials of the
same condition for each neuron (Extended Data Fig. 4a).
20% of neurons (699 neurons) demonstrated a standard devia-
tion below 1000 ms and 65% (2297 neurons) demonstrated a
standard deviation below 1500 ms.

We additionally shuffled the peak firing times for each neu-
ron within each trial to generate random firing time estimates
across trials. The distributions of standard deviations for
correct trials were shifted to lower values relative to the corre-
sponding shuffled distributions (example session in Fig. 2e, all
neurons in Extended Data Fig. 4a). The area of non-overlap
between the lower tails of the real and shuffled distributions
represents the neurons with peak firing times occurring more
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Fig. 2. Time consistent neurons underlie sequence formation. a, Depiction of neural ensembles that are activated at different time points throughout a trial. Activity of a
single neuron within the ensemble is represented by an increase in activity at a precise time point. Black arrows represent recording electrodes. b, Single trial raster showing
the activity of all simultaneously recorded neurons. The green and pink horizontal lines highlight two example neurons. c, Example neuron one. The raster plot displays action
potentials over trial time for this neuron over all trials in a certain condition. The inset histogram shows the number of trials in which the max firing time falls within a certain trial
time. d, Represents the same information as ‘c’ for a second example neuron. e, Real and shuffled distributions of correct and incorrect trial-trial standard deviations of max
firing time for all neurons in an example session. f, same as ‘e’ for correct trials. Dashed gray lines represent distribution means and the orange line indicates the difference
in distribution means. g, Difference in real and shuffled distribution means for correct and incorrect trials. Dark gray lines represent median values per group and each dot
represents data from a different session. *p<0.05, **p<0.01, ***p<0.001.

regularly than expected by chance within trials of the same
condition. On the other hand, the real and shuffled distri-
butions overlapped considerably for incorrect trials (example
session in Fig. 2e; all neurons in Extended Data Fig. 4a),
suggesting that neurons’ peak firing occurred at less consistent
times during single trials of the same condition when animals
made mistakes. Indeed, the difference between means of the
real and shuffled distributions (Fig. 2f) was lower for incorrect
trials than correct trials (correct: median = 270.9 ms, incor-
rect: median = 71.4 ms. Wilcoxon Signed-Rank Test, p =
0.001) (Fig. 2g; Extended Data Fig. 4b, c).

Using 11 sessions in which there are sufficient correct and
incorrect trials in all nine conditions, we show that the stan-
dard deviation of neurons’ peak firing time (n = 2051) during
correct trials (mean = 1358 ms) is significantly lower than
incorrect trials (mean = 1828 ms; 1-way ANOVA, post-hoc,
p = 3.8E-09; Extended Data Fig. 4a). This suggests that in-
creased temporal precision of firing in single neurons is needed
for correct task performance.

Neural sequences are predictive of trajectory to remembered
targets. We have demonstrated a pattern of sequential activity
that spans the trial duration and is driven by the temporal
consistency of the firing neurons. Next, we examined whether
these identified sequences are related to working memory;
more precisely, whether sequences can encode the contents of
working memory during the delay epoch of the task, when the
cue has disappeared, and navigation was not permitted. We
developed a computational method to analyze spike sequences

in single trials, allowing for efficient unsupervised discovery of
neural sequences that are consistent within the same target
condition. We represented individual sequences of peak firing
during the delay epoch in each trial across the population of
recorded neurons as complex-valued vectors. We performed
dimensionality reduction on the resulting correlation matrix
(Fig. 3a; Extended Data Fig. 5a-c). The resulting component
values are projected into a 3-dimensional space where each
colored circle represents a cluster centroid for a different target
condition (Fig. 3b).

Using a supervised distance-based classifier, we could cor-
rectly predict target condition within a single trial based on
the clustering of condition centroids during the delay epoch
(9 locations: median = 15% above chance, p = 9.7E-05; Ex-
tended Data Fig. 5d, see Methods - Projection Classification
Analysis). We then observed that the condition centroids reli-
ably formed three distinct groups based on the three primary
trajectory directions to targets (i.e., left, center, right). Based
on this observation, we hypothesized that this grouping may
relate to task behavior since movement trajectories typically
fall within these three directions. A supervised classifier based
on this hypothesis can correctly predict target condition col-
umn (left, center, right) based on delay-epoch spiking activity
within a single trial (median = 40% above chance, p = 1.7E-05;
Extended Data Fig. 5e). Further, an unsupervised classifier
developed from our analysis could predict the target column
within a single trial based on the emergent clustering of pro-
jected data into column-based clusters - without any training
required (median = 33% above chance, p = 1.7E-05; Extended
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Data Fig. 5f). Taken together, these results demonstrate that
these patterns of spiking activity contain a unique temporal
structure for different target conditions that may be related
to remembered target locations.

To explore the direct relationship between sequences and
task relevant behavior during working memory, we compared
the distances between centroids during the memory delay
epoch to distances between movement trajectories (i.e., the
trajectories the animals used to reach the remembered target
location). We calculated the Spearman correlation between
matrices containing the Euclidean distance between condition
centroids, and the Frechet distance between average traveled
trajectories to targets in the virtual arena (see Fig. 3c-f;
see Extended Data Fig. 6 for alternative methods). The
Frechet distance between two trajectories is a measure of
similarity between them that takes into account the location
and ordering of the points along the trajectories (Alt & Godau,
1995). The distance matrices were more positively correlated
compared to those obtained when shuffling the target locations,
suggesting that the separation between neural sequences in
multidimensional space parallels the discriminability between
trajectories to targets held in working memory (observed:
median = 0.50, shuffle: median = 0.34, Wilcoxon Signed-
Rank Test: p = 0.02). Moreover, the relationship between
sequences and target trajectories predicts whether information
is successfully maintained during the working memory delay
period, with higher correlations for correct than incorrect trials
(correct: mean = 0.45, incorrect: mean = 0.30. T-test, p =
5.7E-04) (Fig. 3g).

We compared the correlation results during the working
memory delay period with those from a temporally equiva-
lent period of a perceptual task, where the target did not
disappear during the entire trial and therefore the animals
did not need to represent the trajectory in working memory.
The correlation was higher during the working memory delay
epoch than during the perceptual task control delay epoch
(Fig 3h; Spearman Correlation; working memory: mean =
0.51 perception: mean = 0.33, T-Test, p = 1.4e-05), indicating
sequences were more correlated to behavior during working
memory.

We further asked whether behaviorally relevant sequences
were composed of neurons considered tuned for the remem-
bered target location using conventional criteria (i.e., differ-
ences in integrated firing rates amongst locations). Sequences
composed of tuned neurons were equally correlated with be-
havior than sequences composed of untuned neurons (1-way
Anova, p = 0.94; Extended Data Fig. 6d). The latter indicates
that classically considered untuned neurons can take part in
the sequences.

Single neurons show trial-to-trial variability in their re-
sponses. One may ask whether sequences could be robust to
this phenomenon, (i.e., not all the neurons active during trial
n sequences for one remembered target location will be active
in trial n+1, n+2, etc). Remarkably, the correlation between
neural sequences and target trajectories during correct trials
remains stable even after removing 70% of neurons from the
population. 80 - 90% of neurons must be removed for this
correlation to significantly change, at which point the correct
trial correlation becomes equal to the incorrect trial correlation
(Extended Data Fig. 6d, e). The latter indicates sequences
are robust to ‘single trial absentee neurons’ and therefore to

trial-to-trial response variability.
Furthermore, neural sequences during working memory

were different from those that occur during the cue and nav-
igation epochs (Fig 4 a-c) and they were most predictive of
target condition (Spearman Correlation; cue: mean = 0.46,
delay: mean = 0.60, navigation: mean = 0.51, all: mean =
0.49; 1-way Anova, p = 0.03) (Fig 4d). Sequences were also
more correlated to target trajectories when we limit a neuron’s
contribution to a sequence to one epoch (i.e., one neuron is only
allowed to participate in a single epoch sequence – considering
a single max firing time) compared to contributing to multiple
epoch sequences (i.e., allows for multiple peak firing times)
(Spearman Correlation; single: mean = 0.48, multiple: mean
= 0.37; T-Test, p = 0.006) (Extended Data Fig. 6c). This
latter result indicates sequences are most informative when
different neurons contribute to different epochs, suggesting
unique contributions of neurons in different trial periods.

Neural sequences are specific to naturalistic working memory.
Neural sequences may operate as a mechanism for working
memory coding in the naturalistic conditions of our task. To
test this prediction, we conducted the same set of analyses
exploring macaque LPFC single neuron temporal precision and
population sequences in a classic oculomotor delayed response
task (ODR) (Extended Data Fig. 7a, b). The task we used
included 16 possible target locations. Here animals must fixate
on a dot on a blank screen, then a peripheral target is flashed
for a short time period. After target offset, the animals keep
fixating on the dot for a few seconds while remembering the
spatial location of the target. Upon the fixation dot offset,
the animals make a saccade towards the remembered location
to obtain a reward (Leavitt, 2017b, Leavitt, 2018). Saccades
are ballistic movements that practically ‘teleport’ the fovea
from the starting to the end point, without perception of the
travelled path during eye movement (Bremmer et al. 2009).

As opposed to the VR navigation task, when neurons during
the ODR task were ordered by peak firing time, the patterns
of activation were often disrupted or incomplete (Extended
Data Fig. 7c), suggesting that the organization of spiking
activity may be different from the VR task. This may be
related to neurons during the ODR delay epoch exhibiting less
temporally consistent peak firing times from trial to trial. For
many instances, real and shuffled distributions of standard
deviations were overlapping (Extended Data Fig. 7d). Indeed,
the difference in means between real and shuffled distributions
was significantly smaller in the ODR task compared to our
naturalistic VR task (ODR1: median = 93.2. ODR2: median
= 31.6, VR: median = 270.9; Kruskal Wallis, p = 1.2e-06)
(Extended Data Fig. 7e).

To further explore this issue, we applied the complex-valued
dimensionality reduction analysis described above to the ODR
task data. Condition centroids were clustered in quadrants
based on position of target location as reported previously
using spike rate-based analysis (Leavitt, 2018) (Fig. 4e). We
calculated the correlation between the matrices of centroid
distances and target locations Euclidean distances. The cor-
relation was significantly smaller in the ODR than in the
naturalistic VR task (ODR: median = 0.22, VR: median =
0.43. Wilcoxon Rank Sum, p = 0.004) (Fig. 4f).

These results indicate that sequences are more correlated
to behavioral performance during the naturalistic VR tasks
than during the classic ODR task used by previous studies.
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The naturalistic VR task is different in several ways. First, it
measures visuospatial working memory in a dynamic and more
spatiotemporally complex environment. Second, it allows for
free visual exploration via saccades. Third, it requires 3D
navigation to a target location. Neural sequences may be best
utilized in the episodic and dynamic spatiotemporal context
of our VR working memory task.

Neuronal sequences represent abstract trajectory. The pre-
vious analyses demonstrate that working memory sequences
contain information about the trajectories to remembered lo-
cations suggesting that sequences map into behavioral paths.
Indeed, condition centroids were more highly correlated to the
Frechet distance between the traveled trajectories to target
locations (median = 0.50) than to the Euclidean distance be-
tween target locations (median = 0.43; Wilcoxon Sign Rank
Test, p = 0.01); thus, sequences better represent trajectories
to targets than target location alone. Real trajectories are also
more correlated to condition centroids than ideal trajectories
to targets (calculated by Euclidean distance from start to
target location) (Extended Data Fig. 8a) (median = 0.43;
Wilcoxon Sign Rank Test, p = 0.01). Here one must consider
that traveled trajectories are imperfect and can be distinct
from ideal trajectories. Real trajectories reflect idiosyncrasies
of remembered trajectories and the virtual environment, and
may reflect perceived curvature of the arena and obstacles in
space (i.e., arena walls) (see Fig. 3d for example trajectories).

One may argue that the observed sequences represent ac-
tivation of neurons with mnemonic ‘place fields’ similar to
sequential activity of place cells in the hippocampus (Itskov
et al., 2011; Eichenbaum, 2014; Zhou et al., 2020). Inconsis-
tent with this idea, the sequences are differentiable between
memory delay and navigation evidenced through classification

analysis (mean decoding = 76%, median decoding = 87%,
compared to chance (33%): T-Test, p = 9.2e-08) (Fig. 4b, c).

If sequences were primarily reflecting motor planning during
the delay period or neural replay of planned trajectories during
the response/navigation period, one may anticipate neural
sequences during the delay and response epochs from the same
trial to be highly correlated, and that this correlation would
be higher than sequences from different trials. This was not
the case. Delay and navigation epoch sequences were equally
correlated between different trials as they were within the same
trial (Extended Data Fig. 8b, c). These results indicate that
neural sequences in macaque LPFC represent remembered
trajectories to target locations, and that such representation
is specific to the working memory delay period of the task.
The latter makes the representation distinct from classical
replay found in structures such as the hippocampus (Skaggs
et al. 1996). LPFC neurons appear to represent more abstract
qualities of target trajectory.

Ketamine disrupts neuronal sequences and impairs working
memory performance. In order to demonstrate a causal link
between neuronal sequences and working memory we used
ketamine, a N-methyl-D-aspartate (NMDA) receptor non-
competitive antagonist that induces selective working memory
deficits in humans and animals (Frohlich & Van Horn, 2014;
Roussy et al., 2021b, Wang et al., 2013). We injected subanes-
thetic doses of ketamine (0.25 mg/kg - 0.8 mg/kg) intramus-
cularly while animals performed the task (see experimental
timeline in Fig. 5a, Roussy et al., 2021b). Ketamine drasti-
cally reduced performance of our virtual working memory task
without affecting performance on a perception control task.
Working memory performance recovered 30 minutes to 1 hour
post-injection in the late post-injection period (Pre-Injection:
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median = 77%, Early Post-Injection: median = 28%, Late
Post-Injection: median = 66%; Kruskal Wallis, p = 8.5e-05)
(Fig. 5b; Extended Data Fig. 9a, b).

After ketamine injection, the differences in standard devia-
tion distribution means for peak firing times between the real
and shuffled data decreased suggesting that neurons fired with
less time consistency after ketamine (Pre-Injection: median
= 171.6, Early Post-Injection: median = 40.2, Late Post-
Injection: median = 100.4; Kruskal Wallis, p = 0.002) (Fig.
5c; Extended Data Fig. 9c, d). Behaviorally relevant groupings
of condition centroids were similar between the non-injection
data set and the pre-injection ketamine data set (Fig. 3b;
Fig. 5d). This grouping was lost after ketamine injection but
was regained 1 hour later as behavioral performance recovered
(Fig. 5d). We also saw that the correlation between condition
centroid distances and target trajectory distances decreased
after ketamine and then recovered, indicating that sequences
were less predictive of remembered target location immediately
after ketamine injection (Pre-Injection: mean = 0.39, Early
Post-Injection: mean = 0.29, Late Post-injection: mean =
0.34. 1-way Anova, post-hoc, p = 0.04) (Fig. 5e; Extended
Data Fig. 9e, f). There was no change in any of the described
measures in a saline control condition (Extended Data Fig.
9g, h). These results indicate a causal link between NMDA
receptor dysfunction caused by ketamine and disruption of
neuronal sequences leading to deficits in working memory.

Discussion

We recorded the responses of hundreds of single neurons in
the macaque LPFC during a complex visuospatial working
memory task set in a naturalistic virtual environment. We re-
port three major findings: (1) sequences of population activity
represented trajectories to remembered locations in the envi-
ronment (2) neural sequences of single neuron spiking activity
were predictive of behavioral performance (3) NMDA recep-
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tor antagonism by ketamine disrupted neuronal sequences,
selectively impairing working memory performance.

Neural sequences and working memory coding. Prefrontal
neural activity during tasks that require holding a single
item in working memory during a delay response period have
demonstrated persistent activity that represents the mem-
oranda (Leavitt et al., 2017a). One major shortcoming of
the persistent firing hypothesis is that it may not be able
to support working memory representations with rich spa-
tiotemporal structure (Steveninck et al., 1997; Lestienne &
Strehler, 1987; Lundqvist et al., 2016). Indeed, in tasks during
which sequences of multiple items need to be held in working
memory, persistent firing is rare (Lundqvist et al., 2016). A
recent study reported that during a multi-item spatial working
memory task in which monkeys had to remember a series of
spatial locations in sequential order, temporally organized neu-
ronal populations represented the order in which items were
remembered (Xie et al., 2022). These studies demonstrate
that additional mechanisms may be needed to support coding
of working memory representations when the memoranda have
spatiotemporal structure.

Our paradigm differs from those used in previous studies.
We did not use multiple memoranda; instead, our subjects
remembered a single target location and the trajectory to the
location in a 3D virtual naturalistic environment. Importantly,
our study did not restrain eye position, allowing for naturalistic
exploration of the scene while information is being held in
working memory. The rationale behind studies restraining eye
position is to avoid the interference caused by eye position
signals and changes in the retinal image and consequently in
visual inputs, on the working memory representation (Suzuki &
Gottlieb, 2013). However, in naturalistic conditions working
memory coding must be robust to such changes. To our
knowledge, working memory coding has not been tested under
naturalistic conditions.

Previous studies in macaques have tried to approach the
idea of transiently active neurons maintaining working memory
through shared temporal relationships by exploring spike train
patterns of several neurons. However, due to methodological
constraints, these studies were unable to record large numbers
of simultaneously active neurons and thus unable to demon-
strate sequence coding (Prut et al., 1998). Our study has
overcome this limitation by recording from hundreds of simul-
taneously active neurons, revealing precise sequences of single
unit spiking activity that encode specific working memory
content.

Studies in mice that simultaneously record from many
neurons have reported neuronal activation sequences during
short-term memory tasks in the posterior parietal cortex and
dorsomedial striatum (Harvey et al., 2012; Akhlaghpour et
al., 2016). In the rodent hippocampus, sequences of place cell
activation signal trajectories to remembered locations that are
stored in long-term memory (Skaggs & McNaughton, 1996).
Thus, sequential activation of neurons to encode spatiotempo-
ral episodes appears to be a general coding mechanism across
species.

However, the neural sequences we report in this study
differ in several ways from those described in the rodent.
First, they occur in the LPFC, a brain area that appears
during brain evolution in anthropoid primates (Passingham
& Wise, 2012). More specifically, the sequences reported here

occur within the supragranular layers 2 and 3, where working
memory representations have been reported (Bastos et al.,
2018; Finn et al., 2019). The expansion of layers 2/3 is found
in anthropoid primates and is accompanied by changes in
the morphology, size (Gilman et al. 2017) and proportion
of different interneuron types (Torres-Gomez et al., 2019)
relative to other species and brain areas. Thus, LPFC layers
2/3 may have evolved a microcircuitry for holding internal
working memory representations that can be supported by
persistent firing, when spatiotemporal structure is poor and
concomitant visual and motor signals are not present; or by
neuronal sequences, when spatiotemporal structure is rich and
distracting signals are present, as in our naturalistic task.

We propose LPFC layers 2/3 neural sequences may allow
primates to represent short-term spatiotemporal episodes ‘in
the mind’. Such episodes can be dissociated from sensory and
motor signals and may be key to an enriched virtual world
that enables enhanced cognitive control, planning and cre-
ativity observed in anthropoid primates (Passingham & Wise,
2012). Importantly, this form of episodic working memory may
correspond to the episodic working memory buffer proposed
by theoretical and behavioral studies of working memory in
humans (Baddeley, 2000).

Causality and potential mechanisms . Through pharmaceuti-
cal manipulation, we identify that sequence generation relies
on NMDA receptor function. The interactions between in-
hibitory interneurons and excitatory pyramidal cells plays an
important role in LPFC prefrontal circuits during working
memory tasks (Wang et al., 2004). Therefore, the precise acti-
vation of pyramidal cells may be dependent on a temporally
coordinated ‘release of inhibition’ by interneurons (Cannon, et
al., 2015; Kosche et al., 2015). We have demonstrated in past
research that NMDA receptor antagonism using the same doses
of ketamine as in this study selectively decreases the firing of
narrow spiking neurons (Roussy et al., 2021b). A parsimo-
nious explanation for our findings is that ketamine induced
loss of firing in narrow spiking interneurons (e.g., PV basket or
chandelier cells) which in turn impaired their ability to coor-
dinate sequences in pyramidal cells ultimately causing deficits
in working memory. The fact that the effect of ketamine was
selective for the working memory task further support our
view that the sequential activation mechanisms reported here
is particularly important for mental representations that ‘live’
within the LPFC microcircuits.

There may be various benefits of a sequence-based code.
It would be more energy efficient than one that relies on con-
tinuous activation of neurons in a population. A temporal
code may also be robust to interference by other concomi-
tantly occurring signals, as is the case during naturalistic tasks.
Temporal specificity may also add complexity to prefrontal
networks, allowing for higher dimensional representations and
flexible cognition.

Finally, neuronal sequence codes in the LPFC could be
the substrate of working memory episodes that can be played
in the mind and the neural correlates of the episodic buffer
component of working memory systems in the human brain
(Baddeley, 2000). The episodic working memory buffer was
proposed as an upgrade of the classic working memory model
that contained a visuomotor sketchpad, a phonological loop
and an executive or attentional controller (Baddeley, 1986;
Baddeley, 2000). The episodic buffer can bind experiences into
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working memory episodes. Such episodes can exist temporarily
‘in the mind’ and be ‘erased’ without undergoing long term
storage. The latter make them distinct from long term episodic
memories (Tulving, 2002) which engage hippocampal circuits
(Burgess, Maguire, & O’keefe, 2002).

Conclusion. We demonstrate robust and behaviorally rele-
vant temporal organization of spiking activity in layers 2/3 of
LPFC during a naturalistic working memory task. Neuronal
sequences during periods of working memory maintenance
represent the spatiotemporal structure of the information held
in working memory. Sequences were disrupted by low doses of
ketamine which caused impaired behavioral performance. We
conclude that layers 2/3 LPFC circuitry in primates contains
the neural substrates for temporarily representing working
memory episodes ‘in the mind’ without necessarily engaging
sensory, motor and even long term memory systems. Such
representations provide primates with a powerful tool for plan-
ning the future and adapting to the uncertainty of changing
environments.
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Extended Data Figures
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from Roussy et al., 2021).

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.18.504406doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504406
http://creativecommons.org/licenses/by-nd/4.0/


Methods

We used the same two adult male rhesus macaques (Macaca
mulatta) in the main experiment as well as the ketamine and
saline experiments (age: 10, 9; weight: 12, 10 kg). The oculo-
motor delayed response task was recorded from two different
male macaques using one multielectrode Utah array implanted
in each animal (Leavitt, 2017b, Leavitt, 2018).

Ethics statement. Animal care and handling (i.e., basic care,
animal training, surgical procedures, and experimental injec-
tions) were pre-approved by the University of Western Ontario
Animal Care Committee. This approval ensures that federal
(Canadian Council on Animal Care), provincial (Ontario Ani-
mals in Research Act), regulatory bodies (e.g., CIHR/NSERC),
and other national standards (CALAM) for the ethical use
of animals are followed. The oculomotor delayed response
task experiment complied with Canadian policies and regula-
tions and was preapproved by the McGill University Animal
Care Committee (Leavitt, 2017b, Leavitt, 2018). Regular
assessments for physical and psychological well-being of the
animals were conducted by researchers, registered veterinary
technicians, and veterinarians.

Experimental setup. Animals performed the task in an isolated
room with no illumination other than the monitor. The room
contained no AC power lines and was radiofrequency (RF)
shielded. The task was presented on a computer LDC monitor
positioned 80 cm from the subjects’ eyes (27" ASUS, VG278H
monitor, 1024 × 768 pixel resolution, 75 Hz refresh rate, screen
height equals 33.5 cm, screen width equals 45 cm). Eye posi-
tions were monitored using a video-oculography system with
sampling at 500 Hz (EyeLink 1000, SR Research). Stimu-
lus presentation was controlled through a custom computer
program (through Unreal Engine 3). Subjects were seated in
a standard enclosed primate chair (Neuronitek) during the
experiment and were delivered juice through an electronic
reward integration system (Crist Instruments). Prior to the
experiments, subjects were implanted with custom fit, PEEK
cranial implants which housed the head posts and recording
equipment (Neuronitek). See Blonde et al., 2018 for more in-
formation. The head posts were attached to the primate chair
for head fixation. The experimental setup for the oculomotor
delayed response task is outlined in both Leavitt et al. 2017b
and Leavitt, 2018.

Task. The virtual task environment was developed using Un-
real Engine 3 development kit, utilizing Kismet sequencing and
UnrealScript (UDK, May 2012 release; Epic Games). Details
about this platform and the recording setup can be found in
Doucet et al., 2016. Movement speed through the environ-
ment was fixed.Target locations within the virtual arena were
arranged in a 3 × 3 grid and spaced 290 unreal units apart
(time between adjacent targets is approximately 0.5 seconds).
The perception control variation of the task was identical to
the working memory version except that the targets remained
onscreen through the trial.

The oculomotor delayed response task was separated into
four epochs: fixation, stimulus presentation, delay, and re-
sponse. The animal began a trial by fixating on a fixation dot
and by pressing a lever. The duration of the fixation period
was either 482, 636, or 789 milliseconds. A sine-wave grating
target then appeared at 1 of 16 randomly selected locations

positioned in a 4x4 grid for 505 ms. This was followed by a
delay period ranging from 494–1500 ms. The fixation point
was removed, cueing the animal to make a saccade to the
location of the previously presented target and then to release
the lever (see Leavitt et al. 2017b, 2018 for more details).

Ketamine injection. The ketamine doses were titrated so they
did not induce visible behavioral changes in the animals (i.e.,
nystagmus or somnolence). An intramuscular injection of
ketamine (0.25, 0.4, or 0.8 mg/kg) was administered in the
hamstring muscles by a registered veterinary technician. Ke-
tamine injections were spaced at least two days apart to allow
for washout of the drug. Saline administration was conducted
identically with a fixed 0.25 mg/kg dose (See Roussy et al.
2021 for more details).

Surgical procedure. Custom PEEK implants which housed
recording hardware and a headpost were developed and im-
planted in each animal (Blonde et al., 2018). Brain navigation
for surgical planning was conducted using Brainsight (Rogue
Research Inc.) (Extended Data Fig. 10a). Two 10×10, mi-
croelectrode Utah arrays (96 channels, 1.5 mm in length and
separated by at least 0.4 mm) (Blackrock Neurotech) were
chronically implanted in each animal. Electrodes were im-
planted in the left LPFC (anterior to the arcuate sulcus and
on either side of the posterior end of the principal sulcus)
(Extended Data Fig. 10b, c). Arrays were impacted approxi-
mately 1.5 mm into the cortex. Reference wires were placed
beneath the dura and a grounding wire was attached between
screws in contact with the pedestal and the border of the
craniotomy. Surgical procedures were conducted under gen-
eral anesthesia induced by ketamine and maintained using
isoflurane and propofol.

For the oculomotor delayed response task data, a 96-channel
Utah array was implanted in each monkey’s left LPFC in the
same region that electrodes were implanted for recording dur-
ing performance of the virtual working memory task (Extended
Data Fig. 7b). Detailed surgical methods can be found in
Leavitt et al. (2017b, 2018).

Task performance. Correct trials are trials in which the animal
reaches the correct target location within 10 seconds. An
incorrect trial occurs if the animal does not reach the target
location within 10 seconds. Percent of correct trials is cal-
culated as the number of correct trials divided by the total
number of trials. Response time was calculated for correct
trials as the navigation start time to the time in which the
animal reaches the correct target location.

The optimal trajectory analysis was calculated for correct
trials. It is calculated as the real length of the animal’s
trajectory to correct target location divided by the optimal
trajectory (i.e., the Euclidean distance from the start position
to the target location).

For incorrect trials, we calculated the distance from the
animal’s final position to the correct target location. Distance
values were modified from arbitrary ‘Unreal’ units (the unit
system in Unreal Engine Development Kit, Unreal Engine 3,
Epic Games) to ‘Unreal’ units divided by the distance between
two targets to increase interpretability. A new value of 1 would
represent 290 unreal units (the distance between two adjacent
targets).
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Eye behavior. Percent of eyes on screen measures the number
of eye data points falling on the screen divided by the total
number of eye data points. Off screen data points occur when
the animal looks off screen or closes their eyes (as occurs
during blinking).

Eye data ws classified into fixations and saccades based on a
method outlined in Corrigan et al., 2017 that was developed for
use in a similar virtual environment. The percent of fixations
on target was calculated by the number of fixation events
falling within a trial’s target location divided by total number
of fixation events. We used a linear classifier (SVM) (Libsvm
3.14, Fan et al., 2008) with 5-fold cross validation to predict
target location from eye fixation position data.

The main sequence was calculated by separating saccades
into bins of 3° of amplitude, starting at 2° and computing the
medians for each bin. The proportion of single units tuned for
eye position in both retinocentric and spatiocentric reference
frames was calculated using a quadrant binning pattern for a
40°×30° field. A bin had to have at least ten saccades to be
acceptable and sessions had at least three acceptable bins.

Spike processing. Neuronal data was recorded using a Cere-
bus neuronal Signal Processor (Blackrock Microsystems) via a
Cereport adapter. The neuronal signal was digitized (16 bit)
at a sample rate of 30 kHz. Spike waveforms were detected
online by thresholding at 3.4 standard deviations of the sig-
nal. The extracted spikes were semi-automatically resorted
with techniques utilizing Plexon Offline Sorter (Plexon Inc.).
Sorting results were then manually supervised. Multiunits
consisted of threshold-crossing events from multiple neurons
with action potential-like morphology that were not isolated
well enough to be classified as a well-defined single unit (for
spike sorting example see Extended Data Fig. 10d, e). We
collected behavioral data across 20 working memory sessions
(eight in animal T, twelve in animal B) and neural data across
17 sessions. This yielded a total of 3950 units recorded: 2578
single neurons (346 in animal T, 2232 in animal B) and 1372
multiunits (512 in animal T, 860 in animal B). We collected
behavioral data across 18 ketamine-working memory sessions
(nine in animal T, nine in animal B) and neuronal data from 17
ketamine-working memory sessions with one session from ani-
mal T removed due to incomplete synchronization of neuronal
data during the recording. This yielded a total of 2906 units
recorded during ketamine-working memory sessions: 1814 sin-
gle neurons (259 in animal T, 1555 in animal B) and 1092
multiunits (533 in animal T, 559 in animal B).

Spike density function. Spike density functions (SDFs) were
generated by convolving the spike train with a Gaussian kernel
(standard deviation=100 ms).

Time consistent neurons. To qualify time consistent neurons,
we created SDFs combined between electrodes arrays over
the entire trial time using neurons with firing rates above 0.5
Hz. SDFs were created for each condition that contained at
least five trials. We calculated the peak firing time for each
neuron in the population, calculated the standard deviation
of the peak firing time for each neuron over all trials in a
condition and created a probability distribution from the
standard deviation values. We shuffled the peak firing times
for each neuron from trial to trial so that the peak firing time
no longer aligned for any one neuron. We created a shuffled

probability distribution. We calculated the difference in mean
values between the real and shuffled distributions to get the
mean difference value. To calculate the standard deviation
values plotted in Extended Data 4a, we calculated trial-trial
standard deviation of peak spike time for the target condition
in which each neuron fired the most consistently during correct
trials (i.e., lowest deviation). The same conditions were used
for shuffled data and for incorrect trials.

ODR1: This data was collected from the same animals and
electrodes as our naturalistic VR task. This task contained 16
targets (Extended Data Fig. 7a) and was a variation of a tra-
ditional ODR task in which the fixation point changes location
across trials, resulting in many different task conditions with
varying combinations of fixation location and target location.
For this reason, we grouped trials with target locations within
the same quadrant (same direction saccade). To match the
task structure of the VR task, we did not use data from the
fixation period.

ODR2: This data was collected from NHPs JL and F
(Extended Data Fig. 7b) using one Utah array implanted
in the left LPFC (same region as NHP B and T). This task
contained 16 targets with a consistent central fixation point
(Extended Data Fig. 7a). To match the task structure of the
VR task, we did not use data from the fixation period. Since
the ODR2 task had jittered delay epoch timing, we used trials
with delay periods > 1000 ms and included the first 1000 ms
of the epoch.

Sequence representation. Each trial was represented as a
complex-valued vector by mapping the time of maximum spike
density of each neuron to a phase value between - and . For
the main analysis, only cells with peak firing time during the
delay (working memory) period were included in the sequences.
To compare across trial epochs, cue and navigation sequences
were also considered, including only the cells with peak firing
time in the cue and navigation periods respectively.

Dimensionality reduction. For each recording session, a cor-
relation matrix was created by computing the correlation
coefficient between each pair of phase vectors representing
single trial sequences. The eigenspectrum of this matrix was
computed, and the eigenvalues sorted in descending order of
modulus. The correlation matrix was then projected onto the
eigenvectors corresponding to the first three sorted eigenval-
ues to generate a low-dimensional summary of the data in
3D-space. The points in this projection each correspond to
one trial, and their positions are determined by the relative
similarity of the corresponding sequences. The centroids of
the clusters corresponding to each trial condition were then
determined, and the matrix of Euclidean distances between
the centroids was computed.

The points corresponding to a specific target location l
defined a cluster, and the centroids were computed, resulting
in one coordinate triple, cl = (xl, yl, zl)ϵR3 , corresponding to
each target location. The matrix, D, of Euclidean distances
between each pair of centroids was then computed, with Di,j =
dist(ci, cj) =

√
((xj − xi)2 − (yj − yi)2 + (zj − zi)2).

In this way, the spiking data from each recording session
was reduced to a 9x9 distance matrix.

Correlation analysis. For each recording session, mean trajec-
tories followed by the subject to each target location were
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obtained by averaging the group of correct trajectories to that
target (excluding outlier trajectories with zscore > 1 of mean
Frechet distance to other trajectories in the group) (Alt &
Godau, 1995). A 9x9 distance matrix was then created from
the Frechet distances between each of the mean trajectories. In
this way, each recording session was described by two 9x9 nor-
malized distance matrices, one representing the relationships
between target centroids in 3-space, and the other representing
distances between behavioral trajectories to the target loca-
tions in the virtual environment. The correlation between the
two distance matrices was then computed, which measures the
similarity between the neuronal representations of the targets
and the physical trajectories to them.

Target columns. Since centroids of targets in the same column
tended to cluster together, some subsequent analyses group
sequences by target column rather than trial condition. In
these analyses, the clusters corresponding to targets in the
same column were combined to produce 3 centroids instead of
9. Furthermore, due to this structure observed in the data, a
null model for comparison was created by shuffling the target
columns while preserving the target rows, thereby destroying
the correlation while preserving more of the structure of the
data.

Dimensionality reduction for ODR. When repeating the analy-
sis for the oculomotor delayed response task, 16 targets were
included so the data was reduced to a 16×16 distance matrix
describing the relationships between the neuronal represen-
tations of the target locations. Furthermore, since the ODR
task does not contain a navigation component, the distance
matrix of the projection centroids was compared to the matrix
of Euclidean distances between targets (rather than a Frechet
distance matrix).

Projection classification analysis. We used a simple classi-
fier based on our computational approach with 5-fold cross-
validation to classify sequences on a single trial basis. The
classifier assigns labels to points in the projected 3-space, as-
signing each trial in the test set (20% of trials) to the centroid
of trials in the training set (80% of trials) which has the
minimum Euclidean distance to the trial in question. In the
supervised version, the training set centroids are determined
using the trial condition labels. The unsupervised version uses
K-means clustering to determine the training set centroids.

The same method is used for all classifiers. To classify single
trials by trial condition (9 targets), the supervised classifier
was necessary. To classify single trials by target column (3
columns), the unsupervised version was used. To classify
single sequences by trial epoch (3 epochs), the cue, delay,
and response sequences (see ‘Sequence Representation’) were
all used to create the correlation matrix (i.e., the correlation
between each pair of sequences from all 3 epochs was used
to generate the projection), and the centroids are defined by
sequence epoch clusters rather than trial condition clusters.

Trajectory analysis. We repeated the centroids analysis de-
scribed above, but replaced the distance matrix describing
mean trajectories with two other task-relevant measures. First,
we constructed geometrically ‘ideal’ trajectories straight from
the start location to each target, and repeated the analysis us-
ing Frechet distance between trajectories. Second, we used the

matrix of Euclidean distances between target locations. Unlike
the mean trajectory analysis, these measures only described
the task set up and did not include behavioral data.

To determine whether the sequences represented motor
planning during the delay that was replayed during navigation,
we compared the sequences specific to the delay epoch with
those from the navigation epoch. For each recording session,
we computed the correlation between each delay-navigation
sequence pair. We then considered the pairs in which the delay
sequence and navigation sequence corresponded to the same
trial separately from the pairs where the two sequences came
from different trials. To consider this measure across recording
sessions, we computed the distributions of correlation values
for each group (same trial versus different trial).

Single versus multiple contribution. In the main analysis, we
assume each cell contributes only once to the sequence rep-
resentation, at its time of peak firing. As such, each cell
participates in only one of the cue, delay, or navigation epoch
sequence. To test the validity of this assumption, we repeated
the analyses for sequences in which each cell participated in
all three epochs, by considering the time of max firing within
each epoch.

Removing cells. For percentages increasing from 10% to 90% in
10% increments, we removed a percentage of cells contributing
to the delay sequence in each trial. The correlation analysis
was then performed for the sequences with removed cells. This
process was repeated for 10 iterations of both correct trials and
incorrect trials, and correlation values were averaged across
iterations to produce the plot. The difference between results
for correct and incorrect trials is also plotted.
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