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ABSTRACT 

The recent advances in high-throughput molecular imaging push the spatial transcriptomics technologies to the 
subcellular resolution, which breaks the limitations of both single-cell RNA-seq and array-based spatial 
profiling. The latest released single-cell spatial transcriptomics data from NanoString CosMx and MERSCOPE 
platforms contains multi-channel immunohistochemistry images with rich information of cell types, functions, 
and morphologies of cellular compartments. In this work, we developed a novel method, Single-cell spatial 
elucidation through image-augmented Graph transformer (SiGra), to reveal spatial domains and enhance the 
substantially sparse and noisy transcriptomics data. SiGra applies hybrid graph transformers over a spatial graph 
that comprises high-content images and gene expressions of individual cells. SiGra outperformed state-of-the-
art methods on both single-cell spatial profiles and spot-level spatial transcriptomics data from complex tissues. 
The inclusion of immunohistochemistry images improved the model performance by 37% (95%CI: 27% – 50%). 
SiGra improves the characterization of intratumor heterogeneity and intercellular communications in human 
lung cancer samples, meanwhile recovers the known microscopic anatomy in both human brain and mouse liver 
tissues. Overall, SiGra effectively integrates different spatial modality data to gain deep insights into the spatial 
cellular ecosystems. 
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INTRODUCTION 

Recent advances in spatial molecular imaging have allowed examining the spatial landscapes and 
transcriptional profiles of complex tissues at subcellular resolution1-3. The interrogation of the spatial locations 
and gene expressions of individual cells within a tissue aid in understanding spatial heterogeneity of cell-to-cell 
communications and cell interactions with its surrounding environment, which is crucial for understanding 
disease pathology. Current commercially available technologies for single cell spatial profiling, such as 
NanoString CosMx™ Spatial Molecular Imager (SMI)4 and the Vizgen MERSCOPE/MERFISH platforms5,6, 
are capable to accurately capture the locations of targeted transcripts, cell locations, and cell boundaries, 
accompanied with multi-channel immunohistochemistry (IHC) images. For example, the NanoString CosMx™ 
is capable to simultaneously assay up to 1,000 genes4 and 100k to 600k cells per slide, dramatically exceeding 
current single cell omics technologies. Therefore, the emerging single-cell spatial transcriptomics (SCST) 
commercial platforms  and are revolutionizing current spatial biology research, holding the promises to spatially 
and functionally reveal complex architectures within tissues, and furthering our insights into the underlying 
disease mechanisms at unprecedented resolution7-9.  

The emerging SCST multi-modal data provides new opportunities for accurately identifying spatial domains, 
which is crucial for revealing and functional annotating the cellular anatomy of complex tissues. Existing 
methods for deciphering spatial cell clusters still rely on the clustering methods for non-spatial single-cell RNA-
seq data, such as the Seurat10 and the Louvain clustering based Scanpy11 method that only take gene expression 
data as input. Other methods have been developed to include spatial information to improve the identification of 
spatial regions. For example, stLearn12 leverages gene expression of neighboring spots and tissue image features 
to identify the spatially distributed clusters. BayesSpace13 enables spatial clustering through a Bayesian 
statistical method with the joint analyses of gene expression matrix and spatial neighborhood information. 
SpaGCN14 identifies spatial regions using graph convolutional network, with the spatial graph constructed from 
gene expression and histology information. Though these methods show their capability in spatial clustering, 
the power of different modalities within single-molecule spatial imaging profiles is not fully unleashed to 
achieve desirable performance.  

In addition to domain recognition, the enhancement of spatial gene expression data also presents a significant 
challenge. Though great progress has been made in spatial technologies, the major problems such as missing 
values, data sparsity, low coverage, and noises2,15 encountered in spatial transcriptomics profiles are impeding 
the effective use and the elucidation of biology insights16,17. Meanwhile, the multi-channel spatial images in 
single-cell spatial data consist of high-resolution, high-content features detected in the tissue, such as cell types, 
functions, and morphologies of cellular compartments, as well as the spatial distributions of cells. Incorporating 
such imaging features into transcriptomics data processing will help address the challenges of missing values 
and alleviating expression noise, thus enhance the spatial transcriptomics data quality for downstream analytical 
tasks. 

In this study, we developed a novel SiGra method, i.e., SIngle-cell spatial elucidation through image-augmented 
GRAph transformer, to decipher spatial domains and enhance spatial signals simultaneously. SiGra is one of the 
first method to utilize multi-modalities including multi-channel images of cell morphology and functions to 
address technology limitations and achieve augmented spatial profiles. SiGra accurately recovers missing 
information in spatial gene expressions, uncover cellular dynamics, and reveal spatial architecture of cellular 
heterogeneity within tissues. Through the extensive and quantitative benchmarking with existing methods on 
multiple datasets including both single-cell level and spot-level spatial data generated by different platforms, 
SiGra demonstrates superior performance in terms of spatial domain identification, latent embedding, and data 
denoising. Collectively, SiGra will contribute to uncovering the complex spatial architecture within 
heterogeneous tissues and facilitate the gaining of biological insights. SiGra is provided as an open-source 
software available at https://github.com/QSong-github/SiGra, with detailed tutorials demonstrating the 
applications on different SCST platforms.  
 

RESULTS 
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Overview of the SiGra method 

The SiGra method includes 1) the graph representation of the original spatial transcriptomics data (Fig. 1a), and 
2) the hybrid graph transformer model to elucidate the spatial patterns and enhances the raw gene expression 
data (Fig. 1b).  

Graph representation. The state-of-art SCST data consists of 1) the multi-channel images of biomarkers for 
cell types (e.g., pan-cytokeratin or PanCK staining for tumor cells, CD3 for T cells, and CD45 for leucocytes) 
and cell compartments (e.g., DAPI staining for cell nuclei and CD298 staining for cell membrane). For each 
staining channel, a high-content grayscale image is assembled from a series of Field of View (FOV) images; 
2) the vendor-provided cell segmentation results such as the coordinates of cell centroids and the hull of cell 
boundaries; and 3) the cell-level summarization of gene expression according to the coordinates of each 
detected transcript and the cell boundary identified from cell segmentation.  

In SiGra, the single-cell spatial graph is constructed based on the spatial centroid of detected cells, with each 
node representing a cell, and each edge representing two neighboring cells (Euclidian distance shorter than 14 – 
16μm). Each node/cell within the spatial graph is accompanied with multi-modal data (images and gene 
expression) extracted from the original spatial profiles. Specifically, for each cell, an image of 21.6-by-21.6μm 
centered at the cell centroid is cropped from each immunohistochemistry (IHC) image. For example, as 
NanoString CosMx data consists of five channels (DAPI, PanCK, CD45, CD3, and CD298), each cell is 
associated with five single-cell images. In this way, SiGra achieves the graph representation of spatial profiles, 
i.e., the single-cell spatial graph with each located cell’s multi-channel images and gene expression. 

Hybrid graph transformer model. The SiGra model comprises three graph transformer autoencoders 
(imaging, transcriptomics, and hybrid, respectively) with attention mechanism (Fig. 1b) to incorporate the 
single-cell multi-modal data for simultaneous data enhancement and spatial domain recognition. Regarding the 
imaging autoencoder, with a cell � represented by node �� , an array of single-cell IHC images ��  is converted to 
a vector �� , and projected to the latent space as ��,�  through multi-head graph transformer layers 
(Supplementary Fig. 1, Materials and Methods). This latent imaging features ��,�  then reconstructs the gene 
expression profile ���,� of cell �. For the transcriptomics autoencoder, the same architecture is used for the latent 
representation (��,� ) and the reconstruction ( ���,� ) of the original expression ��  in cell � . For the hybrid 
autoencoder, the latent imaging features ��,�  and the latent expression features ��,�  are concatenated and 
projected as a hybrid feature ��,� , which is used to reconstruct the gene expression ���,� of cell �. Imaging and 
gene expression features of neighboring cells, represented as neighbor nodes �� � 	
��� in the spatial graph, 
are also used as the input for graph transformers, so that the spatial cellular information is aggregated into the 
model. 

SiGra learns the reconstructed gene expression via a self-supervised loss of combined MSE from gene 
embedding ��,� , image embedding ��,� and combined embedding ��,� , with the loss function  

� 
 � ����,� � ����,� � 
1 � �� � �����,�	

�
�

 

, where the hyperparameters ��, �� � 0, �� � �� � 1, and � is the total cell number. After training, SiGra 
outputs the hybrid reconstruction �� 
 ����,�� as the final enhanced expression profile. The latent representation, 
� 
 ���,��, of the original SCST data is used for spatial data clustering. 

With the introduced multi-head attention mechanism in graph transformer layers, SiGra adaptively updates the 
contributions of neighboring cells ���� to cell ��  through aggregating and propagating the extracted image 
features and the gene expression features from neighbors, eventually updates the latent representation of cells 
and the final reconstructed gene expression profiles. Through the evaluation and benchmarking with current 
available methods, SiGra demonstrates exceptional performance on multiple spatial transcriptomics datasets 
from different platforms, especially on single-cell spatial profiling. Moreover, the enhanced spatial 
transcriptomics data by SiGra facilitates the insights into cellular communications and the underlying biological 
discoveries. 
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SiGra accurately identifies spatial domains in the single-cell spatial profiles of NanoString CosMx SMI 

To evaluate the performance of SiGra in deciphering spatial domains, we compare it with five state-of-the-art 
clustering methods developed specifically for spatial transcriptomics, including Seurat v410, Scanpy11, 
stLearn12, SpaGCN14, and BayesSpace13. For comparisons, we use the SCST dataset of Lung-9-1 generated by 
NanoString CosMx SMI. This dataset consists of 20 Field of Views (FOVs) from lung cancer patient tumor 
tissue4, with 982 genes and 83,621 cells that covers majorly eight cell types, including lymphocytes, neutrophile, 
mast, endothelial, fibroblast, epithelial, myeloid, and tumors. Details of these experimental data are provided in 
Data Availability. The identified spatial clusters of each method are annotated based on the matched overlap of 
spatial clusters and ground truth manually annotated in the original study4. 

Fig. 2a shows the ARI scores of all the 20 FOVs. Notably, SiGra is shown to identify the most accurate spatial 
clusters (median ARI: 0.59) than the rest of methods, especially higher than stLearn (median ARI: 0.22) and 
Scanpy (mean ARI: 0.25). Compared with SpaGCN (mean ARI: 0.27), Seurat (median ARI: 0.38) and 
BayesSpace (mean ARI: 0.32) present relatively better performance with identified clusters more consistent 
with manual annotations. These comparison results demonstrate that SiGra improves the identification of spatial 
clusters than existing methods for single-cells spatial profiles. 

With the spatial clusters identified by different methods, the spatial organization of 20 FOVs are shown in Fig. 
2b. Specifically, SiGra detects spatial domains that agree well with the original study, i.e., ground truth, with 
the overall ARI as 0.55, higher than Seurat (ARI = 0.37) and BayesSpace (ARI = 0.23). Seurat and BayesSpace 
significantly mislabel more cells than SiGra across the 20 FOVs. Meanwhile, the other two methods show much 
lower accuracy (ARIs: 0.25 for Scanpy, 0.22 for SpaGCN, and 0.34 for stLearn). Of note, the addition of multi-
channel images (ARI = 0.59) improves the performance by 47.5%, compared with using gene expression only 
as input (median ARI = 0.40, Supplementary Fig. 2a). These results demonstrate that multi-modal spatial 
information contributes to the superior performance of SiGra. 

The spatial clustering results are further scrutinized at FOV level (Fig. 2c). Of note, SiGra shows consistency 
between its identified cellular anatomy and the ground truth, with the continuous tumor region infiltrated with 
scattered immune cell clusters. In contrast, BayesSpace and Seurat misidentify the cellular anatomies as either a 
mixture of fragmental cell regions (FOV-1) or with highly blended cell types (FOV-2). For FOV-1, BayesSpace 
misidentifies the neutrophile as lymphocytes, meanwhile, it incorrectly identifies some tumor cells as myeloid 
cells or neutrophile. Seurat fails to disentangle epithelial cells from tumor cells. In FOV-2, BayesSpace 
misrecognizes fibroblast as the mixture of myeloid cells and lymphocytes, while Seurat mixes neutrophile with 
tumor cells without clear dissection of spatial heterogeneity. Those results indicate that the compared methods 
lack the capability of deciphering major spatial regions in single-cell spatial transcriptomics data. 

SiGra enhances gene expression patterns that distinguish intratumoral spatial heterogeneity 

SiGra enhances the spatial gene expression data and improves downstream analysis for unveiling biological 
relevance. Herein, we perform the Uniform Manifold Approximation and Projection (UMAP) on raw data and 
enhanced data respectively (Fig. 3a, Supplementary Fig. 2b). Apparently, enhanced data reveals better data 
topology with different cell types better separated in the UMAP. Moreover, the enhanced cell type specific gene 
markers show prevalently consistent expression in their corresponding cell types (Fig. 3b). For example, the 
enhanced fibroblast marker gene DCN18 demonstrates uniform high expression in fibroblasts and low 
expression in other cell types. In contrast, in raw data, DCN presents sporadic expression in fibroblasts while 
highly expresses in other non-fibroblasts. Thus, SiGra not only denoises false-positive expressions (e.g. the 
DCN expression in non-fibroblasts) and extreme values, but also imputes missing values (e.g. the missing 
values of DCN expression in fibroblasts). Meanwhile, SiGra-enhanced data exhibits topological expressions of 
cell type specific markers (Fig. 3c). For example, after enhancement, CD6819 and MGP20 show elevated 
expressions in myeloid and endothelial cell enriched regions, respectively. Tumor-specific genes EPCAM21, 
SOX422, and KRT723, show strong and uniform enrichment in tumor regions, while these genes are not captured 
in the raw data of some tumor cells (Fig. 3d). In addition to marker genes, SiGra also allows revealing 
biologically meaningful differentially expressed genes (DEGs) (Supplementary Fig. 2c). Collectively, these 
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results demonstrate the capability of SiGra to enhance gene expression data for better spatial data 
characterization. 

To further prove that the enhanced data by SiGra is useful for downstream analysis, we collect a combined list 
of candidate ligand-receptor (L-R) pairs from IUPHAR (International Union of Pharmacology)24, Connectome25, 
FANTOM526, HPRD27, and Human Plasma Membrane Receptome (HPMR)28, and Database of Ligand-
Receptor Partners (DLRP)29, which encompasses 815 ligands, 780 receptors, and 3,398 reliable L-R interaction 
pairs. Among them, genes of 660 L-R pairs are included in this NanoString CosMx dataset. For each of the 660 
L-R pairs, we calculate the association of the ligand and its corresponding receptor, using raw data and 
enhanced data respectively. As shown in Supplementary Fig. 3a, of note, 221 L-R pairs with strong 
correlations (Pearson correlation > 0.5) are identified from the enhanced data. Surprisingly, no L-R pairs are 
observed with strong correlations based on raw data. Meanwhile, in the non-tumor cell population, we observe 
104 L-R pairs with strong associations (Fig. 3e), where the classic EFNB2 - PECAM1 interaction30 is shown as 
one top associated L-R pair (Pearson correlation = 0.78, Supplementary Fig. 3b) in enhanced data. Both 
EFNB2 and PECAM1 present extensive zeros in raw data, with only a small portion of expressed cells observed, 
which explains the low correlation (Pearson correlation = 0.08) of EFNB2 - PECAM1 in raw data. Thus, the 
enhanced data co-expression patterns of L-R pairs have great biological relevance that facilitate the mining the 
cellular communications. Specifically, we further reveal the adjacency between different cell types (Fig. 3f, 
Materials and Methods) as well as the cell-cell communications considering both the neighboring cell weights 
and the L-R communication strength (Fig. 3g). Tumor-associated fibroblasts play a central role in the tumor 
microenvironment, not only adjacent to tumor cells and lymphocytes (Fig. 3f), but also presenting strong 
communications with them (Fig. 3g). In contrast, lymphocytes and myeloid cells are close with each other but 
with less communications. Collectively, this evidence demonstrate that the enhanced data contributes to 
downstream analysis and are crucial for revealing cellular interactions, which otherwise will be hidden due to 
data sparsity. 

SiGra enhances the single-cell spatial data of Vizgen MERSCOPE 

SiGra is further evaluated on the other SCST dataset of mouse liver profiled by Vizgen MERSCOPE, which 
consists of 347 genes and 395,215 cells. In this dataset, SiGra reveals different spatial cell clusters 
(Supplementary Fig. 4a). For better visualization, we focus on the four major cell clusters (Fig. 4a). Cluster 1 
(C-1) and cluster 2 (C-2) are located adjacent to central and portal veins respectively, while cluster 3 (C-3) and 
cluster 4 (C-4) are co-located with blood vessels. Importantly, the enhanced data by SiGra reveals histologically 
meaningful liver-specific gene expression patterns in different regions (Fig. 4b). For example, SiGra realizes 
remarkable enhancement of hepatocyte’s hallmark genes Cyp2c3831 and Axin232, which are predominantly 
expressed near blood vessels. The endothelial cell markers Cd3433 (Fig. 4b) and Vwf34 (Supplementary Fig. 4b) 
also clearly present at central veins, portal veins, and sinusoids. The raw data, in contrast, shows noisy 
expressions of these genes in the non-relevant anatomic regions. For example, Cd34 and Vwf show scattered 
false signals in the non-blood-vessel regions and missing expressions in smaller veins especially sinusoids. 
Thus, essential cellular anatomic structures in the liver tissue, such as central veins, portal veins, and sinusoids, 
can be clearly identified by the enhanced expressions of Cd34, Vwf, and Axin2, but not the noisy raw data, 
which are further confirmed by the UMAP plots (Fig. 4c). From the boxplots of these hallmark gene 
expressions (Fig. 4d), both C-1 and C-2 are suggested to be hepatocytes (high Cyp2c38 and Axin2 expressions), 
C-2 is enriched with periportal hepatocytes (higher Axin2 expression), C-4 contains mainly endothelial cells 
(high Cd34 and Vwf expressions), and C-3 is likely to be hepatic stellate cells. Notably, the enhanced cell-type 
specific genes only enrich in their restricted regions but not in irrelevant regions, suggesting that SiGra does not 
introduce noticeable artifacts in the enhanced data. 

In addition, SiGra reveals more differentially expressed genes (DEGs) from the enhanced data than raw data 
(Fig. 4e). For example, the enhanced data recovers 59, 42, 35 DEGs for C-1, C-2, and C-3, while the raw data 
only identifies 12, 13, 12 DEGs accordingly. The identified DEGs in enhanced data also show higher average 
log2 Fold Change (logFC; C-1: 0.8; C-2: 0.89; C-3: 0.79) than raw data. Of note, the enhanced data by SiGra 
reveals the associated ligand-receptor (L-R) pairs. As shown in Fig. 4f, among the 64 L-R pairs identified in 
this dataset, 19 pairs present strong correlations (Pearson cor > 0.5) based on the enhanced data. In contrast, 
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only 2 L-R pairs are observed with strong correlations in raw data. Selplg (ligand) - Itgb2 (receptor) is shown as 
the top associated L-R pairs both in enhanced data and raw data, while Dll4 (ligand) - Notch4 (receptor) 
presents strong association only in enhanced data. This result demonstrates that SiGra enhances gene 
expressions that facilitates recovering the liver-specific genes and potential cell-cell interactions, which enables 
better characterization of the spatial architecture of mouse liver tissue. 

SiGra improves identification of known layers in brain tissues 

To show that SiGra not only outperforms existing methods in single-cell spatial data, but also in spot-based 
spatial transcriptomics data, here we analyze the 10x Visium datasets from human dorsolateral prefrontal cortex 
(DLPFC). These datasets consist of 12 tissue slices of human brains, covering up to six neuronal layers and 
white matter manually annotated by the original study. To evaluate the benchmarking performance, the 
identified spatial clusters are annotated based on the matched overlap of spatial clusters and ground truth. Fig. 
5a shows the ARI scores for all 12 tissue slices, of which SiGra (median ARI: 0.54) outperforms Scanpy 
(median ARI: 0.28), Seurat (median ARI: 0.29), stLearn (median ARI: 0.39), SpaGCN (median ARI: 0.40), and 
BayesSpace (median ARI: 0.44). 

We further examine the DLPFC anatomic structures identified by different methods. For tissue slice 151507 
(Fig. 5b), SiGra reveals more accurate spatial regions than other methods. Seurat identifies Layer 4 scattered in 
the regions of Layer 3 and 5 without clear boundaries. Scanpy, stLearn, and BayesSpace are not able to 
distinguish the anatomic shape of Layer 4. Fig. 5c shows the other tissue slice 151676 with spatial regions 
identified by different methods. Only SiGra deciphers the layer boundaries clearly that reaches good agreement 
with manual annotations (ARI = 0.62), while other methods can only achieve ARI less than 0.4. Specifically, 
stLearn intermingles Layer 2 with Layer 3, with additional mixtures of Layer 4 and white matter. BayesSpace 
mixes Layer 4 with Layer 5, and misidentifies some white matter as Layer 2, which leads to its poor 
performance. Interestingly, though stLearn also utilizes histology information from the H&E images to capture 
morphological features, its performance is substantially worse than SiGra, suggesting that SiGra incorporates 
the multi-modal spatial features in a more effective way. In addition, based on the latent embeddings of slice 
151676 obtained by different methods (Fig. 5d), SiGra presents much clearer separations of different anatomic 
layers, while Scanpy and SpaGCN only discern white matters, failing to distinguish other neuronal layers. All 
these benchmarking results show that SiGra is able to better identify subtle spatial domains than other methods 
on the spot-based spatial transcriptomics data. 

SiGra improves spatial gene expression for better structural characterization 

To validate further that SiGra enhances the spatial gene expressions, we detect the DEGs of each domain in 
slice 151676. Compared with the number of DEGs detected in raw data, SiGra detects more DEGs specific to 
individual regions (Supplementary Table 1). For example, with 232 DEGs of Layer 1 detected in raw data, 
595 DEGs are found specific to Layer 1 from enhanced data. Moreover, for each of the neuronal layers, region-
specific maker genes can be better identified after SiGra data enhancement (Fig. 6a). For example, MYH1135 
presents enriched expressions in Layer 1 (logFC = 2.96). C1QL236 and CUX236 are overexpressed in Layer 2 
and Layer 3, with logFC as 1.74 and 1.44. SYT237 and FEZF238 are enriched in Layer 4 (logFC = 1.31) and 
Layer 5 (logFC = 1.42). PAQR639 shows dominantly enriched expressions (logFC = 2.9) in white matter area. In 
contrast, these markers genes do not show clear expression patterns in raw data, indicating the limits that raw 
data faces in distinguishing spatial domain boundaries. Violin plots further show the expressions of marker 
genes in raw data and enhanced data respectively (Fig. 6b). Such enhanced gene expression patterns are also 
observed in other DLPFC slices, for example, slice 151507 (Fig. 6c), where  RELN40 (logFC = 3.24) and 
ADCYAP141 (logFC=2.81), i.e. makers of Layer 1 and Layer 2, present remarkable enhancement, in contrast to 
their sporadic expressions in raw data. The enhanced data by SiGra consistently reveals more DEGs compared 
to the raw data (Supplementary Table 2). These results demonstrate the capability of SiGra to reduce noises 
and improve gene expression patterns in spot-based spatial transcriptomics data. 

 

DISCUSSION 
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The recent spatial biology technologies have rapidly evolved into the single cell era42. Commercially available 
in situ hybridization platforms such as NanoString CosMx SMI and Vizgen MERSCOPE have enabled spatial 
gene expression profiling at subcellular resolution (50nm) for 500 – 1,000 targeted genes. Experimental in situ 
sequencing technologies such as ExSeq43 expand SCST to transcriptome-wide. Spot-array spatial 
transcriptomics technologies such as Stereo-seq44 and Seq-Scope45 are also reaching subcellular resolution 
(500nm – 600nm). However, common in all these technologies, the resulting SCST data is limited by the low 
total transcripts per cell, noisy data, and substantial zeros, which raises challenges in effective downstream 
analysis42. To accurately reveal spatial and cellular anatomic structures and to enhance the noisy gene 
expression data, we have developed the SiGra method, a graph artificial intelligence model, to incorporate 
multi-modal data including multi-channel IHC images, spatial adjacent cell graph, and gene expressions. The 
use of the graph transformers over the spatial adjacent cell graph as well as the imaging-transcriptomics hybrid 
architecture allow SiGra to effectively leverage the rich information from the high-content IHC images as well 
as the spatial distribution. In SiGra, the multi-modal information from images and original transcriptomics are 
summarized at single-cell level, with the information from neighboring cells selectively captured by the 
attention mechanism. With these technical advances, the SiGra model outperforms existing methods and 
significantly improves downstream data analysis.  

SCST grants researchers the spatial perspective for exploring the cellular ecosystems in complex tissues. SiGra 
is one of the first method to utilize multi-modalities including multi-channel images of cell morphology and 
functions to address technology limitations and achieve augmented spatial profiles. Coupling the unique 
transcriptomics profiles with multi-channel imaging data improves the interpretability of the spatial 
transcriptomics data and gains molecular-level insights in cellular pathology.  

SiGra is designed as a general-purpose tool for spatial transcriptomics data enhancement and spatial pattern 
profiling. Besides the SCST data, SiGra can also be directly used for spot-based spatial transcriptomics data 
such as the 10x Visium and demonstrates superior performance than existing methods. SiGra provides platform-
specific preprocessing tools for CosMx, MERSCOPE, and 10x Visium data. The enhanced SCST data by SiGra 
are ready-to-use for downstream bioinformatics analyses. SiGra has demonstrated superior performance over 
three different platforms, in both health and disease tissues, and across different species. Therefore, SiGra 
provides a general solution for existing spatial transcriptomics data analysis pipelines. 

Besides the superior performance and technical advantages, SiGra can be further improved in the future. First, 
as newer spatial omics technologies46 continue evolving and new data modalities keep emerging, SiGra can be 
improved by incorporating new omics data types, new image types, 3-D spatial information, etc., to extend the 
data exploration. The hybrid architecture allows SiGra to adapt additional spatial information and incorporate 
multi-omics data. As a advanced deep learning model, SiGra also faces the limitations of the black-box nature 
of artificial intelligence47-49. This can be ameliorated through downstream analysis such as cell-cell interaction 
analysis. Further development of SiGra will enhance the model interpretability that can address some of the 
problems and bring insights into the underlying mechanism in tissue ecosystems. With the capacity and 
efficiency of the experimental technologies continue to improve, SiGra is anticipated to facilitate biological 
discoveries and insights into the complex tissues and diseases. 

MATERIALS AND METHODS 

Data Preprocessing and Graph representation 

Spatial transcriptomics data generated by different platforms, including the NanoString CosMxTM SMI lung 
cancer dataset (Lung-9-1)4, Vizgen MERSCOPE mouse liver dataset L1R1 released in January 202215, and 10x 
Visium datasets from human dorsolateral prefrontal cortex (DLPFC)50, are preprocessed and represented in the 
uniform format (Fig. 1) for SiGra. The original spatial profiles are converted to single-cell (or spot) images, 
single-cell (or spot) expression, and a spatial graph of adjacent cells (or spots), which serve as the input for 
SiGra. 

Regarding the NanoString Lung-9-1 dataset, the composite images of the DAPI, PanCK, CD45, and CD3 
channels from 20 FOVs, the cell center coordinates (from the cell metadata file), the single-cell gene expression 
file of 960 genes are used. For each cell, four images of 120-by-120 pixels (21.6-by-21.6μm) with the cell at the 
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center are cropped from the images. The spatial adjacent graph is constructed based on the cell-to-cell distance 
(Euclidian distance) ≤ 80 pixels (14.4μm). NanoString’s annotations of cell types are obtained from their 
provided Giotto object. Regarding the Vizgen L1R1 dataset, images of the DAPI staining and the three IHC 
boundary staining, the single-cell expression data of 347 genes, and the cell center coordinates are used. The 
images in the middle of the z-packs (z3) are used, as recommended by Vizgen. These images are cropped into 
single-cell images with 200-by-200 pixels (21.6-by-21.6μm). The spatial adjacent graph is constructed with 
cell-to-cell distance ≤ 150 pixels (16.2μm). Regarding the 10x Visium DLPFC dataset, the high-resolution H&E 
images as well as the .h5 files (“filtered_feature_bc_matrix.h5”) are used as input. For each spot, three spot-
specific images (for the RGB channels, respectively) are extracted, with the image size of 50-by-50 pixels 
(38.7-by-38.7μm). The cutoff distance for generating the spatial graph between spots is 150 pixels (116μm). 
Top 3000 highly variable genes are identified using Seurat standard pipeline51 and used for analysis. For all 
datasets, the raw counts of gene expressions are normalized by multiplying 10,000 and followed by log-
transformation. The parameters of the size of single-cell images and the cutoff of cell-to-cell distance for 
constructing the spatial graph are determined empirically depending on cellular anatomy of the tissue. In the 
spatial adjacent graph, most cells have 5 – 6 neighboring cells. 

In this way, the final graph representation of the original single-cell or spot spatial transcriptomics data is a 
spatial graph � 
 
�, ��, with �� � �, representing the �’th cell with � 
 1, � , � represent the totally � cells, ��� � � representing the spatial proximity between two cells ��  and �� , and   as the adjacent matrix of the graph. 
Each cell ��  on the spatial graph is accompanied with multi-channel images !� 
 ���,��, with " 
 1, � , # 
representing each imaging channel, and gene expression �� 
 �$�,��, with % 
 1, � , & representing genes. 

The SiGra model 

SiGra is a hybrid multi-modal graph transformer autoencoder with three transcriptomics reconstruction modules: 
the imaging-based autoencoder, the transcriptomics-based autoencoder, and the hybrid autoencoder.  

1) Imaging-based autoencoder. For a cell �� , the multi-channel images !�  are transformed to a vector �� '
(vec)��,�*, � ,vec)��,�*+
. An autoencoder with a series of multi-head graph transformer layers is used to 
project the imaging vector to the latent space as ��,� , then reconstruct the gene expression profile of this cell ��  as ���,� . The images !�  from neighboring cell �� � 	
���  are also used as the input, where 	
·� 
represents the neighbors in the graph �. 

2) Transcriptomics-based autoencoder. The original gene expression profile ��  for cell �� , with ��  for adjacent 
cells �� � 	
��� also as the input, is projected to the latent space as ��,�, which is then used to reconstruct 
the gene expression of cell ��  as ���,� . 

3) Hybrid autoencoder. The latent representation of the imaging and the transcriptomics features are catenated 
as (��,� , ��,�+, further projected to hybrid latent feature ��,� , and then used to reconstruct the gene expression 
for cell ��  as ���,�  through graph transformer layers. The latent features ��,�  and ��,�  from neighbor cells 
���� are also used by the graph transformers. 

Graph transformer convolutional layer. Multi-head graph transformer52 layers with attention mechanism 
(Supplementary Fig. 1) are the main components of the SiGra model. Briefly, the for a cell �� , the propagation 

of the graph transformer from the -  layer to the - � 1  layer is defined as: .�

����� 
 ReLU 34�

���.�

��� �
��∈��� ��,����, where the rectified linear unit (ReLU53) is used as the nonlinear gated activation function. The 

attention module is defined as: 5�,� 
 softmax6 ���
���
,��

���
�

∑ ��
�
���
,��

���
�

������

7, where: 

query: >�

��� 
 4�

���.�

��� � ?���� 
key: &���� 
 4�

���.���� � ?���� 
value: ����� 
 4�

���.���� � ?���� 
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and D>, &E ' exp 6>
& Hdim3.
�

���LM 7. The multi-head attentions, which notation is omitted for simplicity, are 

concatenated. 

Loss function. SiGra learns the reconstructed gene expression via a self-supervised loss of combined MSE 
from gene embedding, image embedding and combined embedding, with the loss function  

� 
 � ����,� � ����,� � 
1 � �� � �����,�	

�
�

 

where ��,� 
 �

	
∑ O�� � ���,�O�	
�
� , ��,� 
 �

	
∑ O�� � ���,�O�	
�
� , ��,� 
 �

	
∑ O�� � ���,�O�	
�
� . In this work, we set 

the hyperparameters �� 
 �� 
 0.1. 

The hyperparameters of SiGra are: two graph transformer layers for the imaging and the transcriptomics 
encoders (with dimension of 512 and 30 for the 1st and the 2nd layers, respectively), one graph transformer layer 
for the hybrid encoder (dimension of 60 with 30 from the transcriptomics encoder and 30 from the imaging 
encoder), and two graph transformer layers for imaging, transcriptomics, and hybrid decoders (with dimension 
of the first layer of 512, and the dimension of the second layer is same as the corresponding transcriptomics 
data). After training, SiGra outputs the hybrid reconstruction �� 
 ����,��  as the final enhanced expression 
profile. The latent representation, � 
 ���,��, of the original SCST data is used for spatial data clustering with 
Leiden algorithm54 from the SCANPY package11. 

Benchmarking methods and comparison measurement 

To evaluate the performance of SiGra, we compare it with five existing methods, including Seurat v410, 
Scanpy11, stLearn12, SpaGCN14, and BayesSpace13. Seurat and Scanpy are implemented based on their provided 
vignettes. Briefly, for data preprocessing, 3,000 highly variable genes are selected for log normalization, and 
top 30 principal components (PCs) are calculated for spatial data clustering. BayesSpace is implemented based 
on their package vignette. Specifically, the input is the top 15 PCs of the log-normalized expression of the top 
2,000 HVGs. The nrep parameter is set as 50,000 and the gamma parameter is set as 3. For stLearn, based on its 
tutorial, the stLearn.SME.SME_normalized() function is performed on raw counts with parameters use_data = 
“raw” and weights = “physical_distance”. The top 30 PCs of the SME normalized matrix are then used for 
spatial data clustering and visualization. SpaGCN is applied according to its recommended parameters in the 
package vignette. That is, the top 15 PCs of the log-normalized expression of the top 3,000 spatial variable 
genes are used for spatial data clustering. 200 epochs are used for identifying and refining spatial domains. The 
resolution parameter is selected to ensure the number of clustering is equal to the ground truth. 

To evaluate the performance of each method, we use the Adjusted Rand Index (ARI) to assess the agreement 
between the identified spatial clusters and the manual annotation. Suppose QR 
 ST��U�
��  represent the spatial 
clusters and Q 
 ST�U�
��  represent the ground truth of � cells with divided into % clusters. Then 

 VW 

∑ 3���
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, where - and Y denote the % clusters, �� 
 ∑ W
T�� 
 -��
� , �� 
 ∑ W
T� 
 Y��

� , ��� 
 ∑ W
T�� 
 -�W
T� 
 Y��
�,� , and 

W
Z 
 T� 
 1 when Z 
 T, else W
Z 
 T� 
 0. The ARI ranges from 0 to 1 for increasing match between the 
identified clusters with ground truth. 

Identifying differentially expressed genes and adjacent cell communications 

To identify the differentially expressed genes (DEGs), the Wilcoxon test from Scanpy package11 is used. DEGs 
of each spatial region is selected with 5% FDR threshold (Benjamin-Hochberg adjustment) and the log2 Folder 
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Change more than 1 (log2 FC > 1). 

To reveal the neighbors of each cell type, we aggregate its neighboring cells by cell type and divide the average 
number to reveal its weighted neighbors. These weighted neighbors are further used to characterize the adjacent 
cell communications. Specifically, the interaction strength of each L-R is calculated by the multiplication of 
their association score and their average expression. Then we aggregate the interaction strength of each L-R pair 
by cell type to be the communication strength of two cell types. The neighboring weight of two cell types is 
further multiplied to the communication strength of these two cell types for the final adjacent cell 
communications. In this way, the higher value of the adjacent communications, the stronger the two 
neighboring cell types interact. 

DATA AVAILABILITY 

NanoString CosMx SMI data: This single-cell spatial dataset contains 20 FOVs, which is profiled by the 
CosMx SMI on Formalin-Fixed Paraffin-Embedded (FFPE) samples of the non-small-cell lung cancer (NSCLC) 
tissue4. The dataset (Lung-9-1) is available from https://nanostring.com/products/cosmx-spatial-molecular-
imager/ffpe-dataset/. Vizgen MERSCOPE/MERFISH dataset: We used the Vizgen MERFISH Mouse Liver 
Map dataset that contains a MERFISH measurement of a 347 gene panel. Sample L1R1 (liver 1, replicate 1) 
was used and downloaded from https://info.vizgen.com/mouse-liver-access, which includes the list of detected 
transcripts, gene counts per cell matrix, additional spatial cell metadata, cell boundary polygons, and DAPI 
images. 10x Visium dataset of human brain: The human dorsolateral prefrontal cortex (DLPFC) 10x 
Genomics Visium datasets20 consists of 12 samples. Each of the sample is manually annotated with up to six 
cortical layers and white matter. Transcriptomics data and hematoxylin and eosin (H&E) images of 
corresponding tissue sections are downloaded from http://research.libd.org/spatialLIBD/. 

CODE AVAILABILITY 

SiGra is provided as a Python package available at https://github.com/QSong-github/SiGra, with detailed 
tutorials for the general applicability on different SCST platforms. 

FIGURE LEGENDS 

Fig. 1: Schematic overview of the SiGra method. a, Graph representation of the spatial transcriptomics 
profiles. Each cell on the constructed spatial graph is accompanied with its multi-channel images and gene 
expression. b, SiGra comprises three graph transformer autoencoders (imaging, transcriptomics, and hybrid, 
respectively) with attention mechanism to incorporate the single-cell multi-modal data for simultaneous data 
enhancement and spatial domain recognition. 

Fig. 2: SiGra accurately identifies spatial domains in the single-cell spatial profiles of NanoString CosMx 
SMI. a, Boxplot of the adjusted rand index (ARI) scores of six methods in all the 20 FOVs of lung cancer tissue. 
The center line within the boxplot represents the median and the box limits denote the upper and lower quartiles. 
b, Spatial regions of ground truth and those detected by different methods including SiGra, BayesSpace, and 
Seurat. c, Spatial regions of two FOVs detected by different methods including SiGra, BayesSpace, and Seurat.  

Fig. 3: SiGra enhances gene expression patterns that distinguish intratumoral spatial heterogeneity. a, 
UMAP visualizations of raw data and the enhanced data of non-tumor cell population. b, Violin plots of the raw 
expression and the enhanced ones of marker genes in different cell populations. c, UMAP visualization of the 
raw expressions and the enhanced ones of marker genes (CD68, MGP, DCN, KRT7). d, Spatial visualization of 
the raw expressions and the enhanced ones of tumor related genes (EPCAM, KRT7, SOX4) in two FOVs. e, 
Scatter plot of the associations of all detected ligand-receptor (L-R) pairs in the raw data and the enhanced data, 
based on the non-tumor cell population. Red colored dots represent the L-R pairs that show strong association in 
the enhanced data. All L-R pairs were not identified with associations based on the raw data. f, Network 
representation of the weighted adjacent cell types. The edge width represents the adjacency between two cell 
types. g, Adjacent cell communications considering both neighboring cell weights and ligand-receptor 
interaction strength. 

Fig 4: SiGra enhances the single-cell spatial data of Vizgen MERSCOPE. a, Spatial visualization of the cell 
clusters in the single-cell spatial data from mouse liver tissue. b, Spatial visualization of the raw expressions 
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and the enhanced ones of liver related genes (Cyp2c38, Axin2, Cd34). c, UMAP visualization of the raw 
expressions and the enhanced ones of liver related genes (Cyp2c38, Axin2, Cd34). d, Boxplots of the raw 
expression and the enhanced ones of liver specific genes in different cell clusters. e, Comparisons of the number 
of differentially expressed genes (DEG) in cell clusters. The labeled number is the average log2FC for that cell 
cluster. f, Scatter plot of the associations of detected ligand-receptor (L-R) pairs in the raw data and the 
enhanced data. Yellow colored dots represent the L-R pairs that show strong association only in enhanced data. 

Fig. 5: SiGra improves identification of known layers in brain tissues. a, Boxplot of the adjusted rand index 
(ARI) scores of six methods in all the 12 DLPFC slices. The center line within the boxplot represents the 
median and the box limits denote the upper and lower quartiles. b, Spatial domains detected by different 
methods including Scanpy, Seurat, stLearn, BayesSpace, SpaGCN, and SiGra, in the DLPFC slice 151507. c, 
Spatial domains detected by different methods including Scanpy, Seurat, stLearn, BayesSpace, SpaGCN, and 
SiGra, in the DLPFC slice 151676. d, UMAP visualizations of latent embeddings generated by Scanpy, stLearn, 
SpaGCN, and SiGra in the DLPFC slice 151676. SpaGCN and BayesSpace were not shown as they didn’t 
provide latent embeddings for UMAP visualization. 

Fig. 6: SiGra improves spatial gene expression for better structural characterization. a, Spatial 
visualization of the raw expressions and the enhanced ones of marker genes (MYH11, C1QL2, CUX2, SYT2, 
FEZF2, PAQR6) in DLPFC slice 151676. b, Violin plots of the raw expression and the enhanced ones of 
marker genes in DLPFC slice 151676. c, Violin plots of the raw expression and the enhanced ones of marker 
genes in DLPFC slice 151507. 

Supplementary Fig. 1: Illustration of the multi-head graph transformer layer in SiGra. a, the overall 
architecture of a graph transformer layer. b, the attention module in the graph transformer. 

Supplementary Fig. 2: Multi-modal based SiGra improves clustering accuracy and enhances spatial gene 
expression in lung cancer tissue. a, Boxplot of the adjusted rand index (ARI) scores of SiGra based on image 
features and gene expression features in all the 20 FOVs of lung cancer tissue. The center line within the 
boxplot represents the median and the box limits denote the upper and lower quartiles. b, UMAP visualizations 
of raw data and the enhanced data of all cells. c, Violin plots of top differentially expressed genes in different 
cell populations. 

Supplementary Fig. 3: SiGra facilitates the discoveries of ligand-receptor interactions with biological 
significance. a, Scatter plot of the associations of all detected ligand-receptor (L-R) pairs in the raw data and 
the enhanced data, based on all cell population. Red colored dots represent the L-R pairs that show strong 
association in the enhanced data. All L-R pairs were not identified with associations based on the raw data. b, 
Scatter plot of the raw expressions of top ligand-receptors, including EFNB2 (ligand) - PECAM1 (receptor) and 
CD48 (ligand) - CD2 (receptor) in raw data and enhanced data. 

Supplementary Fig. 4: SiGra reveals spatial cell distribution and enhances gene expression in mouse liver 
tissue. a, Spatial visualization of all cell clusters in the single-cell spatial data from mouse liver tissue. b, 
Spatial visualization of the raw expressions and the enhanced expressions of Vwf. 

Supplementary Table 1. DEGs identified for each layer based on raw data and enhanced data of slice 
151676. 

Supplementary Table 2. DEGs identified for each layer based on raw data and enhanced data of slice 
151507. 
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