
Using developmental rules to align microevolution
with macroevolution

ABSTRACT

Macroevolutionary biologists have classically rejected the notion that higher level patterns of divergence arise through
microevolutionary processes acting within populations. For morphology, this consensus partly derives from the inability of
quantitative genetics models to correctly predict the behavior of evolutionary processes at the scale of millions of years.
Developmental studies (evo-devo) have been proposed to reconcile micro and macroevolution. However, there has been little
progress in establishing a formal framework to apply evo-devo models of phenotypic diversification. Here, we reframe this issue
by asking if using evo-devo models to quantify biological variation can improve the explanatory power of comparative models,
thus helping us bridge the gap between micro- and macroevolution. We test this prediction by evaluating the evolution of
primate lower molars in a comprehensive dataset densely sampled across living and extinct taxa. Our results suggest that
biologically-informed morphospaces alongside quantitative genetics models allow a seamless transition between the micro
and macro scales, while biologically uninformed spaces do not. We show that the adaptive landscape for primate teeth is
corridor-like, with changes in morphology within the corridor being nearly neutral. Overall, our framework provides a basis for
integrating evo-devo into the modern synthesis, allowing an operational way to evaluate the ultimate causes of macroevolution.

Macroevolution | Microevolution | Evo-Devo | Inhibitory Cascade Model | Morphospace

“Macroevolution” is the field of study that aims to understand how the diversification of life occurred on our planet over1

large time scales1. Like any other historical science, it seeks to make sense of patterns over time ingrained in the fossil2

record and phylogenetic trees by referencing well-understood processes known from direct observations and experimentation2.3

In the case of evolutionary biology, this knowledge comes mainly from fields such as ecology and genetics, which tend to4

map evolutionary phenomena that take place during shorter time scales. For this reason, these studies are sometimes called5

“microevolution” and are designed to understand how population-level phenomena can produce evolutionary change. However,6

despite the presumed direct relationship between micro- and macro levels, quantitative studies have struggled to explain most7

macroevolutionary patterns in terms of microevolutionary processes3–7. Nevertheless, empirical results have consistently8

shown that the availability of additive genetic variation correlates strongly with rates of macroevolution for different traits6, 8–13,9

suggesting some effect of lower level microevolutionary processes at the macroevolutionary scale. Whether we can bridge the10

gap between these two scales is still unclear, with some authors arguing for their essential irreconcilability3, 14, 15 and others11

advocating for reconciliation within the context of the modern synthesis5, 8–10, 16–23.12

One long-standing suggestion for bridging the gap between micro- and macroevolution has been through the study of13

developmental biology and ontogeny (i.e. evo-devo)10, 19, 24–28. This suggestion, however, has been challenging to implement.14

In a microevolutionary context, development can often be reasonably assumed to be a smooth genotype-to-phenotype (GP)15

map, i.e. genotypic variation translates to phenotypic variation in a linear way, with traits being influenced by multiple16

genes of smaller effect. Such a smooth GP map would, in turn, allow the modeling of evolution and adaptation of the adult17

phenotype using a quantitative genetic framework, precisely because these classes of models entail this simplified, linear GP18

mapping18–20, 29. On larger time scales, however, genetic architectures can change, selection can fluctuate, and development19

can be reorganized, generating non-linearities between genotypic and phenotypic divergence, even if the GP map was originally20

smooth. On the phenotypic level, these non-linearities can produce discontinuities, i.e., regions of the morphospace less21

inhabited, or not inhabited at all by species, then impeding a straightforward extrapolation of microevolutionary processes22

over millions of years19, 27, 30–32 Therefore, in the absence of in-depth knowledge of development and the GP map, it is likely23

that macroevolutionary studies will find heterogeneity and discontinuities, even if the underlying genetic changes at the24

microevolutionary scale are relatively smooth and continuous19. Alternatively, if we can use developmental models as the basis25

of the quantification of morphology, we might smooth out some of these non-linearities, maximizing our ability to seamlessly26

connect micro and macroevolutionary scales9, 10, 19, 30, 33–36.27

Here, we propose a new framework for the investigation of morphological evolution over macroevolutionary time that28

explicitly models evolution at this scale as a consequence of underlying microevolutionary processes (Fig. 1). To deal with29

potential non-linearities that might arise over long time scales, we suggest the construction of developmentally informed30

spaces (Fig. 1Bi), which coupled with quantitative genetics modeling (Fig. 1E-G) and comparative methods (Fig. 1D),31

can facilitate a conceptual bridge between micro and macro scales. Under our proposed framework, we are able to directly32

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2023. ; https://doi.org/10.1101/2022.08.19.504140doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.19.504140
http://creativecommons.org/licenses/by-nc-nd/4.0/


Σ = G
tg

Ne
E) Quantitative
Genetics Data

G) Demographics

F) Life History

Bii) Naïve

B) Quantification and
Morphospace Construction

Bi) Evo-Devo
Informed

C) Phylogeny

A) Morphological
Data

D) Evolutionary
Modeling

Di) Macroevolutionary Models

dx(t) = −H(x(t)−θ(t))dt+ΣxdW (t)

Dii) Microevolutionary Models
dx(t) = −H(x(t)−θ(t))dt+ΣxdW (t)

Figure 1. Integrative evolutionary modeling framework employed in the present study. A) Sources of morphological
data, such as direct measuruments with calipers, measurements extracted from photographs and data obtained from the
literature. B) Process of quantification, which can be either evo-devo inspired (Bi) or "naïve" in relation to developmental
processes (Bii). C) Phylogeny of the group under study. D) Evolutionary modeling used to infer adaptive landscapes (isolines)
were species (ellipses) have evolved. E) Quantitative genetics data, specifically additive genetic variance-covariance matrices
(G), estimated form pedegreed populations. F) Life history data, specifically the generation time used to estimate time of
divergence in generations (tg). G) Demographics data, specifically effective population size (Ne). Evolutionary models can be
either macroevolutinary (Di) or microevolutionary (Dii). Both models belong to the Orstein-Uhlenbeck class of models with
the same parameters (see Materials and Methods for a full description of parameters) with the single difference being that on
the microevlutionary models, the stochastic rate parameter Σ is constrained to be equal to the rate of genetic drift. The rate of
drift is modeled as being proportional to Gtg/Ne). In our framework, the morphological data (A) is used to construct naïve or
biologically informed morphospaces (B) and, together with a phylogeny (C), are used in an evolutionary modeling process (D).
Different models, including microevolutionary and macroevolutionary ones can then be directly compared when they are
estimated under the same morphospace.

2/27

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2023. ; https://doi.org/10.1101/2022.08.19.504140doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.19.504140
http://creativecommons.org/licenses/by-nc-nd/4.0/


compare microevolution-inspired models (henceforth called "microevolutionary models") to non-microevolution-inspired ones33

that account for a wider variety of rate and state-heterogenous evolutionary processes (henceforth called "macroevolutionary34

models").35

We test this workflow to investigate the evolution of primate molars, which is an ideal model system for the present36

investigation. First, there is a simple yet powerful evo-devo model that describes the development and evolution of Mammalian37

molars, the inhibitory cascade model (ICM). The ICM models teeth size (i.e. molar row form) as the result of a balance38

between inhibition and activation factors35. Specifically, it predicts that the sizes of the first, second and third molars (m1,39

m2 and m3, respectively) will either be the same (m1=m2=m3), increase (m1<m2<m3) or decrease (m1>m2>m3) along the40

molar row. A corollary of this prediction is that there will be a positive relationship between the ratios of the areas of the41

last two molars in relation to the first one (m2/m1 and m3/m1) and thus establishes a natural morphospace to investigate this42

developmental process. This model was initially proposed for rodents35, and later verified for multiple Mammalian species37, 38,43

including Primates11, 39, 40. Second, there are several studies characterizing aspects of additive genetic variation in molars for44

Primates41–44, as well as large-scale life history and demographic information for the group45, 46, parameters that are essential45

to model microevolutionary processes such as drift and selection (Fig. 1E-G). Third, tooth enamel is the most mineralized46

substance in vertebrate tissues, making teeth especially resistant to taphonomic processes and abundant in the fossil record47

(Fig. 1C). The use of a dense fossil record allows us to bridge some phylogenetic gaps between extant species, ensuring that48

heterogeneities along the tree are more likely due to differences in process rather than incomplete sampling. This extensive49

availability of paleontological and neontological data enables unprecedented power to evaluate evolutionary dynamics through50

deep-time using data-hungry phylogenetic comparative methods47–49. We apply our framework to an expansive dataset of51

both extant (232 taxa) and extinct (248 taxa) species summarized from more than 250 different sources (see Supplementary52

Material), integrated with a newly published comprehensive phylogeny50. To address our hypotheses, we use a model-fitting53

approach based on information theory (Bayesian Information Criteria, or BIC) and model simplicity (minimizing parameter54

number). We expect that variables devised to quantify developmental processes (ICM variables) will favor microevolutionary55

models, while data embedded in biologically "naïve" spaces (those with no direct correspondence to any developmental model)56

will favor complex macroevolutionary models.57

Results58

To test our hypothesis that the use of developmental models to quantify morphological variation would provide a better bridge59

between micro and macroevolution, we used three morphospaces (Fig S1). The first is based on the linear distances taken60

directly from the teeth (“distance space”), and the second is based on the occlusal areas of each molar (“area space”). These61

two spaces are considered naïve because they make no assumptions about underlying developmental processes (Fig. 1Bii). As62

an evo-devo inspired space (Fig. 1Bi), we used the ICM description of the molar development35 and constructed a morphospace63

based on the relation between the relative occlusal area of m2 and m3 in relation to m1 (m2/m1 and m3/m1, respectively).64

We performed model-based clustering analyses of each set of measurements to test our prediction that development65

will generate discontinuous morphospaces. If, as explained above, complex developmental processes generate a patchy and66

discontinuous morphospace, then we expect to evaluate a high number of clusters on naïve spaces. However, if the evo-devo67

informed space corrects this issue, we will observe fewer clusters on the ICM morphospace. As expected, our clustering68

analysis shows a tendency of the ICM space to find fewer groups than the naïve spaces, suggesting the former is less patchy69

than the latter (Fig. 2).70
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Figure 2. Principal component analysis of the full-sample covariance matrix for the linear distances (A), areas (B) and ICM
ratios (C) morphospaces. Dots represent species averages, and colors represents groups identified in the clustering analysis.
These groups are based only on morphometric proximity and do not represent any taxonomic group. The more groups a
morphospace has, the more patchy and discontinuous it is considered. Axes are not depicted to scale for convenience, so
distances in the graph should not be considered representative of the metric of the underlying space.

Our model-fitting approach showed that the use of biologically naïve morphospaces favors evolutionary model complexity.71

Specifically, the best model for these spaces was a multi-regime multivariate Brownian motion (BM) model (Table 1, S1,S2).72

BM is a stochastic model in which divergence accumulates linearly with time and is associated with genetic drift under a73

strictly microevolutionary interpretation or random selection under a macroevolutionary interpretation. For this model, the74

main parameter is the rate matrix Σ, which controls the traits’ stochastic rate of evolution. Because the preferred model was a75

multi-regime one, our tree is subdivided into different "regimes," which are parts of the tree with different model parameters76

(rates of evolution for BM). For molar occlusal areas, the best model had three main regimes (Fig 3). The first regime covers77

most fossil groups (thus named "ancestral regime"), including Plesiadapiformes, stem-Haplorhini, part of stem-Simiiformes,78

and Tarsiidae. The second regime refers to Strepsirrhini, both crown and stem, and the third refers to crown Simiiformes79

(monkeys and apes, including humans). This three-regime model was also considered a better fit than any global model80

(microevolution-inspired or not) for the morphospace defined by linear distances, even though it was not the best solution found81

(see Supplementary Information, Table S2). In both morphospaces, the ancestral regime accumulated more variance over time82

than any derived regime, suggesting a weaker constraint on the former (Fig S8). It may be tempting to assign interpretations83

that are either biological (e.g., higher divergence rates after the K-Pg extinction event resulting from ecological opportunity) or84

statistical in nature (e.g., increased phylogenetic uncertainty of fossil placement resulting in upwardly biased rates51). However,85

we find that such patterns do not appear universally across morphospaces, and is absence from the developmentally-informed86

one, thus making any interpretation of these partitions premature.87

By contrast, the investigation of evo-devo-inspired variables based on the ICM paints a strikingly different picture (Fig. 2C).88

Instead of favoring more complex and heterogeneous models, the ICM morphospace favors a single global Ornstein–Uhlenbeck89

(OU) process (Table 1). OU models, like BM, have a Σ which governs the stochastic rate of evolution. Differently from90

BM, however, OU variance does not scale linearly with time, as the evolving species are under the influence of a phenotypic91

attractor θ , to which species converge with a rate governed by the parameter H. Under a macroevolutionary interpretation92

(Fig. 1Di), OU models any evolutionary process with a constraint, be that selective, developmental, genetic, etc. Under a strict93
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Table 1. Model comparison for the primate lower molar row
evolution fit through Maximum Likelihood (ML), and ranked
according to the BIC.

Traitsa Modelb Np
c logLik d BIC e

Linear distances BM 27 2585.03 -5003.38
OU 54 2684.57 -5035.75
BMΣ∝P 7 2108.57 -4173.93
OUΣ∝P 34 2174.45 -4138.99
BMΣ∝G 7 1480.63 -2918.04
OUΣ∝G 34 1510.57 -2811.23
Three-regime BM f 69 2823.03 -5484.50 g

Areas BM 9 415.80 -776.03
OU 18 413.98 -716.83
BMΣ∝P 4 92.39 -160.09
OUΣ∝P 13 275.16 -470.06
BMΣ∝G 4 74.41 -124.13
OUΣ∝G 13 258.02 -435.78
Three-regime BM f 21 471.42 -813.19 g

ICM BM 5 589.16 -1147.46
OUD 9 604.56 -1153.55 h

BMΣ∝P 3 538.31 -1058.10
OUΣ∝P 8 584.68 -1119.98
BMΣ∝G 3 575.69 -1132.86
OUD

Σ∝G 7 598.54 -1153.86 g

Three-regime OU f 26 597.35 -1034.18

aMorphospace used to quantify molar form variation; either a biologically
naïve space (linear distances or areas) or an evo-devo inspired space (ICM)

bModel type. Either global BM or OU models or a mixed model, which
allows model and parameter heterogeneity. BM and OU can also incorporate
the microevolutionary assumption that the evolutionary rate matrix (Σ) is pro-
portional to G or P (Σ ∝ G or P models). Uppercase "D" indicates OU models
with a diagonal H

cNumber of model parameters.
dLog-likelihood of the model
eBayesian Information Criterion used for model comparison
fResults for the mixed model for Linear distances and ICM are based on the

best regime combination found for the areas morphospace
gBold represents the best models
hUnderline represents the ones with BIC 2 units away from the best model.

microevolutionary interpretation (Fig. 1Dii), Σ is considered the rate of evolution due to random drift, and θ and H govern the94

optimum and the shape of the adaptive landscape, respectively. To achieve this interpretation, our microevolutionary model95

assumes a Σ which is proportional to the additive genetic covariance matrix of the traits (G-matrix; equations 1,2, Fig. 1E),96

with a value within a range governed by empirical estimates of demography and life history of Primates (Fig. 1F-G;45, 46). This97

implies that, instead of optimizing values for each entry of Σ, this model only fits one proportionality parameter (κ), which98

makes it simpler and more parsimonious than the macroevolutionary one.99

Both macroevolutionary (Fig. 1Bi) and microevolutionary (Fig. 1Bii) versions of this model (OU and OUΣ∝G, respectively)100

had essentially the same BICs, suggesting that their information content is effectively the same (Table 1). However, inspecting101

the confidence intervals for the macroevolutionary OU model reveals that the 95% intervals for its parameters overlap with the102

values implied by the microevolutionary model (Table S3). This suggests that the OUΣ∝G model can be interpreted in terms of103

microevolutionary processes not only in terms of patterns but also in terms of the magnitude of variation. So, we choose the104

microevolutionary OUΣ∝G as our preferred model not only because it reports the best BIC but also because of its simplicity and105

biological interpretability.106

Following the microevolutionary interpretation of our preferred model, the variation introduced by drift is aligned with the107

distribution of phenotypes on the ICM morphospace (Fig. 4A), suggesting that the similarity between intra and interspecific108
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patterns of trait variation (see11) is consistent with drift. This is further reinforced by the investigation of node-specific rates of109

evolution, which shows a huge overlap with rates expected under genetic drift (Fig. 5). However, drift alone would generate110

more variation than the total observed disparity during the period in which Primates have evolved (Fig. S7A), suggesting that111

stabilizing selection played a crucial role in shaping the pattern of evolution in the group as well.112

The investigation of the adaptive landscape implied by the best model shows that stabilizing selection is aligned with the113

interspecific distribution of phenotypes (Fig. 4B). An examination of the half-lives (t1/2, the time necessary for a species to114

reach halfway between the ancestral state and the regime optimum) in different directions of this adaptive landscape shows115

that t1/2 are higher along the activation-inhibition gradient direction of the ICM and lower in directions that would lead to116

deviations from the ICM (Fig. S5). These results indicate that the macroevolution of primate molars is being shaped by a strong117

stabilizing selection against deviation from the ICM pattern while allowing evolution to occur along the activation-inhibition118

gradient, in a corridor-like manner.119

Discussion120

Previous work has usually highlighted that larger-scale morphological evolution tends to conform to the expectation of microevo-121

lutionary models qualitatively but rarely (if ever) in terms of magnitudes of change6. In other words, while macroevolution122

seems to follow directions with more genetic variation, as expected due to neutral change6, 11–13, 22, 52, rates of evolution tend to123

fall below those expected under genetic drift6–8, 53. This paradox has been used to argue for a fundamental mismatch between124

micro and macroevolution, as simplistic quantitative genetics models seem unlikely to represent million-year evolutionary125

processes7, 54, 55. Here, we constrained the proportionality parameter for our preferred microevolutionary-inspired model to126

be within realistic values for Primates (equation 2; Fig. 1Dii). This constraint results in an estimated rate matrix compatible127

with drift around a stationary adaptive peak not only in patterns of trait association but also in magnitude. The key modeling128

choice that led to this conclusion was the quantification of developmentally-informed traits (Fig. 1Bi), which smoothed out129

transitions between microevolutionary and macroevolutionary data–defining and identifying a neutral subspace aligned with a130

conserved developmental process. The resulting morphospace of this modeling choice, the ICM space, lacks discontinuities131

along the diversity of primate molars (Fig. 2), which likely reduces the need for heterogeneous rates along the phylogenetic tree.132

Furthermore, by focusing on relative shape changes, which are governed by the balance of inhibitory and activation factors,133

this space limits the influence of other factors, such as static allometry, possibly allowing a closer match between genetic and134

macroevolutionary variation.135

The differences we observe among morphometric representations might be partly due to how different spaces codify size136

variation. Both naïve spaces contain size information, while the ICM variables do not. By using m1 size as a scaling factor, the137

ICM variables still include information regarding allometric variation (technically, they are unscaled versions of the Mosimann138

shape ratios, see56). Both area and distance spaces are log-scaled, meaning they fit a power-law allometric model of variation57.139

Therefore, a higher heterogeneity in size variation in the naïve spaces might favor more complex models, while the same is not140

true for ICM variables. While this suggests size-correction can smooth out much of the heterogeneity in this case, this appears141

to derive from the fact that using shape-ratios can provide a means to quantify localized ontogenetic effects58. Nevertheless,142

without actual knowledge of developmental systems, it is hard to know beforehand that shape-ratios will necessarily lead to143

better conformity between micro and macroevolutionary scales. In fact, depending on the system, raw measurements and shape144

ratios might produce similar results8. Thus, studying a well-understood system such as molar development allows us to piece145

apart the possible role of ontogenetic models in helping us connect micro to macro scales.146

Previous work in Primates has suggested that some traits have evolved with rates consistent with those expected under147

drift53, 59, including some dental features60, 61. These works have largely been focused on hominin species, which could bias148

interpretations regarding the dental evolution of the whole order. Our results partly agree with these results and extend this149

phenomenon to the group’s origin (Fig. 5). While at face value, this suggests that drift guided over 70 myrs of dental evolution in150

Primates, our model-fitting approach tells otherwise. Within the microevolutionary-inspired models, OU models outperformed151

the BM models (Table 1), suggesting a crucial role of stabilizing selection in shaping macroevolutionary patterns. Considering152

the amount of variation introduced by drift every Myr (Fig 4A), a purely neutral process would result in overdispersion of153

tip values and higher phylogenetic signals (Fig S7). Instead, the patterns of stabilizing selection seem to be essential in154

shaping the ICM pattern by both constraining variation that deviates from the ICM pattern and facilitating evolution along the155

activation-inhibition gradient (Fig S5,S6).156

Even though these two results might seem contradictory –rates of evolution consistent with drift and best model including157

stabilizing selection– we foresee at least two possibilities of how they both might be true: one has to do with the topography158

of the inferred adaptive landscape, and the other with the estimates of the evolutionary parameters. Regarding the adaptive159

landscape, the shape of the landscape implied by the preferred model is almost corridor-like (Fig 4B). If this corridor is160

relatively smooth internally (no great selection differentials within its limits), this would mean that species are free to explore161

this landscape neutrally, within the bounds of the corridor. Additionally, because the matrix of additive genetic covariances G162
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Figure 3. Primate phylogenetic tree painted by the best regime combination found on the phylogenetic mixed model search
for the individual molar areas. A multi-regime model allows each different part of the tree (regimes) to have a different model
and/or parameter combination. For areas and linear distances, the best model overall is a multi-regime BM, meaning the
different highlighted clades will have different rates of stochastic evolution (Σ). For ICM ratios the best mixed model is a
multi-regime OU, meaning that each clade will have different rates of stochastic (Σ) and deterministic (H) evolution and optima
(θ ). However, for ICM ratios, single-regime microevolutionary models outperform all mixed models (Table 1).

is aligned with the corridor as well (Fig 4A), this means most neutral changes will happen in accordance with the landscape,163

and will not result in great stabilizing selection. The other possibility is based on the precision of the rate-parameter estimates.164

Even though the OU model was the preferred one, estimated rates of evolution for BM models are remarkably similar to the165

ones of the full model S6–S9). Considering that node-specific rates of evolution are calculated under the assumption of a BM166

model?, 62, this could mean that a dense fossil sample in a comprehensive phylogenetic framework might allow for a good167

estimation of rates of evolution, even under model violation. Irrespective of which is true (or even if both are), the observation168

that most evolutionary rates are compatible with drift is a pattern rarely seen for macroevolutionary data6–8, 53.169

Together, these results point to the interplay of genetic variation, selection, and development leading to a homogeneous170

macroevolutionary process within a defined subspace. It has been argued that selection can mold genetic patterns of trait171

association and variation29, 63, 64, specifically by altering developmental pathways and genetic interactions65, 66. Conversely,172

development has also been argued to impose direct selective pressures (i.e. internal selection) by reducing the viability of173

non-conforming phenotypes29, 67, which could, in turn, trickle down to the organization of genetic variation. While in the174

present case we can observe this triple alignment between genetics, ontogeny and selection, its origins are harder to decipher.175

The ICM was originally described in rodents and later verified in many other Mammalian groups37–40, 68, suggesting it is the176

ancestral condition for molar development in the group. In this case, ontogeny is viewed as the organizing factor behind both177

selective patterns and the organization of genetic variation11. Furthermore, this explains the near-neutral quality of primate178

dental evolution, as conformity to the developmental process would be the main selective pressure on relative tooth sizes69.179

However, some Mammalian groups have been shown to deviate from the predictions of the ICM to different degrees, suggesting180
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Figure 4. Graphical representation of the best selected model (OUD
Σ∝G) for the ICM variables based on molar ratios m2/m1

and m3/m1. Dots are species averages, and horizontal and vertical lines depict ±1.96 standard deviations. Ellipses are
covariance matrices representing the following parameters of the best model: A. Stochastic rate matrix Σ attributed to the
amount of genetic drift introduced in the system every 1 myr. B. Individual adaptive landscape Ω based on model estimates for
the rate of adaptation towards the optima (H). See Materials and Methods for explanations for these parameters. Multiple
ellipses were calculated from parameter value combinations that are sampled along the multi-dimensional likelihood contour 2
log-likelihoods away from the peak.

that the ontogenetic process itself could be malleable37, 38, 68, 70, 71. Indeed, it has been argued that molar tooth eruption timing181

in Primates is shaped by biomechanical demands at different ontogenetic stages72, revealing a possible mechanism through182

which external selection could shape development, and indirectly, the morphology of the molar row.183

Conclusions184

To what degree microevolution can be extended to macroevolution is a central question in evolutionary biology4. While there185

is little doubt that the fundamental causes at both levels are the same (e.g. selection, drift, mutation), efforts to model the186

connection have generally failed beyond the qualitative alignment of patterns. When it comes to morphological evolution, the187

consensus has been overwhelmingly to reject any straightforward connection between both levels, specifically because of the188

fact that empirical evolutionary rates are orders of magnitude inferior to the ones expected by genetic drift6, 7. The results189

presented here reject this consensus, as we show that microevolutionary models can fit well to the data, as long as we choose190

the proper morphometric representation. Even the relatively simple task of characterizing the multivariate dimensions of three191

molars poses a large number of choices for measurement10, 35, 73, 91. Our results suggest that phenotypic quantification based on192

evo-devo models maximally narrows the gap between both levels of analysis–and allow for the discovery of the underlying193

subspaces that both qualitatively and quantitatively align macroevolutionary patterns with microevolutionary processes.194

While primate molar seems unique in both the presence of a well-constrained ontogenetic model and abundance of data,195

other systems might also fit the requirements for the methods described here. The existence of evolutionary stable developmental196

pathways and modules suggests a long history of similarly stable selective pressures25, 65, 74, 75. This makes developmental197

modules good systems to investigate adaptive landscapes in deep-time32, 58, 76. Furthermore, assuming that these pathways198

are shaped by natural selection to optimize the generation of adaptive variation63–65, 74, they are a likely place to identify199

simple connections between micro and macroevolutionary scales32, 58. So, other evolutionary stable systems are the probable200

candidates to verify the connection between scales of organization. Good examples are modules built upon serially homologous201
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Figure 5. Lande’s Generalized Genetic Distance (LGGD) used to measure the node-specific rate of evolution throughout
Primate divergence and diversification. Dashed lines represent the expected rates under genetic drift. For each node, a
distribution of values were calculated by integrating over the variation in heritability, effective population size and generation
time. Dots represent the median values and vertical lines at the 95% confidence interval.

structures, like limbs, phalanges and vertebrae77–79. For more complex structures formed by the interaction of multiple tissues,202

it might be harder to devise simple models that sufficiently describe the system ontogeny and variation. However, works that203

focus on the Mammalian skull, and that used individualized bone measurements have had a good track-record of modeling204

multivariate evolution of these structures under microevolutionary models12, 22, 59, 80, 81, going even further than the simple205

alignment between variation and evolutionary rates8, 53, 59. Since vertebrate skull bones are elements with deep individualized206

history, measuring them individually might represent a good first approximation of the multiple morphogenic fields that207

interact to form the complete structure. This perspective contrasts with the regular practice of constructing morphospaces208

as comprehensive, phenomenological, and statistical descriptors of biological form without a clear connection to underlying209

biological processes19, 36, 82, 83. However, given that different morphometric methods seem to point to similar overall patterns of210

trait variation84, finding the correct quantification protocol might be a matter of proper scaling of morphometric variables than a211

radical departure from classically established measurement practices.212

Our investigation also provides a new framework in which developmental biology can be more fully incorporated into213

macroevolutionary modeling (Fig. 1). It has long been considered that developmental biology was left out of the evolutionary214

synthesis26, 27, 58, and indeed such data are rarely incorporated into comparative analyses. Recent efforts have had different215

degrees of success, with many pointing out how complexities of the ontogenetic systems can lead to core violations of the216

modern synthesis26, 30, 31, 58, 85. By reframing the question of microevolutionary model adequacy into a problem of quantification217

of biological phenomena82, 83, we show how evo-devo is essential for a fully unified view in the context of the evolutionary218

synthesis.219

Methods220

Sample and morphometrics221

We used the standard mesiodistal length (MD) and buccolingual breadth (BL) as basic descriptors of each molar. MD and BL222

were obtained for each tooth of the lower molar row (m1, m2 and m3). We obtained raw measurements from available datasets223

in the literature (n=6142)47–49, 97–389 and from newly measured museum specimens using a caliper (n=150). For rare species,224

we took measurements from images that were either published or provided to us (n=266). All photos used had a scale and were225

digitized using the Fiji software86. Only adult and not heavily worn teeth where used in our sample, and each specimen was226

measured once. See the supplementary material for a full list of references and sources used for data collection. In total, we227

compiled a sample of 6558 individuals distributed among 480 species, divided between 232 extant and 248 extinct species. To228

evaluate the evolution of these traits on a phylogenetic framework, we used the most comprehensive phylogeny available that229
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included both living and fossil primate species50. Our sample covered all genera and 52.98 % of the species diversity included230

in50, spanning the full 75 mya of the group’s evolution.231

We constructed three distinct morphospaces to quantify molar variation (Fig. S1). For our biologically naïve representation232

of tooth form, we used a “distance space” based on linear distances obtained from each tooth and an “area space” based on each233

tooth’s occlusal area. Occlusal molar area was approximated using a crown index (BLxMD)38, 68. Both areas and distances234

where log-transformed to normalize the data and reduce the effect of large-sized outliers. For our evo-devo-informed space, we235

used the ratios of areas of the second and third molars in relation to the third (m2/m1 and m3/m1, respectively), as defined by236

the inhibitory cascade model of molar development35. We call this last morphospace the “ICM space”. On each morphospace,237

we calculated species averages for comparative analyses. Measurement error was accounted for by calculating the standard238

error of each measurement for each species. When a species had a sample of n=1, we assigned a standard error equal to the239

pooled within-group standard deviation calculated for all species with sample sizes larger than 30. This implies a very high240

measurement error for species known from single specimens, such as the case of many fossils. The degree of genetic association241

between traits was approximated both by the intraspecific pooled phenotypic covariance matrix P, and an independently derived242

additive genetic covariance matrix G obtained from a pedigreed Papio hamadryas baboon population41, 42.243

To evaluate morphospace patchiness we performed a clustering based on parameterized finite Gaussian mixture models244

(GMM)87. This method tests for a series of nested models, where groups are modeled as belonging to different multivariate245

normal distributions with different group averages. Models differ in the treatment of covariance structures. For example,246

covariance matrix of different groups might differ in their volume (trace), shape (proportion of eigenvalues), orientation247

(direction of eigenvectors). Furthermore, covariance matrices might be either spherical (zero covariances, equal variances),248

diagonal (zero covariances, different variances) or ellipsoidal (non-zero covariances). In total the method tests 14 different249

covariance models and finds the best partition of the data and the best covariance models according to the Bayesian Information250

Criterion (BIC).251

Phylogenetic comparative methods252

To model morphological evolution, we used a maximum-likelihood (ML) model selection approach, which fits different253

Brownian-motion (BM) and Ornstein-Uhlenbeck (OU) models under a mixed Gaussian phylogenetic models (MGPM)254

framework implemented under the R packages PCMbase and PCMfit88. This method share some similarities with the GMM255

clustering method used above to measure morphospace patchiness. Both GMM and MGPM model the data and allow different256

groups to have different parameter values. However, while GMM fits the data to normal distributions in a non-phylogenetic257

context, MGPM fits the data according to evolutionary models along a phylogenetic tree. In other words, while the GMM is258

a non-phylogenetic clustering methods based on species phenotypic proximity in the morphospaces, MGPM groups species259

according to shared evolutionary models and phylogenetic history.260

Under the MGPM framework, the evolution of a p-dimensional multivariate trait is modeled as an OU process as follows:261

dx(t) =−H(x(t)−θ(t))dt +ΣxdW (t) (1)

where H is the pxp selective rate matrix, x(t) is a p vector of trait values at time t, θ(t) is a p vector of trait evolutionary optima262

at time t, Σx is the Cholesky factor of the pxp stochastic rate matrix Σ (sometimes called evolutionary rate matrix) and W (t)263

denotes the p-dimensional standard Wiener process.264

Under a strict quantitative genetics interpretation89, the diagonal of H contains the rate of adaptation to the optima of each265

trait (αp) and the off-diagonal measures the shape of co-selection among traits. Conversely, the diagonal of Σ contains the rate266

of evolution due to drift, with its off-diagonal elements containing the amount of coevolution due to genetic covariation. If H is267

a matrix of zeros, the model collapses into a multivariate BM model.268

Under this microevolutionary perspective, Σ is not an entirely free parameter. Instead, if Σ is the genetic drift parameter,269

then it has to be proportional to the additive genetic covariance matrix G of those traits90 as follows270

Σ = G
tg
Ne

(2)

where tg is the time in generations and Ne is the effective population size. Because tg and Ne, and even the size of G are hard to271

estimate at evolutionary time scales, some have argued for treating tg/Ne as a nuisance parameter, reducing the investigation of272

drift at the macroevolutionary scale to a simple evaluation of the proportionality between Σ and G12, 22, 54. Consistent with these273

suggestions, here we implement a series of proportionality models, or κ-models11, in which Σ is set to be equal to a target274

matrix times a scaling factor κ . We used both the intraspecific pooled phenotypic covariance matrix P and G as target matrices.275

These models are implemented in the package PCMkappa (https://github.com/FabioLugar/PCMkappa).276
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Because the proportionality models are more tightly connected to a microevolutionary interpretation of the OU model, we call277

them “microevolutionary models”. Full models (models where all parameters are estimated freely) are called “macroevolutionary278

models” because they do not have explicit microevolutionary assumptions.279

We fitted two macroevolutionary BM and OU models and two microevolutionary models, using either P or G as a280

target matrix, for both BM and OU, totaling six global models (full BM and OU, BMΣ∝P, BMΣ∝G, OUΣ∝P, OUΣ∝G) for each281

morphospace. For the OU models, we investigated the confidence intervals of the parameters (see Supplementary Material)282

to evaluate if the model could be further reduced. Specifically, if the confidence interval of the off-diagonal elements of H283

overlapped with 0, another model was fit, setting H to be a diagonal matrix88.284

In addition, we performed a mixed Gaussian phylogenetic model search, which searches for the combination of regimes,285

models and model parameters that best fit the data88. For both the mixed model search and model comparison, we used the286

BIC, which minimizes parameter inflation due to large samples and is most appropriate for our model-selection question91 (i.e.287

asymptotically identifying the data-generating process as opposed to minimizing trait prediction error). For the mixed gaussian288

models, we only fit full BM and OU models, and no κ-model due to software restrictions. Therefore, the mixed models are also289

considered macroevolutionary models. All searches where conducted setting the minimun clade size to be five (5) species.290

To ensure that the κ-models were compatible with microevolutionary processes, we constrained the κ parameter to be291

within the range of expected values under drift, as expressed in equation 2. Because Σ is given in the tree (myr) scale, we found292

approximations for tg and of Ne for Primates to infer the expected scaling factor κ . tg was estimated as tg = 1myr/gt , where gt293

is the average generation time in years obtained from45. Because we lack good estimates of gt for fossil species, we used the294

phylogenetic average ± the standard deviation (SD) throughout the phylogeny. This was done by trimming the dataset to only295

the species with gt data and obtaining the ancestral value and SD at the base through ML92. For Ne we used 20,000-1,000,000296

as the range of possible values consistent with the genomics estimates for multiple primate species and hypothetical common297

ancestors46. While gt and Ne are expected to vary over the tree, we assumed that the effect of this variation would be at least298

partially canceled out by the fact that these two quantities are generally inversely related to each other.299

To evaluate the fitted model mechanistically under quantitative genetics theory, we generalized the equation for the adaptive
landscape89, 93 to the multivariate case as

Ω = H−1/2GH−1/2 −P (3)

Rates of evolution300

Rates of evolution were used to evaluate if the evolutionary change conforms to the expectation of genetic drift. To calculate
rates of evolution, we employed Lande’s generalized genetic distance (LGGD,90)

LGGD =
Ne

tg
∆ztG−1

∆z (4)

where ∆z is the phenotypic divergence calculated as the time-standardized phylogentic independent contrasts (PIC) for each301

node8, 62. We produced a distribution of values for each node by sampling values of G, Ne and tg from a uniform distribution302

between the range defined above. Confidence intervals for the null hypothesis of drift were generated from simulations based303

on equation 28. Values that fall within the bounds of the null-distribution are thought to conform to the expectation under304

genetic drift. Values that fall above or below are thought to be indicative of directional or stabilizing selection, respectively.305
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A Morphometrics501

A.1 Morphospaces502

We used three morphospaces to test our hypothesis that evo-devo-informed quantification would provide a better bridge between503

micro and macroevolution (Fig S1). The first is based on the linear distances taken directly from the teeth, constituting a504

6-dimensional space (“distance space”). The second morphospace is based on the occlusal areas of each molar, which were505

calculated using a rectangular approximation38, 68, producing a 3-dimensional space (“area space”). These two spaces are506

considered naïve because they make no assumptions about underlying developmental processes. As an evo-devo inspire space,507

we used the ICM description of the molar development35, and constructed a morphospace based on the relation between the508

relative occlusal area of m2 and m3 in relation to m1 (m2/m1 and m3/m1, respectively), resulting in a 2-dimensional space509

("ICM space"). Variables were log-transformed in both the trait and area datasets, but not in the ICM space.510

M1

M2

M3

Distances Areas ICM

1.8x1.4x

Figure S1. Schematic representation of variables used to construct morphospaces. The trait-space was built on the mesiodistal
length (MD, vertical) and buccolingual breadth (BL, horizontal) taken from each molar. The area-space was built by estimating
the occlusal areas of each molar as the A = MDxBL. The ICM-space was built by calculating the relative area size for m2 and
m3 in relation to m1.

To evaluate morphospace patchiness we performed a clustering based on parameterized finite Gaussian mixture models87.511

This method test for a series of nested models, where groups are modeled according to different covariance structures that can512

be either spherical (all variances equal, no covariances) or ellipsoidal (different variances and non-zero covariances), and can513

share or not aspects of their covariance matrices, like size, shape or orientation. The permutation of these aspects produces a514

total of 14 total models, which are fitted with an Expectation-Maximization algorithm, and compared through BIC87. In the515

present case, the best models were the ones in which covariance matrices were ellipsoidal with the same shape, but with either516

the same orientation and different volumes (VEE) or the same volume and different orientations (EEV). Specifically, both naïve517

spaces showed a preference to the VEE model, whereas the ICM space showed a preference for the EEV model (Fig. S2).518

Furthermore, both naïve spaces showed a tendency for finding more groups, with the maximum BIC associated with eight519

clusters for linear variables and 5 for areas, while the ICM space preferred only two clusters (Fig. S2).520
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Figure S2. BIC values for the Gaussian mixture models for the linear distances, areas and ICM variables for different
numbers of clusters (i). EEV- Elipsoidal model with the same shape, same volume and different orientations VEE- Elipsoidal
model with the same shape, different volumes and same orientation.

To visualize these results, we performed a Principal Component Analysis (PCA) on the variance-covariance matrix for the521

full sample on each space. We then inspected the two leading PCs to evaluate the space discontinuity. Because the ICM space522

is only made up of two variables, the leading two PCs represent all variation on the sample. The inspection of the leading PCs,523

and the distribution of the groups found through the clustering analysis show that the naïve spaces are more patchy than the524

ICM space (fig. 2).525

To visualize these results, we performed a Principal Component Analysis (PCA) on the variance-covariance matrix for the526

full sample on each space. We then inspected the two leading PCs to evaluate the space discontinuity. Because the ICM space527

is only made up of two variables, the leading two PCs represent all variation on the sample. The inspection of the leading PCs,528

and the distribution of the groups found through the clustering analysis show that the naïve spaces are more patchy than the529

ICM space (fig. 2).530

A.2 G-matrix531

To model the evolution of these traits under quantitative genetics models, we need an estimate of the additive genetic covariance532

matrix G for our molar traits. One common practice in comparative analysis is to use the pooled intraspecific phenotypic533

covariance matrix P as an approximation of G8, 12, 22, 94. This is justified on the bases of the high similarity between P and G534

for morphological traits11, 94. However, given that Ps contain also non-genetic information, we also used G estimated from a535

pedigreed population of baboons as a direct model of the Primate G41.536

Because the G provided by41 was estimated for the raw, untransformed BL and MD measures, we had to transform it in537

order to match our three morphospaces. We did this through a Monte-Carlo approach, in which we used the published G and538
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population means to generate n = 300 samples of additive genetic effects. This number of samples was chosen to be compatible539

with effective sample sizes for the pedigreed population, and not over-represent the accuracy of the estimate41. For the linear540

distance space, we took the generated genetic effects and log-transformed them. For the area space, we log-transformed the541

product of the effects for each tooth BL and MD. For the ICM space we took the product of the effects for each tooth BL and542

MD and divided the ones relative to m2 and m3 by m1. We then calculated the maximum-likelihood covariance matrix for the543

resulting effects for each space. This procedure was done 10,000 times, and the mean covariance matrix was taken as a point544

estimate of G for the lower-dimensionality morphospaces (area and ICM spaces).545

To test the validity of this approach we compared the simulation results to the analytic approximation for covariance546

matrices of products of random variables. Specifically, we investigated if the covariance matrix obtained for the product of the547

additive effect for each tooth BL and MD (area space) are similar to what would be expected analytically as548

σ
2
xy = µ

2
x σ

2
y +µ

2
y σ

2
x +(σxy)

2 +2µxµyσxy +σ
2
x σ

2
y (S1)

σ
2
xy,uv = µxµuσy,v +µxµvσy,u +µyµuσx,v +µyµvσy,u +σxuσyvσyu (S2)

where µ are means, σ2 variances and σ are covariances for the random variables x, y, u and v91. Variable pairs x:y and u:v are549

BL and MD variable pairs for each tooth. From these equations we were able to construct the covariance matrix for the area550

space on a cm2 scale. This procedure was done only for this non-log area space as a proof-of-concept and to limit the number551

of assumptions necessary to derived log-scale and ratio spaces.552

To compare analytical and Monte-Carlo estimates of G we first mean-scaled both matrices as follows:553

Σµ = Σ⊘ z̄z̄t (S3)

were Σ is the original covariance matrix, ⊘ is the element-wise product and z̄ is a vector of means20. We then calculated the554

absolute differences from each Monte-Carlo sample of these standardized matrices. Differences in the variances on these555

matrices are equal to the difference in coefficient of variation between matrices, and thus provide a dimensionless scale of556

comparison.557

The results show that matrices are extremely similar, with a slight bias for covariances being higher on the Monte Carlo558

samples (fig. S3). Despite this, all absolute differences are very small (< 0.002), suggesting that differences are negligible. A559

matrix correlation analysis reinforced this interpretation, showing values > 0.97 for all samples. Together, these results suggest560

that the Monte Carlo estimates are a reliable approximation for the covariance on lower dimensionalities.561
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Figure S3. Differences between the Monte Carlo sampling approach for generating covariances for areas and the analytical
approximation. Horizontal lines within violins highlights the 95% interval for each matrix cell.
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B Model comparison562

We performed model comparison under the maximum likelihood framework of the Phylogenetic mixed Gaussian models88,92.563

This framework has some desirable features. First, it incorporates both measurement errors and missing data during the model564

fitting procedure. The latter is especially important in our case due to the abundance of fossil taxa in our sample and the565

presence of species lacking m3s, such as callitrichines and the fossil Xenothrix mcgregori. Second, it takes into account process566

heterogeneity along the tree, allowing regimes to be under different kinds of models and parameter combinations. Lastly, the567

parameters of the fitted model can be interpreted under quantitative genetics theory in terms of genetic drift and stabilizing568

selection55.569

To test our hypothesis, we fit global models that included some microevolutionary assumptions (κ-models) and some that570

did not. Evidence supporting κ-models could then be seen as evidence for a microevolutionary interpretation of the data. For571

each morphometric space, we fitted regular BM and OU models, as well as two κ versions of these models. For these models,572

the rate matrix Σ was set to be proportional to either P or G. We also performed mixed model heuristic searches, which try to573

find the best regime combination for a given tree, allowing for regimes to be under different model types (BM or OU). For each574

space, we conducted 10 searches and recorded the result with the lowest BIC. Lastly, in addition to the heuristic result, we575

tested mixed models with pre-determinate regime shifts based on Fig. 3 which is the best result for the area morphospace. This576

regime was chosen as a common point of reference to compare the effect of model and parameter heterogeneity on the fitting577

process.578

B.1 Distance space579

For the distance space only 6 out of 10 heuristic searches converged. Nevertheless, they all produced better BIC values than any580

global model (table S1). The best model (Search 5) was a multi-rate BM model, with two regimes, one for Simiiformes and one581

for the remaining of the tree (Fig.S4A). This model deviates from the best model chosen to represent the rate heterogeneity on582

the other spaces by essentially fusing the ancestral and the Strepsirrhini regimes into one (Fig. 3). In terms of model parameters,583

this model performed similarly to the tree-regime one in the sense that the ancestral regime had higher rates of evolution than584

the Simiiformes one (see below fig 5).585

Despite the best model being different than the one described in the main text, Search 4 produced a regime combination586

that was essentially identical to the one for areas (Fig. S4B). Even though the BIC was worse than the best model, this run587

performed better than any of the global models and is therefore adequate to highlight how this morphospace favors more588

heterogeneous models instead of global ones.589

Regimes

Ancestral

Strepsirrhini

Simiiformes

Figure S4. Regimes for different runs of the heuristic search. A- Best model (Search 5). B- Model compatible with the best
model for areas (Fig. 3)

B.2 Area space590

For the area space, 9 out of the 10 heuristic searches converged. The best mixed model (Search 7) and the best overall model591

was a multi-rate BM model with three regimes, as described in the main text (Fig. 3).592
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B.3 ICM space593

For the ICM space, all 10 heuristic searches converged. From these, four runs produced the same result as the global OU model594

(table S3), suggesting an absence of model shifts for this space. The global fits show that both OU and BM models are equally595

good fits to the data and that the addition of the microevolutionary assumption of proportionality between Σ and G for the596

global OU model produces a slightly superior model (OUΣ∝G). Although all three models seem to provide a good fit to the data,597

the investigation of confidence intervals for parameters of the OU models shows that the confidence interval of the off-diagonal598

element of H overlaps with zero (tables S6,S7), suggesting that this parameter can be excluded from the model (see below).599

A model that omits the off-diagonal elements of H is implemented as a default model in the PCMfit package88. We chose600

not to include those models initially because our data is rich enough to estimate parameters from even fairly complex models.601

Instead, we chose to fit the most complex model and perform post-hoc model simplification. Using a κ-OU model with a602

diagonal H produces a model with vastly superior BIC (OUd
Σ∝G). The removal of the off-diagonal elements of H did not change603

significantly the parameter estimates (table S9,S8). Lastly, although OUd and OUd
Σ∝G had similar BICs, the confidence interval604

for all common parameters showed great overlap, suggesting that both models are equivalent. Furthermore, the OUd
Σ∝G model605

had tighter confidence intervals, fewer parameters and a slightly larger BIC. For these reasons, we chose this as the best model606

for our data.607

Table S1. Comparison of models of the linear distance morphospace fit through Maximum Likelihood.

Model a Np
b logLik c BIC d

BM 27 2585.03 -5112.72
OU 54 2684.57 -5247.16

BMΣ∝P 7 2108.57 -4202.91
OUΣ∝P 34 2174.45 -4275.55
BMΣ∝G 7 1480.63 -2947.02
OUΣ∝G 34 1510.57 -2947.79

Search 1 78 2788.91 -5391.08
Search 2 51 2796.77 -5479.14
Search 3 97 2868.67 -5493.57
Search 4 74 2823.03 -5470.65
Search 5 51 2878.96 -5643.53
Search 6 78 2820.77 -5454.80

aModel type; either global BM or OU (full
or κ models) or a search run of mixed model.

bNumber of model parameters.
cLog-likelihood of the model.
dBayesian Information Criterion used for

model comparison. Bold represents the best
models, while underline represents the ones
with BIC 2 units away from the best model.
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Table S2. Comparison of models of the area morphospace fit through Maximum Likelihood.

Model a Np
b logLik c BIC d

BM 9 415.80 -813.21
OU 18 413.98 -790.47

BMΣ∝P 4 92.39 -176.70
OUΣ∝P 13 275.16 -523.54
BMΣ∝G 4 74.41 -140.74
OUΣ∝G 13 258.02 -489.26

Search 1 10 413.61 -806.75
Search 2 10 414.98 -809.48
Search 3 19 420.25 -800.85
Search 4 10 415.85 -811.23
Search 5 18 434.43 -831.37
Search 6 26 469.34 -883.58
Search 7 26 471.42 -887.74
Search 8 10 415.17 -809.87
Search 9 27 448.71 -840.08

aModel type; either global BM or OU (full
or κ models) or a search run of mixed model.

bNumber of model parameters.
cLog-likelihood of the model.
dBayesian Information Criterion used for

model comparison. Bold represents the best
models, while underline represents the ones
with BIC 2 units away from the best model.

Table S3. Comparison of models of the ICM morphospace fit through Maximum Likelihood.

Model a Np
b logLik c BIC d

BM 5 589.16 -1147.46
OU 10 604.53 -1147.33

OUd 9 604.56 -1153.55
BMΣ∝P 3 538.31 -1058.10
OUΣ∝P 8 584.68 -1119.98
BMΣ∝G 3 575.69 -1132.86
OUΣ∝G 8 598.96 -1148.53
OUd

Σ∝G 7 598.54 -1153.86
Three-regime OU 26 597.35 -1034.18

Search 1 10 604.56 -1147.37
Search 2 15 618.60 -1144.59
Search 3 15 618.56 -1144.52
Search 4 15 617.78 -1142.95
Search 5 10 604.55 -1147.37
Search 6 15 617.80 -1142.99
Search 7 10 604.56 -1147.37
Search 8 6 589.16 -1141.28
Search 9 10 604.55 -1147.36

Search 10 15 617.80 -1143.00

aModel type; either global BM or OU (full
or κ models) or a search run of mixed model.

bNumber of model parameters.
cLog-likelihood of the model.
dBayesian Information Criterion used for

model comparison. Bold represents the best
models, while underline represents the ones
with BIC 2 units away from the best model.
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C Confidence Intervals608

Confidence intervals for model parameters and derived statistics were obtained by exploring the likelihood surface and609

getting parameter combinations from models that were 2 log-likelihood units away from the peak. This was done using the610

“dentist” package (https://github.com/bomeara/dentist), which allows the exploration of the likelihood surface611

by “denting” of the surface- setting the region around the peak to have extremely low likelihoods and sampling on the resulting612

contour around the dented peak. We used 10,000 steps to sample the likelihood surface and obtain confidence intervals613

simultaneously for all parameters for models fit on the ICM morphospace. If maximum and minimum values sampled by the614

“denting” approach matched the confidence intervals, then the sampling did not encompass the true confidence interval, and the615

sampling range had to be expanded. Below we report both the confidence interval as well the extreme values examined to show616

that adequate confidence intervals are being reported.617

For the OU and OUΣ∝G models, the off-diagonal elements of the H matrix (H1,2) have confidence intervals that overlap618

with 0, suggesting that this parameter can be omitted from the model (table S6, S7). The removal of the H1,2 from the model619

did not change substantially parameter estimates (table S8, S9), nor did it reduce the likelihoods of the models, improving620

BIC scores (table S3). All models showed a great overlap in the common parameters (table S6–S9). This is also true for the621

reconstructed Σ matrix for the kappa models. Specifically, for OUd
Σ∝G, Σ confidence intervals are Σ1,1 = 0.0243− 0.0276,622

Σ1,2 = 0.0324−0.0368 and Σ2,2 = 0.0666−0.0756, placing them within the expected for the OUΣ∝G model.623

Table S4. Confidence interval for the BM model. Lower and upper CI- parameters that are 2 log-likelihood units away from
the ML estimate. Lowest and Highest examined values- Extreme values examined by the “denting” approach.

best lower CI upper CI lowest examined highest examined
X01

a 1.086 0.993 1.184 0.801 1.200
X02

a 1.184 1.003 1.364 0.801 1.599
Σ1,1

b 0.018 0.016 0.020 0.010 0.499
Σ1,2

b 0.030 0.026 0.032 0.010 0.498
Σ2,2

b 0.071 0.065 0.077 0.010 0.497

aAncestral state at the root
bEntries of the rate matrix.

Table S5. Confidence interval for the BMΣ∝G model. Lower and upper CI- parameters that are 2 log-likelihood units away
from the ML estimate. Lowest and Highest examined values- Extreme values examined by the “denting” approach.

best lower CI upper CI lowest examined highest examined
X01

a 1.090 0.983 1.195 0.800 1.200
X02

b 1.182 1.005 1.348 0.800 1.593
κ b 0.361 0.317 0.413 0.102 0.899

aAncestral state at the root
bProportionality constant between the target matrix (G-matrix) and Σ.
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Table S6. Confidence interval for the OU model. Lower and upper CI- parameters that are 2 log-likelihood units away from
the ML estimate. Lowest and Highest examined values- Extreme values examined by the “denting” approach.

best lower CI upper CI lowest examined highest examined
X01

a 1.132 1.008 1.200 0.801 1.200
X02

a 1.306 1.075 1.466 0.804 1.597
H1,1

b 0.034 0.025 0.043 0.010 0.498
H1,2

b -0.214 -0.485 0.473 -0.490 0.498
H2,2

b 0.031 0.021 0.040 0.010 0.498
θ1

c 1.064 1.012 1.115 0.808 1.198
θ2

c 1.066 0.971 1.175 0.801 1.593
Σ1,1

d 0.022 0.020 0.025 0.010 0.495
Σ1,2

d 0.034 0.030 0.036 0.010 0.500
Σ2,2

d 0.080 0.074 0.086 0.010 0.498

aAncestral state at the root
bEntries of the H-matrix
cMultivariate optima
dEntries of the rate matrix

Table S7. Confidence interval for the OUΣ∝G model. Lower and upper CI- parameters that are 2 log-likelihood units away
from the ML estimate. Lowest and Highest examined values- Extreme values examined by the “denting” approach.

best lower CI upper CI lowest examined highest examined
X01

a 1.097 0.966 1.192 0.800 1.199
X02

a 1.232 1.031 1.376 0.802 1.599
κ b 0.486 0.416 0.553 0.101 0.894

H1,1
c 0.049 0.037 0.057 0.010 0.499

H1,2
c 0.226 -0.352 0.469 -0.497 0.500

H2,2
c 0.024 0.013 0.035 0.010 0.499

θ1
d 1.066 1.027 1.106 0.800 1.198

θ2
d 1.058 0.885 1.175 0.802 1.597

aAncestral state at the root
bProportionality constant between the target matrix (G-matrix) and Σ.
cEntries of the H-matrix
dMultivariate optima

Table S8. Confidence interval for the OUd model. Lower and upper CI- parameters that are 2 log-likelihood units away from
the ML estimate. Lowest and Highest examined values- Extreme values examined by the “denting” approach.

best lower CI upper CI lowest examined highest examined
X01

a 1.102 1.012 1.192 0.801 1.199
X02

a 1.248 1.068 1.428 0.800 1.592
H1,1

b 0.036 0.025 0.043 0.010 0.499
H2,2

b 0.031 0.019 0.039 0.010 0.499
θ1

c 1.066 1.016 1.112 0.801 1.200
θ2

c 1.073 0.969 1.211 0.808 1.585
Σ1,1

d 0.022 0.020 0.025 0.010 0.498
Σ1,2

c 0.033 0.030 0.036 0.010 0.499
Σ2,2

c 0.079 0.073 0.084 0.010 0.499

aAncestral state at the root
bEntries of the H-matrix
cMultivariate optima
dEntries of the rate matrix
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Table S9. Confidence interval for the OUd
Σ∝G model. Lower and upper CI- parameters that are 2 log-likelihood units away

from the ML estimate. Lowest and Highest examined values- Extreme values examined by the “denting” approach.

best lower CI upper CI lowest examined highest examined
X01

a 1.107 0.963 1.190 0.800 1.200
X02

a 1.232 1.036 1.393 0.800 1.598
κb 0.484 0.416 0.536 0.101 0.900

H1,1
c 0.044 0.034 0.050 0.010 0.498

H1,2
c 0.025 0.013 0.037 0.010 0.495

θ1
d 1.066 1.029 1.109 0.800 1.200

θ2
d 1.063 0.917 1.209 0.802 1.594

aAncestral state at the root
bProportionality constant between the target matrix (G-matrix) and Σ.
cEntries of the H-matrix
dMultivariate optima

D Phylogenetic Half-lives624

The investigation of the adaptive landscape implied by the best model shows a corridor-like topography (Fig. 4), suggesting that625

selection is relaxed along the activation-inhibition axis and intensified against deviations from the ICM. To further verify this626

without assuming a microevolutionary model, we calculated the phylogenetic half-lives (t1/2) along the activation-inhibition627

gradient and the deviations from the ICM. t1/2 measures the time it takes for the phenotype to move halfway in the direction of628

the optimum and is calculated as629

t1/2 = ln(2)/α (S4)

with α being the rate of adaptation for each trait given by the diagonal of the H matrix55. Because H is given as a function of630

the original traits (m2/m1 and m3/m1) we have to perform a rotation of the original matrix into the eigenvectors of the adaptive631

landscape as632

Hr =V tHV (S5)

were V are the eigenvectors of Ω (see equation 3). t1/2 were calculated integrating over the confidence limits of parameters. In633

addition to the rotated space, we also calculated t1/2 on the original space. This was done to evaluate an additional hypothesis634

of the ICM process that m3s, because they develop last, are under less intense stabilizing selection11.635

The results for molar ratios are in line with this prediction, as the half-life for m3/m1 is considerably larger than for m2/m1,636

suggesting a stronger selection on the latter than in the former (fig S5). For the components of the ICM, results are compatible637

with the expected for a corridor-like adaptive landscape, with half-lives along the activation-inhibition gradient being higher638

than on the one for deviations from the ICM (fig S5). This suggests that selection against deviations from ICM is far stronger639

than the ones along the activation-inhibition gradient, allowing the near-neutral evolution within the adaptive corridor. An640

inspection of the evolutionary trait-grams of these variables reinforces this idea, as deviations from the ICM are more tightly641

confined around the optima, and evolution along the activation-inhibition gradient seems greater in amplitude (fig S6).642
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Figure S5. Phylogenetic half life for ICM ratios (m2/m1 and m3/m1) and components of the ICM model
(Activation-Inhibition gradient and deviations from the ICM).

E Disparity and phylogenetic signal643

To illustrate the effect of stabilizing selection on both overall disparities in the sample and phylogenetic signal, we employed644

a simulation approach. We generated tip data using the phylogenetic tree and the best evolutionary model in two situations.645

In one, we used the whole model to produce data under an OU model; in another, we set the H matrix to be 0, producing a646

BM model with the same rate parameters as the OU model. For each model, we generated 1,000 datasets, and for each of647

these datasets, we extracted the overall disparity and the phylogenetic signal. The disparity was calculated simply as the sum648

of variances in the tip data, as a measure of overall morphospace occupancy93. For Phylogenetic signal, we employed the649

multivariate version of Blomberg’s K94, 95. Results from the simulations show the expected pattern, with the BM model showing650

higher disparity and phylogenetic signal than the OU model (Fig. S7). Because these simulations are based on our preferred651

microevolutionary model (OUd
Σ∝G), the BM represents what would take place under a pure genetic drift process, while the652

OU model represents the action of stabilizing selection in modulating the action of drift. So, despite the fact that most of the653

divergence within the group is compatible with drift (Figure 5), drift alone would produce a wider range of phenotypic values654

(Fig. S7A, left panel), thus requiring the action of stabilizing selection to not only constrain the total amount of divergence, but655

also to shape the pattern distribution of phenotypes (Fig. S7A, right panel).656
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Figure S6. Traitgrams of the components of the ICM for primates. Black lines represents the phylogeny mapped to measured
trait values (black points) and golden lines and dots represents each trait optimum.

F Regime-specific disparity657

To compare the disparity-generating potential of different regimes of the mixed-model depicted in Fig. 3, we employed a658

simulation approach. Specifically, we took each model for each regime and simulated phenotypic evolution according to that659

model on a star-phylogeny of equal size to the full phylogeny. This was done to standardize differences in tree structure,660

species sample size and model differences (BM or OU) between regimes. Simulations were performed 100 times, and for each661

run we computed the disparity of the simulated tip data. This was done for the three-regime model for each morphospace.662

Higher and lower values of disparity indicate a less or more constrained evolution, respectively. Results show that, for all663

spaces, the ancestral regime is less constrained than the Strepsirrhini and Simiiform regimes (Fig. S8). For areas and distances,664

the difference between the ancestral and derived regimes disparity is greater than for the ICM morphospace, with Simiiform665

showing a higher disparity than Strepsirrhini.666
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Figure S7. Simulated disparity (A) and phylogenetic signal (B) by assuming the best model (OU) or a brownian motion (BM)
model with the same rate parameters as the best OU model. Ellipses represent the covariance matrix of the simulated tip values,
and thus do not represent any evolutionary parameter (e.g. Σ, H, Ω), but the empirical phenotypic distributions. Dots are
observed species averages.
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