Abstract
Noise-induced symmetry breaking has barely been unveiled on the ecological grounds, though its occurrence may elucidate mechanisms responsible for maintaining biodiversity and ecosystem stability. Here, for a network of excitable consumer-resource systems, we show that the interplay of network structure and noise intensity manifests a transition from homogeneous steady state to inhomogeneous steady states, resulting in noise-induced symmetry breaking. On further increasing the noise intensity, there exist asynchronous oscillations, leading to heterogeneity crucial for maintaining a system’s adaptive capacity. The observed collective dynamics can be understood analytically in the framework of linear stability analysis of the corresponding deterministic system.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
↵* tbanerjee{at}phys.buruniv.ac.in