TITLE: Axon arrival times and physical occupancy establish visual projection neuron integration on developing dendrites in the *Drosophila* optic glomeruli.

AUTHOR NAMES AND AFFILIATIONS

Brennan W. McFarland¹, HyoJong Jang^{1#}, Natalie Smolin^{1#}, Bryce W. Hina¹, Michael J. Parisi²,

Kristen C. Davis², Timothy J. Mosca², Tanja A. Godenschwege³, Aljoscha Nern⁴, Yerbol Z.

Kurmangaliyev⁵, Catherine R. von Reyn^{*1,6}

¹School of Biomedical Engineering, Science and Health Systems, Drexel University,

Philadelphia, PA

² Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas

Jefferson University, Philadelphia, PA

³Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL

⁴ Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA

⁵ Department of Biology, Brandeis University, Waltham, MA

⁶Department of Neurobiology and Anatomy, Drexel University College of Medicine,

Philadelphia, PA

[#] Equal contribution

*Correspondence: crv33@drexel.edu

1 SUMMARY

2 Behaviorally relevant, higher order representations of an animal's environment are built from the 3 convergence of visual features encoded in the early stages of visual processing. Although 4 developmental mechanisms that generate feature encoding channels in early visual circuits have 5 been uncovered, relatively little is known about the mechanisms that direct feature convergence 6 to enable appropriate integration into downstream circuits. Here we explore the development of a 7 collision detection sensorimotor circuit in Drosophila melanogaster, the convergence of visual 8 projection neurons (VPNs) onto the dendrites of a large descending neuron, the giant fiber (GF). 9 We find VPNs encoding different visual features establish their respective territories on GF 10 dendrites through sequential axon arrival during development. Physical occupancy, but not 11 developmental activity, is important to maintain territories. Ablation of one VPN results in the 12 expansion of remaining VPN territories and functional compensation that enables the GF to 13 retain responses to ethologically relevant visual stimuli. GF developmental activity, observed 14 using a pupal electrophysiology preparation, appears after VPN territories are established, and 15 likely contributes to later stages of synapse assembly and refinement. Our data highlight 16 temporal mechanisms for visual feature convergence and promote the GF circuit and the 17 Drosophila optic glomeruli, where VPN to GF connectivity resides, as a powerful developmental 18 model for investigating complex wiring programs and developmental plasticity.

19

Keywords: Pupal Development, *Drosophila melanogaster*, Giant Fiber, Optic Glomeruli, Neural
Activity, Adaptation, Electrophysiology, Visual Projection Neurons, Visual System, Descending
Neuron

24 INTRODUCTION

In a developing brain, the coordinated wiring of multiple inputs onto a neuron and 25 26 organization of these inputs across a neuron's dendrites establish the computational role for that 27 neuron. Uncovering the mechanisms that assemble and localize multiple inputs is pivotal to understand how inputs are miswired in neurodevelopmental disorders¹⁻³ and how developmental 28 processes attempt to compensate when particular inputs are missing or fail to connect^{4,5}. Across 29 30 species, we know little about how multiple inputs that converge upon a neuron are wired during 31 development because the underlying circuits are often not well established – we are missing the 32 solution to the wiring program, where all inputs are known and synapse locations are mapped. 33 Here, we capitalize on recent connectome data and functional investigations within the 34 Drosophila optic glomeruli, a central brain region where visual feature inputs converge onto 35 sensorimotor circuits⁶⁻¹⁰. Optic glomeruli are the output region for columnar visual projection neurons (VPNs) that are hypothesized to encode visual features^{9,11-14}. VPN dendrites are 36 37 retinotopically distributed to tile the lobula and the lobula plate of the fly's optic lobes, while 38 fasciculated VPN axons terminate within their respective glomerulus¹¹. Within each glomerulus, VPNs synapse with multiple targets, including descending neurons (DNs) that project axons to 39 40 the ventral nerve cord (VNC, the fly spinal cord homologue) where they in turn synapse onto interneurons and motoneurons that generate behavioral outputs¹⁵⁻¹⁷. Unlike the Drosophila 41 42 olfactory glomeruli which have a predominantly one to one olfactory receptor neuron to 43 projection neuron mapping¹⁸, each VPN glomerulus is not dedicated to a single DN type. Instead, DN dendrites infiltrate multiple, semi-overlapping subsets of glomeruli^{10,16,19}, essentially 44 assembling VPN features into higher order, behaviorally relevant motor and premotor outputs. 45

46 How this complex wiring of visual feature inputs onto DNs is established during development is47 presently unknown.

A pair of large DNs called the giant fibers (GFs) receive major input from two VPN types 48 49 in the optic glomeruli: lobula columnar type 4 (LC4) neurons and lobula plate - lobula columnar type 2 (LPLC2) neurons (Figure 1A)^{6,7,13}. LC4 and LPLC2 encode the angular velocity and 50 angular size of an expanding object, respectively^{6,7}, and enable the GFs to drive a rapid takeoff 51 escape in response to an object approaching on a direct collision course¹⁷. The GF circuit within 52 53 the optic glomeruli presents an ideal model for developmental investigations. GF connectivity in 54 adult flies has been recently established through electron microscopy, genetic access exists for 55 the GF and its major visual input cell types, and the large GF dendrites within the glomeruli can be resolved and tracked across development^{6,7,20,21}. Additionally, the accessibility of the GF to 56 57 electrophysiology enables the functional consequences of developmental events to be directly evaluated^{6,7}. GF dendrites are also in close proximity to VPNs that are not synaptic partners in 58 59 the adult, like lobula plate - lobula columnar type 1 (LPLC1) neurons. This provides an 60 opportunity to investigate developmental interactions with cell types that do or do not select the 61 GF as a synaptic partner.

Here, we establish the GF circuit^{6,7,17} as a model for visual feature convergence in a developing nervous system. We screened VPN and GF GAL4 and LexA driver lines for early developmental expression and cell-type specificity. We then used identified driver lines to characterize the timecourse of VPN and GF interactions across metamorphosis that lead to their final organization in the adult. Combining a comprehensive single-cell RNA sequencing (scRNA-seq) atlas of the developing *Drosophila* visual system²², synaptic protein labeling over development, and a novel *ex-plant* electrophysiology preparation that enabled us to record from

69	the GF at distinct developmental timepoints, we correlated the time course of VPN to GF
70	interactions with the arrival of synaptic machinery and neural activity. To determine how
71	competition shapes VPN synapse organization along GF dendrites, we genetically ablated one
72	VPN cell type (LC4) and investigated both structural and functional compensation from the
73	surviving VPN partner (LPLC2). Our data provide a thorough characterization of the assembly
74	of visual feature convergence onto GF dendrites and establish the optic glomeruli as a genetically
75	and functionally tractable model to uncover mechanisms underlying complex wiring programs.
76	
77	RESULTS
78	VPNs are localized to stereotyped regions on GF dendrites
79	GF dendrites extend into the optic glomeruli in close proximity to multiple VPN cell-
80	types (Figure 1A,B). EM reconstruction of a full adult fly brain (FAFB ²⁰) previously revealed
81	that 55 LC4 and 108 LPLC2 neurons connect directly onto GF optic glomeruli dendrites,
82	contributing 2,442 and 1,366 synapses, respectively ⁷ . VPN synapses segregate across the medial-
83	lateral axis, with LC4 predominantly localized to medial, and LPLC2 to lateral, dendritic
84	regions ⁷ . To investigate stereotypy in VPN to GF connectivity, we utilized a second EM dataset
85	of a <i>Drosophila</i> hemibrain ^{21,23} . In this EM reconstruction, we found LC4 (71/71) and LPLC2
86	(85/85) neurons established 2,290 and 1,443 synapses onto the GF optic glomeruli dendrites,
87	respectively (Figure 1C). We confirmed LC4 and LPLC2 synapses segregate along the medial-
88	lateral axis, with only 2/85 LPLC2 neurons making synapses in predominantly LC4 occupied
89	medial areas.

90

91 Figure 1. LC4 and LPLC2 occupy distinct regions on GF dendrites

- 92 (A) GF (green), LPLC2 (magenta, one hemisphere), and LC4 (red, one hemisphere) maximum
- 93 intensity projections superimposed over neuropil label Bruchpilot (Brp, gray) Scale bar, 50µm.
- 94 (B) Optic glomeruli as identified by Brp labeling with the LPLC2 (magenta) and LC4 (red)
- 95 glomeruli highlighted. Maximum intensity projection of a substack located within the dashed $\frac{1}{2}$
- 96 box in (A). Scale bar, 20μ m.
- 97 (C) Drosophila hemibrain EM reconstruction of GF (green) with colored dots indicating
- 98 synapses from LC4 (red, top) and LPLC2 (magenta, bottom).
- 99 (D) (Left) Maximum intensity projections of dual labeled GF and VPNs. (Right) Colocalized
- 100 pixels (orange) between GF and respective VPNs superimposed over GF maximum intensity
- 101 projections. Scale bar, 20µm.
- 102

103	Since existing EM data only represent connectivity within two fly brains, we further
104	investigated localization stereotypy by examining contacts between GF and VPN membranes
105	across multiple adult flies. We used split-GAL4 driver lines that selectively labeled LC4 (LC4_4-
106	split-GAL4, generated for this paper) or LPLC2 (LPLC2-split-GAL4) ¹¹ , and simultaneously

107	labeled the GF with a LexA line $(GF_1-LexA)^{24}$ (Figure 1D, left). As a proxy for membrane
108	contacts, we performed intensity-based thresholding on each cell-type of interest to generate
109	representative masks, and then visualized colocalized regions along GF dendrites (Figure 1D,
110	right). We consistently observed LC4 contacts on the most medial regions of the GF optic
111	glomeruli dendrites and LPLC2 contacts on the most lateral regions. We also found on occasion
112	(4/17 brain hemispheres), as seen in the hemibrain dataset, a small subset of LPLC2 axons
113	extending into the most medial regions on the GF (Supplemental Figure 1, arrow) ²¹ . These data
114	suggest that LC4 and LPLC2 consistently segregate to stereotyped regions along the medial-
115	lateral axis with rare exceptions.
116	We used the same approach to assess the projections of LPLC1 (LPLC1_1-split-GAL4) ¹¹ ,
117	a cell-type adjacent to LC4 and LPLC2 that does not synapse directly with the GF ⁷ . As expected,
118	no synapses were identified in the hemibrain EM dataset (Supplemental Figure 2) and no
119	membrane contacts were observed between GF and LPLC1 across all adult flies imaged with
120	confocal microscopy (Supplemental Figure 2). We additionally employed GFP reconstitution
121	across synaptic partners (GRASP) ^{25,26} to visualize contacts between adjacent membranes and
122	observed GFP expression between GF and LC4/LPLC2 in their respective medial/lateral
123	locations, but not between GF and LPLC1 (Supplemental Figure 3).
124	
125	GF lateral dendrites extend, elaborate, and then refine across pupal stages
126	Following our detailed anatomical characterization, we sought to determine how the
127	precise VPN localization along GF dendrites arises across development. Prior developmental
128	investigations into the GF have focused on axonal wiring with respect to postsynaptic
129	interneuron and motor neuron partners in the ventral nerve cord (VNC) ²⁷⁻³² . However, little is

known about how GF dendrites develop in the central brain³³. The GF is born during embryonic 130 131 stages but does not generate neurites until the third instar larval stage²⁷. To track the GF at these 132 early timepoints, we used the GF 1-LexA line that labels the GF starting in late larval stages 133 (Supplemental Figure 4) and dissected pupae in 12-hour increments over metamorphosis, a 134 period marked as the time between pupa formation and eclosion. 135 Across development, we tracked the complexity and size of GF optic glomeruli dendrites 136 by quantifying their volume (Figure 2A,B) and the length of the maximum dendrite extension 137 along the medial-lateral axis (Figure 2A,C). In the early stages of metamorphosis, 24-48 hours 138 after pupa formation (hAPF), the GF exhibited numerous filopodia, long thin protrusions without 139 a bulbous head, and arbor complexity increased with the GF projecting between 3.1 + 1.0140 primary dendrites laterally (Figure 2A,B). During the middle stages of metamorphosis, from 48 141 hAPF to 60 hAPF, the GF dendrites had the largest increase in their medial-lateral extent (Figure 142 2C), followed by a peak in the overall volume and extension length at 72 hAPF (Figure 2A-C). 143 During this time, filopodia were still present, but visibly shorter than in the first half of 144 metamorphosis. In the final stages of metamorphosis from 72 hAPF to eclosion, the volume of 145 GF dendrites significantly decreased (Figure 2A-C), while the medial-lateral length was 146 maintained. Filopodia were no longer obvious, and branches appeared less complex and began to 147 resemble their adult morphology.

149 Figure 2. LC4 and LPLC2 territories on GF dendrites are established early in development

- 150 (A) Maximum intensity projections of GF (green) 36 hAPF (left), 60 hAPF (middle), and in
- adult (right) with the VPN dendritic region highlighted in yellow at distinct developmentalstages. Scale bar, 20µm.
- (B) Quantification GF lateral dendrite volume from (A). Unpaired Kruskal-Wallis test (p = 1.339
- 154 x 10⁻¹⁸), Tukey-Kramer multiple comparison test post hoc, * = p < .05 as compared to 24 hAPF,
- + = p < .05 as compared to 36 hAPF, # = p < .05 as compared to 48 hAPF, and % = p < .05 as
- 156 compared to adult. N \ge 13 hemibrains from \ge 10 flies.
- 157 (C) Quantification of maximum dendrite extension length across the medial-lateral axis.
- 158 Unpaired Kruskal-Wallis test ($p = 2.072 \times 10^{-12}$), Tukey-Kramer multiple comparison test post
- 159 hoc, * = p < .05 compared to 24 hAPF, + = p < .05 compared to 36 hAPF, # = p < .05 compared
- 160 to 48 hAPF.

- 161 (D,E) Left, maximum intensity projections of GF (green) with respect to LC4 (red, D), and 162 LPLC2 (magenta, E) axonal membrane at distinct developmental stages. Right, maximum intensity projections of GF with VPN colocalized pixels (orange) superimposed along GF 163 164 dendrites. Arow and arrowheads indicate divergent dorsal and ventral VPN axons, respectively. Scale bar, 20µm. 165 166 (F,G) Quantification of colocalization in (D,E) with colors corresponding to VPN type. Unpaired 167 Kruskal-Wallis test (LC4, $p = 2.088 \times 10^{-12}$; LPLC2, $p = 1.983 \times 10^{-10}$), Tukey-Kramer multiple comparison test post hoc, * = p < .05 as compared to 36 hAPF, + = p < .05 as compared to 60 168 hAPF, # = p < .05 as compared to 72 hAPF. N > 6 hemibrains from > 3 flies. 169 170 (H,I) 3D renderings of GF lateral dendrites (green) with LPLC2 (H, magenta) or LC4 (I, red) colocalized pixels superimposed at distinct timepoints during development. Scale bar, 20µm. D -171 dorsal, V - ventral, M - medial, L - lateral. 172 173 (J) Histograms of the spatial distribution of LC4 and LPLC2 contacts along the normalized 174 medial-lateral GF dendrite axis across development; colors are the same as in (H, I). N are as 175 stated in (F,G). 176 177 Initial contacts between GF and VPNs are staggered in time 178 We next investigated VPN axon targeting with respect to GF dendritic outgrowth. At present, it is unknown when columnar VPN neurons are born³⁴, but these neurons may arise in 179 late larval to early pupal stages, a period when neuroblasts give rise to visual neurons (such as 180 181 T4/T5) that provide input to VPN dendrites in the lobula and lobula plate $^{35-37}$. We hypothesized 182 VPNs would commence outgrowth and partner matching in coordination with GF dendrite development. To visualize developmental interactions of select VPN and GF, we used existing¹¹ 183 184 or newly developed VPN split-GAL4 driver lines screened for pupal expression (Supplemental Figure 4), to concurrently label select VPN cell-types (LC4 4-split-GAL4, LPLC2-split-GAL4, 185 LPLC1 1-split-GAL4) and the GF (GF 1-LexA) over metamorphosis. To quantify interactions, 186
- 187 we employed our membrane colocalization method (Figure 1D) instead of synapse labeling
- 188 methods (such as t-GRASP³⁸) because we wanted to track all putative interactions, including
- 189 those that precede synapse formation, over time and did not want to create ectopic adhesions
- 190 between membranes. We additionally compared our membrane colocalization method to a

191 GRASP variant that is not restricted to presynaptic terminals²⁵ and found no statistical difference
192 between the number of colocalized or GFP positive pixels (Supplemental Figure 5).

193 Using colocalization as a proxy for membrane contacts, we investigated developmental 194 interactions between GF and its known adult partner VPNs, LC4 and LPLC2. We observed LC4 195 axonal extension and initial contact with GF at 24 hAPF (Figure 2F). At this timepoint, LC4 196 axons diverge into a dorsal fraction projected near the dorsal branch of the GF optic glomeruli 197 dendrites, and a ventral fraction projected towards the proximal regions of the GF dendrites 198 (Supplemental Figure 6). At 36 hAPF, contacts between the GF and LC4 increased, with both 199 dorsal and ventral fractions still apparent (Figure 2D, arrow, arrowhead, respectively). Although 200 LPLC2-split-GAL4 shows obvious expression at this time, we did not observe any contacts 201 between LPLC2 and the GF (Figure 2E,G).

At 48 hAPF, LC4 and GF continued to show an increase in contacts (Figure 2F), and LC4

dorsal and ventral axons had converged (Supplemental Figure 6). At this time, approximately 24

204 hours after initial GF and LC4 contact, we observed GF contacts with LPLC2 (Figure 2E,G) as

the dorsal branch of the GF dendrites extended past LC4 axons (Supplemental Figure 6,

arrowhead). Altogether, our data suggest that during the first half of metamorphosis, as the GF isseeking out synaptic partners, interactions with VPN are staggered in time.

After the initial establishment of contacts, we next observed a significant increase in contacts between partner VPNs and GF from 60 hAPF to 72 hAPF (Figure 2D-G). At 84 hAPF through eclosion, contacts between GF and both VPNs decreased and then stabilized. Our results suggest that in the second half of metamorphosis, GF prioritizes dendritic outgrowth, enhances contacts with partner VPN, and eventually refines and stabilizes contacts with appropriate VPN partners, LC4 and LPLC2.

214	We next investigated interactions between GF and a neighboring VPN, LPLC1, that does
215	not maintain synapses with GF in adulthood (Supplemental Figure 2). We observed a relatively
216	small number of contacts between GF and neurons labeled with LPLC1_1-split-GAL4 ¹¹
217	appearing around 48 hAPF, peaking around 60 hAPF, and disappearing around 84 hAPF
218	(Supplemental Figure 7A,B). This driver line, however, may also label a subset of VPN that are
219	not LPLC1 during development (Supplemental Figure 7D,E), so we repeated our contact analysis
220	by generating two new LPLC1 driver lines, LPLC1_2-split-GAL4 and LPLC1_3-split-GAL4
221	(Supplemental Figure 4). While these driver lines revealed GF and LPLC1 membranes are
222	adjacent at 60 hAPF, we observed minimal to no contacts with GF (Supplemental Figure 7C).
223	Altogether, these results suggest that early in development, GF contacts are already biased
224	towards VPNs that are synaptically coupled to the GF in the adult.
225	
225	
225	LC4 and LPLC2 occupy and maintain distinct regions along the GF dendrite
225 226 227	LC4 and LPLC2 occupy and maintain distinct regions along the GF dendrite In the adult GF circuit, LC4 inputs are localized to the medial regions of GF dendrites,
225 226 227 228	LC4 and LPLC2 occupy and maintain distinct regions along the GF dendrite In the adult GF circuit, LC4 inputs are localized to the medial regions of GF dendrites, whereas LPLC2 inputs are localized to the most lateral regions (Figure 1). It is unknown if this
225 226 227 228 229	LC4 and LPLC2 occupy and maintain distinct regions along the GF dendrite In the adult GF circuit, LC4 inputs are localized to the medial regions of GF dendrites, whereas LPLC2 inputs are localized to the most lateral regions (Figure 1). It is unknown if this medial-lateral segregation is established initially or arises over development. To address this, we
225 226 227 228 229 230	LC4 and LPLC2 occupy and maintain distinct regions along the GF dendrite In the adult GF circuit, LC4 inputs are localized to the medial regions of GF dendrites, whereas LPLC2 inputs are localized to the most lateral regions (Figure 1). It is unknown if this medial-lateral segregation is established initially or arises over development. To address this, we manually aligned the GF dendrites across brains and quantified the density of contacts along the
225 226 227 228 229 230 231	LC4 and LPLC2 occupy and maintain distinct regions along the GF dendrite In the adult GF circuit, LC4 inputs are localized to the medial regions of GF dendrites, whereas LPLC2 inputs are localized to the most lateral regions (Figure 1). It is unknown if this medial-lateral segregation is established initially or arises over development. To address this, we manually aligned the GF dendrites across brains and quantified the density of contacts along the medial-lateral axis. Across all time points, we found minimal overlap between LC4 and LPLC2;
225 226 227 228 229 230 231 232	LC4 and LPLC2 occupy and maintain distinct regions along the GF dendrite In the adult GF circuit, LC4 inputs are localized to the medial regions of GF dendrites, whereas LPLC2 inputs are localized to the most lateral regions (Figure 1). It is unknown if this medial-lateral segregation is established initially or arises over development. To address this, we manually aligned the GF dendrites across brains and quantified the density of contacts along the medial-lateral axis. Across all time points, we found minimal overlap between LC4 and LPLC2; the peak density of contacts for LC4 and LPLC2 consistently occupied the most medial and
225 226 227 228 229 230 231 232 233	LC4 and LPLC2 occupy and maintain distinct regions along the GF dendrite In the adult GF circuit, LC4 inputs are localized to the medial regions of GF dendrites, whereas LPLC2 inputs are localized to the most lateral regions (Figure 1). It is unknown if this medial-lateral segregation is established initially or arises over development. To address this, we manually aligned the GF dendrites across brains and quantified the density of contacts along the medial-lateral axis. Across all time points, we found minimal overlap between LC4 and LPLC2; the peak density of contacts for LC4 and LPLC2 consistently occupied the most medial and lateral regions, respectively (Figure 2H-J).
225 226 227 228 229 230 231 231 232 233 233	LC4 and LPLC2 occupy and maintain distinct regions along the GF dendrite In the adult GF circuit, LC4 inputs are localized to the medial regions of GF dendrites, whereas LPLC2 inputs are localized to the most lateral regions (Figure 1). It is unknown if this medial-lateral segregation is established initially or arises over development. To address this, we manually aligned the GF dendrites across brains and quantified the density of contacts along the medial-lateral axis. Across all time points, we found minimal overlap between LC4 and LPLC2; the peak density of contacts for LC4 and LPLC2 consistently occupied the most medial and lateral regions, respectively (Figure 2H-J). The GF optic glomeruli dendrites contain dorsal and ventral branches, therefore we
225 226 227 228 229 230 231 232 233 234 235	LC4 and LPLC2 occupy and maintain distinct regions along the GF dendrite In the adult GF circuit, LC4 inputs are localized to the medial regions of GF dendrites, whereas LPLC2 inputs are localized to the most lateral regions (Figure 1). It is unknown if this medial-lateral segregation is established initially or arises over development. To address this, we manually aligned the GF dendrites across brains and quantified the density of contacts along the medial-lateral axis. Across all time points, we found minimal overlap between LC4 and LPLC2; the peak density of contacts for LC4 and LPLC2 consistently occupied the most medial and lateral regions, respectively (Figure 2H-J). The GF optic glomeruli dendrites contain dorsal and ventral branches, therefore we repeated the analysis of membrane contacts along the dorsal-ventral axis. At 48 hAPF, LPLC2
225 226 227 228 229 230 231 232 233 234 235 236	LC4 and LPLC2 occupy and maintain distinct regions along the GF dendrite In the adult GF circuit, LC4 inputs are localized to the medial regions of GF dendrites, whereas LPLC2 inputs are localized to the most lateral regions (Figure 1). It is unknown if this medial-lateral segregation is established initially or arises over development. To address this, we manually aligned the GF dendrites across brains and quantified the density of contacts along the medial-lateral axis. Across all time points, we found minimal overlap between LC4 and LPLC2; the peak density of contacts for LC4 and LPLC2 consistently occupied the most medial and lateral regions, respectively (Figure 2H-J). The GF optic glomeruli dendrites contain dorsal and ventral branches, therefore we repeated the analysis of membrane contacts along the dorsal-ventral axis. At 48 hAPF, LPLC2 contacts were primarily confined to the dorsal regions, and LC4 to the ventral regions

237	(Supplemental Figure 8). This segregation was reduced at 60 hAPF and less obvious in the later
238	stages of development (84 hAPF – 96 hAPF), in alignment with previous investigations into
239	adult synapse localization along the dorsal-ventral axis ⁷ . Altogether, our results highlight the
240	importance of the medial-lateral division of LC4 and LPLC2 inputs onto GF dendrites, where
241	targeting is established early and maintained throughout development.
242	
243	Upregulation of synaptic machinery across key stages of metamorphosis
244	Although our colocalization data provide the time course for interactions between VPN
245	axons and GF dendrites across development, they do not provide information on the timing of
246	synaptogenesis. We therefore investigated how our time course for GF/VPN interactions aligned
247	with the expression of presynaptic machinery (Figure 3A,B). We used a comprehensive scRNA-
248	seq atlas of the developing Drosophila visual system which profiled optic lobe neurons at
249	multiple time points across metamorphosis and identified both global and cell-type specific
250	transcriptional programs ²² .
251	As developmental clusters corresponding to LC4, LPLC2, and LPLC1 have been
252	identified in this dataset, we re-analyzed these data to determine when genes required for
253	synaptic transmission were upregulated in metamorphosis. We first investigated the expression
254	of brp, a presynaptic active zone protein that is homologous to the mammalian ELKS/CAST
255	family ^{$39,40$} that is commonly used to label presynaptic terminals. We found <i>brp</i> to be present as
256	early as 24 hAPF and gradually increase up until 60 – 72 hAPF (Figure 3B, Supplemental
257	Figures 9,10). Presynaptic genes in the SNARE complex ⁴¹⁻⁴⁴ <i>nSyb</i> , <i>cpx</i> , <i>Snap25</i> and <i>Syx1A</i> were
258	also present at early pupal stages, but significant upregulation was delayed with respect to brp,
259	from around 60 hAPF until the end of metamorphosis (Figure 3B, Supplemental Figures 9,10).

260	LC4, LPLC1 and LPLC2 are predicted to be cholinergic ⁴⁴ , and we found genes for cholinergic
261	synapse function (<i>ChAT</i> and <i>VAChT</i>) were upregulated in the late stages of metamorphosis (≥ 60
262	hAPF) (Figure 3A, Supplemental Figure 9-10), delayed from the initial appearance of
263	presynaptic machinery, but following the time course reported for other cholinergic neurons ²² .
264	This upregulation coincides with our observed decrease in GF dendritic complexity, and
265	refinement and stabilization of GF and VPN contacts (Figure 2F,G, Supplemental Figure 7A-C).
266	These data suggest that although a subset of presynaptic components are expressed and
267	potentially assembled early, VPN cholinergic machinery arrives too late to contribute to the
268	initial targeting and localization of VPN axons on GF dendrites. Cholinergic activity instead is
269	likely to participate in VPN and GF synapse refinement and stabilization.
270	
270	Given the significant role electrical synapses play across development, we also examined
270	Given the significant role electrical synapses play across development, we also examined expression of the innexin family of gap junction proteins. Shaking-B (<i>shakB</i>) has been denoted
270 271 272	Given the significant role electrical synapses play across development, we also examined expression of the innexin family of gap junction proteins. Shaking-B (<i>shakB</i>) has been denoted to be the predominant innexin over development ²² , and we also observed a significant increase as
270 271 272 273	Given the significant role electrical synapses play across development, we also examined expression of the innexin family of gap junction proteins. Shaking-B (<i>shakB</i>) has been denoted to be the predominant innexin over development ²² , and we also observed a significant increase as early as 36 hAPF (Figure 3B, Supplemental Figures 9,10) with all other innexins showing
270 271 272 273 274	Given the significant role electrical synapses play across development, we also examined expression of the innexin family of gap junction proteins. Shaking-B (<i>shakB</i>) has been denoted to be the predominant innexin over development ²² , and we also observed a significant increase as early as 36 hAPF (Figure 3B, Supplemental Figures 9,10) with all other innexins showing minimal to no expression across metamorphosis. <i>shakB</i> expression peaked between 48-60 hAPF,
270 271 272 273 274 275	Given the significant role electrical synapses play across development, we also examined expression of the innexin family of gap junction proteins. Shaking-B (<i>shakB</i>) has been denoted to be the predominant innexin over development ²² , and we also observed a significant increase as early as 36 hAPF (Figure 3B, Supplemental Figures 9,10) with all other innexins showing minimal to no expression across metamorphosis. <i>shakB</i> expression peaked between 48-60 hAPF, followed by a significant decrease from 60 hAPF to 72 hAPF for all cell types (Supplemental
270 271 272 273 274 275 276	Given the significant role electrical synapses play across development, we also examined expression of the innexin family of gap junction proteins. Shaking-B (<i>shakB</i>) has been denoted to be the predominant innexin over development ²² , and we also observed a significant increase as early as 36 hAPF (Figure 3B, Supplemental Figures 9,10) with all other innexins showing minimal to no expression across metamorphosis. <i>shakB</i> expression peaked between 48-60 hAPF, followed by a significant decrease from 60 hAPF to 72 hAPF for all cell types (Supplemental Figures 9,10). Interestingly, this decrease occurred as <i>ChAT</i> and <i>VAChT</i> increased, potentially
270 271 272 273 274 275 276 277	Given the significant role electrical synapses play across development, we also examined expression of the innexin family of gap junction proteins. Shaking-B (<i>shakB</i>) has been denoted to be the predominant innexin over development ²² , and we also observed a significant increase as early as 36 hAPF (Figure 3B, Supplemental Figures 9,10) with all other innexins showing minimal to no expression across metamorphosis. <i>shakB</i> expression peaked between 48-60 hAPF, followed by a significant decrease from 60 hAPF to 72 hAPF for all cell types (Supplemental Figures 9,10). Interestingly, this decrease occurred as <i>ChAT</i> and <i>VAChT</i> increased, potentially marking the transition from predominantly electrical synaptic coupling to chemical synaptic
270 271 272 273 274 275 276 277 278	Given the significant role electrical synapses play across development, we also examined expression of the innexin family of gap junction proteins. Shaking-B (<i>shakB</i>) has been denoted to be the predominant innexin over development ²² , and we also observed a significant increase as early as 36 hAPF (Figure 3B, Supplemental Figures 9,10) with all other innexins showing minimal to no expression across metamorphosis. <i>shakB</i> expression peaked between 48-60 hAPF, followed by a significant decrease from 60 hAPF to 72 hAPF for all cell types (Supplemental Figures 9,10). Interestingly, this decrease occurred as <i>ChAT</i> and <i>VAChT</i> increased, potentially marking the transition from predominantly electrical synaptic coupling to chemical synaptic coupling. A summary of our scRNA-seq analyses aligned to our developmental interaction

281 Figure 3. Synaptogenesis and the emergence of stimulus-independent neural activity

282 (A) Schematic of GF and VPN developmental interactions

- (B) Heatmap timecourse of average, normalized VPN mRNA expression of genes for electrical
- and chemical synapse function. Data are from the optic lobe transcriptional $atlas^{22}$ and individual
- 285 VPN expression patterns can be found in Supplemental Figure 9.
- (C) Max intensity projections of a substack of DLG expression in GF (DLG1-V5, green) and Brp
 puncta in LC4 (Brp-Short, red) at selected timepoints. Scale bar, 10µm.
- 288 (D) Quantification of volume of Brp colocalized with DLG from (C). Unpaired Kruskal-Wallis
- test (p = 0.001), Dunn-Sidak comparison test post hoc, * = p < .05, N= 3-7 hemibrains from 2-5 flies.
- 291 (E) Schematic of *ex-plant* pupal electrophysiology preparation.
- 292 (F) The total number of identified depolarizing events increases exponentially (fit, dotted red 293 line) over time. N = 5 flies.
- 294 (G) Representative traces of GF membrane potential recordings using the pupal
- 295 electrophysiology preparation for two timepoints.
- 296 (H) Zoomed in recording showing features resolvable with electrophysiology. Arrow indicates
- hyperpolarization following large depolarizing events, arrowheads indicate different eventamplitudes.
- 299 (I) Distribution of event frequencies from inter-event intervals.
- 300 (J) Timecourse of developmental stages as estimated from anatomical, scRNA-seq and
- 301 electrophysiology data.
- 302

303 GF and VPN synapse assembly is initiated during the partner matching stages

304 While our scRNA-seq data provide an estimate of gene expression across development,

relative levels of mRNA do not necessarily correlate linearly to protein translation⁴⁵. Therefore,

306 using our scRNA-seq data to guide our hypotheses, we next investigated the temporal expression

307 patterns of select pre- and postsynaptic proteins in VPN and GF. We utilized an iteration of

308 Synaptic Tagging with Recombination (STaR)⁴⁶ to visualize LPLC2 and LC4 specific Brp,

driven by its endogenous promoter and tagged with smGdP-V5. From our scRNA-seq data, *brp*

310 is expressed early in both LC4 and LPLC2 (Supplemental Figures 9,10). Using LC4 4-split-

- 311 GAL4 and LPLC2-split-GAL4 driver lines that turn on prior to 36 hAPF, we quantified the
- fluorescence of V5-tagged Brp over metamorphosis (Supplemental Figure 11). We found Brp
- already present in LC4 at 36 hAPF, as supported by the RNAseq data, and that Brp expression
- 314 increased until 60 hAPF. Unexpectedly, we witnessed a delay in the appearance and peak
- expression of Brp in LPLC2, similar to the staggered arrival times of LC4 and LPLC2 onto GF

dendrites. It is possible that the assembly of synaptic machinery is delayed in LPLC2 to
accommodate its arrival time. However, because V5-tagged Brp expression is dependent not
only on the native *brp* promoter but also limited by when the VPN driver line turns on, the
differences in Brp appearance could also be due to temporal differences in the driver lines.
These data suggest presynaptic machinery is already present during initial partner matching
between VPN and GF and increases as contacts are refined and stabilized.

322 We next investigated whether Brp accumulating at presynaptic terminals in VPNs was 323 directly opposed to postsynaptic machinery, as an indicator of functional pre/postsynaptic sites. 324 To label presynaptic Brp in VPN, we established a new transgenic line that expresses Brp-Short 325 tagged with GFP under the control of the lexAop promoter (lexAop-Brp-Short-GFP). Brp-Short 326 is a truncated, non-functional Brp protein that localizes to sites of endogenous full-length Brp 327 without disrupting morphology or function⁴⁷ and has been used to map synaptic organization in 328 the *Drosophila* CNS^{48,49}. To label postsynaptic machinery in the GF, we targeted discs large 1 (dlg1), the fly PSD-95 ortholog⁵⁰ using dlg1/4K, a conditional tagging strategy that enables 329 330 cell-type specific (UAS-FLP) V5-tagging of endogenous DLG1⁴⁹. Combining these tools with 331 our GF and VPN driver lines, we achieved co-expression of LC4-specific Brp-Short-GFP, and 332 GF-specific DLG1-V5 and investigated protein expression patterns at distinct developmental 333 stages. We observed faint, diffuse DLG1-V5 expression 36 hAPF (Figure 3C,D), around the time 334 when initial GF and VPN contacts are observed (Figure 2F). However, significant DLG1-V5 and 335 Brp-Short colocalization was not observed until 48 hAPF, although it remained only a small 336 fraction of what was witnessed in the adult (Figure 3C,D). Our data suggest that although pre-337 and postsynaptic proteins are present at the initial stages of partner matching, it is not until 338 around 48 hAPF that they begin to assemble functional synaptic connections.

339

340 GF exhibits stimulus-independent neural activity during development

Our Brp-Short / DLG1-V5 dual labeling experiments suggest functional pre- and 341 342 postsynaptic sites are present around 48 hAPF. Interestingly, within fly optic lobe neurons, 343 sporadic and infrequent neural activity is first witnessed, through Ca²⁺ imaging, around 45 hAPF⁵¹. Developmental activity within DNs has not been investigated, so we set out to 344 345 determine when activity first initializes within the GF and characterize GF activity patterns over 346 development. We developed an *ex-plant* pupal electrophysiology preparation for high resolution 347 recordings of the GF membrane potential over time (Figure 3E). Briefly, the entire pupal CNS 348 was dissected and mounted onto a coverslip, which was then attached to a customized holder that 349 enabled us to perfuse oxygenated extracellular saline during recordings. Using our preparation, 350 we recorded from the GF for approximately one hour in current-clamp mode at distinct 351 developmental time periods. At 45 hAPF, we witnessed sporadic, infrequent depolarizing events 352 (Figure 3F and Supplemental Figure 12), aligning with the emergence of activity in the optic 353 lobes⁵¹ and the initial opposition of Brp/DLG puncta (Figure 3C,D). The number of depolarizing 354 events increased exponentially as development progressed (Figure 3F,G, Supplemental Figure 355 12), mirroring the increased expression of cholinergic synaptic machinery within the scRNA-seq 356 data (Figure 3B, Supplemental Figures 9,10). As expected with an increase in the number of 357 depolarizing events, the interval between events decreased (inter-event frequency increased) as a 358 function of age (Figure 3I, Supplemental Figure 12).

Our recordings enabled us to observe hyperpolarizing events (Figure 3H, arrow) that occasionally proceeded large depolarizing events (Figure 3H, arrowheads), and small amplitude events that would not be resolvable with Ca²⁺ imaging. We also observed a broad distribution in 362 event frequency (Figure 3G,I) instead of one dominant frequency from distinct alternating phases 363 between silence and activity as seen in optic lobe or whole brain Ca^{2+} imaging from 55 - 65 hAPF^{51,52}. It is possible our *ex-plant* preparation may alter activity patterns from those observed 364 in-vivo. Alternatively, our recordings report activity not resolvable in Ca²⁺ imaging, and central 365 366 brain neurons like the GF may display broader patterns as they pool input across many diverse 367 cell types. Altogether, our data (summarized in Figure 3J) suggest initial GF partner matching 368 precedes synaptogenesis. GF synapses become functional around 48 hAPF, with an upregulation 369 of gap junction proteins and the appearance of apposed pre and postsynaptic machinery 370 suggesting electrical (predominant) and chemical (minor) synapses contribute to the underlying 371 activity witnessed at this stage. In the later stages of development, the frequency of synaptic 372 events increase as gap junction proteins are downregulated and cholinergic presynaptic 373 machinery is upregulated to enhance and stabilize synapses with intended synaptic partners while 374 refining unintended contacts.

375

376 LC4 ablation results in an increase of GF contacts with the LPLC2 glomerulus

377 After establishing our timecourse of GF and VPN interactions, we next investigated 378 potential mechanisms that regulate VPN targeting and localization onto GF dendrites. Our data 379 suggest synaptic activity does not contribute to the initial stages of VPN to GF partner matching. 380 However, activity could be necessary for maintenance of the medial-lateral division of LC4 and 381 LPLC2 inputs on GF dendrites, as neuronal activity can be crucial for proper refinement⁵³⁻⁵⁷. To 382 test this, we attempted to silence LC4 during development by expressing the inwardly rectifying potassium channel Kir2.^{17,58} using LC4 4-split-GAL4. However, we found early expression of 383 384 *Kir2.1* resulted in a significant loss of LC4 (Figure 4A; Supplemental Figure 13A-D). Expression 385 of *Kir2.1* with a driver line used in previous silencing experiments⁶ that turns on later in development (LC4 1-split-GAL4) did not cause a loss of LC4 (Supplemental Figure 13A-D). As 386 387 our LC4 4-split-GAL4 driver line turns on ~18 hAPF, prior to initial LC4 to GF contact, these 388 data suggest that overexpression of Kir2.1 early in development is detrimental to LC4 survival, 389 potentially due to the inability to compensate for disruptions in ionic homeostasis or the direct induction of apoptosis⁵⁹⁻⁶¹. Co-expression of an apoptosis inhibitor p35⁶² with Kir2.1 using our 390 391 LC4 4-split-GAL4 driver line, however did not prevent cell death (Supplemental Figure 13E,F), 392 potentially due to redundancies in apoptosis pathways or the relative timing of expression. 393 With our finding we could use Kir2.1 as a tool to ablate LC4, we reframed our question 394 to examine how the physical loss of LC4 alters LPLC2 morphology and targeting. Given that 395 LC4 contacts GF dendrites ~24 hours prior to LPLC2, we wondered if LC4 physically restricts 396 LPLC2 from extending to medial regions of the GF optic glomeruli dendrites. We expressed 397 tdTomato in LPLC2 using a LexA driver line (LPLC2-LexA) while simultaneously driving 398 myrGFP or Kir2.1 with LC4 4-split-GAL4. In adult flies where Kir2.1 expression ablated the 399 majority of LC4, the LPLC2 axon bundle extended into areas where the LC4 glomerulus would 400 be expected and we witnessed a significant increase the LPLC2 glomerulus volume (Figure 401 4B,C). Due to the witnessed expansion of the LPLC2 glomerulus, we next investigated whether 402 the loss of LC4 increased the territory GF dendrites occupied within the LPLC2 glomerulus. We 403 expressed Kir2.1 with LC4 4-split-GAL4 to achieve LC4 cell death, while simultaneously 404 expressing tdTomato in GF using GF 1-LexA. We identified the LPLC2 glomerulus using a 405 neuropil label (Brp) and again found that LC4 cell loss resulted in an LPLC2 glomerulus with 406 altered morphology as compared to control flies (Figure 4D,E). We then quantified the overlap 407 between GF dendrites and the LPLC2 glomerulus (Figure 4F). We found that LC4 ablation more than doubled the amount of colocalization between GF dendrites and the LPLC2 glomerulus,
with the glomerulus expanding onto more medial regions of the GF dendrites as compared to
controls (Figure 4D-F). In summary, our data demonstrate LC4 ablation results in altered LPLC2
axonal morphology and increased GF dendritic arborizations within the LPLC2 glomerulus,
suggesting the early arrival and physical presence of LC4 may impede LPLC2 from contacting
more medial regions of the GF.

414 To revisit our original question as to whether activity influences GF and VPN

415 connectivity, we expressed Kir2.1 in LC4 using our late, *LC4_1-split-GAL4* driver line, and

416 tdTomato in GF using our *GF_1-LexA* driver. The *LC4_1-split-GAL4* driver line should be

417 effective at silencing LC4 as it expresses Kir2.1 prior to the onset of GF activity, as witnessed

418 here (Figure 3F,G, Supplemental Figure 12), and Ca^{2+} activity, as observed in the fly's visual

419 system⁵¹. We found no significant difference in the density or localization of contacts between

420 GF and LC4 whether we expressed Kir2.1 or myrGFP in LC4 (Figure 4G,H). These data suggest

421 LC4 localization along GF dendrites is activity independent, and the early arrival and physical

422 presence of LC4 axons restricts LPLC2 targeting to the lateral regions of GF dendrites.

423

424 Functional compensation in the GF circuit occurs after LC4 ablation

Our anatomical data suggest the loss of LC4, but not silencing of its activity, during
development results in a reconfiguration of contacts between LPLC2 and GF. We next
investigated whether the apparent change in connectivity had functional consequences, affecting
GF's encoding of ethologically relevant visual stimuli. GF are tuned to looming stimuli – the 2D
projections of an object approaching on a direct collision course. LC4 provides to the GF
information about the angular speed while LPLC2 provides information about the angular size of

431 a looming object^{6,7}. We recorded GF responses in tethered, behaving flies using whole-cell patch 432 clamp electrophysiology⁶³ (Figure 4I). We displayed looming stimuli across different radius to 433 speed (r/v) ratios where the contributions of LC4 and LPLC2 to the GF response have been 434 previously established^{6,7}. In control animals, LPLC2 contributions are maintained across stimuli, 435 as the range in stimulus size does not change, while LC4 contributions increase as stimuli 436 become more abrupt⁶.

We found, as reported previously⁶, that silencing LC4 by expressing Kir2.1 using the 437 438 LC4 1-split-GAL4 driver line reduced the GF response to looming stimuli as stimuli became 439 more abrupt (Figure 4I-K). To further verify Kir2.1 silencing was effective, we expressed Kir2.1 in lamina monopolar cells 1 and 2 (L1-L2), the early-stage inputs to motion vision processing^{64,65} 440 which ameliorated GF responses, as reported previously⁶ (Supplemental Figure 14). However, 441 442 in contrast to what we witnessed with silencing, we found the ablation of the majority of the LC4 443 population, by expressing Kir2.1 with our LC4 4-split-GAL4 driver line, resulted in an enhanced 444 GF response to looming stimuli (Figure 4I-K), aligned with the observed increase in GF 445 dendrites occupying the LPLC2 glomerulus (Figure 4D-F). Our data support that the 446 developmental reorganization of LPLC2 and GF following LC4 ablation is functionally 447 significant and leads to an over-compensation in the GF looming response.

- 450 glomerulus and increases LPLC2 contacts and functional drive onto GF.
- 451 (A) Maximum intensity projections of LPLC2 expressing tdTomato (magenta) and LC4 (white)
- 452 expressing GFP (left) or Kir2.1 (right) using LC4_4, a driver line that turns on early in
- 453 development. Scale bar, $20\mu m$.
- 454 (B) Maximum intensity projections of a substack of the LPLC2 glomerulus (magenta) in a fly
- 455 where LC4 express GFP (top) or are ablated through Kir2.1expression (bottom). Scale bar,
- 456 20μm.

- 457 (C) Quantification of LPLC2 glomerulus volume in (B). Two-sample *t*-test, p = .0273, N = 16-24458 hemibrains from 8-13 flies.
- (D) Maximum intensity projections of Brp (NC82, gray) with the LPLC2 glomerulus highlighted
- 460 (magenta) in a fly where GFP was expressed early in LC4 (left). Maximum intensity projections
- 461 of GF dendrites (tdTomato, green) extending into the LPLC2 glomerulus (middle). Maximum
- 462 intensity projections of colocalized pixels (magenta) between GF and the LPLC2 glomerulus
- 463 superimposed onto the GF (right).
- 464 (E) Maximum intensity projections of Brp (gray) with the LPLC2 glomerulus highlighted
- 465 (magenta) in a fly where Kir2.1 was expressed early to ablate LC4 (left). Maximum intensity
- 466 projections of GF dendrites (tdTomato, green) extending into the LPLC2 glomerulus (middle).
- 467 Maximum intensity projections of colocalized pixels (magenta) between GF and the LPLC2
 468 glomerulus superimposed onto the GF (right). Scale bar, 20µm.
- 469 (F) Quantification of colocalization between GF and the LPLC2 glomerulus from (D,E).
- 470 Unpaired Mann-Whitney U test, p = .0159, $N \ge 4$ hemibrains from ≥ 4 flies.
- 471 (G) Maximum intensity projections of GF expressing smGFP (green) with colocalized pixels
- 472 (white) between LC4 expressing GFP (left) or silenced by Kir2.1 (right) using an LC4-split-Gal4
- driver that turns on late during development (*LC4 1-split-GAL4*). Scale bar, 20µm.
- 474 **(H)** Quantification of colocalization in (G). Unpaired Mann-Whitney U test, p = .1486, $N \ge 11$ 475 hemibrains from ≥ 6 flies.
- 476 (I) Schematic representing *in-vivo* electrophysiology setup for head-fixed adult flies. Visual
- stimuli (looms) were presented ipsilateral to the side of the recording via projection onto a screenpositioned in front of the fly.
- 479 (J) Average GF responses to select looming stimuli presentations of different radius to speed
 480 ratios (r/v).
- 481 (K) Quantification of peak amplitude responses to looming stimuli presentations in (J). Unpaired
- 482 Kruskal-Wallis test (r/v = 10ms, p = .1105; r/v = 20ms, p = .0443; r/v = 40ms, p = .0556; r/v = 10ms, r/v
- 483 80ms, p = .0385), Tukey-Kramer multiple comparison test post hoc, * = p < .05, N = 6-8 flies.
- 484 485

486 **DISCUSSION**

- 487 Here, our investigation into the interactions of GF dendrites and VPN axons support a
- 488 developmental program where GF and partner VPNs make initial contact in precise, stereotyped
- 489 regions that are maintained into eclosion through competitive, physical interactions. Ablation of
- 490 one major VPN partner (LC4) results in territory expansion of another VPN (LPLC2) that
- 491 confers compensatory functional changes within the GF circuit. After initial VPN territories are
- 492 established, GF dendrites continue to arborize and increase contacts with VPNs, while avoiding
- 493 contacts with non-synaptic neighbors. This developmental stage coincides with an upregulation
- 494 of gap junctions, the opposition of pre- and postsynaptic proteins, and the onset of developmental

495 activity in the GF. This outgrowth is followed by a period of stabilization/refinement that 496 coincides with an upregulation of cholinergic synaptic machinery and an increase in the 497 frequency of developmental activity in the GF. This developmental time course is summarized in 498 Figure 3A,J. Our data establish the GF escape circuit as a sophisticated developmental model 499 that can be used to study mechanisms establishing integration of sensory inputs within a 500 sensorimotor circuit, the role neural activity plays in shaping circuit connectivity and refinement, 501 and the relationship between expressed genes and circuit development and function. 502 The development of the *Drosophila* visual system proceeds in a series of steps which 503 likely serve to reduce the complexity of wiring paradigms from neurons of the same or 504 neighboring cell-types, highlighting the importance of timing⁶⁶. We found staggered interactions 505 of the GF with VPN partners, where LC4 contacts the GF approximately 24-36 hours prior to 506 LPLC2. This staggered arrival of VPN axons could reduce the complexity of decisions made by 507 the GF during partner matching, as is also seen in the olfactory glomeruli in an *ex-plant* 508 preparation where axons of pioneer olfactory receptor neurons (ORNs) terminate in posterior 509 regions, and ORNs arriving later terminate in anterior regions⁶⁷. From 36-72 hAPF, we observe 510 an increase in GF dendritic complexity and extension and increase in contacts with VPN 511 partners, coordinated with an upregulation of genes involved in the SNARE complex (Figure 512 3A,B). This period of precise targeting and outgrowth likely reflects a robust partner matching program, potentially through ligand-receptor or attractive/repulsive cues⁶⁸. Our confocal data 513 514 provide high-resolution snapshots of membranes at distinct periods over metamorphosis, but as 515 metamorphosis is a dynamic process, future work could incorporate time-lapsed imaging to 516 investigate transient interactions that may have been missed.

517 Our GF and VPN colocalization data show a developmental progression that begins with 518 partner matching between VPN and GF in stereotyped regions, an increase of contacts with 519 synaptic partners, proceeded by refinement as neurons assume their adult morphology. 520 Comparison with the time course of scRNA-seq data provides insight into genes that may play a 521 role in these processes. We find gap junction coupling may serve a role in partner matching, as *shakB* expression is high at this time (Supplemental Figure 9)²². Our data also support a 522 523 transition from predominantly electrical to chemical synapses as witnessed in other species^{69,70} at 524 the onset of refinement. shakB is downregulated while cholinergic synaptic machinery ChAT and 525 VAChT (Figure 3B and Supplemental Figures 9,10) are upregulated. Our model system is well 526 poised to investigate the role of electrical and chemical signaling, and their supporting genes, in 527 circuit development and function.

528 We provide the first electrophysiological recordings of developmental neural activity in 529 pupal neurons, a phenomenon that has been documented in developing vertebrate systems, and recently proposed within the fly with Ca²⁺ imaging^{53-57,69,71-75}. Our data demonstrate activity in 530 531 the GF emerges as early as 45 hAPF, and increases in frequency as a function of time. While 532 scRNA-seq data and our Brp-Short and DLG1-V5 protein expression data suggests this activity 533 is driven through functional electrical and chemical synapses, changes in GF intrinsic properties 534 may also contribute to witnessed changes in frequency. For example, recordings from the 535 superior olivary nucleus in the avian auditory brainstem over embryonic development to 536 hatching show neuronal excitability increases due to changes in K⁺ and Na⁺ ion channel 537 $conductance^{76}$, therefore further investigation into what drives these changes in GF activity is 538 warranted.

539 To record spontaneous activity in pupal GF neurons we developed an *ex-plant* system that differs from established *ex-vivo* systems⁷⁷⁻⁷⁹ in that we are not attempting to culture our ex-540 541 plant long term and replicate *in-vivo* conditions through the addition of ecdysone to aid neuronal 542 development. To our knowledge, developmental activity within these ex-vivo systems has yet to 543 be reported. We find in our ex-plant noticeable similarities to the recent discovery of *in-vivo* activity patterns in the developing fly nervous system⁵¹. We first observe GF stimulus 544 545 independent activity (stimulus independent because all sensory organs are no longer connected) as infrequent events around 45 hAPF, similar to sparse Ca²⁺ activity witnessed in the fly optic 546 547 lobes at this same time⁵¹. As development progresses, the frequency of depolarizing events in 548 the GF increases, similar to what has been reported in-vivo. However, we find no discernible 549 phases of activity and silence as observed in-vivo via calcium imaging around 55-65 hAPF, 550 classified as the periodic stage of patterned, stimulus independent neural activity (PSINA). We 551 instead witness a progression into what resembles the later turbulent phase of PSINA that occurs 552 around 70 hAPF to eclosion⁵¹. As in-vivo activity in individual developing DNs or central brain 553 neurons has as of yet to be reported, our data could represent actual in-vivo activity patterns from 554 neurons in the central brain where multiple inputs converge. Alternatively, even if our removal 555 of the CNS disrupts activity patterns observed in-vivo, our ex-plant could provide a highly 556 accessible model system to uncover the underlying mechanisms for how particular activity 557 patterns arise.

The location of a synapse on a dendrite can impact its overall effect on a neuron, and establish how it contributes to neural computations⁸⁰⁻⁸². We find the location of synapses of each VPN cell type to be highly stereotyped, suggesting location may impact computation, although this has yet to be directly investigated. Our contact data suggest that targeting of LC4 and

562 LPLC2 to their respective regions is established upon initial contact instead of refinement in the 563 later stages of development. This is noticeably different from ORN axonal targeting to olfactory 564 glomeruli, where axons target many neighboring glomeruli and are eventually refined to a 565 specific glomerulus^{67,83,84}. It is possible specific protein interactions establish LC4 and LPLC2 target specificity^{68,85-87}, similar to how basket interneurons target the axon initial segment of 566 567 Purkinje cells in the vertebrate cerebellum via localized cell adhesion molecules and adaptor 568 proteins⁸⁸⁻⁹¹. Our data, however, support that axon arrival times also play a role, with LC4 first 569 contacting GF dendrites in medial regions, physically impeding LPLC2, and leaving LPLC2 570 segregated to the lateral regions. This physical barrier may explain why LPLC2 is able to extend 571 into medial regions following LC4 ablation (Figure 4D-F). We do however find LPLC2 does not 572 fully replace LC4 along the dendrites, suggesting segregation may arise from a combination of 573 physical restraints from LC4 and potentially other neurons, in addition to molecular interactions. 574 It does not appear that activity-based mechanisms influence the localization of LC4 and LPLC2 575 to specific regions because silencing activity in LC4 does not result in significant changes in 576 LC4/GF contact density or localization (Figure 4G,H). In addition, elimination of the majority of 577 LC4 neurons did not affect targeting of the remaining LC4 neurons to the GF dendrites in the 578 expected regions.

We also report altered GF output to looming stimulus presentations (Figure 4J,K) following LC4 ablation as an example of developmental plasticity to preserve an evolutionary conserved escape behavior that is critical to the fly's survival. Because we observe a significant increase in GF dendritic occupancy within the LPLC2 glomerulus, our prevailing hypothesis is that LPLC2 synaptic inputs to GF have increased. Alternatively, the 1-7 LC4 neurons that remain after ablation may also have increased synaptic input, however the consistency of the

compensatory responses as looming stimulus parameters change (r/v) and the limited visual field coverage with just 1-7 LC4 neurons supports compensation through remaining LC4 is unlikely to underlie the enhanced GF responses.

588 While we here demonstrate stereotyped targeting of VPNs to distinct regions on GF 589 dendrites, emerging work suggests an additional level of targeting may occur within individual 590 VPNs. It was previously suggested, based on light microscopy data, that retinotopy is lost within 591 the seemingly random terminations of VPN axons in most optic glomeruli, unlike in vertebrate 592 systems where established retinotopy in the retina is maintained in projections to the lateral geniculate nucleus and superior colliculus/tectum⁹²⁻⁹⁴. However, recent evidence suggests VPNs 593 594 preserve spatial information by biasing synaptic input to postsynaptic neurons relative to their 595 receptive field^{8,10,19}. This is seen in LC4 synaptic inputs to postsynaptic DNp02 and DNp11 596 neurons, where LC4 synaptic inputs to DNp02 increase along the posterior to anterior visual 597 axis, and LC4 synaptic inputs to DNp11 increase along the anterior to posterior visual axis¹⁰. 598 LC4 inputs to GF do not appear to bias synapse numbers based on their receptive field, but a bias 599 of synaptic inputs from LPLC2 to GF exists along the ventral to dorsal axis¹⁰. As synaptic 600 gradients appear to be utilized amongst many VPN neurons, our model system is well poised to 601 investigate when and how these synaptic biases arise.

In summary, our data provides a detailed anatomical, transcriptomic, and functional description of GF and VPN development. Our model is unique in that we can observe multiple visual feature inputs competing for dendritic space, providing a complex sensorimotor model to the field that will be useful to determine the relationship between connectivity and sensorimotor integration. The GF also receives input from other brain regions outside of the optic glomeruli⁹⁵, and it would be interesting to characterize the development of GF with respect to these other

608	regions and further investigate how these inputs influence GF output. Finally, these VPN are
609	only a few of the 20+ VPN that terminate in the optic glomeruli, and GF is one of hundreds of
610	DNs, expanding the opportunity to uncover conserved, fundamental mechanisms for the wiring
611	of sensorimotor circuits.
612	
613	METHODS
614	Fly genotypes and rearing
615	Drosophila stocks (Table 1) and experimental crosses (Supplementary Table 1) were
616	reared on a traditional molasses, cornmeal, and yeast diet (Archon Scientific), maintained at
617	25°C and 60% humidity on a 12-hour light/dark cycle, except for optogenetics experiments
618	where dark reared flies were raised on 0.2 mM retinal food as larva and switched to 0.4 mM
619	retinal food following eclosion. All experiments were performed on pupal or adult female flies 2-
620	5 days post-eclosion. New split-GAL4 drivers lines SS02569 and SS02570 were generated using
621	previously described methods ¹¹ . The Janelia FlyLight Project Team contributed to split-GAL4
622	screening and stock construction.

- 623
- 624 Table 1. Drosophila Stocks

DROSPHILA STOCKS

SOURCE IDENTIFIER

UAS-myr::smGFP-HA,	Nern et al.,	
lexAop-myr::smGFP-V5	2015 ⁹⁶	
(smGFP): pJFRC200-		
10XUAS-IVS-myr::smGFP-		
HA (attP18), pJFRC216-		
13XlexAop2-IVS-		
myr::smGFP-V5		
su(Hw)attP8;;.		

UAS-Kir 2.1_1:	Michael	
w+;pJFC49-10xUAS-IVS-	Reiser, Ed	
eGFP Kir2.1 (Su(Hw)attP6);	Rogers,	
	Janelia	
	Research	
	Campus	
UAS-Kir 2.1_2:	Pfeiffer et	
w+;;pJFRC49-10xUAS-IVS-	al., 2012 ⁵⁸ ;	
eGFP-Kir2.1 (attP2)	von Reyn et	
	al., 2014 ¹⁷	
smGdP-STaR: ;LexAop-	Peng et al.,	
myr:tdTomato,UAS-R; brp-	201846	
RSR-SmGdP-V5-2A-LexA		
UAS-myr:GFP: pJFRC12-	Pfeiffer et	
10XUAS-IVS-myr::GFP	al.,2012 ³⁸	
(su(Hw)attP1);;		
UAS-tdTomato:	Pteiffer et	
pJFRC22-10xUAS-IVS-	al.,2012 ³⁸	
myr::tdtomato		
(su(Hw)attP8);;		
GF 2-LexA, lexAop-GFP;	Ache et al.,	
UAS-Kir : w+; 68A06-	20197	
LexAp65 (VK00022),		
pJFRC57-13XLexAop2-IVS-		
GFP-p10		
(su(Hw)attP5)/(CyO);		
pJFRC49-10XUAS-IVS-		
eGFPKir2.1 (attP2)/(TM6b)		
UAS-p35: 3 rd chromosome	Pecot et al., 2014 ⁶²	
GRASP: ;lexAop-GFP 11;	Gordon &	
UAS-GFP_1-10	Scott,	
	2009 ²⁵	
UAS-CsChrimson: UAS-	Klapoetke et	_
CsChrimson-mVenus	al., 2014 ⁹⁷	
(attp18);;		
GF_1-LexA (early GF):	Tirian &	
;;VT042336_LexA (attP2)	Dickson,	
	2017 ²⁴	
GF_2-LexA (late GF):	Pfeiffer et	
;68A06 LexA (VK00022);	al., 2010 ⁹⁸	
<i>GF_1-GAL4:</i>	Tirian &	
;;VT042336_GAL4 (attP2)	Dickson,	
	2017 ²⁴	

LC4_4-split-GAL4 (early	This study	
LC4): ;R49C04_P65ADZp		
(attP2); R86D05_ZpGbd		
(attP40)	XX7 / 1	
LC4_1-split-GAL4	Wu et al.,	
(SS00315) (late LC4):	2016	
;R4/H03_P65ADZp		
$(attP40); R/2E01_ZpGbd$		
	W 1	
$LPLC1_1$ -split-GAL4	0.01611	
(OL0029D): P6AC00 P65AD7n	2010	
$(attr 40) \cdot P = 70 JADZp$		
$(aup40), K5/H05_2pG0a$		
<u>(aur 2)</u> I PI C1 2 split C AI A	This study	
LFLC1_2-spin-GAL4 (SS02560);	This study	
(3302309): P64C00 P654D7n (attn40):		
$K04G09_F03AD2p$ ($aup40$), VT045000 $ZpCbd$ ($attP2$)		
$\frac{V1043990}{IPIC1} \frac{2pO0u}{a} (ull 2)$	This study	
(SS02570).	This study	
R64G09 P654D7n (attn40)		
VT063739 ZnGhd (attP2)		
LPLC2-split-GAL4	Wu et al	
$(OL0048B) \cdot R19G02$	2016 ⁹⁹	
P65ADZp (attn40):R75G12	2010	
ZpGbd (attP2)		
LPLC2 LexA: ;75G12-	Pfeiffer et	
$LexAp\overline{65}$ (attP40);	al., 2010 ⁹⁸	
LC4-LexA: ;93G05-LexA	Pfeiffer et	
(attP40);	al., 2010 ⁹⁸	
LC11-split-GAL4	Wu et al.,	
(OL0015B):	2016	
;22H02_p65ADZp (attP40);		
R20G06_ZpGdbd (attP2)		
L1/L2-split-GAL4	Tuthill et	
(SS00797): w+; R48A08-	al., 2013 ⁶⁵	
p65ADZp in attP40; R29G11-		
ZpGdbd in attP2)		
dlg1[4K]	Parisi et al.,	
	202349	
UAS-TNT: UAS-TeTxLC.tnt	Sweeney et	
	al., 1995 ¹⁰⁰	
lexAop-Brp-Short-GFP	This study	

626 Developmental staging

627	Pupal staging across developmental time points has been previously described ⁹⁹ . In brief,
628	the sex of white pre-pupa was identified, and females were transferred to a separate petri dish,
629	marked as 0 hours after pupa formation (hAPF), and reared for the appropriate amount of time at
630	25°C before dissection. Dissections were performed within a 2-hour window of a targeted pupal
631	developmental stage. All pupal dissections were synchronized and processed through
632	immunohistochemistry protocols for pixel intensity measurements of images.
633	
634	Immunohistochemistry
635	All dissections were performed in cold Schneider's insect media (S2, Sigma Aldrich,
636	#S01416) within a 15-minute window before solution exchange to avoid tissue degradation.
637	Brains were then transferred to a 1% paraformaldehyde (20% PFA, Electron Microscopy
638	Sciences, #15713) in S2 solution and fixed overnight at 4°C while rotating.
639	Immunohistochemistry was performed as described previously ⁹⁶ . Primary and secondary
640	antibodies are listed in Table 2. Supplementary Table 1 lists antibodies used for each figure with
641	their respective dilutions. Following immunostaining, brains mounted onto poly-L-lysine (Sigma
642	Aldrich, #25988-63-0) coated coverslips were dehydrated in increasing alcohol concentrations
643	(30, 50, 75, 95, 100, 100) for 5 minutes in each, followed by two 5-minute Xylene clearing steps
644	(Fisher Scientific, #X5-500). Coverslips were mounted onto a prepared slide (75 x 25 x 1 mm)
645	(Corning, #2948-75X25) with coverslip spacers (25 x 25 mm) (Corning, #2845-25) placed on
646	each end of the slide to prevent brain compression. Brain mounted slides were left to dry for at
647	least 48 hours prior to imaging.

649 Table 2. Resources and Reagents

Mouse anti-nc82 DSHB CAT# - AB2314866 RRID: AB_2314866 RRID: AB_2314866	_
RRID: AB_2314866	
Rabbit anti-GFPLifeCAT# - A11122	
technologies RRID: AB_221569	
Chicken anti-GFPEMDCAT# - AB16901	
Millipore RRID: AB_11212200	
Rabbit anti-HACellCAT# - C29F4	
Signaling RRID: AB_1549585	
Technologies	
Alexa Fluor 488 goat anti-chickenInvitrogenCAT# - A11039	
RRID: AB_2534096	
Alexa Fluor 488 goat anti-rabbitInvitrogenCAT# - A11034	
RRID: AB_2576217	
Alexa Fluor 568 goat anti-rabbitInvitrogenCAT# - A11011	
RRID: AB_143157	
RRID: AB_143157Alexa Fluor 568 goat anti-ratLifeCAT# - A11077	
Alexa Fluor 568 goat anti-ratLifeCAT# - A11077technologiesRRID: AB_2534121	
Alexa Fluor 568 goat anti-ratLifeCAT# - A11077technologiesRRID: AB_2534121Alexa Fluor 647 goat anti-MouseLifeCAT# - A21236	
Alexa Fluor 568 goat anti-ratLifeCAT# - A11077Alexa Fluor 647 goat anti-MouseLifeCAT# - A21236KRID: AB_2525805RRID: AB_2525805	
Alexa Fluor 568 goat anti-ratLifeCAT# - A11077Alexa Fluor 647 goat anti-MouseLifeCAT# - A21236Alexa Fluor 647 goat anti-MouseLifeCAT# - A21236DyLight 550 anti-HAInvitrogenCAT# - 26183-D550	

DyLight 488 anti-HA	Invitrogen	CAT# - 26183-D488
		RRID: AB_2533051
DyLight 550 anti-V5	Bio-rad	CAT# -
		Mca1360D550GA
		RRID: AB_2687576
DyLight 650 anti-V5	Invitrogen	CAT# - MA5-15253-
		D650
		RRID: AB_2527642
Living Colors DsRed Polyclonal Antibody	TakaraBio	CAT# - 632496
		RRID: AB_10013483
Mouse anti-Broad	DSHB	CAT# - AB_528104
		RRID: AB_528104
KDo2 lexAop2rev_PspXI: 5'	This study	
TGACcctcgagCGTTCAGCTGCGCTTGTTTATT		
3'		
KDo1 lexAop2for: 5'	This study	
TCCGCGTTTCCAGACTTTAC 3'		

650

651 Confocal Microscopy

 Unless otherwise stated, all images were taken on an Olympus Fluoview 1000 confocal system. Images were taken with a 60x, 1.42 NA oil immersion objective to achieve a voxel size of $.103\mu m x .103\mu m x .45\mu m$. Imaging parameters were minimally adjusted between images to achieve an image that utilizes the full pixel intensity range without oversaturating pixels. This

656	was necessary as driver lines in earlier pupal developmental periods showed lower levels of
657	expression than in later pupal developmental stages, therefore imaging parameters were adjusted
658	to optimize the membrane signal-to-noise ratio for each developmental stage that would allow
659	for optimized mask generation used in image analysis. In analyses where pixel intensities were
660	compared across developmental stages, all imaging parameters were kept consistent across all
661	images. STaR images were taken on a Zeiss LSM 700 with a 63x, 1.4 NA oil immersion
662	objective to achieve a voxel size of $.06\mu m x .06\mu m x .44\mu m$. Imaging parameters were kept
663	consistent to allow for comparison across all samples. Images for LPLC2 glomerulus volume
664	quantification were taken on a Zeiss LSM 700 with a 63x, 1.4 NA oil immersion objective with a
665	magnification of 0.50 to achieve a voxel size of .0992µm x .0992µm x .3946µm.
666	
667	Electron Microscopy
668	The publicly available electron microscopy hemibrain dataset (version 1.2.1) ²¹ was used
669	in this paper. NeuPrint ²³ was used to create renderings and connectivity diagrams.
670	
671	Image analyses
672	A region of interest (ROI) was drawn around the GF optic glomeruli dendrites to quantify
673	dendritic complexity and length. To quantify dendritic complexity, all pixels in this ROI were
674	summed. The Euclidean distance was measured from the beginning (most medial aspect) of the
675	GF optic glomeruli dendrites to the tip to calculate dendritic length.
676	To quantify membrane colocalization between GF and VPN neurons across development,
677	intensity-based thresholding was first used to generate a binary mask of each neuron membrane.
678	Using a custom GUI written in MATLAB, threshold values were manually selected to include

679 processes of each cell-type while excluding background and regions of the neuron that were out 680 of focus in each z-plane. Generated binary masks were inspected to make sure each mask was 681 representative of the imaged neuron membrane channel. In certain cases, the set threshold did not 682 include very fine neurites that were difficult to discriminate from background. Lowering 683 threshold values to capture these processes in the mask would result in background being 684 included into the mask as well, therefore generated masks may exclude some of the finer 685 dendritic processes with low SNR. Using these masks, colocalized pixels were collected plane-686 by-plane across the entire image stack using Boolean operators between GF and VPN masks. 687 This output matrix resulted in a z-stack where only GF and VPN membranes were colocalized. In some images, GF membrane labeling had a low SNR and prevented accurate mask generation 688 and was therefore excluded from analyses. In some cases, non-GF and non-VPN cell-types were 689 690 labeled with the driver lines, therefore these data were excluded from analyses. To increase rigor, 691 a second method to quantify GF to VPN membrane colocalization was used. Confocal stacks of 692 labeled neuronal membranes were 3D rendered in Imaris using the Surfaces function. Thresholds 693 were manually applied to generate 3D masks of neuronal membranes so that the rendered 3D 694 image was representative of the imaged membrane. Similar to MATLAB thresholding, in certain 695 cases the set threshold did not include fine neurites as they were difficult to discriminate from the 696 background using automated algorithms. Following initial 3D membrane renderings, renderings 697 were inspected and regions where faint processes were still visible but not detected in the 698 thresholding pipeline were manually filled in using the 'Magic Wand' function. Once 3D 699 rendering was complete, areas of colocalization were identified using the 'Surface-Surface 700 contact area' XTension, and the volume of this output was quantified.

701 To determine the density of VPN contacts along the GF optic glomeruli dendrite, a z-702 projection of the GF was manually aligned and rotated using anatomical landmarks consistently 703 observed to align the lateral dendrite along the medial-lateral axis (x-axis). The same rotation 704 and alignment were applied to the appropriate membrane colocalization matrix. An ROI was 705 then drawn around the GF optic glomeruli dendrites, with anatomical landmarks consistently 706 observed used to denote the beginning and end of the optic glomeruli dendrite. To account for 707 variation in the optic glomeruli dendrite extension across images, we normalized the x-axis to the 708 length of the drawn ROI (i.e., GF lateral dendrite). To determine where VPN contacts were 709 localized along the dorsal-ventral axis (y-axis), the same images were used, but normalized the 710 y-axis to the length of the drawn ROI. Total colocalized pixels were summed along each column 711 or row, respectively, and the pixel density for each column or row was averaged across brains in 712 each condition, then plotted along the normalized axis.

To quantify the average pixel intensity of VPN-specific Bruchpilot (Brp) puncta across developmental timepoints, VPN masks were generated from the membrane channel using the same pipeline used for the GF and VPN membrane colocalization. These binary masks were then multiplied to the Brp-puncta channel to gather raw pixel intensities for Brp-V5 puncta localized to the VPN membrane. The total intensity sum of the glomerulus was divided by the total number of membrane localized pixels to calculate the average pixel intensity.

To isolate Brp pixels that colocalized with DLG, the DLG channel was first thresholded using FIJI's default auto-thresholding function, binarized in MATLAB, and then multiplied to the Brp channel. An ROI mask was then used to restrict Brp analysis to the VPN glomerulus of interest. The total number of Brp positive pixels was then calculated and the overall volume of Brp-DLG colocalization computed by multiplying the total pixel count by the image voxel size.

To quantify LPLC2 glomerulus volume, the LPLC2-membrane channel and Brp channel were thresholded in Fiji and binarized using MATLAB as described above. The two channels were then multiplied where pixels containing both membrane label and Brp were considered part of the glomerulus. Glomerulus volume was determined by multiplying the total glomerulus pixel count by image voxel size.

For analyses where dendrite complexity and extension were quantified (Figure 2B,C), a median filter was used to remove background noise. For all other images, no pre-processing was performed, and only the brightness and contrast were adjusted to highlight neuronal processes when preparing images for figure generation. For all data sets using the GF-LexA driver line, any images that had non-GF cell types within our ROI and low or no GF expression because of driver line stochasticity were excluded from analyses.

735

736 Creation of the LexAop2-Brp-Short-GFP-HSV Transgenic Line

737 To create a transgenic line expressing Brp-Short-GFP under control of the lexAop 738 promoter (lexAop-Brp-Short-GFP), we used the Gateway cloning system (Thermo Fisher 739 Scientific, cat. No. K202020) via an existing plasmid containing the UAS-Brp-Short sequence¹⁰¹ 740 followed by a Gateway cassette. We excised the UAS sequence using dual HindIII and PspXI 741 restriction digests and replaced the promoter with a lexAoperon sequence, flanked by HindIII and 742 PspXI restriction sites, that was first PCR amplified using custom primers (see Table 2) from a 743 plasmid containing lexAop2 (lexAop2-myr-4xSNAPf, RRID: Addgene 87638) and then 744 restriction digested using HindIII and PspXI (New England BioLabs, Ipswich, MA) to create 745 compatible sticky ends. Following ligation and confirmation of the appropriate promoter insertion 746 by sequencing, we replaced the Gateway cassette with the GFP-HSV tag from an Entry vector via Gateway LR recombination reaction (Thermo Fisher Scientific, cat. no. 11791019). Plasmid identity and the presence of all components was verified by sequencing (GeneWiz, South Plainfield, NJ). Transgenic lines of the resultant plasmid inserted into the φ C31 site at attP2 (Bloomington Drosophila Stock Center, RRID: 8622) located at 68A4 on the 3rd chromosome were then produced using standard methods (BestGene, Inc., Chino Hills, CA). Subsequent lines were verified by genomic sequencing and a single line chosen for experiments.

753

754 Kir2.1 cell death and GF dendrite localization

To quantify LC4 cell death following early expression of Kir2.1, immunohistochemistry was performed against a GFP conjugated to Kir2.1 or GFP (controls), and Brp. Following imaging, LC4 cell bodies were manually counted using the GFP channel. To quantify GF dendrite density within the LPLC2 glomerulus following LC4 cell death, the Brp channel was used to visualize the optic glomeruli active zones. Axons that make up each individual glomerulus reliably terminate in the same region of the central brain, allowing for consistent identification of the LPLC2 glomerulus.

762

763 scRNA-seq data analysis

To quantify changes in mRNA expression over development for our cells of interest, a
recently published scRNA-seq dataset was used²². For each developmental stage for each
population, an unpaired non-parametric Kruskal-Wallis test by ranks was performed, followed
by a Dunn-Bonferroni multiple comparisons test for significant groups.

768

769 Electrophysiology

770	For adult whole-cell electrophysiology, female flies were head fixed to recording plates
771	via UV glue, antenna were UV-glued, and the front legs were removed at the level of the femur
772	as described previously ^{6,63} . GFP positive GF soma were accessed for recordings by removing the
773	cuticle and overlying trachea, and then removing the perineural sheath by local application of
774	collagenase (0.5% in extracellular saline). Brains were perfused with standard extracellular
775	saline (103 mM NaCl, 3 mM KCl, 5 mM N-Tris (hydroxymethyl)methyl-2- aminoethane-
776	sulfonic acid, 8 mM trehalose, 10 mM glucose, 26 mM NaHCO3, 1 mM NaH ₂ PO ₄ , 1.5 mM
777	Cacl ₂ and 4 mM MgCl ₂ , pH 7.3, 270–275), bubbled with 95% O2/5% CO2 and held at
778	22°C. Recording electrodes (3.5-6.2 M Ω) were filled with intracellular saline (140 mM
779	potassium aspartate, 10 mM HEPES, 1 mM EGTA, 4 mM MgATP, 0.5 mM Na ₃ GTP, 1 mM
780	KCl, 20 µM Alexa-568-hydazide-Na, 260-275 mOsm, pH 7.3). Recordings were acquired in
781	whole-cell, current clamp mode, digitized at 20kHz, and low pass filtered at 10kHz. All data
782	were collected using Wavesurfer, an open-source software (https://www.janelia.org/open-
783	science/wavesurfer) running in MATLAB. Recordings were deemed acceptable if a high seal
784	was attained prior to break through, the resting membrane potential was \leq -55 mV, and the input
785	resistance was > 50 M Ω . Current was not injected to hold the membrane potential at a particular
786	resting level, and traces were not corrected for a 13mV liquid junction potential ¹⁰² .
787	All pupal recordings were staged in accordance with our staging protocol. Extracellular

and intracellular reagents used were identical to the reagents used for adult recordings.

Recordings were acquired in whole-cell, current clamp mode, digitized at 20kHz, and low pass filtered at 10kHz. All data were collected using Wavesurfer running in MATLAB. Recordings were deemed acceptable if recording electrodes $(3.4 - 5.2 \text{ M}\Omega)$ attained a high seal (G Ω range)

prior to break through, the resting membrane potential was below -30mV and remained stable

throughout the duration of the recording, and the input resistance ranged from 50 M Ω to 300 M Ω . Current was not injected to hold the membrane potential at a particular resting level, and traces were not corrected for a 13mV liquid junction potential¹⁰².

796

797 **Optogenetics**

Light activation of VPN cell types expressing CsChrimson⁹⁷ while recording from GF was performed by delivering light (635nm LED, Scientifica) through a 40x objective focused on a head fixed fly. Light pulses (5ms,1.7 μ W/mm², as measured in air at the working distance of the objective) were delivered 5 times at 30 second intervals.

802

803 Visual Stimuli

804 Visual stimuli were projected on a cylindrical screen surrounding a head fixed fly during whole-cell electrophysiology following the protocol described previously^{63,103}. A 4.5-inch 805 diameter mylar cylindrical screen covered 180° in azimuth, and two DLP projectors (Texas 806 Instruments Lightcrafter 4500) were used to minimize luminance attenuation at the end of the 807 808 screen edge. The projections from the two projectors were calibrated on the cylindrical screen surface as described previously¹⁰³ and the two projections overlapped 18° in azimuth at center of 809 810 the screen and blended for uniform illumination. Generated looming stimuli based on the equation¹⁰⁴ below and constant velocity expansion stimuli were displayed with 912 x 1140 811 812 resolution in 6bit grayscale at 240 Hz which is above the flicker fusion frequency of Drosophila 813 (100 Hz¹⁰⁵). Looming stimuli were generated by simulating a 2D projection of an object 814 approaching at a constant velocity which mimics an approaching predator. The angular size (θ)

815 of the stimulus subtended by the approaching object and was calculated over time (t) by the 816 following equation¹⁰⁴:

817
$$\theta(t) = 2tan^{-1}\left(\frac{r}{vt}\right)$$

where t<0 before collision and t=0 at collision for an approaching object with a half size (r) and constant velocity (v). Four looming stimuli (r/v = 10, 20, 40, 80ms) were displayed, starting at 10°, expanding to 63° and then held for 1 second. Stimuli were presented once per trial, in a randomized order, every 30 seconds. For each fly, two trials of the entire set of stimuli were averaged.

823

824 Data analysis and Statistics

No power analysis was performed prior to statistical analysis. Volume analysis in Figure 3 was performed by a researcher blinded to the genotypes. All data from confocal microscopy experiments were tested for normality using a Kolmogorov-Smirnov test or Anderson-Darling test and the appropriate parametric or non-parametric test was performed, as stated in the figure captions.

For boxplots, the dividing line in the box indicates the median, the boxes contain the
interquartile range, and the whiskers indicate the extent of data points within an additional
1.5 × interquartile range.

For *in-vivo* electrophysiology analyses in adult recordings, all analyses were performed
using custom MATLAB scripts. Recordings for each stimulus presentation were baseline
subtracted by taking the average response one second prior to the stimulus onset. The magnitude
of the GF expansion peak was measured after filtering each recording (Savitzky–Golay, fourth
order polynomial, frame size is 1/10th the length of the stimulus). The normality of the data was

838	assessed using a Kolmogorov-Smirnov test. If the data were found to not follow a normal
839	distribution, the appropriate non-parametric test was selected. For non-parametric analyses, a
840	Kruskal-Wallis test was performed, and Tukey-Kramer post hoc test was performed for
841	significant groups.
842	For ex-plant pupal recordings, all analyses were performed using in-house MATLAB
843	scripts. Potential 60Hz noise was filtered out using a band-stop filter, and thirty minutes of data
844	was quantified. The baseline was determined after two rounds of computing the average signal
845	envelope. Peaks were identified by capturing all depolarizations that were 3mV above baseline
846	and separated by at least 100ms. Time intervals between events were transformed into
847	instantaneous frequency for histogram plots.
848	
849	
850	
851	
852	
853	
854	
855	
856	
857	
858	
859	
860	

862

REFERENCES 863

864	1	Di Martino, A. et al. Unraveling the miswired connectome: a developmental perspective.
865		<i>Neuron</i> 83 , 1335-1353, doi:10.1016/j.neuron.2014.08.050 (2014).
866	2	Zuo, X. N. Editorial: Mapping the Miswired Connectome in Autism Spectrum Disorder.
867		J Am Acad Child Adolesc Psychiatry 59 , 348-349, doi:10.1016/j.jaac.2020.01.001 (2020).
868	3	Xie, Y. et al. Alterations in Connectome Dynamics in Autism Spectrum Disorder: A
869		Harmonized Mega- and Meta-analysis Study Using the Autism Brain Imaging Data
870		Exchange Dataset. Biol Psychiatry 91, 945-955, doi:10.1016/j.biopsych.2021.12.004
871		(2022).
872	4	Johnston, M. V. et al. Plasticity and injury in the developing brain. Brain Dev 31, 1-10,
873		doi:10.1016/j.braindev.2008.03.014 (2009).
874	5	Newport, E. L. et al. Language and developmental plasticity after perinatal stroke. Proc
875		Natl Acad Sci U S A 119, e2207293119, doi:10.1073/pnas.2207293119 (2022).
876	6	von Reyn, C. R. et al. Feature Integration Drives Probabilistic Behavior in the Drosophila
877		Escape Response. Neuron 94, 1190-1204 e1196, doi:10.1016/j.neuron.2017.05.036
878		(2017).
879	7	Ache, J. M. <i>et al.</i> Neural Basis for Looming Size and Velocity Encoding in the
880		Drosophila Giant Fiber Escape Pathway. Curr Biol 29, 1073-1081 e1074.
881		doi:10.1016/i.cub.2019.01.079 (2019).
882	8	Morimoto, M. M. <i>et al.</i> Spatial readout of visual looming in the central brain of
883	0	Drosophila. <i>Elife</i> 9, doi:10.7554/eLife.57685 (2020).
884	9	Klapoetke, N. C. et al. A functionally ordered visual feature map in the Drosophila brain.
885		Neuron 110, 1700-1711 e1706, doi:10.1016/j.neuron.2022.02.013 (2022).
886	10	Dombrovski, M. et al. Synaptic gradients transform object location to action. Nature 613,
887		534-542, doi:10.1038/s41586-022-05562-8 (2023).
888	11	Wu, M. et al. Visual projection neurons in the Drosophila lobula link feature detection to
889		distinct behavioral programs. Elife 5, doi:10.7554/eLife.21022 (2016).
890	12	Keles, M. & Frye, M. A. The eyes have it. <i>Elife</i> 6, doi:10.7554/eLife.24896 (2017).
891	13	Klapoetke, N. C. et al. Ultra-selective looming detection from radial motion opponency.
892		Nature 551, 237-241, doi:10.1038/nature24626 (2017).
893	14	Ribeiro, I. M. A. et al. Visual Projection Neurons Mediating Directed Courtship in
894		Drosophila. Cell 174, 607-621 e618, doi:10.1016/j.cell.2018.06.020 (2018).
895	15	Hsu, C. T. & Bhandawat, V. Organization of descending neurons in Drosophila
896		melanogaster. Sci Rep 6, 20259, doi:10.1038/srep20259 (2016).
897	16	Namiki, S., Dickinson, M. H., Wong, A. M., Korff, W. & Card, G. M. The functional
898		organization of descending sensory-motor pathways in Drosophila. <i>Elife</i> 7.
899		doi:10.7554/eLife.34272 (2018).
900	17	von Revn. C. R. <i>et al.</i> A spike-timing mechanism for action selection. <i>Nat Neurosci</i> 17.
901	1,	962-970. doi:10.1038/nn.3741 (2014).
902	18	Wilson, R. I. Early olfactory processing in Drosophila: mechanisms and principles <i>Annu</i>
903		<i>Rev Neurosci</i> 36 , 217-241, doi:10.1146/annurev-neuro-062111-150533 (2013)
200		10, 1, 0, 0, 0, 21, 21, 21, doit10.11 (), allianter field to 002111 100000 (2010).

904	19	Peek, M. Y. Control of Escape Behavior by Descending Neurons in Drosophila
905		Melanogaster, The University of Chicago, (2018).
906	20	Zheng, Z. et al. A Complete Electron Microscopy Volume of the Brain of Adult
907		Drosophila melanogaster. Cell 174, 730-743 e722, doi:10.1016/j.cell.2018.06.019 (2018).
908	21	Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain.
909		<i>Elife</i> 9, doi:10.7554/eLife.57443 (2020).
910	22	Kurmangaliyev, Y. Z., Yoo, J., Valdes-Aleman, J., Sanfilippo, P. & Zipursky, S. L.
911		Transcriptional Programs of Circuit Assembly in the Drosophila Visual System. Neuron
912		108, 1045-1057 e1046, doi:10.1016/j.neuron.2020.10.006 (2020).
913	23	Clements, J. C. neuPrint: Analysis Tools for EM Connectomics. <i>BioRxiv</i> (2020).
914	24	Tirian, L. & Dickson, B. J. The VT GAL4, LexA, and split-GAL4 driver line collections
915		for targeted expression in the Drosophila nervous system. <i>bioRxiv</i> , 198648,
916		doi:10.1101/198648 (2017).
917	25	Gordon, M. D. & Scott, K. Motor control in a Drosophila taste circuit. Neuron 61, 373-
918		384, doi:10.1016/j.neuron.2008.12.033 (2009).
919	26	Feinberg, E. H. et al. GFP Reconstitution Across Synaptic Partners (GRASP) defines cell
920		contacts and synapses in living nervous systems. Neuron 57, 353-363,
921		doi:10.1016/j.neuron.2007.11.030 (2008).
922	27	Allen, M. J., Drummond, J. A. & Moffat, K. G. Development of the giant fiber neuron of
923		Drosophila melanogaster. J Comp Neurol 397, 519-531, doi:10.1002/(sici)1096-
924		9861(19980810)397:4<519::aid-cne5>3.0.co;2-4 (1998).
925	28	Jacobs, K., Todman, M. G., Allen, M. J., Davies, J. A. & Bacon, J. P. Synaptogenesis in
926		the giant-fibre system of Drosophila: interaction of the giant fibre and its major
927		motorneuronal target. Development 127, 5203-5212, doi:10.1242/dev.127.23.5203
928		(2000).
929	29	Godenschwege, T. A., Hu, H., Shan-Crofts, X., Goodman, C. S. & Murphey, R. K. Bi-
930		directional signaling by Semaphorin 1a during central synapse formation in Drosophila.
931		Nat Neurosci 5, 1294-1301, doi:10.1038/nn976 (2002).
932	30	Murphey, R. K. et al. Targeted expression of shibire ts and semaphorin 1a reveals critical
933		periods for synapse formation in the giant fiber of Drosophila. Development 130, 3671-
934		3682, doi:10.1242/dev.00598 (2003).
935	31	Allen, M. J., Godenschwege, T. A., Tanouye, M. A. & Phelan, P. Making an escape:
936		development and function of the Drosophila giant fibre system. Semin Cell Dev Biol 17,
937		31-41, doi:10.1016/j.semcdb.2005.11.011 (2006).
938	32	Kennedy, T. & Broadie, K. Newly Identified Electrically Coupled Neurons Support
939		Development of the Drosophila Giant Fiber Model Circuit. eNeuro 5,
940		doi:10.1523/ENEURO.0346-18.2018 (2018).
941	33	Phelan, P. et al. Molecular mechanism of rectification at identified electrical synapses in
942		the Drosophila giant fiber system. Curr Biol 18, 1955-1960,
943		doi:10.1016/j.cub.2008.10.067 (2008).
944	34	Courgeon, M. & Desplan, C. Coordination of neural patterning in the Drosophila visual
945		system. Curr Opin Neurobiol 56, 153-159, doi:10.1016/j.conb.2019.01.024 (2019).
946	35	Mora, N. et al. A Temporal Transcriptional Switch Governs Stem Cell Division,
947		Neuronal Numbers, and Maintenance of Differentiation. Dev Cell 45, 53-66 e55,
948		doi:10.1016/j.devcel.2018.02.023 (2018).

949	36	Apitz, H. & Salecker, I. A region-specific neurogenesis mode requires migratory
950	20	progenitors in the Drosophila visual system. <i>Nat Neurosci</i> 18 , 46-55.
951		doi:10.1038/nn.3896 (2015).
952	37	Pinto-Teixeira, F. <i>et al.</i> Development of Concurrent Retinotopic Maps in the Fly Motion
953	51	Detection Circuit <i>Cell</i> 173 485-498 e411 doi:10.1016/j.cell.2018.02.053 (2018)
954	38	Shearin H K Quinn C D Mackin R D Macdonald I S & Stowers R S t-
955	50	GRASP a targeted GRASP for assessing neuronal connectivity <i>I Neurosci Methods</i> 306
956		94-102 doi:10.1016/i incumeth 2018.05.014 (2018)
957	39	Wagh D A $et al$ Bruchnilot a protein with homology to FI KS/CAST is required for
958	57	structural integrity and function of synaptic active zones in Drosonhila <i>Neuron</i> 49 833-
959		844 doi:10.1016/i neuron 2006.02.008 (2006)
960	40	Knapek S. Sigrist S & Tanimoto H. Bruchpilot a synaptic active zone protein for
961	40	anesthesia-resistant memory <i>L Neurosci</i> 31 3453-3458 doi:10.1523/INFLIROSCI.2585-
901		10 2011 (2011)
902	41	Magighian A at al Evidence for a radial SNAPE super complex madiating
905	41	nourotransmitter release at the Dresenhile neuromuscular junction <i>L Call Sci</i> 126 , 2124
904 965		3140 doi:10.1242/jcs.123802 (2013)
966	42	Cho, R. W., Song, Y. & Littleton, J. T. Comparative analysis of Drosophila and
967		mammalian complexing as fusion clamps and facilitators of neurotransmitter release. <i>Mol</i>
968		<i>Cell Neurosci</i> 45 389-397 doi:10.1016/i.mcn.2010.07.012 (2010)
969	43	Scholz N <i>et al.</i> Complexin cooperates with Bruchpilot to tether synaptic vesicles to the
970	15	active zone cytomatrix <i>J Cell Biol</i> 218 1011-1026 doi:10.1083/icb.201806155 (2019)
971	44	Davis F P <i>et al</i> A genetic genomic and computational resource for exploring neural
972		circuit function <i>Elife</i> 9 doi:10.7554/eLife 50901 (2020)
973	45	Buccitelli C & Selbach M mRNAs proteins and the emerging principles of gene
974	10	expression control Nat Rev Genet 21 630-644 doi:10.1038/s41576-020-0258-4 (2020)
975	46	Peng L et al. Drosophila Ferf coordinates laminar-specific connectivity through cell-
976	10	intrinsic and cell-extrinsic mechanisms <i>Elife</i> 7 doi:10.7554/eLife.33962 (2018)
977	47	Fouquet W et al. Maturation of active zone assembly by Drosonbila Bruchpilot. <i>I Cell</i>
978	-17	<i>Biol</i> 186 , 129-145, doi:10.1083/icb.200812150 (2009).
979	48	Dubart I C & Mosca T I Genetic regulation of central synapse formation and
980	10	organization in Drosonhila melanogaster <i>Genetics</i> 221 doi:10.1093/genetics/ivac078
981		(2022)
982	49	Parisi M I Aimino M A & Mosca T I A conditional strategy for cell-type-specific
983	77	labeling of endogenous excitatory synapses in Drosophila <i>Cell Reports Methods</i> 3
984		100477 doi:https://doi.org/10.1016/j.crmeth.2023.100477 (2023)
985	50	Woods D F & Bryant P I The discs-large tumor suppressor gene of Drosonhila
986	50	encodes a guanylate kinase homolog localized at sentate junctions. Call 66, 151-164
980		d_{0i} :10 1016/0002-867/(81)00000-v (1001)
088	51	Akin O Bajar B T Keles M F Erve M A & Zinursky S I Cell-type-Specific
000	51	Datterned Stimulus Independent Neuronal Activity in the Drosonhile Visual System
000		during Synance Formation Neuron 101, 804, 004, e805
001		doi:10.1016/i.neuron.2010.01.008 (2010)
221	52	uoi. 10.1010/J.incutoii.2017.01.000 (2017). Bajar B T at al A discrete neuronal nonulation accordinates brain wide developmental
332 002	52	Dajar, D. T. et ut. A discrete neuronal population coordinates orall-wide developmental activity. Natura 602, 630, 646, doi:10.1028/s41586.022.04406.0 (2022)
222		auriniy. manule 002 , 037-040, 001.10.1030/841300-022-04400-9 (2022).

994	53	Wong, R. O., Meister, M. & Shatz, C. J. Transient period of correlated bursting activity
995		during development of the mammalian retina. Neuron 11, 923-938, doi:10.1016/0896-
996		6273(93)90122-8 (1993).
997	54	Moreno-Juan, V. et al. Prenatal thalamic waves regulate cortical area size prior to sensory
998		processing. Nat Commun 8, 14172, doi:10.1038/ncomms14172 (2017).
999	55	D'Souza, S. & Lang, R. A. Retinal ganglion cell interactions shape the developing
1000		mammalian visual system. Development 147, doi:10.1242/dev.196535 (2020).
1001	56	Ackman, J. B., Burbridge, T. J. & Crair, M. C. Retinal waves coordinate patterned
1002		activity throughout the developing visual system. Nature 490, 219-225,
1003		doi:10.1038/nature11529 (2012).
1004	57	Spitzer, N. C. Electrical activity in early neuronal development. <i>Nature</i> 444, 707-712,
1005		doi:10.1038/nature05300 (2006).
1006	58	Pfeiffer, B. D., Truman, J. W. & Rubin, G. M. Using translational enhancers to increase
1007		transgene expression in Drosophila. Proc Natl Acad Sci US A 109, 6626-6631,
1008		doi:10.1073/pnas.1204520109 (2012).
1009	59	Harrell, E. R., Pimentel, D. & Miesenbock, G. Changes in Presynaptic Gene Expression
1010		during Homeostatic Compensation at a Central Synapse. J Neurosci 41, 3054-3067,
1011		doi:10.1523/JNEUROSCI.2979-20.2021 (2021).
1012	60	Yamazaki, D. et al. Contribution of K(ir)2 potassium channels to ATP-induced cell death
1013		in brain capillary endothelial cells and reconstructed HEK293 cell model. Am J Physiol
1014		Cell Physiol 300, C75-86, doi:10.1152/ajpcell.00135.2010 (2011).
1015	61	Desai, N. S., Rutherford, L. C. & Turrigiano, G. G. Plasticity in the intrinsic excitability
1016		of cortical pyramidal neurons. Nat Neurosci 2, 515-520, doi:10.1038/9165 (1999).
1017	62	Pecot, M. Y. et al. Sequential axon-derived signals couple target survival and layer
1018		specificity in the Drosophila visual system. Neuron 82, 320-333,
1019		doi:10.1016/j.neuron.2014.02.045 (2014).
1020	63	Jang, H., Goodman, D. P., Ausborn, J. & von Reyn, C. R. Azimuthal invariance to
1021		looming stimuli in the Drosophila giant fiber escape circuit. J Exp Biol 226,
1022		doi:10.1242/jeb.244790 (2023).
1023	64	Joesch, M., Schnell, B., Raghu, S. V., Reiff, D. F. & Borst, A. ON and OFF pathways in
1024		Drosophila motion vision. Nature 468, 300-304, doi:10.1038/nature09545 (2010).
1025	65	Tuthill, J. C., Nern, A., Holtz, S. L., Rubin, G. M. & Reiser, M. B. Contributions of the
1026		12 neuron classes in the fly lamina to motion vision. Neuron 79, 128-140,
1027		doi:10.1016/j.neuron.2013.05.024 (2013).
1028	66	Kolodkin, A. L. & Hiesinger, P. R. Wiring visual systems: common and divergent
1029		mechanisms and principles. Curr Opin Neurobiol 42, 128-135,
1030		doi:10.1016/j.conb.2016.12.006 (2017).
1031	67	Li, T. et al. Cellular bases of olfactory circuit assembly revealed by systematic time-lapse
1032		imaging. Cell 184, 5107-5121 e5114, doi:10.1016/j.cell.2021.08.030 (2021).
1033	68	Sanes, J. R. & Zipursky, S. L. Synaptic Specificity, Recognition Molecules, and
1034		Assembly of Neural Circuits. Cell 181, 1434-1435, doi:10.1016/j.cell.2020.05.046
1035		(2020).
1036	69	Luhmann, H. J. & Khazipov, R. Neuronal activity patterns in the developing barrel
1037		cortex. Neuroscience 368 , 256-267, doi:10.1016/j.neuroscience.2017.05.025 (2018).

- 1038 70 Choi, B. J., Chen, Y. D. & Desplan, C. Building a circuit through correlated spontaneous neuronal activity in the developing vertebrate and invertebrate visual systems. *Genes Dev* 35, 677-691, doi:10.1101/gad.348241.121 (2021).
- 1041 71 Kutsarova, E., Munz, M. & Ruthazer, E. S. Rules for Shaping Neural Connections in the
 1042 Developing Brain. *Front Neural Circuits* 10, 111, doi:10.3389/fncir.2016.00111 (2016).
- 1043 72 Dupont, E., Hanganu, I. L., Kilb, W., Hirsch, S. & Luhmann, H. J. Rapid developmental
 1044 switch in the mechanisms driving early cortical columnar networks. *Nature* 439, 79-83,
 1045 doi:10.1038/nature04264 (2006).
- Hanganu, I. L., Ben-Ari, Y. & Khazipov, R. Retinal waves trigger spindle bursts in the neonatal rat visual cortex. *J Neurosci* 26, 6728-6736, doi:10.1523/JNEUROSCI.0752-06.2006 (2006).
- 104974Yu, Y. C. *et al.* Preferential electrical coupling regulates neocortical lineage-dependent1050microcircuit assembly. *Nature* **486**, 113-117, doi:10.1038/nature10958 (2012).
- 1051 75 Shatz, C. J. Emergence of order in visual system development. *Proc Natl Acad Sci U S A*1052 93, 602-608, doi:10.1073/pnas.93.2.602 (1996).
- 1053 76 Carroll, B. J., Bertram, R. & Hyson, R. L. Intrinsic physiology of inhibitory neurons
 1054 changes over auditory development. *J Neurophysiol* 119, 290-304,
 1055 doi:10.1152/jn.00447.2017 (2018).
- 1056 77 Rabinovich, D., Mayseless, O. & Schuldiner, O. Long term ex vivo culturing of
 1057 Drosophila brain as a method to live image pupal brains: insights into the cellular
 1058 mechanisms of neuronal remodeling. *Front Cell Neurosci* 9, 327,
 1059 doi:10.3389/fncel.2015.00327 (2015).
- 1060 78 Ozel, M. N., Langen, M., Hassan, B. A. & Hiesinger, P. R. Filopodial dynamics and
 1061 growth cone stabilization in Drosophila visual circuit development. *Elife* 4,
 1062 doi:10.7554/eLife.10721 (2015).
- 1063 79 Li, T. & Luo, L. An Explant System for Time-Lapse Imaging Studies of Olfactory Circuit
 1064 Assembly in Drosophila. *J Vis Exp*, doi:10.3791/62983 (2021).
- 1065 80 Spruston, N. Pyramidal neurons: dendritic structure and synaptic integration. *Nat Rev* 1066 *Neurosci* 9, 206-221, doi:10.1038/nrn2286 (2008).
- 106781Gidon, A. & Segev, I. Principles governing the operation of synaptic inhibition in
dendrites. *Neuron* 75, 330-341, doi:10.1016/j.neuron.2012.05.015 (2012).
- 1069 82 Ferreira, J. S. *et al.* Distance-dependent regulation of NMDAR nanoscale organization
 1070 along hippocampal neuron dendrites. *Proc Natl Acad Sci U S A* 117, 24526-24533,
 1071 doi:10.1073/pnas.1922477117 (2020).
- 107283Jefferis, G. S. *et al.* Developmental origin of wiring specificity in the olfactory system of1073Drosophila. Development 131, 117-130, doi:10.1242/dev.00896 (2004).
- 1074 84 Berdnik, D., Chihara, T., Couto, A. & Luo, L. Wiring stability of the adult Drosophila
 1075 olfactory circuit after lesion. *J Neurosci* 26, 3367-3376, doi:10.1523/JNEUROSCI.49411076 05.2006 (2006).
- Yogev, S. & Shen, K. Cellular and molecular mechanisms of synaptic specificity. *Annu Rev Cell Dev Biol* **30**, 417-437, doi:10.1146/annurev-cellbio-100913-012953 (2014).
- 1079 86 Sassoe-Pognetto, M. & Patrizi, A. The Purkinje cell as a model of synaptogenesis and
 1080 synaptic specificity. *Brain Res Bull* 129, 12-17, doi:10.1016/j.brainresbull.2016.10.004
 1081 (2017).

1082 1083	87	Chowdhury, D., Watters, K. & Biederer, T. Synaptic recognition molecules in development and disease. <i>Curr Top Dev Biol</i> 142 , 319-370, doi:10.1016/bs.etdb.2020.12.000 (2021)
1085 1086	88	Zhou, D. <i>et al.</i> AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. <i>J Cell Biol</i> 143 , 1295-1304, doi:10.1083/jab.143.5.1205(1008)
1087 1088 1089	89	Brachet, A. <i>et al.</i> Ankyrin G restricts ion channel diffusion at the axonal initial segment before the establishment of the diffusion barrier. <i>J Cell Biol</i> 191 , 383-395, doi:10.1083/jcb.201003042 (2010)
1090 1091 1092	90	Ango, F. <i>et al.</i> Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment. <i>Cell</i> 119 , 257–272. doi:10.1016/j.cell.2004.10.004 (2004).
1095 1094 1095	91	Buttermore, E. D. <i>et al.</i> Pinceau organization in the cerebellum requires distinct functions of neurofascin in Purkinje and basket neurons during postnatal development. <i>J Neurosci</i> 32 , 4724, 4742, doi:10.1523/INEUROSCI.5602.11.2012 (2012)
1090 1097 1098	92	Sanes, J. R. & Zipursky, S. L. Design principles of insect and vertebrate visual systems. <i>Neuron</i> 66 , 15-36, doi:10.1016/i.neuron.2010.01.018 (2010).
1099 1100 1101	93	Seabrook, T. A., Burbridge, T. J., Crair, M. C. & Huberman, A. D. Architecture, Function, and Assembly of the Mouse Visual System. <i>Annu Rev Neurosci</i> 40 , 499-538, doi:10.1146/annurey-neuro-071714-033842 (2017)
1102 1103 1104	94	Schneider, K. A. & Kastner, S. Visual responses of the human superior colliculus: a high- resolution functional magnetic resonance imaging study. <i>J Neurophysiol</i> 94 , 2491-2503, doi:10.1152/in.00288.2005 (2005)
1104 1105 1106	95	Pezier, A. P., Jezzini, S. H., Bacon, J. P. & Blagburn, J. M. Shaking B Mediates Synaptic Coupling between Auditory Sensory Neurons and the Giant Fiber of Drosophila
1107 1108 1109	96	Nern, A., Pfeiffer, B. D. & Rubin, G. M. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. <i>Proc Natl</i>
1110 1111 1112	97	<i>Acad Sci U S A</i> 112 , E2967-2976, doi:10.1073/pnas.1506763112 (2015). Klapoetke, N. C. <i>et al.</i> Independent optical excitation of distinct neural populations. <i>Nat Methods</i> 11 , 338-346, doi:10.1038/nmeth.2836 (2014).
1113 1114	98	Pfeiffer, B. D. <i>et al.</i> Refinement of tools for targeted gene expression in Drosophila. <i>Genetics</i> 186 , 735-755, doi:10.1534/genetics.110.119917 (2010).
1115 1116 1117	99	Wu, J. S. & Luo, L. A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. <i>Nat Protoc</i> 1 , 2110-2115, doi:10.1038/nprot.2006.336 (2006).
1118 1119 1120 1121	100	Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. & O'Kane, C. J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. <i>Neuron</i> 14 , 341-351, doi:10.1016/0896-6273(95)90290-2 (1995).
1122 1123 1124	101	Mosca, T. J., Luginbuhl, D. J., Wang, I. E. & Luo, L. Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons. <i>Elife</i> 6 , doi:10.7554/eLife.27347 (2017)
1125 1126	102	Gouwens, N. W. & Wilson, R. I. Signal propagation in Drosophila central neurons. <i>J</i> <i>Neurosci</i> 29 , 6239-6249, doi:10.1523/JNEUROSCI.0764-09.2009 (2009).

1127	103	Goodman, D. P., Eldredge, A. & von Reyn, C. R. A novel assay to evaluate action
1128		selection in escape behavior. J Neurosci Methods 304, 154-161,
1129		doi:10.1016/j.jneumeth.2018.04.019 (2018).

- 1130104Gabbiani, F., Krapp, H. G. & Laurent, G. Computation of object approach by a wide-1131field, motion-sensitive neuron. J Neurosci 19, 1122-1141, doi:10.1523/JNEUROSCI.19-113203-01122.1999 (1999).
- 1133 105 Niven, J. E. *et al.* The contribution of Shaker K+ channels to the information capacity of 1134 Drosophila photoreceptors. *Nature* **421**, 630-634, doi:10.1038/nature01384 (2003).
- 1135

1136 ACKNOWLEDGEMENTS

- 1137 We thank the Janelia FlyLight project team for assistance with split-GAL4 generation. This
- study was supported in part by the National Science Foundation (grant no. IOS-1921065 to
- 1139 C.R.v.R.), the National Institutes of Health (NINDS R01NS118562 to C.R.v.R.) and the
- 1140 Margaret Q. Landenberger Research Foundation (grant to C.R.v.R.).
- 1141

1142 AUTHOR CONTRIBUTIONS

- 1143 Conceptualization C.R.v.R.; Methodology, B.W.M and C.R.v.R.; Investigation, B.W.M., H.J.,
- 1144 Y.Z.K., N.S., B.W.H. and C.R.v.R. Writing Original Draft, B.W.M. and C.R.v.R.; Writing –
- 1145 Review & Editing, B.W.M., N.S., H.J., B.W.H., T.A.G., Y.Z.K., A.N., M.J.P, K.C.D, T.J.M.,
- and C.R.v.R.; Funding Acquisition, C.R.v.R.; Resources, M.J.P, K.C.D, T.J.M., T.A.G., Y.Z.K.
- 1147 and A.N.; Supervision, C.R.v.R.
- 1148

1149 DECLARATION OF INTERESTS

- 1150 The authors declare no competing interests.
- 1151