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SUMMARY 1 

Behaviorally relevant, higher order representations of an animal’s environment are built from the 2 

convergence of visual features encoded in the early stages of visual processing. Although 3 

developmental mechanisms that generate feature encoding channels in early visual circuits have 4 

been uncovered, relatively little is known about the mechanisms that direct feature convergence 5 

to enable appropriate integration into downstream circuits. Here we explore the development of a 6 

collision detection sensorimotor circuit in Drosophila melanogaster, the convergence of visual 7 

projection neurons (VPNs) onto the dendrites of a large descending neuron, the giant fiber (GF). 8 

We find VPNs encoding different visual features establish their respective territories on GF 9 

dendrites through sequential axon arrival during development. Physical occupancy, but not 10 

developmental activity, is important to maintain territories. Ablation of one VPN results in the 11 

expansion of remaining VPN territories and functional compensation that enables the GF to 12 

retain responses to ethologically relevant visual stimuli. GF developmental activity, observed 13 

using a pupal electrophysiology preparation, appears after VPN territories are established, and 14 

likely contributes to later stages of synapse assembly and refinement. Our data highlight 15 

temporal mechanisms for visual feature convergence and promote the GF circuit and the 16 

Drosophila optic glomeruli, where VPN to GF connectivity resides, as a powerful developmental 17 

model for investigating complex wiring programs and developmental plasticity. 18 

 19 

Keywords: Pupal Development, Drosophila melanogaster, Giant Fiber, Optic Glomeruli, Neural 20 

Activity, Adaptation, Electrophysiology, Visual Projection Neurons, Visual System, Descending 21 

Neuron 22 
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INTRODUCTION 24 

In a developing brain, the coordinated wiring of multiple inputs onto a neuron and 25 

organization of these inputs across a neuron’s dendrites establish the computational role for that 26 

neuron. Uncovering the mechanisms that assemble and localize multiple inputs is pivotal to 27 

understand how inputs are miswired in neurodevelopmental disorders1-3 and how developmental 28 

processes attempt to compensate when particular inputs are missing or fail to connect4,5.  Across 29 

species, we know little about how multiple inputs that converge upon a neuron are wired during 30 

development because the underlying circuits are often not well established – we are missing the 31 

solution to the wiring program, where all inputs are known and synapse locations are mapped.       32 

Here, we capitalize on recent connectome data and functional investigations within the 33 

Drosophila optic glomeruli, a central brain region where visual feature inputs converge onto 34 

sensorimotor circuits6-10. Optic glomeruli are the output region for columnar visual projection 35 

neurons (VPNs) that are hypothesized to encode visual features9,11-14. VPN dendrites are 36 

retinotopically distributed to tile the lobula and the lobula plate of the fly’s optic lobes, while 37 

fasciculated VPN axons terminate within their respective glomerulus11. Within each glomerulus, 38 

VPNs synapse with multiple targets, including descending neurons (DNs) that project axons to 39 

the ventral nerve cord (VNC, the fly spinal cord homologue) where they in turn synapse onto 40 

interneurons and motoneurons that generate behavioral outputs15-17. Unlike the Drosophila 41 

olfactory glomeruli which have a predominantly one to one olfactory receptor neuron to 42 

projection neuron mapping18, each VPN glomerulus is not dedicated to a single DN type. 43 

Instead, DN dendrites infiltrate multiple, semi-overlapping subsets of glomeruli10,16,19, essentially 44 

assembling VPN features into higher order, behaviorally relevant motor and premotor outputs. 45 
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How this complex wiring of visual feature inputs onto DNs is established during development is 46 

presently unknown. 47 

 A pair of large DNs called the giant fibers (GFs) receive major input from two VPN types 48 

in the optic glomeruli: lobula columnar type 4 (LC4) neurons and lobula plate - lobula columnar 49 

type 2 (LPLC2) neurons (Figure 1A)6,7,13. LC4 and LPLC2 encode the angular velocity and 50 

angular size of an expanding object, respectively6,7, and enable the GFs to drive a rapid takeoff 51 

escape in response to an object approaching on a direct collision course17. The GF circuit within 52 

the optic glomeruli presents an ideal model for developmental investigations. GF connectivity in 53 

adult flies has been recently established through electron microscopy, genetic access exists for 54 

the GF and its major visual input cell types, and the large GF dendrites within the glomeruli can 55 

be resolved and tracked across development6,7,20,21. Additionally, the accessibility of the GF to 56 

electrophysiology enables the functional consequences of developmental events to be directly 57 

evaluated6,7. GF dendrites are also in close proximity to VPNs that are not synaptic partners in 58 

the adult, like lobula plate - lobula columnar type 1 (LPLC1) neurons. This provides an 59 

opportunity to investigate developmental interactions with cell types that do or do not select the 60 

GF as a synaptic partner. 61 

Here, we establish the GF circuit6,7,17 as a model for visual feature convergence in a 62 

developing nervous system. We screened VPN and GF GAL4 and LexA driver lines for early 63 

developmental expression and cell-type specificity. We then used identified driver lines to 64 

characterize the timecourse of VPN and GF interactions across metamorphosis that lead to their 65 

final organization in the adult. Combining a comprehensive single-cell RNA sequencing 66 

(scRNA-seq) atlas of the developing Drosophila visual system22, synaptic protein labeling over 67 

development, and a novel ex-plant electrophysiology preparation that enabled us to record from 68 
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the GF at distinct developmental timepoints, we correlated the time course of VPN to GF 69 

interactions with the arrival of synaptic machinery and neural activity. To determine how 70 

competition shapes VPN synapse organization along GF dendrites, we genetically ablated one 71 

VPN cell type (LC4) and investigated both structural and functional compensation from the 72 

surviving VPN partner (LPLC2). Our data provide a thorough characterization of the assembly 73 

of visual feature convergence onto GF dendrites and establish the optic glomeruli as a genetically 74 

and functionally tractable model to uncover mechanisms underlying complex wiring programs. 75 

 76 

RESULTS 77 

VPNs are localized to stereotyped regions on GF dendrites 78 

GF dendrites extend into the optic glomeruli in close proximity to multiple VPN cell-79 

types (Figure 1A,B). EM reconstruction of a full adult fly brain (FAFB20) previously revealed 80 

that 55 LC4 and 108 LPLC2 neurons connect directly onto GF optic glomeruli dendrites, 81 

contributing 2,442 and 1,366 synapses, respectively7. VPN synapses segregate across the medial-82 

lateral axis, with LC4 predominantly localized to medial, and LPLC2 to lateral, dendritic 83 

regions7. To investigate stereotypy in VPN to GF connectivity, we utilized a second EM dataset 84 

of a Drosophila hemibrain21,23. In this EM reconstruction, we found LC4 (71/71) and LPLC2 85 

(85/85) neurons established 2,290 and 1,443 synapses onto the GF optic glomeruli dendrites, 86 

respectively (Figure 1C). We confirmed LC4 and LPLC2 synapses segregate along the medial-87 

lateral axis, with only 2/85 LPLC2 neurons making synapses in predominantly LC4 occupied 88 

medial areas. 89 
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 90 

Figure 1. LC4 and LPLC2 occupy distinct regions on GF dendrites 91 
(A) GF (green), LPLC2 (magenta, one hemisphere), and LC4 (red, one hemisphere) maximum 92 
intensity projections superimposed over neuropil label Bruchpilot (Brp, gray) Scale bar, 50μm.  93 
(B) Optic glomeruli as identified by Brp labeling with the LPLC2 (magenta) and LC4 (red) 94 
glomeruli highlighted. Maximum intensity projection of a substack located within the dashed 95 
box in (A). Scale bar, 20μm.  96 
(C) Drosophila hemibrain EM reconstruction of GF (green) with colored dots indicating 97 
synapses from LC4 (red, top) and LPLC2 (magenta, bottom). 98 
(D) (Left) Maximum intensity projections of dual labeled GF and VPNs. (Right) Colocalized 99 
pixels (orange) between GF and respective VPNs superimposed over GF maximum intensity 100 
projections. Scale bar, 20μm.  101 

 102 

Since existing EM data only represent connectivity within two fly brains, we further 103 

investigated localization stereotypy by examining contacts between GF and VPN membranes 104 

across multiple adult flies. We used split-GAL4 driver lines that selectively labeled LC4 (LC4_4-105 

split-GAL4, generated for this paper) or LPLC2 (LPLC2-split-GAL4)11, and simultaneously 106 
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labeled the GF with a LexA line (GF_1-LexA)24  (Figure 1D, left). As a proxy for membrane 107 

contacts, we performed intensity-based thresholding on each cell-type of interest to generate 108 

representative masks, and then visualized colocalized regions along GF dendrites (Figure 1D, 109 

right). We consistently observed LC4 contacts on the most medial regions of the GF optic 110 

glomeruli dendrites and LPLC2 contacts on the most lateral regions. We also found on occasion 111 

(4/17 brain hemispheres), as seen in the hemibrain dataset, a small subset of LPLC2 axons 112 

extending into the most medial regions on the GF (Supplemental Figure 1, arrow)21. These data 113 

suggest that LC4 and LPLC2 consistently segregate to stereotyped regions along the medial-114 

lateral axis with rare exceptions. 115 

We used the same approach to assess the projections of LPLC1 (LPLC1_1-split-GAL4)11, 116 

a cell-type adjacent to LC4 and LPLC2 that does not synapse directly with the GF7. As expected, 117 

no synapses were identified in the hemibrain EM dataset (Supplemental Figure 2) and no 118 

membrane contacts were observed between GF and LPLC1 across all adult flies imaged with 119 

confocal microscopy (Supplemental Figure 2). We additionally employed GFP reconstitution 120 

across synaptic partners (GRASP)25,26 to visualize contacts between adjacent membranes and 121 

observed GFP expression between GF and LC4/LPLC2 in their respective medial/lateral 122 

locations, but not between GF and LPLC1 (Supplemental Figure 3).   123 

   124 

GF lateral dendrites extend, elaborate, and then refine across pupal stages 125 

Following our detailed anatomical characterization, we sought to determine how the 126 

precise VPN localization along GF dendrites arises across development. Prior developmental 127 

investigations into the GF have focused on axonal wiring with respect to postsynaptic 128 

interneuron and motor neuron partners in the ventral nerve cord (VNC)27-32. However, little is 129 
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known about how GF dendrites develop in the central brain33. The GF is born during embryonic 130 

stages but does not generate neurites until the third instar larval stage27. To track the GF at these 131 

early timepoints, we used the GF_1-LexA line that labels the GF starting in late larval stages 132 

(Supplemental Figure 4) and dissected pupae in 12-hour increments over metamorphosis, a 133 

period marked as the time between pupa formation and eclosion.  134 

Across development, we tracked the complexity and size of GF optic glomeruli dendrites 135 

by quantifying their volume (Figure 2A,B) and the length of the maximum dendrite extension 136 

along the medial-lateral axis (Figure 2A,C). In the early stages of metamorphosis, 24-48 hours 137 

after pupa formation (hAPF), the GF exhibited numerous filopodia, long thin protrusions without 138 

a bulbous head, and arbor complexity increased with the GF projecting between 3.1 + 1.0 139 

primary dendrites laterally (Figure 2A,B). During the middle stages of metamorphosis, from 48 140 

hAPF to 60 hAPF, the GF dendrites had the largest increase in their medial-lateral extent (Figure 141 

2C), followed by a peak in the overall volume and extension length at 72 hAPF (Figure 2A-C). 142 

During this time, filopodia were still present, but visibly shorter than in the first half of 143 

metamorphosis. In the final stages of metamorphosis from 72 hAPF to eclosion, the volume of 144 

GF dendrites significantly decreased (Figure 2A-C), while the medial-lateral length was 145 

maintained. Filopodia were no longer obvious, and branches appeared less complex and began to 146 

resemble their adult morphology.  147 
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 148 

Figure 2. LC4 and LPLC2 territories on GF dendrites are established early in development 149 
(A) Maximum intensity projections of GF (green) 36 hAPF (left), 60 hAPF (middle), and in 150 
adult (right) with the VPN dendritic region highlighted in yellow at distinct developmental 151 
stages. Scale bar, 20μm.  152 
(B) Quantification GF lateral dendrite volume from (A). Unpaired Kruskal-Wallis test (p = 1.339 153 
x 10-18), Tukey-Kramer multiple comparison test post hoc, * = p < .05 as compared to 24 hAPF, 154 
+ = p < .05 as compared to 36 hAPF, # = p < .05 as compared to 48 hAPF, and % = p < .05 as 155 
compared to adult. N > 13 hemibrains from > 10 flies.  156 
(C) Quantification of maximum dendrite extension length across the medial-lateral axis. 157 
Unpaired Kruskal-Wallis test (p = 2.072 x 10-12), Tukey-Kramer multiple comparison test post 158 
hoc, * = p < .05 compared to 24 hAPF, + = p < .05 compared to 36 hAPF, # = p < .05 compared 159 
to 48 hAPF. 160 
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(D,E) Left, maximum intensity projections of GF (green) with respect to LC4 (red, D), and 161 
LPLC2 (magenta, E) axonal membrane at distinct developmental stages. Right, maximum 162 
intensity projections of GF with VPN colocalized pixels (orange) superimposed along GF 163 
dendrites. Arow and arrowheads indicate divergent dorsal and ventral VPN axons, respectively. 164 
Scale bar, 20μm. 165 
(F,G) Quantification of colocalization in (D,E) with colors corresponding to VPN type. Unpaired 166 
Kruskal-Wallis test (LC4, p = 2.088 x 10-12; LPLC2, p = 1.983 x 10-10), Tukey-Kramer multiple 167 
comparison test post hoc, * = p < .05 as compared to 36 hAPF, + = p < .05 as compared to 60 168 
hAPF, # = p < .05 as compared to 72 hAPF. N > 6 hemibrains from > 3 flies.   169 
(H,I) 3D renderings of GF lateral dendrites (green) with LPLC2 (H, magenta) or LC4 (I, red) 170 
colocalized pixels superimposed at distinct timepoints during development. Scale bar, 20μm. D - 171 
dorsal, V – ventral, M – medial, L – lateral. 172 
(J) Histograms of the spatial distribution of LC4 and LPLC2 contacts along the normalized 173 
medial-lateral GF dendrite axis across development; colors are the same as in (H, I). N are as 174 
stated in (F,G).  175 

 176 

Initial contacts between GF and VPNs are staggered in time 177 

 We next investigated VPN axon targeting with respect to GF dendritic outgrowth. At 178 

present, it is unknown when columnar VPN neurons are born34, but these neurons may arise in 179 

late larval to early pupal stages, a period when neuroblasts give rise to visual neurons (such as 180 

T4/T5) that provide input to VPN dendrites in the lobula and lobula plate35-37. We hypothesized 181 

VPNs would commence outgrowth and partner matching in coordination with GF dendrite 182 

development. To visualize developmental interactions of select VPN and GF, we used existing11 183 

or newly developed VPN split-GAL4 driver lines screened for pupal expression (Supplemental 184 

Figure 4),  to concurrently label select VPN cell-types (LC4_4-split-GAL4, LPLC2-split-GAL4, 185 

LPLC1_1-split-GAL4) and the GF (GF_1-LexA) over metamorphosis. To quantify interactions, 186 

we employed our membrane colocalization method (Figure 1D) instead of synapse labeling 187 

methods (such as t-GRASP38) because we wanted to track all putative interactions, including 188 

those that precede synapse formation, over time and did not want to create ectopic adhesions 189 

between membranes. We additionally compared our membrane colocalization method to a 190 
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GRASP variant that is not restricted to presynaptic terminals25 and found no statistical difference 191 

between the number of colocalized or GFP positive pixels (Supplemental Figure 5).   192 

Using colocalization as a proxy for membrane contacts, we investigated developmental 193 

interactions between GF and its known adult partner VPNs, LC4 and LPLC2. We observed LC4 194 

axonal extension and initial contact with GF at 24 hAPF (Figure 2F). At this timepoint, LC4 195 

axons diverge into a dorsal fraction projected near the dorsal branch of the GF optic glomeruli 196 

dendrites, and a ventral fraction projected towards the proximal regions of the GF dendrites 197 

(Supplemental Figure 6). At 36 hAPF, contacts between the GF and LC4 increased, with both 198 

dorsal and ventral fractions still apparent (Figure 2D, arrow, arrowhead, respectively). Although 199 

LPLC2-split-GAL4 shows obvious expression at this time, we did not observe any contacts 200 

between LPLC2 and the GF (Figure 2E,G).  201 

At 48 hAPF, LC4 and GF continued to show an increase in contacts (Figure 2F), and LC4 202 

dorsal and ventral axons had converged (Supplemental Figure 6). At this time, approximately 24 203 

hours after initial GF and LC4 contact, we observed GF contacts with LPLC2 (Figure 2E,G) as 204 

the dorsal branch of the GF dendrites extended past LC4 axons (Supplemental Figure 6, 205 

arrowhead). Altogether, our data suggest that during the first half of metamorphosis, as the GF is 206 

seeking out synaptic partners, interactions with VPN are staggered in time.  207 

After the initial establishment of contacts, we next observed a significant increase in 208 

contacts between partner VPNs and GF from 60 hAPF to 72 hAPF (Figure 2D-G). At 84 hAPF 209 

through eclosion, contacts between GF and both VPNs decreased and then stabilized. Our results 210 

suggest that in the second half of metamorphosis, GF prioritizes dendritic outgrowth, enhances 211 

contacts with partner VPN, and eventually refines and stabilizes contacts with appropriate VPN 212 

partners, LC4 and LPLC2. 213 
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We next investigated interactions between GF and a neighboring VPN, LPLC1, that does 214 

not maintain synapses with GF in adulthood (Supplemental Figure 2). We observed a relatively 215 

small number of contacts between GF and neurons labeled with LPLC1_1-split-GAL411 216 

appearing around 48 hAPF, peaking around 60 hAPF, and disappearing around 84 hAPF 217 

(Supplemental Figure 7A,B). This driver line, however, may also label a subset of VPN that are 218 

not LPLC1 during development (Supplemental Figure 7D,E), so we repeated our contact analysis 219 

by generating two new LPLC1 driver lines, LPLC1_2-split-GAL4 and LPLC1_3-split-GAL4 220 

(Supplemental Figure 4). While these driver lines revealed GF and LPLC1 membranes are 221 

adjacent at 60 hAPF, we observed minimal to no contacts with GF (Supplemental Figure 7C). 222 

Altogether, these results suggest that early in development, GF contacts are already biased 223 

towards VPNs that are synaptically coupled to the GF in the adult. 224 

 225 

LC4 and LPLC2 occupy and maintain distinct regions along the GF dendrite  226 

 In the adult GF circuit, LC4 inputs are localized to the medial regions of GF dendrites, 227 

whereas LPLC2 inputs are localized to the most lateral regions (Figure 1). It is unknown if this 228 

medial-lateral segregation is established initially or arises over development. To address this, we 229 

manually aligned the GF dendrites across brains and quantified the density of contacts along the 230 

medial-lateral axis. Across all time points, we found minimal overlap between LC4 and LPLC2; 231 

the peak density of contacts for LC4 and LPLC2 consistently occupied the most medial and 232 

lateral regions, respectively (Figure 2H-J).  233 

The GF optic glomeruli dendrites contain dorsal and ventral branches, therefore we 234 

repeated the analysis of membrane contacts along the dorsal-ventral axis. At 48 hAPF, LPLC2 235 

contacts were primarily confined to the dorsal regions, and LC4 to the ventral regions 236 
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(Supplemental Figure 8). This segregation was reduced at 60 hAPF and less obvious in the later 237 

stages of development (84 hAPF – 96 hAPF), in alignment with previous investigations into 238 

adult synapse localization along the dorsal-ventral axis7. Altogether, our results highlight the 239 

importance of the medial-lateral division of LC4 and LPLC2 inputs onto GF dendrites, where 240 

targeting is established early and maintained throughout development. 241 

 242 

Upregulation of synaptic machinery across key stages of metamorphosis  243 

Although our colocalization data provide the time course for interactions between VPN 244 

axons and GF dendrites across development, they do not provide information on the timing of 245 

synaptogenesis. We therefore investigated how our time course for GF/VPN interactions aligned 246 

with the expression of presynaptic machinery (Figure 3A,B). We used a comprehensive scRNA-247 

seq atlas of the developing Drosophila visual system which profiled optic lobe neurons at 248 

multiple time points across metamorphosis and identified both global and cell-type specific 249 

transcriptional programs22.  250 

As developmental clusters corresponding to LC4, LPLC2, and LPLC1 have been 251 

identified in this dataset, we re-analyzed these data to determine when genes required for 252 

synaptic transmission were upregulated in metamorphosis. We first investigated the expression 253 

of brp, a presynaptic active zone protein that is homologous to the mammalian ELKS/CAST 254 

family39,40 that is commonly used to label presynaptic terminals. We found brp to be present as 255 

early as 24 hAPF and gradually increase up until 60 – 72 hAPF (Figure 3B, Supplemental 256 

Figures 9,10). Presynaptic genes in the SNARE complex41-44  nSyb, cpx, Snap25 and Syx1A were 257 

also present at early pupal stages, but significant upregulation was delayed with respect to brp, 258 

from around 60 hAPF until the end of metamorphosis (Figure 3B, Supplemental Figures 9,10). 259 
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LC4, LPLC1 and LPLC2 are predicted to be cholinergic44, and we found genes for cholinergic 260 

synapse function (ChAT and VAChT) were upregulated in the late stages of metamorphosis (> 60 261 

hAPF) (Figure 3A, Supplemental Figure 9-10), delayed from the initial appearance of 262 

presynaptic machinery, but following the time course reported for other cholinergic neurons22.  263 

This upregulation coincides with our observed decrease in GF dendritic complexity, and 264 

refinement and stabilization of GF and VPN contacts (Figure 2F,G, Supplemental Figure 7A-C). 265 

These data suggest that although a subset of presynaptic components are expressed and 266 

potentially assembled early, VPN cholinergic machinery arrives too late to contribute to the 267 

initial targeting and localization of VPN axons on GF dendrites.  Cholinergic activity instead is 268 

likely to participate in VPN and GF synapse refinement and stabilization. 269 

 Given the significant role electrical synapses play across development, we also examined 270 

expression of the innexin family of gap junction proteins. Shaking-B (shakB) has been denoted 271 

to be the predominant innexin over development22, and we also observed a significant increase as 272 

early as 36 hAPF (Figure 3B, Supplemental Figures 9,10) with all other innexins showing 273 

minimal to no expression across metamorphosis. shakB expression peaked between 48-60 hAPF, 274 

followed by a significant decrease from 60 hAPF to 72 hAPF for all cell types (Supplemental 275 

Figures 9,10). Interestingly, this decrease occurred as ChAT and VAChT increased, potentially 276 

marking the transition from predominantly electrical synaptic coupling to chemical synaptic 277 

coupling. A summary of our scRNA-seq analyses aligned to our developmental interaction 278 

timecourse can be seen in Figure 3A,B.  279 
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 280 

Figure 3. Synaptogenesis and the emergence of stimulus-independent neural activity 281 
(A) Schematic of GF and VPN developmental interactions 282 
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(B) Heatmap timecourse of average, normalized VPN mRNA expression of genes for electrical 283 
and chemical synapse function. Data are from the optic lobe transcriptional atlas22 and individual 284 
VPN expression patterns can be found in Supplemental Figure 9. 285 
(C) Max intensity projections of a substack of DLG expression in GF (DLG1-V5, green) and Brp 286 
puncta in LC4 (Brp-Short, red) at selected timepoints. Scale bar, 10μm.  287 
(D) Quantification of volume of Brp colocalized with DLG from (C). Unpaired Kruskal-Wallis 288 
test (p = 0.001), Dunn-Sidak comparison test post hoc, * = p < .05 , N= 3-7 hemibrains from 2-5 289 
flies.  290 
(E) Schematic of ex-plant pupal electrophysiology preparation. 291 
(F) The total number of identified depolarizing events increases exponentially (fit, dotted red 292 
line) over time. N = 5 flies. 293 
(G) Representative traces of GF membrane potential recordings using the pupal 294 
electrophysiology preparation for two timepoints. 295 
(H) Zoomed in recording showing features resolvable with electrophysiology. Arrow indicates 296 
hyperpolarization following large depolarizing events, arrowheads indicate different event 297 
amplitudes.  298 
(I) Distribution of event frequencies from inter-event intervals.  299 
(J) Timecourse of developmental stages as estimated from anatomical, scRNA-seq and 300 
electrophysiology data.  301 
 302 

 GF and VPN synapse assembly is initiated during the partner matching stages 303 

While our scRNA-seq data provide an estimate of gene expression across development, 304 

relative levels of mRNA do not necessarily correlate linearly to protein translation45. Therefore, 305 

using our scRNA-seq data to guide our hypotheses, we next investigated the temporal expression 306 

patterns of select pre- and postsynaptic proteins in VPN and GF. We utilized an iteration of 307 

Synaptic Tagging with Recombination (STaR)46 to visualize LPLC2 and LC4 specific Brp, 308 

driven by its endogenous promoter and tagged with smGdP-V5. From our scRNA-seq data, brp 309 

is expressed early in both LC4 and LPLC2 (Supplemental Figures 9,10). Using LC4_4-split-310 

GAL4 and LPLC2-split-GAL4 driver lines that turn on prior to 36 hAPF, we quantified the 311 

fluorescence of V5-tagged Brp over metamorphosis (Supplemental Figure 11). We found Brp 312 

already present in LC4 at 36 hAPF, as supported by the RNAseq data, and that Brp expression 313 

increased until 60 hAPF.  Unexpectedly, we witnessed a delay in the appearance and peak 314 

expression of Brp in LPLC2, similar to the staggered arrival times of LC4 and LPLC2 onto GF 315 
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dendrites. It is possible that the assembly of synaptic machinery is delayed in LPLC2 to 316 

accommodate its arrival time. However, because V5-tagged Brp expression is dependent not 317 

only on the native brp promoter but also limited by when the VPN driver line turns on, the 318 

differences in Brp appearance could also be due to temporal differences in the driver lines.  319 

These data suggest presynaptic machinery is already present during initial partner matching 320 

between VPN and GF and increases as contacts are refined and stabilized.  321 

We next investigated whether Brp accumulating at presynaptic terminals in VPNs was 322 

directly opposed to postsynaptic machinery, as an indicator of functional pre/postsynaptic sites. 323 

To label presynaptic Brp in VPN, we established a new transgenic line that expresses Brp-Short 324 

tagged with GFP under the control of the lexAop promoter (lexAop-Brp-Short-GFP). Brp-Short 325 

is a truncated, non-functional Brp protein that localizes to sites of endogenous full-length Brp 326 

without disrupting morphology or function47 and has been used to map synaptic organization in 327 

the Drosophila CNS48,49. To label postsynaptic machinery in the GF, we targeted discs large 1 328 

(dlg1), the fly PSD-95 ortholog50 using dlg1[4K], a conditional tagging strategy that enables 329 

cell-type specific (UAS-FLP) V5-tagging of endogenous DLG149. Combining these tools with 330 

our GF and VPN driver lines, we achieved co-expression of LC4-specific Brp-Short-GFP, and 331 

GF-specific DLG1-V5 and investigated protein expression patterns at distinct developmental 332 

stages. We observed faint, diffuse DLG1-V5 expression 36 hAPF (Figure 3C,D), around the time 333 

when initial GF and VPN contacts are observed (Figure 2F). However, significant DLG1-V5 and 334 

Brp-Short colocalization was not observed until 48 hAPF, although it remained only a small 335 

fraction of what was witnessed in the adult (Figure 3C,D). Our data suggest that although pre- 336 

and postsynaptic proteins are present at the initial stages of partner matching, it is not until 337 

around 48 hAPF that they begin to assemble functional synaptic connections. 338 
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 339 

GF exhibits stimulus-independent neural activity during development 340 

 Our Brp-Short / DLG1-V5 dual labeling experiments suggest functional pre- and 341 

postsynaptic sites are present around 48 hAPF. Interestingly, within fly optic lobe neurons, 342 

sporadic and infrequent neural activity is first witnessed, through Ca2+ imaging, around 45 343 

hAPF51. Developmental activity within DNs has not been investigated, so we set out to 344 

determine when activity first initializes within the GF and characterize GF activity patterns over 345 

development. We developed an ex-plant pupal electrophysiology preparation for high resolution 346 

recordings of the GF membrane potential over time (Figure 3E). Briefly, the entire pupal CNS 347 

was dissected and mounted onto a coverslip, which was then attached to a customized holder that 348 

enabled us to perfuse oxygenated extracellular saline during recordings. Using our preparation, 349 

we recorded from the GF for approximately one hour in current-clamp mode at distinct 350 

developmental time periods. At 45 hAPF, we witnessed sporadic, infrequent depolarizing events 351 

(Figure 3F and Supplemental Figure 12), aligning with the emergence of activity in the optic 352 

lobes51 and the initial opposition of Brp/DLG puncta (Figure 3C,D). The number of depolarizing 353 

events increased exponentially as development progressed (Figure 3F,G, Supplemental Figure 354 

12), mirroring the increased expression of cholinergic synaptic machinery within the scRNA-seq 355 

data (Figure 3B, Supplemental Figures 9,10). As expected with an increase in the number of 356 

depolarizing events, the interval between events decreased (inter-event frequency increased) as a 357 

function of age (Figure 3I, Supplemental Figure 12).  358 

Our recordings enabled us to observe hyperpolarizing events (Figure 3H, arrow)  that 359 

occasionally proceeded large depolarizing events (Figure 3H, arrowheads), and small amplitude 360 

events that would not be resolvable with Ca2+ imaging. We also observed a broad distribution in 361 
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event frequency (Figure 3G,I) instead of one dominant frequency from distinct alternating phases 362 

between silence and activity as seen in optic lobe or whole brain Ca2+ imaging from 55 - 65 363 

hAPF51,52. It is possible our ex-plant preparation may alter activity patterns from those observed 364 

in-vivo. Alternatively, our recordings report activity not resolvable in Ca2+ imaging, and central 365 

brain neurons like the GF may display broader patterns as they pool input across many diverse 366 

cell types. Altogether, our data (summarized in Figure 3J) suggest initial GF partner matching 367 

precedes synaptogenesis. GF synapses become functional around 48 hAPF, with an upregulation 368 

of gap junction proteins and the appearance of apposed pre and postsynaptic machinery 369 

suggesting electrical (predominant) and chemical (minor) synapses contribute to the underlying 370 

activity witnessed at this stage. In the later stages of development, the frequency of synaptic 371 

events increase as gap junction proteins are downregulated and cholinergic presynaptic 372 

machinery is upregulated to enhance and stabilize synapses with intended synaptic partners while 373 

refining unintended contacts.  374 

 375 

LC4 ablation results in an increase of GF contacts with the LPLC2 glomerulus 376 

 After establishing our timecourse of GF and VPN interactions, we next investigated 377 

potential mechanisms that regulate VPN targeting and localization onto GF dendrites.  Our data 378 

suggest synaptic activity does not contribute to the initial stages of VPN to GF partner matching. 379 

However, activity could be necessary for maintenance of the medial-lateral division of LC4 and 380 

LPLC2 inputs on GF dendrites, as neuronal activity can be crucial for proper refinement53-57. To 381 

test this, we attempted to silence LC4 during development by expressing the inwardly rectifying 382 

potassium channel Kir2.17,58 using LC4_4-split-GAL4. However, we found early expression of 383 

Kir2.1 resulted in a significant loss of LC4 (Figure 4A; Supplemental Figure 13A-D). Expression 384 
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of Kir2.1 with a driver line used in previous silencing experiments6 that turns on later in 385 

development (LC4_1-split-GAL4) did not cause a loss of LC4 (Supplemental Figure 13A-D). As 386 

our LC4_4-split-GAL4 driver line turns on ~18 hAPF, prior to initial LC4 to GF contact, these 387 

data suggest that overexpression of Kir2.1 early in development is detrimental to LC4 survival, 388 

potentially due to the inability to compensate for disruptions in ionic homeostasis or the direct 389 

induction of apoptosis59-61. Co-expression of an apoptosis inhibitor p3562 with Kir2.1 using our 390 

LC4_4-split-GAL4 driver line, however did not prevent cell death (Supplemental Figure 13E,F), 391 

potentially due to redundancies in apoptosis pathways or the relative timing of expression.  392 

With our finding we could use Kir2.1 as a tool to ablate LC4, we reframed our question 393 

to examine how the physical loss of LC4 alters LPLC2 morphology and targeting. Given that 394 

LC4 contacts GF dendrites ~24 hours prior to LPLC2, we wondered if LC4 physically restricts 395 

LPLC2 from extending to medial regions of the GF optic glomeruli dendrites. We expressed 396 

tdTomato in LPLC2 using a LexA driver line (LPLC2-LexA) while simultaneously driving 397 

myrGFP or Kir2.1 with LC4_4-split-GAL4. In adult flies where Kir2.1 expression ablated the 398 

majority of LC4, the LPLC2 axon bundle extended into areas where the LC4 glomerulus would 399 

be expected and we witnessed a significant increase the LPLC2 glomerulus volume (Figure 400 

4B,C). Due to the witnessed expansion of the LPLC2 glomerulus, we next investigated whether 401 

the loss of LC4 increased the territory GF dendrites occupied within the LPLC2 glomerulus. We 402 

expressed Kir2.1 with LC4_4-split-GAL4 to achieve LC4 cell death, while simultaneously 403 

expressing tdTomato in GF using GF_1-LexA.  We identified the LPLC2 glomerulus using a 404 

neuropil label (Brp) and again found that LC4 cell loss resulted in an LPLC2 glomerulus with 405 

altered morphology as compared to control flies (Figure 4D,E). We then quantified the overlap 406 

between GF dendrites and the LPLC2 glomerulus (Figure 4F). We found that LC4 ablation more 407 
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than doubled the amount of colocalization between GF dendrites and the LPLC2 glomerulus, 408 

with the glomerulus expanding onto more medial regions of the GF dendrites as compared to 409 

controls (Figure 4D-F). In summary, our data demonstrate LC4 ablation results in altered LPLC2 410 

axonal morphology and increased GF dendritic arborizations within the LPLC2 glomerulus, 411 

suggesting the early arrival and physical presence of LC4 may impede LPLC2 from contacting 412 

more medial regions of the GF. 413 

To revisit our original question as to whether activity influences GF and VPN 414 

connectivity, we expressed Kir2.1 in LC4 using our late, LC4_1-split-GAL4 driver line, and 415 

tdTomato in GF using our GF_1-LexA driver. The LC4_1-split-GAL4 driver line should be 416 

effective at silencing LC4 as it expresses Kir2.1 prior to the onset of GF activity, as witnessed 417 

here (Figure 3F,G , Supplemental Figure 12), and Ca2+ activity, as observed in the fly’s visual 418 

system51. We found no significant difference in the density or localization of contacts between 419 

GF and LC4 whether we expressed Kir2.1 or myrGFP in LC4 (Figure 4G,H). These data suggest 420 

LC4 localization along GF dendrites is activity independent, and the early arrival and physical 421 

presence of LC4 axons restricts LPLC2 targeting to the lateral regions of GF dendrites.  422 

 423 

Functional compensation in the GF circuit occurs after LC4 ablation 424 

Our anatomical data suggest the loss of LC4, but not silencing of its activity, during 425 

development results in a reconfiguration of contacts between LPLC2 and GF. We next 426 

investigated whether the apparent change in connectivity had functional consequences, affecting 427 

GF’s encoding of ethologically relevant visual stimuli. GF are tuned to looming stimuli – the 2D 428 

projections of an object approaching on a direct collision course. LC4 provides to the GF 429 

information about the angular speed while LPLC2 provides information about the angular size of 430 
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a looming object6,7. We recorded GF responses in tethered, behaving flies using whole-cell patch 431 

clamp electrophysiology63 (Figure 4I). We displayed looming stimuli across different radius to 432 

speed (r/v) ratios where the contributions of LC4 and LPLC2 to the GF response have been 433 

previously established6,7. In control animals, LPLC2 contributions are maintained across stimuli, 434 

as the range in stimulus size does not change, while LC4 contributions increase as stimuli 435 

become more abrupt6. 436 

 We found, as reported previously6, that silencing LC4 by expressing Kir2.1 using the 437 

LC4_1-split-GAL4 driver line reduced the GF response to looming stimuli as stimuli became 438 

more abrupt (Figure 4I-K). To further verify Kir2.1 silencing was effective, we expressed Kir2.1 439 

in lamina monopolar cells 1 and 2 (L1-L2), the early-stage inputs to motion vision processing64,65 440 

which ameliorated GF responses, as reported previously6 (Supplemental Figure 14).  However, 441 

in contrast to what we witnessed with silencing, we found the ablation of the majority of the LC4 442 

population, by expressing Kir2.1 with our LC4_4-split-GAL4 driver line, resulted in an enhanced 443 

GF response to looming stimuli (Figure 4I-K), aligned with the observed increase in GF 444 

dendrites occupying the LPLC2 glomerulus (Figure 4D-F). Our data support that the 445 

developmental reorganization of LPLC2 and GF following LC4 ablation is functionally 446 

significant and leads to an over-compensation in the GF looming response. 447 
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 448 
Figure 4. Developmental ablation of LC4 with Kir2.1 alters the morphology of the LPLC2 449 
glomerulus and increases LPLC2 contacts and functional drive onto GF. 450 
(A) Maximum intensity projections of LPLC2 expressing tdTomato (magenta) and LC4 (white) 451 
expressing GFP (left) or Kir2.1 (right) using LC4_4, a driver line that turns on early in 452 
development. Scale bar, 20μm.  453 
(B) Maximum intensity projections of a substack of the LPLC2 glomerulus (magenta) in a fly 454 
where LC4 express GFP (top) or are ablated through Kir2.1expression (bottom). Scale bar, 455 
20μm. 456 
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(C) Quantification of LPLC2 glomerulus volume in (B). Two-sample t-test, p = .0273, N = 16-24 457 
hemibrains from 8-13 flies.  458 
(D) Maximum intensity projections of Brp (NC82, gray) with the LPLC2 glomerulus highlighted 459 
(magenta) in a fly where GFP was expressed early in LC4 (left). Maximum intensity projections 460 
of GF dendrites (tdTomato, green) extending into the LPLC2 glomerulus (middle). Maximum 461 
intensity projections of colocalized pixels (magenta) between GF and the LPLC2 glomerulus 462 
superimposed onto the GF (right).  463 
(E) Maximum intensity projections of Brp (gray) with the LPLC2 glomerulus highlighted 464 
(magenta) in a fly where Kir2.1 was expressed early to ablate LC4 (left). Maximum intensity 465 
projections of GF dendrites (tdTomato, green) extending into the LPLC2 glomerulus (middle). 466 
Maximum intensity projections of colocalized pixels (magenta) between GF and the LPLC2 467 
glomerulus superimposed onto the GF (right). Scale bar, 20μm. 468 
(F) Quantification of colocalization between GF and the LPLC2 glomerulus from (D,E). 469 
Unpaired Mann-Whitney U test, p = .0159, N > 4 hemibrains from > 4 flies.  470 
(G) Maximum intensity projections of GF expressing smGFP (green) with colocalized pixels 471 
(white) between LC4 expressing GFP (left) or silenced by Kir2.1 (right) using an LC4-split-Gal4 472 
driver that turns on late during development (LC4_1-split-GAL4). Scale bar, 20μm.  473 
(H) Quantification of colocalization in (G). Unpaired Mann-Whitney U test, p = .1486, N > 11 474 
hemibrains from > 6 flies. 475 
(I) Schematic representing in-vivo electrophysiology setup for head-fixed adult flies. Visual 476 
stimuli (looms) were presented ipsilateral to the side of the recording via projection onto a screen 477 
positioned in front of the fly.  478 
(J) Average GF responses to select looming stimuli presentations of different radius to speed 479 
ratios (r/v).  480 
(K) Quantification of peak amplitude responses to looming stimuli presentations in (J). Unpaired 481 
Kruskal-Wallis test (r/v = 10ms, p = .1105; r/v = 20ms, p = .0443; r/v = 40ms, p = .0556; r/v = 482 
80ms, p = .0385), Tukey-Kramer multiple comparison test post hoc, * = p < .05, N = 6-8 flies. 483 
 484 
 485 
DISCUSSION 486 

Here, our investigation into the interactions of GF dendrites and VPN axons support a 487 

developmental program where GF and partner VPNs make initial contact in precise, stereotyped 488 

regions that are maintained into eclosion through competitive, physical interactions. Ablation of 489 

one major VPN partner (LC4) results in territory expansion of another VPN (LPLC2) that 490 

confers compensatory functional changes within the GF circuit. After initial VPN territories are 491 

established, GF dendrites continue to arborize and increase contacts with VPNs, while avoiding 492 

contacts with non-synaptic neighbors. This developmental stage coincides with an upregulation 493 

of gap junctions, the opposition of pre- and postsynaptic proteins, and the onset of developmental 494 
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activity in the GF. This outgrowth is followed by a period of stabilization/refinement that 495 

coincides with an upregulation of cholinergic synaptic machinery and an increase in the 496 

frequency of developmental activity in the GF. This developmental time course is summarized in 497 

Figure 3A,J. Our data establish the GF escape circuit as a sophisticated developmental model 498 

that can be used to study mechanisms establishing integration of sensory inputs within a 499 

sensorimotor circuit, the role neural activity plays in shaping circuit connectivity and refinement, 500 

and the relationship between expressed genes and circuit development and function. 501 

The development of the Drosophila visual system proceeds in a series of steps which 502 

likely serve to reduce the complexity of wiring paradigms from neurons of the same or 503 

neighboring cell-types, highlighting the importance of timing66. We found staggered interactions 504 

of the GF with VPN partners, where LC4 contacts the GF approximately 24-36 hours prior to 505 

LPLC2. This staggered arrival of VPN axons could reduce the complexity of decisions made by 506 

the GF during partner matching, as is also seen in the olfactory glomeruli in an ex-plant 507 

preparation where axons of pioneer olfactory receptor neurons (ORNs) terminate in posterior 508 

regions, and ORNs arriving later terminate in anterior regions67. From 36-72 hAPF, we observe 509 

an increase in GF dendritic complexity and extension and increase in contacts with VPN 510 

partners, coordinated with an upregulation of genes involved in the SNARE complex (Figure 511 

3A,B). This period of precise targeting and outgrowth likely reflects a robust partner matching 512 

program, potentially through ligand-receptor or attractive/repulsive cues68. Our confocal data 513 

provide high-resolution snapshots of membranes at distinct periods over metamorphosis, but as 514 

metamorphosis is a dynamic process, future work could incorporate time-lapsed imaging to 515 

investigate transient interactions that may have been missed. 516 
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Our GF and VPN colocalization data show a developmental progression that begins with 517 

partner matching between VPN and GF in stereotyped regions, an increase of contacts with 518 

synaptic partners, proceeded by refinement as neurons assume their adult morphology. 519 

Comparison with the time course of scRNA-seq data provides insight into genes that may play a 520 

role in these processes. We find gap junction coupling may serve a role in partner matching, as 521 

shakB expression is high at this time (Supplemental Figure 9)22. Our data also support a 522 

transition from predominantly electrical to chemical synapses as witnessed in other species69,70 at 523 

the onset of refinement. shakB is downregulated while cholinergic synaptic machinery ChAT and 524 

VAChT (Figure 3B and Supplemental Figures 9,10) are upregulated. Our model system is well 525 

poised to investigate the role of electrical and chemical signaling, and their supporting genes, in 526 

circuit development and function.  527 

We provide the first electrophysiological recordings of developmental neural activity in 528 

pupal neurons, a phenomenon that has been documented in developing vertebrate systems, and 529 

recently proposed within the fly with Ca2+ imaging53-57,69,71-75. Our data demonstrate activity in 530 

the GF emerges as early as 45 hAPF, and increases in frequency as a function of time. While 531 

scRNA-seq data and our Brp-Short and DLG1-V5 protein expression data suggests this activity 532 

is driven through functional electrical and chemical synapses, changes in GF intrinsic properties 533 

may also contribute to witnessed changes in frequency. For example, recordings from the 534 

superior olivary nucleus  in the avian auditory brainstem over embryonic development to 535 

hatching show neuronal excitability increases due to changes in K+ and Na+ ion channel 536 

conductance76, therefore further investigation into what drives these changes in GF activity is 537 

warranted.  538 
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To record spontaneous activity in pupal GF neurons we developed an ex-plant system 539 

that differs from established ex-vivo systems77-79 in that we are not attempting to culture our ex-540 

plant long term and replicate in-vivo conditions through the addition of ecdysone to aid neuronal 541 

development. To our knowledge, developmental activity within these ex-vivo systems has yet to 542 

be reported. We find in our ex-plant noticeable similarities to the recent discovery of in-vivo 543 

activity patterns in the developing fly nervous system51. We first observe GF stimulus 544 

independent activity (stimulus independent because all sensory organs are no longer connected) 545 

as infrequent events around 45 hAPF, similar to sparse Ca2+ activity witnessed in the fly optic 546 

lobes at this same time51.  As development progresses, the frequency of depolarizing events in 547 

the GF increases, similar to what has been reported in-vivo. However, we find no discernible 548 

phases of activity and silence as observed in-vivo via calcium imaging around 55-65 hAPF, 549 

classified as the periodic stage of patterned, stimulus independent neural activity (PSINA). We 550 

instead witness a progression into what resembles the later turbulent phase of PSINA that occurs 551 

around 70 hAPF to eclosion51.  As in-vivo activity in individual developing DNs or central brain 552 

neurons has as of yet to be reported, our data could represent actual in-vivo activity patterns from 553 

neurons in the central brain where multiple inputs converge. Alternatively, even if our removal 554 

of the CNS disrupts activity patterns observed in-vivo, our ex-plant could provide a highly 555 

accessible model system to uncover the underlying mechanisms for how particular activity 556 

patterns arise.    557 

The location of a synapse on a dendrite can impact its overall effect on a neuron, and 558 

establish how it contributes to neural computations80-82. We find the location of synapses of each 559 

VPN cell type to be highly stereotyped, suggesting location may impact computation, although 560 

this has yet to be directly investigated. Our contact data suggest that targeting of LC4 and 561 
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LPLC2 to their respective regions is established upon initial contact instead of refinement in the 562 

later stages of development. This is noticeably different from ORN axonal targeting to olfactory 563 

glomeruli, where axons target many neighboring glomeruli and are eventually refined to a 564 

specific glomerulus67,83,84. It is possible specific protein interactions establish LC4 and LPLC2 565 

target specificity68,85-87,  similar to how basket interneurons target the axon initial segment of 566 

Purkinje cells in the vertebrate cerebellum via localized cell adhesion molecules and adaptor 567 

proteins88-91. Our data, however, support that axon arrival times also play a role, with LC4 first 568 

contacting GF dendrites in medial regions, physically impeding LPLC2, and leaving LPLC2 569 

segregated to the lateral regions.  This physical barrier may explain why LPLC2 is able to extend 570 

into medial regions following LC4 ablation (Figure 4D-F). We do however find LPLC2 does not 571 

fully replace LC4 along the dendrites, suggesting segregation may arise from a combination of 572 

physical restraints from LC4 and potentially other neurons, in addition to molecular interactions. 573 

It does not appear that activity-based mechanisms influence the localization of LC4 and LPLC2 574 

to specific regions because silencing activity in LC4 does not result in significant changes in 575 

LC4/GF contact density or localization (Figure 4G,H). In addition, elimination of the majority of 576 

LC4 neurons did not affect targeting of the remaining LC4 neurons to the GF dendrites in the 577 

expected regions.  578 

We also report altered GF output to looming stimulus presentations (Figure 4J,K) 579 

following LC4 ablation as an example of developmental plasticity to preserve an evolutionary 580 

conserved escape behavior that is critical to the fly’s survival. Because we observe a significant 581 

increase in GF dendritic occupancy within the LPLC2 glomerulus, our prevailing hypothesis is 582 

that LPLC2 synaptic inputs to GF have increased. Alternatively, the 1-7 LC4 neurons that remain 583 

after ablation may also have increased synaptic input, however the consistency of the 584 
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compensatory responses as looming stimulus parameters change (r/v) and the limited visual field 585 

coverage with just 1-7 LC4 neurons supports compensation through remaining LC4 is unlikely to 586 

underlie the enhanced GF responses.  587 

While we here demonstrate stereotyped targeting of VPNs to distinct regions on GF 588 

dendrites, emerging work suggests an additional level of targeting may occur within individual 589 

VPNs. It was previously suggested, based on light microscopy data, that retinotopy is lost within 590 

the seemingly random terminations of VPN axons in most optic glomeruli, unlike in vertebrate 591 

systems where established retinotopy in the retina is maintained in projections to the lateral 592 

geniculate nucleus and superior colliculus/tectum92-94. However, recent evidence suggests VPNs 593 

preserve spatial information by biasing synaptic input to postsynaptic neurons relative to their 594 

receptive field8,10,19. This is seen in LC4 synaptic inputs to postsynaptic DNp02 and DNp11 595 

neurons, where LC4 synaptic inputs to DNp02 increase along the posterior to anterior visual 596 

axis, and LC4 synaptic inputs to DNp11 increase along the anterior to posterior visual axis10. 597 

LC4 inputs to GF do not appear to bias synapse numbers based on their receptive field, but a bias 598 

of synaptic inputs from LPLC2 to GF exists along the ventral to dorsal axis10. As synaptic 599 

gradients appear to be utilized amongst many VPN neurons, our model system is well poised to 600 

investigate when and how these synaptic biases arise. 601 

In summary, our data provides a detailed anatomical, transcriptomic, and functional 602 

description of GF and VPN development. Our model is unique in that we can observe multiple 603 

visual feature inputs competing for dendritic space, providing a complex sensorimotor model to 604 

the field that will be useful to determine the relationship between connectivity and sensorimotor 605 

integration. The GF also receives input from other brain regions outside of the optic glomeruli95, 606 

and it would be interesting to characterize the development of GF with respect to these other 607 
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regions and further investigate how these inputs influence GF output. Finally, these VPN are 608 

only a few of the 20+ VPN that terminate in the optic glomeruli, and GF is one of hundreds of 609 

DNs, expanding the opportunity to uncover conserved, fundamental mechanisms for the wiring 610 

of sensorimotor circuits.  611 

 612 

METHODS 613 

Fly genotypes and rearing  614 

Drosophila stocks (Table 1) and experimental crosses (Supplementary Table 1) were 615 

reared on a traditional molasses, cornmeal, and yeast diet (Archon Scientific), maintained at 616 

25°C and 60% humidity on a 12-hour light/dark cycle, except for optogenetics experiments 617 

where dark reared flies were raised on 0.2 mM retinal food as larva and switched to 0.4 mM 618 

retinal food following eclosion. All experiments were performed on pupal or adult female flies 2-619 

5 days post-eclosion. New split-GAL4 drivers lines SS02569 and SS02570 were generated using 620 

previously described methods11. The Janelia FlyLight Project Team contributed to split-GAL4 621 

screening and stock construction.   622 

 623 

Table 1. Drosophila Stocks 624 

DROSPHILA STOCKS SOURCE IDENTIFIER 

UAS-myr::smGFP-HA, 
lexAop-myr::smGFP-V5 
(smGFP): pJFRC200-
10XUAS-IVS-myr::smGFP-
HA (attP18), pJFRC216-
13XlexAop2-IVS-
myr::smGFP-V5 
su(Hw)attP8;;. 

Nern et al., 
201596 
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UAS-Kir 2.1_1:  
w+;pJFC49-10xUAS-IVS-
eGFP Kir2.1 (Su(Hw)attP6); 

Michael 
Reiser, Ed 
Rogers, 
Janelia 
Research 
Campus 

 

UAS-Kir 2.1_2:  
w+;;pJFRC49-10xUAS-IVS-
eGFP-Kir2.1 (attP2) 

Pfeiffer et 
al., 201258; 
von Reyn et 
al., 201417 

 

smGdP-STaR: ;LexAop-
myr:tdTomato,UAS-R; brp-
RSR-SmGdP-V5-2A-LexA 

Peng et al., 
201846 

 

UAS-myr:GFP: pJFRC12-
10XUAS-IVS-myr::GFP 
(su(Hw)attP1);; 

Pfeiffer et 
al.,201258 

 

UAS-tdTomato:  
pJFRC22-10xUAS-IVS-
myr::tdtomato 
(su(Hw)attP8);; 
 

Pfeiffer et 
al.,201258 

 

GF_2-LexA, lexAop-GFP; 
UAS-Kir: w+; 68A06-
LexAp65 (VK00022), 
pJFRC57-13XLexAop2-IVS-
GFP-p10 
(su(Hw)attP5)/(CyO); 
pJFRC49-10XUAS-IVS-
eGFPKir2.1 (attP2)/(TM6b) 

Ache et al., 
20197 

 

UAS-p35: 3rd chromosome Pecot et al., 
2014 62 

 

GRASP: ;lexAop-GFP_11; 
UAS-GFP_1-10 

Gordon & 
Scott, 
200925  

 

UAS-CsChrimson: UAS-
CsChrimson-mVenus 
(attp18);; 

Klapoetke et 
al., 201497 

 

GF_1-LexA (early GF): 
;;VT042336_LexA (attP2) 

Tirian & 
Dickson, 
201724 

 

GF_2-LexA (late GF): 
;68A06_LexA (VK00022); 

Pfeiffer et 
al., 201098 

 

GF_1-GAL4: 
;;VT042336_GAL4 (attP2)  

Tirian & 
Dickson, 
201724 
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LC4_4-split-GAL4 (early 
LC4): ;R49C04_ P65ADZp 
(attP2); R86D05_ ZpGbd 
(attP40) 

This study  

LC4_1-split-GAL4 
(SS00315) (late LC4): 
;R47H03_ P65ADZp 
(attP40); R72E01_ ZpGbd 
(attP2) 

Wu et al., 
201611 

 

LPLC1_1-split-GAL4 
(OL0029B): 
;R64G09_P65ADZp 
(attp40);R37H05_ZpGbd 
(attP2) 

Wu et al., 
201611 

 

LPLC1_2-split-GAL4 
(SS02569): 
R64G09_P65ADZp (attp40); 
VT045990_ZpGbd (attP2) 

This study  

LPLC1_3-split-GAL4 
(SS02570): 
R64G09_P65ADZp (attp40); 
VT063739_ZpGbd (attP2) 

This study  

LPLC2-split-GAL4 
(OL0048B): ;R19G02_ 
P65ADZp (attp40);R75G12_ 
ZpGbd (attP2) 

Wu et al., 
201699 

 

LPLC2_LexA: ;75G12-
LexAp65 (attP40); 

Pfeiffer et 
al., 201098 

 

LC4-LexA: ;93G05-LexA 
(attP40); 

Pfeiffer et 
al., 201098 

 

LC11-split-GAL4 
(OL0015B): 
;22H02_p65ADZp (attP40); 
R20G06_ZpGdbd (attP2) 

Wu et al., 
2016 

 

L1/L2-split-GAL4 
(SS00797): w+; R48A08-
p65ADZp in attP40; R29G11-
ZpGdbd in attP2) 

Tuthill et 
al., 201365 

 

dlg1[4K] Parisi et al., 
202349 

 

UAS-TNT: UAS-TeTxLC.tnt Sweeney et 
al., 1995100 

 

lexAop-Brp-Short-GFP  This study   

 625 
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Developmental staging 626 

Pupal staging across developmental time points has been previously described99. In brief, 627 

the sex of white pre-pupa was identified, and females were transferred to a separate petri dish, 628 

marked as 0 hours after pupa formation (hAPF), and reared for the appropriate amount of time at 629 

25oC before dissection. Dissections were performed within a 2-hour window of a targeted pupal 630 

developmental stage. All pupal dissections were synchronized and processed through 631 

immunohistochemistry protocols for pixel intensity measurements of images. 632 

 633 

Immunohistochemistry 634 

All dissections were performed in cold Schneider’s insect media (S2, Sigma Aldrich, 635 

#S01416) within a 15-minute window before solution exchange to avoid tissue degradation. 636 

Brains were then transferred to a 1% paraformaldehyde (20% PFA, Electron Microscopy 637 

Sciences, #15713) in S2 solution and fixed overnight at 4°C while rotating. 638 

Immunohistochemistry was performed as described previously96. Primary and secondary 639 

antibodies are listed in Table 2.  Supplementary Table 1 lists antibodies used for each figure with 640 

their respective dilutions. Following immunostaining, brains mounted onto poly-L-lysine (Sigma 641 

Aldrich, #25988-63-0) coated coverslips were dehydrated in increasing alcohol concentrations 642 

(30, 50, 75, 95, 100, 100) for 5 minutes in each, followed by two 5-minute Xylene clearing steps 643 

(Fisher Scientific, #X5-500). Coverslips were mounted onto a prepared slide (75 x 25 x 1 mm) 644 

(Corning, #2948-75X25) with coverslip spacers (25 x 25 mm) (Corning, #2845-25) placed on 645 

each end of the slide to prevent brain compression. Brain mounted slides were left to dry for at 646 

least 48 hours prior to imaging. 647 

 648 
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Table 2. Resources and Reagents 649 

RESOURCES OR REAGENTS SOURCE IDENTIFIER 

Mouse anti-nc82 DSHB CAT# - AB2314866 

RRID: AB_2314866 

Rabbit anti-GFP Life 

technologies 

CAT# - A11122 

RRID: AB_221569 

Chicken anti-GFP EMD 

Millipore 

CAT# - AB16901 

RRID: AB_11212200 

Rabbit anti-HA Cell 

Signaling 

Technologies 

CAT# - C29F4 

RRID: AB_1549585 

Alexa Fluor 488 goat anti-chicken Invitrogen CAT# - A11039 

RRID: AB_2534096 

Alexa Fluor 488 goat anti-rabbit Invitrogen CAT# - A11034 

RRID: AB_2576217 

Alexa Fluor 568 goat anti-rabbit Invitrogen CAT# - A11011 

RRID: AB_143157 

Alexa Fluor 568 goat anti-rat Life 

technologies 

CAT# - A11077 

RRID: AB_2534121 

Alexa Fluor 647 goat anti-Mouse Life 

technologies 

CAT# - A21236 

RRID: AB_2525805 

DyLight 550 anti-HA Invitrogen CAT# - 26183-D550 

RRID: AB_2533052 
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DyLight 488 anti-HA Invitrogen CAT# - 26183-D488 

RRID: AB_2533051 

DyLight 550 anti-V5 Bio-rad CAT# - 

Mca1360D550GA 

RRID: AB_2687576 

DyLight 650 anti-V5 Invitrogen CAT# - MA5-15253-

D650 

RRID: AB_2527642 

Living Colors DsRed Polyclonal Antibody TakaraBio CAT# - 632496 

RRID: AB_10013483 

Mouse anti-Broad DSHB CAT# - AB_528104 

RRID: AB_528104 

KDo2 lexAop2rev_PspXI: 5’ 

TGACcctcgagCGTTCAGCTGCGCTTGTTTATT 

3’ 

This study  

KDo1 lexAop2for: 5’ 

TCCGCGTTTCCAGACTTTAC 3’ 

This study  

 650 

Confocal Microscopy 651 

Unless otherwise stated, all images were taken on an Olympus Fluoview 1000 confocal 652 

system. Images were taken with a 60x, 1.42 NA oil immersion objective to achieve a voxel size 653 

of .103µm x .103µm x .45µm. Imaging parameters were minimally adjusted between images to 654 

achieve an image that utilizes the full pixel intensity range without oversaturating pixels. This 655 
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was necessary as driver lines in earlier pupal developmental periods showed lower levels of 656 

expression than in later pupal developmental stages, therefore imaging parameters were adjusted 657 

to optimize the membrane signal-to-noise ratio for each developmental stage that would allow 658 

for optimized mask generation used in image analysis. In analyses where pixel intensities were 659 

compared across developmental stages, all imaging parameters were kept consistent across all 660 

images. STaR images were taken on a Zeiss LSM 700 with a 63x, 1.4 NA oil immersion 661 

objective to achieve a voxel size of .06µm x .06µm x .44µm. Imaging parameters were kept 662 

consistent to allow for comparison across all samples. Images for LPLC2 glomerulus volume 663 

quantification were taken on a Zeiss LSM 700 with a 63x, 1.4 NA oil immersion objective with a 664 

magnification of 0.50 to achieve a voxel size of .0992µm  x .0992µm  x .3946µm. 665 

 666 

Electron Microscopy 667 

The publicly available electron microscopy hemibrain dataset (version 1.2.1)21 was used 668 

in this paper. NeuPrint23 was used to create renderings and connectivity diagrams. 669 

 670 

Image analyses 671 

A region of interest (ROI) was drawn around the GF optic glomeruli dendrites to quantify 672 

dendritic complexity and length. To quantify dendritic complexity, all pixels in this ROI were 673 

summed. The Euclidean distance was measured from the beginning (most medial aspect) of the 674 

GF optic glomeruli dendrites to the tip to calculate dendritic length.  675 

To quantify membrane colocalization between GF and VPN neurons across development, 676 

intensity-based thresholding was first used to generate a binary mask of each neuron membrane. 677 

Using a custom GUI written in MATLAB, threshold values were manually selected to include 678 
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processes of each cell-type while excluding background and regions of the neuron that were out 679 

of focus in each z-plane. Generated binary masks were inspected to make sure each mask was 680 

representative of the imaged neuron membrane channel. In certain cases, the set threshold did not 681 

include very fine neurites that were difficult to discriminate from background. Lowering 682 

threshold values to capture these processes in the mask would result in background being 683 

included into the mask as well, therefore generated masks may exclude some of the finer 684 

dendritic processes with low SNR. Using these masks, colocalized pixels were collected plane-685 

by-plane across the entire image stack using Boolean operators between GF and VPN masks. 686 

This output matrix resulted in a z-stack where only GF and VPN membranes were colocalized. 687 

In some images, GF membrane labeling had a low SNR and prevented accurate mask generation 688 

and was therefore excluded from analyses. In some cases, non-GF and non-VPN cell-types were 689 

labeled with the driver lines, therefore these data were excluded from analyses. To increase rigor, 690 

a second method to quantify GF to VPN membrane colocalization was used. Confocal stacks of 691 

labeled neuronal membranes were 3D rendered in Imaris using the Surfaces function. Thresholds 692 

were manually applied to generate 3D masks of neuronal membranes so that the rendered 3D 693 

image was representative of the imaged membrane. Similar to MATLAB thresholding, in certain 694 

cases the set threshold did not include fine neurites as they were difficult to discriminate from the 695 

background using automated algorithms. Following initial 3D membrane renderings, renderings 696 

were inspected and regions where faint processes were still visible but not detected in the 697 

thresholding pipeline were manually filled in using the ‘Magic Wand’ function. Once 3D 698 

rendering was complete, areas of colocalization were identified using the ‘Surface-Surface 699 

contact area’ XTension, and the volume of this output was quantified.  700 
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To determine the density of VPN contacts along the GF optic glomeruli dendrite, a z-701 

projection of the GF was manually aligned and rotated using anatomical landmarks consistently 702 

observed to align the lateral dendrite along the medial-lateral axis (x-axis). The same rotation 703 

and alignment were applied to the appropriate membrane colocalization matrix. An ROI was 704 

then drawn around the GF optic glomeruli dendrites, with anatomical landmarks consistently 705 

observed used to denote the beginning and end of the optic glomeruli dendrite. To account for 706 

variation in the optic glomeruli dendrite extension across images, we normalized the x-axis to the 707 

length of the drawn ROI (i.e., GF lateral dendrite). To determine where VPN contacts were 708 

localized along the dorsal-ventral axis (y-axis), the same images were used, but normalized the 709 

y-axis to the length of the drawn ROI. Total colocalized pixels were summed along each column 710 

or row, respectively, and the pixel density for each column or row was averaged across brains in 711 

each condition, then plotted along the normalized axis. 712 

To quantify the average pixel intensity of VPN-specific Bruchpilot (Brp) puncta across 713 

developmental timepoints, VPN masks were generated from the membrane channel using the 714 

same pipeline used for the GF and VPN membrane colocalization. These binary masks were then 715 

multiplied to the Brp-puncta channel to gather raw pixel intensities for Brp-V5 puncta localized 716 

to the VPN membrane. The total intensity sum of the glomerulus was divided by the total 717 

number of membrane localized pixels to calculate the average pixel intensity. 718 

 To isolate Brp pixels that colocalized with DLG, the DLG channel was first thresholded 719 

using FIJI’s default auto-thresholding function, binarized in MATLAB, and then multiplied to 720 

the Brp channel. An ROI mask was then used to restrict Brp analysis to the VPN glomerulus of 721 

interest. The total number of Brp positive pixels was then calculated and the overall volume of 722 

Brp-DLG colocalization computed by multiplying the total pixel count by the image voxel size.  723 
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 To quantify LPLC2 glomerulus volume, the LPLC2-membrane channel and Brp channel 724 

were thresholded in Fiji and binarized using MATLAB as described above. The two channels 725 

were then multiplied where pixels containing both membrane label and Brp were considered part 726 

of the glomerulus.  Glomerulus volume was determined by multiplying the total glomerulus pixel 727 

count by image voxel size.  728 

For analyses where dendrite complexity and extension were quantified (Figure 2B,C), a 729 

median filter was used to remove background noise. For all other images, no pre-processing was 730 

performed, and only the brightness and contrast were adjusted to highlight neuronal processes 731 

when preparing images for figure generation. For all data sets using the GF-LexA driver line, 732 

any images that had non-GF cell types within our ROI and low or no GF expression because of 733 

driver line stochasticity were excluded from analyses. 734 

 735 

Creation of the LexAop2-Brp-Short-GFP-HSV Transgenic Line 736 

To create a transgenic line expressing Brp-Short-GFP under control of the lexAop 737 

promoter (lexAop-Brp-Short-GFP), we used the Gateway cloning system (Thermo Fisher 738 

Scientific, cat. No. K202020) via an existing plasmid containing the UAS-Brp-Short sequence101 739 

followed by a Gateway cassette. We excised the UAS sequence using dual HindIII and PspXI 740 

restriction digests and replaced the promoter with a lexAoperon sequence, flanked by HindIII and 741 

PspXI restriction sites, that was first PCR amplified using custom primers (see Table 2) from a 742 

plasmid containing lexAop2 (lexAop2-myr-4xSNAPf, RRID: Addgene 87638) and then 743 

restriction digested using HindIII and PspXI (New England BioLabs, Ipswich, MA) to create 744 

compatible sticky ends. Following ligation and confirmation of the appropriate promoter insertion 745 

by sequencing, we replaced the Gateway cassette with the GFP-HSV tag from an Entry vector via 746 
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Gateway LR recombination reaction (Thermo Fisher Scientific, cat. no. 11791019). Plasmid 747 

identity and the presence of all components was verified by sequencing (GeneWiz, South 748 

Plainfield, NJ). Transgenic lines of the resultant plasmid inserted into the φC31 site at attP2 749 

(Bloomington Drosophila Stock Center, RRID: 8622) located at 68A4 on the 3rd chromosome were 750 

then produced using standard methods (BestGene, Inc., Chino Hills, CA). Subsequent lines were 751 

verified by genomic sequencing and a single line chosen for experiments.  752 

 753 

Kir2.1 cell death and GF dendrite localization 754 

To quantify LC4 cell death following early expression of Kir2.1, immunohistochemistry 755 

was performed against a GFP conjugated to Kir2.1 or GFP (controls), and Brp. Following 756 

imaging, LC4 cell bodies were manually counted using the GFP channel. To quantify GF 757 

dendrite density within the LPLC2 glomerulus following LC4 cell death, the Brp channel was 758 

used to visualize the optic glomeruli active zones. Axons that make up each individual 759 

glomerulus reliably terminate in the same region of the central brain, allowing for consistent 760 

identification of the LPLC2 glomerulus. 761 

 762 

scRNA-seq data analysis 763 

To quantify changes in mRNA expression over development for our cells of interest, a 764 

recently published scRNA-seq dataset was used22. For each developmental stage for each 765 

population, an unpaired non-parametric Kruskal-Wallis test by ranks was performed, followed 766 

by a Dunn-Bonferroni multiple comparisons test for significant groups. 767 

 768 

Electrophysiology 769 
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For adult whole-cell electrophysiology, female flies were head fixed to recording plates 770 

via UV glue, antenna were UV-glued, and the front legs were removed at the level of the femur 771 

as described previously6,63. GFP positive GF soma were accessed for recordings by removing the 772 

cuticle and overlying trachea, and then removing the perineural sheath by local application of 773 

collagenase (0.5% in extracellular saline). Brains were perfused with standard extracellular 774 

saline (103 mM NaCl, 3 mM KCl, 5 mM N-Tris (hydroxymethyl)methyl-2- aminoethane-775 

sulfonic acid, 8 mM trehalose, 10 mM glucose, 26 mM NaHCO3, 1 mM NaH2PO4, 1.5 mM 776 

Cacl2 and 4 mM MgCl2, pH 7.3, 270–275), bubbled with 95% O2/5% CO2 and held at 777 

22°C. Recording electrodes (3.5-6.2 MW) were filled with intracellular saline (140 mM 778 

potassium aspartate, 10 mM HEPES, 1 mM EGTA, 4 mM MgATP, 0.5 mM Na3GTP, 1 mM 779 

KCl, 20 μM Alexa-568-hydazide-Na, 260-275 mOsm, pH 7.3). Recordings were acquired in 780 

whole-cell, current clamp mode, digitized at 20kHz, and low pass filtered at 10kHz. All data 781 

were collected using Wavesurfer, an open-source software (https://www.janelia.org/open-782 

science/wavesurfer) running in MATLAB. Recordings were deemed acceptable if a high seal 783 

was attained prior to break through, the resting membrane potential was ≤ −55 mV, and the input 784 

resistance was > 50 MW. Current was not injected to hold the membrane potential at a particular 785 

resting level, and traces were not corrected for a 13mV liquid junction potential102. 786 

 All pupal recordings were staged in accordance with our staging protocol. Extracellular 787 

and intracellular reagents used were identical to the reagents used for adult recordings. 788 

Recordings were acquired in whole-cell, current clamp mode, digitized at 20kHz, and low pass 789 

filtered at 10kHz. All data were collected using Wavesurfer running in MATLAB. Recordings 790 

were deemed acceptable if recording electrodes (3.4 – 5.2 MW) attained a high seal (GW range) 791 

prior to break through, the resting membrane potential was below -30mV and remained stable 792 
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throughout the duration of the recording, and the input resistance ranged from 50 MW to 300 793 

MW. Current was not injected to hold the membrane potential at a particular resting level, and 794 

traces were not corrected for a 13mV liquid junction potential102. 795 

 796 

 Optogenetics 797 

Light activation of VPN cell types expressing CsChrimson97 while recording from GF 798 

was performed by delivering light (635nm LED, Scientifica) through a 40x objective focused on 799 

a head fixed fly. Light pulses (5ms,1.7 μW/mm2, as measured in air at the working distance of 800 

the objective) were delivered 5 times at 30 second intervals. 801 

 802 

Visual Stimuli 803 

Visual stimuli were projected on a cylindrical screen surrounding a head fixed fly during 804 

whole-cell electrophysiology following the protocol described previously63,103. A 4.5-inch 805 

diameter mylar cylindrical screen covered 180° in azimuth, and two DLP projectors (Texas 806 

Instruments Lightcrafter 4500) were used to minimize luminance attenuation at the end of the 807 

screen edge. The projections from the two projectors were calibrated on the cylindrical screen 808 

surface as described previously103 and the two projections overlapped 18° in azimuth at center of 809 

the screen and blended for uniform illumination. Generated looming stimuli based on the 810 

equation104 below and constant velocity expansion stimuli were displayed with 912 x 1140 811 

resolution in 6bit grayscale at 240 Hz which is above the flicker fusion frequency of Drosophila 812 

(100 Hz105). Looming stimuli were generated by simulating a 2D projection of an object 813 

approaching at a constant velocity which mimics an approaching predator. The angular size (θ) 814 
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of the stimulus subtended by the approaching object and was calculated over time (t) by the 815 

following equation104: 816 

𝜃(𝑡) = 2𝑡𝑎𝑛!" )
𝑟
𝑣𝑡, 817 

where t<0 before collision and t=0 at collision for an approaching object with a half size (r) and 818 

constant velocity (v). Four looming stimuli (r/v = 10, 20, 40, 80ms) were displayed, starting at 819 

10° , expanding to 63° and then held for 1 second. Stimuli were presented once per trial, in a 820 

randomized order, every 30 seconds. For each fly, two trials of the entire set of stimuli were 821 

averaged.  822 

 823 

Data analysis and Statistics 824 

No power analysis was performed prior to statistical analysis. Volume analysis in Figure 825 

3 was performed by a researcher blinded to the genotypes. All data from confocal microscopy 826 

experiments were tested for normality using a Kolmogorov-Smirnov test or Anderson-Darling 827 

test and the appropriate parametric or non-parametric test was performed, as stated in the figure 828 

captions.   829 

For boxplots, the dividing line in the box indicates the median, the boxes contain the 830 

interquartile range, and the whiskers indicate the extent of data points within an additional 831 

1.5 × interquartile range. 832 

For in-vivo electrophysiology analyses in adult recordings, all analyses were performed 833 

using custom MATLAB scripts. Recordings for each stimulus presentation were baseline 834 

subtracted by taking the average response one second prior to the stimulus onset. The magnitude 835 

of the GF expansion peak was measured after filtering each recording (Savitzky–Golay, fourth 836 

order polynomial, frame size is 1/10th the length of the stimulus). The normality of the data was 837 
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assessed using a Kolmogorov-Smirnov test. If the data were found to not follow a normal 838 

distribution, the appropriate non-parametric test was selected. For non-parametric analyses, a 839 

Kruskal-Wallis test was performed, and Tukey-Kramer post hoc test was performed for 840 

significant groups.  841 

For ex-plant pupal recordings, all analyses were performed using in-house MATLAB 842 

scripts. Potential 60Hz noise was filtered out using a band-stop filter, and thirty minutes of data 843 

was quantified. The baseline was determined after two rounds of computing the average signal 844 

envelope. Peaks were identified by capturing all depolarizations that were 3mV above baseline 845 

and separated by at least 100ms. Time intervals between events were transformed into 846 

instantaneous frequency for histogram plots. 847 

 848 

 849 

 850 

 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 
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