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De novo mutations occur with substantially different rates depending on genomic location, sequence context 13 
and DNA strand1–4.  The success of many human genetics techniques, especially when applied to large 14 
population sequencing datasets with numerous recurrent mutations5–7, depends strongly on assumptions 15 
about the local mutation rate. Such techniques include estimation of selection intensity8, inference of 16 
demographic history9, and mapping of rare disease genes10. Here, we present Roulette, a genome-wide 17 
mutation rate model at the basepair resolution that incorporates known determinants of local mutation rate 18 
(http://genetics.bwh.harvard.edu/downloads/Vova/Roulette/). Roulette is shown to be more accurate than 19 
existing models1,6. Roulette has sufficient resolution at high mutation rate sites to model allele frequencies 20 
under recurrent mutation. We use Roulette to refine estimates of population growth within Europe by 21 
incorporating the full range of human mutation rates. The analysis of significant deviations from the model 22 
predictions revealed a 10-fold increase in mutation rate in nearly all genes transcribed by Polymerase III, 23 
suggesting a new mutagenic mechanism. We also detected an elevated mutation rate within transcription 24 
factor binding sites restricted to sites actively utilized in testis and residing in promoters. 25 

The human single nucleotide mutation rate varies along the genome at different scales4,11,12. Some of this 26 
variation is explained by the combination of mutation type and immediately adjacent nucleotides, 27 
conceptualized as the mutation spectra6,13. The CpG di-nucleotide context induces by far the largest spectrum 28 
effect because of the strongly mutagenic effect of methylation at cytosines followed by guanine14. Previous 29 
studies demonstrated that the extended sequence context, well beyond the two adjacent bases, exerts an 30 
additional effect on mutation rates1,15–17.  Mutation spectra also vary along the genome, indicating that rate 31 
differences are not fully explained by the surrounding DNA sequence4,18. Some of this variability tracks DNA 32 
properties like replication timing and gene expression4. Other effects, such as spikes of multinucleotide 33 
mutations in oocytes, lack obvious epigenetic correlates4,19,20. In addition to regional variation, the rates of 34 
many mutation types depend on the DNA strand4,21–23. Transcription alters the mutation spectra between 35 
transcribed and non-transcribed strands, while replication leads to differences between leading and lagging 36 
strands. 37 

We developed “Roulette” a mutation rate model that incorporates these factors and more (see Methods). Each 38 
nucleotide has three potential mutations, and we hereafter refer to each of these potential mutations as a 39 
site. The extended sequence context is included by estimating the effect of the 6 upstream and 6 downstream 40 
nucleotides adjacent to each site (Figure 1a).  Due to sparsity, it is impossible to accurately estimate the effect 41 
of each unique 12-nucleotide context. To account for this, we estimated the effect of the central pentamer 42 
(two nucleotides on either side) separately from the individual effects of the 8 more distant nucleotides, which 43 
are included as covariates (Figure 1a,b). For epigenomic features, Roulette incorporates methylation level (for 44 
both CpG transitions and CpG transversions), transcription direction, gene expression level in testis (for sites 45 
within gene bodies), and quantitative estimates of replication direction (Figure 1a,c). The incorporation of 46 
transcription and replication directions makes the model strand-dependent with unequal rates for mutations of 47 
the same type on the two DNA strands. To our knowledge, strand-dependency has not been incorporated into 48 
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existing context-dependent and regional models1,6,24 of germline mutation rate, but was incorporated in the 49 
context of cancer mutagenesis25. The Roulette model accounts for local mutation rate variation by including 50 
the observed mutability of each tri-nucleotide context in 50KB windows (Figure 1d). Known epigenetic factors 51 
contribute to the regional variation of mutation rate at this scale, but the SNV density is a more direct proxy to 52 
the local mutation rates than noisy epigenetic tracks.  This approach also has a benefit of accounting for the 53 
regional variation unexplained by existing epigenetic features 17,18 (Supplementary Figure 1-3). Some DNA 54 
repair pathways act differently in intergenic regions, gene bodies and promoters26,27.  We fit separate statistical 55 
models for each genomic compartment and each pentamer, thereby allowing the effects of covariates to vary 56 
independently among compartments and pentamers (64118 models total, see Methods). SNV probabilities 57 
were modeled using logistic regression. We fit models with pairwise interactions (115 parameters) and without  58 
pairwise interactions (25 parameters) between all covariates and selected the best performing model using 59 
cross-validation based on a 50/50 test/train split (see Methods). Two simpler models were also analyzed to 60 
prevent overfitting in pentamer-compartment pairs with too few mutations. Finally, we grouped the predicted 61 
rates into 100 bins because discrete mutation rate classes facilitate many applications such as analyses of allele 62 
frequency distributions. 63 

It is impossible to fit parameter-rich mutation models to currently available de novo mutation datasets because 64 
of data sparsity. To train Roulette, we collected all non-coding SNVs with frequency below 0.001 from gnomAD 65 
v3 whole genomes6 (524M rare SNVs total). The derived allele of these rare SNVs correspond to mutational 66 
events. We assume that rare alleles are always derived (as opposed to ancestral); simulations suggest that this 67 
is violated at most for one in 33,000 SNVs (see Methods). The distribution of very rare non-coding SNVs along 68 
the genome is primarily driven by mutation rate differences, with the effects of biased gene conversion, direct 69 
and background selection being negligible1.  70 
 71 
Due to the sample size of contemporary human sequencing data, many rare SNVs represent recurrent 72 
mutations that have occurred multiple times in the genealogical history of the sequenced cohort. Because 73 
Roulette only fits the density of monomorphic sites, we transformed SNV probabilities to the mutation rate 74 
scale by assuming the probability a site remains monomorphic is given by the zero class of the Poisson 75 
distribution for the expected number of variants per site. The expected number of variants is proportional to 76 
mutation rate and the overall coalescent depth. We assume that the coalescent depth is approximately 77 
constant for a very large sample from a growing population (see Methods). 78 
 79 
After estimation and rescaling, we found that Roulette captures expected genomic mutation rate variation 80 
when applied to synonymous sites not used in the model training. For instance, nearly two-fold rate 81 
differences between the transcribed and non-transcribed strands are predicted accurately (Figure 1c).  Despite 82 
not using replication timing, histone modifications, or recombination rate28 as covariates, the direct inclusion of 83 
the regional variation is able to capture associations between mutability and these epigenetic factors 84 
(Supplementary Figure 2). The importance of this regional correction is illustrated by DNA segments that are 85 
hypermutable in oocytes (sometimes called regions of maternal mutagenesis)19,20,29,30. Maternal mutagenesis is 86 
responsible for a localized increase in C>G mutations on the left arm of the chromosome 8 (Figure 1d, 87 
Supplementary Figure 3). 88 
 89 
As a second point of validation, we tested whether Roulette estimates resolve the old riddle of “cryptic 90 
variation.” Early comparative genomics literature31–33 observed that the frequency of triallelic SNVs is higher 91 
than expected based on the probability of pairs of biallelic SNVs assuming independence and a three 92 
nucleotide mutational model. Roulette accurately predicts the probability of triallelic SNVs (Supplementary 93 
Figure 4), suggesting that previous observations of “cryptic variation” reflected residual mutation rate variance 94 
in earlier models associated with extended nucleotide context and local genomic factors. 95 
 96 
We compared Roulette with two existing mutation rate models to further validate its performance.  97 
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Karczewski et al. (2020)6  which used trinucleotide context and methylation levels to estimate rates for 98 
gnomAD v2, and Carlson et al. (2018)1 which used heptamer context along with several epigenetic features 99 
including methylation levels for the BRIDGES study (see Supplementary Table 1 for a more detailed description 100 
of model differences). We re-fit the model from Karczewski et al. (2020)6 on gnomAD v3, and we used the 101 
publicly available estimates from Carlson et al. (2018). We hereafter refer to these models as gnomAD and 102 
Carlson. 103 
 104 
While previous studies evaluated goodness of fit of mutation rate models1, none to our knowledge have 105 
attempted to estimate the remaining residual variance. We used two novel site-by-site metrics to analyze each 106 
model’s ability to predict the rate and location of observed SNVs from separate datasets. The first metric is an 107 
adjusted version of Nagelkerke’s pseudo-R2 for logistic models34 that measures the residual variance between 108 
the observed and expected likelihood given the inherently stochastic nature of mutational processes. Our 109 
Pseudo-R2 assumes that there is no variance among sites with the same predicted mutation rate, so that errors 110 
result solely from misclassification among mutation rate bins. We therefore developed a second per-site metric 111 
that estimates this additional variance within bins using observations of multiple mutations occurring at the 112 
same site. We compare the rate of de novo mutations at sites where an SNV was observed to the de novo rate 113 
at sites without SNVs. If the mutation rates corresponding to each bin are estimated without error, the de novo 114 
mutation rate in both groups should be equal. This SNV-conditional method uses the difference in de novo 115 
rates, depending on whether an SNV is observed or not,  to estimate the within-bin variance. Both methods 116 
necessarily require assumptions about the true distribution of mutation rates. For pseudo-R2, we assume that 117 
the full distribution is well-captured by the model even if per-site estimates are subject to error, and for the 118 
SNV-conditional method, we assume that the distribution of true mutation rates within each bin is log-normal. 119 
 120 
We first compared the models using synonymous variants from the gnomAD v2 whole exome dataset (~125K 121 
individuals and ~1.9M synonymous SNVs). Since Roulette was trained on non-coding variants only, synonymous 122 
variants are an independent dataset. Roulette predicts the rate of synonymous SNVs with higher accuracy than 123 
the Carlson and gnomAD models, reaching a pseudo-R2 of 0.86 compared to 0.81 and 0.78 respectively (Figure 124 
2a). Next, we estimated pseudo-R2 in a UK Biobank whole genome sequencing dataset (200K individuals)  for 125 
both synonymous (0.88, 0.83, 0.80) and non-coding sites (0.99, 0.94, 0.83) (Figure 2a, Supplementary Figure 5). 126 
Performances increased for non-coding likely because these were used in model training. Roulette’s Pseudo-R2 127 
was also the highest for de novo synonymous mutations compiled from three independent trio-sequencing 128 
studies (41,816 trios and 2,759 de novo synonymous mutations;  Pseudo-R2: 0.93, 0.87, 0.85)29,35,36. 129 
We assessed Roulette’s performance relative to the other mutational models using bootstrap samples of 130 
synonymous sites (see Methods) and showed that Roulette provides similar improvements across all validation 131 
sets (p<0.001; Figure 2b).  132 
 133 
As expected in the presence of residual mutation rate variation, sites that harbor SNVs in gnomAD had an 134 
excess of de novo mutations even when predicted mutation rates were within the same bin. The mean excess 135 
was 34% within Roulette bins, 47% within Carlson bins, and 94% within gnomAD bins (Supplementary Figure 6). 136 
These result in estimated residual variances of 19%, 25%, and 51% for the Roulette, Carlson, and gnomAD 137 
models (Figure 2c). While overall residual variances are larger for the SNV-conditional method, Roulette still 138 
explains around 5% more of the variance in human mutation rates than the Carlson model.   139 
 140 
Many population genetics applications rely on aggregated mutation rate estimates by gene or within a genomic 141 
window. We evaluated the relevance of Roulette for these applications by aggregating synonymous sites by 142 
gene for gnomAD v2 and predicting the number of SNVs. Aggregate estimates generated using Roulette are 143 
more accurate than those for gnomAD or Carlson (Figure 2d). There are 1758 genes with a Z-score greater than 144 
2 or less than -2 for Roulette rates, substantially fewer outlier genes than 2468 for Carlson or 2295 for the 145 
gnomAD model. An area of population genetics inference with important applications in human disease 146 
genetics is the estimation of selective constraints for protein truncating variants (PTVs). All methods to infer 147 
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strong selection rely on estimates of local mutation rate. We recomputed estimates of two measures of strong 148 
heterozygous selection, shet and LOEUF6,8, using Roulette mutation rates. The new shet estimates (available at 149 
http://genetics.bwh.harvard.edu/genescores/selection.html ) showed a slight but statistically significant 150 
improvement (p<0.001) in detection of autosomal dominant disease genes annotated in DDG2P 151 
(Supplementary Table 2), while updated LOEUF estimates showed no significant change. 152 
 153 
We next investigated the utility of precise mutation rate estimates for the inference of demographic history 154 
(specifically, historical changes in effective population size) from the site frequency spectrum (SFS, the number 155 
of observed alleles at each frequency)9,37. Most studies rely on the “infinite number of sites” model which 156 
assumes that single mutation events contribute to each segregating site38. Under this model and neutrality, the 157 
relative distribution of allele frequencies only depends on genealogies and is independent of mutation rate, 158 
while the overall level of variation is linearly dependent on mutation rate. The presence of recent recurrent 159 
mutations breaks the key assumption of the infinite sites model and induces a dependency between the shape 160 
of site frequency spectrum and mutation rate5,7,39 ( Figure 3a, Supplementary Figure 7). Using a set of SFS 161 
curves at different mutation rates can increase power and reduce biases due to recurrent mutations. 162 
 163 
We re-fit a model of European demographic history9 to evaluate the ability of Roulette to model the shape of 164 
the SFS across the range of mutation rates. We used simulations that allowed for recurrent mutations40 to fit to 165 
the whole range of mutation rates. The inclusion of high mutation rate sites is meaningful because these are 166 
more informative per-variant about population growth than low-rate sites (Figure 3c). The demographic model 167 
allows for faster-than-exponential growth in the recent past, and we updated the acceleration parameter from 168 
1.120 to 1.122 and the initial growth rate from 0.0050 to 0.0057 with a final population size estimated at 8.1 169 
million compared to 2.5 million. This model fits the shape of the SFS well even as the mutation rate becomes 170 
large enough that recurrent mutation substantially skews to shape towards less rare variants5,7,39 (Figure 3a). 171 
The fine-scale mutation rate bins defined by Roulette provide a much better fit to the SFS shape than can be 172 
achieved by dividing mutations into only two bins, one for low rates and one for high (Figure 3b). This is due to 173 
sufficient recurrent mutation within the low-rate bin and sufficient rate variation within the high-rate bin to 174 
make single-rate summaries inadequate to capture the shape of the SFS. While one solution is to filter high 175 
mutation rates sites so that the infinite sites assumption remains reasonable, this removes sites that are more 176 
informative on a per-variant level (Figure 3c). This utility extends to selection inference where it is possible to 177 
identify individual strongly constrained sites when mutation rates are in the neighborhood of 1e-07 per 178 
generation41. 179 
 180 
While much of mutation rate variation is adequately captured by Roulette (Figure 1, 2) including various 181 
epigenetically active sites like enhancers and promoters (Supplementary Figure 8), strong local deviations can 182 
be used to identify new mutagenic mechanisms in humans. Regional variation in mutation rates and spectra 183 
have previously been characterized and biologically interpreted at scales exceeding 10kb.4,28. However, many 184 
mutagenic mechanisms arise due to epigenetic factors acting at much shorter scales. Data sparsity prevents the 185 
application of unsupervised statistical techniques to characterize variation at short scales4. We analyzed 186 
extreme deviations from Roulette predictions at the 100bp scale genome-wide (Figure 4a). The choice of the 187 
scale was determined by the need to balance resolution and statistical power. 188 

While many likely represent unfiltered sequencing and mapping artifacts, the most striking observation is that 189 
25.6% of 100bp genomic windows with extremely high SNV counts unexplained by the Roulette features lie 190 
within RNA genes transcribed by polymerase III (Pol III). These outlier windows contain multiallelic variants and 191 
overall harbor over 70 SNVs per 100bp, while some windows have more than 100 SNVs. The two most 192 
prominent gene classes transcribed by Pol III are tRNA and small nuclear RNA genes (RNU) (Figure 4a, b, 193 
Supplementary Figure 9,10). Analyses of allelic imbalance and other sequence quality metrics suggested that 194 
these are true SNVs rather than sequencing artifacts (Supplementary Figure 11). We also found that the 195 
number of de novo mutations increases with paternal age, as expected for real germline mutations 196 
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(Supplementary Figure 12). Elevated mutation rates in tRNA genes were recently noted by a comparative 197 
genomics study42, although the magnitude of the effect was likely underestimated by not accounting for 198 
recurrent mutations. Similarly, while we observe a 7-fold increase in SNV rate in RNU genes (Figure 4a,b), we 199 
expect that recurrent mutation means this is an underestimation of the true hypermutability . Indeed, we 200 
observed that de novo mutations in parent-child trio sequencing studies were detected at a 32-fold (19-50, 201 
95% Poisson CI) higher rate in RNU genes.  202 

To validate the link between Pol III transcription and elevated mutation rate, we compared mutation rates 203 
between active RNU genes and pseudogenes. The increased mutation rate is almost exclusively limited to 204 
active genes, suggesting that active transcription rather than genomic location or sequence context is 205 
responsible (Supplementary Figure 13a-c). The few exceptions are pseudogenes that show H3K27ac chromatin 206 
marks associated with active transcription (Supplementary Figure 13a,b), suggesting that apparent 207 
hypermutable RNU pseudogenes are misannotated active genes. The association between Pol III transcription 208 
and high SNV density extends to all other classes of non-coding RNAs (Supplementary Figure 13d) but not to 209 
SINE repeats (Supplementary Figure 13f), which may also be transcribed by Pol III43.  210 

We next sought to further characterize the elevated mutation rates in tRNA and RNU genes. To this end, we 211 
developed a statistical model to estimate the distribution of mutation rates among observed SNVs 212 
(Supplementary Note 1) by taking advantage of the fact that recurrent mutations induce a shape-dependency 213 
of the SFS on mutation rate5,7,39. We observed that SFS in tRNAs and RNUs have the expected shift away from 214 
very rare variants, though milder than observed for variants at the top range of Roulette estimates 215 
(Supplementary Figure 14). By modeling SFS for a mixture of variants with different mutation rates, we 216 
estimated that mutation rate within Pol III transcripts is highly variable. Both RNU and tRNA genes have a large 217 
fraction of highly mutable sites, with mutability greatly exceeding the Roulette predictions (Figure 4c,d, 218 
Supplementary Figure 14). To validate the SFS-based predictions we calculated de novo mutation rates for RNU 219 
and tRNA sites, conditioning on the presence/absence of SNVs as well as transition/transversion status. There 220 
is a stark difference between estimated de novo mutation rates in polymorphic and monomorphic positions 221 
(Figure 4e), consistent with a high heterogeneity of mutation rate within RNU and tRNA genes  SFS-based 222 
analysis and the analysis of de novo mutations in polymorphic sites estimated that the rate of RNU transitions 223 
in highly mutable sites is higher than for any Roulette bin (Figure 4c,e). RNU genes contain some of the most 224 
mutable positions in the human genome.  The high mutation rate in Pol III transcripts masks the effect of 225 
purifying selection and leads to an unrealistic selection inference44,45.  226 

There are multiple, not necessarily exclusive explanations as to why Pol III transcription is strongly mutagenic. 227 
First, unlike RNA polymerase II (Pol II), Pol III does not have the ability to recruit transcription coupled repair 228 
(TCR). However, TCR only removes mutations on one of the two strands and thus cannot reduce the mutation 229 
rate by more than a half. TCR alone is therefore insufficient to explain the observed 32-fold effect. Second, 230 
transcription associated mutagenesis (TAM), a well-described phenomenon in yeasts46, is attributed primarily 231 
to ribonucleotide incorporation into DNA during transcription. A third possibility could involve an as-of-yet 232 
uncharacterized transcription-associated mechanism specific to Pol III, because the biological machinery 233 
transcribing Pol III-dependent genes differs substantially from the machinery for Pol II-dependent genes47. 234 
Interestingly, it was recently shown that damage-induced mutations can accumulate on the non-transcribed 235 
strand outside of replication4,48. However, this mechanism creates a very strong mutational asymmetry that is 236 
absent for Pol III transcripts. Finally, transcription initiation by the transcription factor (TF) IIIB triggers 237 
restructuring of the DNA-bound Pol III. This restructuring can be mutagenic by itself and create mutational 238 
hotspots upstream of RNU genes. 239 
 240 
Immunoglobulin kappa genes also exhibit long stretches of extreme hypermutability.  In contrast to Pol III 241 
transcripts, however, sequencing quality metrics raise concerns about the reliability of SNVs in these genes 242 
(Supplementary Figure 11).  243 
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 244 
Transcription factor binding occurs at short scales and has been shown to be highly mutagenic in yeast and 245 
human cancers either because of blocked resection of ribonucleotide primers introduced by polymerase alpha, 246 
interference with the access of nucleotide excision repair, or altered DNA conformation27,49–51. First, we 247 
attributed TFBS activity to specific tissues by overlapping ChIP-seq signals with regions of open chromatin 248 
measured by DNase I hypersensitivity. In the majority of TFBS, Roulette predicts mutation rates accurately, 249 
confirming that the observed mutation rate elevation within TFBS is due to sequence context and regional 250 
features52 included in the Roulette model (Figure 5a). TFBS active in testis are a notable exception 251 
characterized by increases in the germline mutation rate over the background for most mutation types 252 
(Supplementary Figure 15a, b), with the strongest effect for T>G mutations (median increase across TFs is 1.59-253 
fold, Figure 5a). This observation suggests a direct mutagenic effect of transcription factor binding. 254 
Interestingly, binding of SNPC4, the factor responsible for RNU transcription, has the strongest (6-fold) impact 255 
on mutation rate. 256 

Furthermore, we found that the higher mutation rates are almost exclusively restricted to testis-active TFBS in 257 
promoters (Figure 5b), and that TFBS overlapping multiple promoters have higher mutation rates than TFBS 258 
overlapping a single promoter (Supplementary Figure 16). To allow the application of Roulette to these 259 
genomic regions, we also provide mutation rates corrected for this TFBS effect (see methods, Supplementary 260 
Figure 17). Interestingly, similarly to germline mutations, UV-induced mutations at TFBS in melanoma also have 261 
different rates in and outside of promoters (Supplementary Figure 18)51. 262 

As shown above, Roulette offers a significantly more  accurate human mutational model and has demonstrated 263 
utility across different biological fields. Mutation rate estimates from the three analyzed models are made 264 
available here: http://genetics.bwh.harvard.edu/downloads/Vova/Roulette/. Future work may explain the 265 
sources of the demonstrated residual mutation rate variation, some of which may derive from evolving rates 266 
through time and variability between populations53–55. 267 
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Figures      408 

Figure 1. Roulette accounts for extended nucleotide context, strand asymmetries and local variation in 409 
mutation rate. 410 

a) Roulette is implemented as logistic regression with pairwise interactions (see Methods). For each pentamer, 411 
we model the effect of eight surrounding nucleotides (left), strand specific information (middle), and context-412 
specific variation along the genome (right). b) Ratio of observed de novo mutation rates between the Roulette 413 
predicted most and least mutable deciles for each pentamer shows large variation unexplained by the 414 
pentamer context alone. c) Effect of transcriptional asymmetry on the rate of rare synonymous SNVs in the 415 
genes with high expression in testis (top quartile). Mutation rate is relative to the least mutable strand. d) Spike 416 
of the density of rare synonymous SNVs on the left arm of chromosome 8. This region is known to be affected 417 
by increased maternal mutagenesis4,17,23,24. 418 
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 422 

 423 

Figure 2 Roulette outperforms existing mutational models, under both per-gene and per-site metrics 424 

a)  1 –  pseudo-R2 of the three mutational models on synonymous variants observed in population sequencing 425 
data (gnomAD v2.1.1 and UK Biobank) and de novo mutation datasets18,27,28. A  pseudo-R2  of 0 is equivalent to 426 
using genome-wide mean mutation rate for every site. A  pseudo-R2  of 1 is the best per-site mutation rate 427 
estimate we can achieve, under the constraint that the mutation rates of synonymous sites follow the 428 
predicted genome-wide distribution. Error bars represent 95% confidence intervals estimated by bootstrap 429 
samples of synonymous sites.  b) Difference in pseudo-R2 between Roulette and the two other models. The 430 
difference was calculated over each bootstrapped sample and whiskers represent estimated 95% confidence 431 
intervals. c) The estimated cumulative residual variance for the Carlson, gnomAD and Roulette models after 432 
binning mutation rate estimates. Within-bin variance is scaled by the total variance estimated for Roulette. The 433 
x-axis gives the estimated mean in each mutation rate bin scaled to the observed per-generation de novo rate 434 
observed in trio data. d) Error distributions on the Z-scale for predicted counts of synonymous mutations 435 
within genes in gnomAD v2. The standard normal density is shown in black to provide a reference for the 436 
expected error distribution if mutation rates were known without error. 437 
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 439 

 440 
Figure 3 Accurate per-site mutation rate estimates improve population genetics inference 441 
a) Estimated demographic history fits the SFS with mutation rate bins at different orders of magnitude. Red 442 
dots show the observed SFS at synonymous sites in gnomAD and black lines show the expected SFS under the 443 
inferred demographic model. Shaded areas correspond to 95% binomial confidence intervals. The observed SFS 444 
(red dots) shows the observed numbers of SNVs at allele counts 0-40. For more common alleles with counts 445 
above 40, red dots show numbers of SNVs for logarithmically (base 3) spaced bins. Allele counts are out of a 446 
total sample size of about 57K non-Finnish European individuals. b) Roulette bins improve fits to the shape of 447 
the SFS compared to demographic model predictions scaled to either low (1e-09 – 3.3e-09) or high rate (1e-07 448 
– 3e-07) bins. Average log-likelihoods (per-SNV) are higher for Roulette after subtracting one to account for the 449 
additional parameter used to refit the mutation rate within each bin. Roulette improves over the model trained 450 
on sites with low mutation rate (mostly non-recurrent sites) because recurrent mutations change the shape of 451 
the SFS. It also improves over the high-rate model as one moves away from the mean mutation rate within the 452 
high-rate bin. c) High mutation rate SNVs are more informative about population growth parameters. The 453 
expected per-SNV log-likelihood relative to the maximum is shown using rare SNVs (1-40 allele counts). The 454 
compound population growth-rate / sample size parameter was chosen to approximate the observed 455 
synonymous SFS in gnomAD v2. 456 
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 458 

Figure 4 Polymerase III transcripts and transcription binding sites are mutational hotspots 459 

a) Number of rare SNVs in 100 nucleotide non-overlapping windows. Expectation is calculated with Roulette. 460 
While mutation counts in most regions show minor deviations from the prediction, a few loci have much higher 461 
mutation rates (>70 SNVs, above the gray line). These loci are heavily enriched with Polymerase III transcripts. 462 
b) Mutation rate at and around small nuclear RNAs (RNU); the median RNU size is depicted as a gray rectangle. 463 
The mutation rate distributions for observed SNVs in c) RNU and d) tRNA genes was estimated by fitting the SFS 464 
in these genes as a mixture of SFS shapes observed in Roulette bins. Fits are compared to the original Roulette 465 
estimates and to the background rate distribution. e) SFS-based mutation rate predictions are validated by 466 
estimating the de novo rate for mutations with and without observed SNVs in gnomAD v3. Mutations are 467 
separated into transversions and transitions. 468 
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 472 

Figure 5.  TFBS are prone to high mutation rate. 473 

a) Box plot for the observed to expected rate of rare T>G mutations across different transcription factors. 474 
Positions occupied with TF were annotated with chip-seq data. Tissues where TFBSs are active were 475 
determined through overlap with tissue specific DHS peaks. b) mutagenic effect of TFBS active in testis 476 
overlapping promoter (- 2 kb upstream of transcription start site, dark yellow) or not (light yellow). c) and d) 477 
strand resolved observed to expected mutation rates at 100 nucleotide windows around TFBS centers in 478 
promoters.     479 
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