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Abstract

Dissecting the myriad regulatory mechanisms controlling eukaryotic transcripts from production

to degradation requires quantitative measurements of mRNA flow across the cell. We developed

subcellular TimeLapse-seq to measure the rates at which RNAs are released from chromatin,

exported from the nucleus, loaded onto polysomes, and degraded within the nucleus and

cytoplasm. These rates varied substantially, yet transcripts from genes with related functions or

targeted by the same transcription factors and RNA binding proteins flowed across subcellular

compartments with similar kinetics. Verifying these associations uncovered roles for DDX3X and

PABPC4 in nuclear export. For hundreds of genes, most transcripts were degraded within the

nucleus, while the remaining molecules were exported and persisted with stable lifespans.

Transcripts residing on chromatin for longer had extended poly(A) tails, whereas the reverse

was observed for cytoplasmic mRNAs. Finally, a machine learning model identified additional

molecular features that underlie the diverse life cycles of mammalian mRNAs.

Keywords: RNA flow, subcellular TimeLapse-seq, RNA dynamics, nuclear RNA degradation,

kinetic modeling, poly(A) tails, RNA binding proteins, nuclear export, splicing, translation.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2022. ; https://doi.org/10.1101/2022.08.21.504696doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.21.504696
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction

The life cycles of mRNAs are dynamic and diverse. Thousands of mRNAs are produced

per minute in a typical mammalian cell (Carter et al., 2005; Schofield et al., 2018). Before they

can be translated, mRNAs must flow across subcellular compartments, including release from

chromatin and export from the nucleus. In the cytoplasm, ribosomes are loaded onto mRNAs

and transcripts are ultimately degraded. These transitions between compartments are controlled

by numerous regulatory mechanisms. Accordingly, not all mRNAs are destined for this

stereotypical trajectory, and those that are, do not flow across the cell at the same rates. Thus,

RNA flow impacts cell function by determining the dynamic pool of mRNAs available for

translation.

On chromatin, mRNAs are synthesized by RNA polymerase II and undergo extensive

processing, including splicing and polyadenylation. The time required to excise introns from

pre-mRNAs varies significantly, ranging from seconds to tens of minutes (Drexler et al., 2020;

Martin et al., 2013; Pai et al., 2017; Rabani et al., 2014; Reimer et al., 2021; Wachutka et al.,

2019; Wan et al., 2021). In some cases, splicing regulates the nuclear dynamics of nascent

RNA (Mauger et al., 2016; Ninomiya et al., 2011; Pandya-Jones et al., 2013; Yeom et al., 2021).

In the nucleus, transcripts are subjected to either degradation or export. Nuclear degradation

targets improperly processed mRNAs (Bresson et al., 2015; Davidson et al., 2012; Meola et al.,

2016; Pendleton et al., 2018) but also serves additional regulatory roles for specific transcripts

(Gudipati et al., 2012). By contrast, some loci are tethered near the nuclear pore complex to

promote rapid export of transcripts (Blobel, 1985; Rohner et al., 2013; Scholz et al., 2019).

In the cytoplasm, ribosomes are loaded onto transcripts with different kinetics, partially

influenced by 5’UTR length and structure (Lai et al., 2008; Leppek et al., 2018; Parsyan et al.,

2009; Pisareva et al., 2008; Soto-Rifo et al., 2012), and promoter elements (Zid and O’Shea,

2014). Finally, mRNAs undergo degradation, a process that can be driven by both poly(A) tail
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deadenylation and targeting by microRNAs (Bartel, 2018; Eisen et al., 2020a, 2020b; Passmore

and Coller, 2022). Each of these processes vary in duration across genes and impact the

subcellular fates of transcripts, either directly or indirectly through feedback loops. In total, RNA

half-lives vary greater than 100-fold between different protein-coding transcripts (Dölken et al.,

2008; Friedel et al., 2009; Herzog et al., 2017; Rabani et al., 2011; Schofield et al., 2018;

Schwanhäusser et al., 2011). However, half-lives measured at the whole-cell level only measure

the time between synthesis and decay, obscuring the dynamics of mRNA transitions across

subcellular compartments.

Around 50 years ago, metabolic labeling in mammalian cells with radiolabeled nucleotide

precursors shed light on bulk RNA flow and metabolism, but these experiments could not

resolve transcript-specific behaviors (Darnell et al., 1973). Several methods have been

developed to assay the rates of RNA flow for one or a few transcripts. For example,

single-molecule microscopy approaches track reporter RNAs throughout mammalian cells

(Halstead et al., 2015; Hoek et al., 2019; Mor et al., 2010; Shav-Tal et al., 2004). Endogenous

RNAs have been studied using single-molecule RNA FISH combined with mathematical

modeling, yielding nuclear and cytoplasmic RNA half-lives of a handful of genes in mouse tissue

(Bahar Halpern et al., 2015) and allowing for the quantification of  the entire life cycle of an

individual transcript in Arabidopsis (Ietswaart et al., 2017; Wu et al., 2016). To determine the

rates at which RNAs flow across compartments with higher throughput, induced genes have

been monitored over time and modeled to estimate subcellular turnover (Battich et al., 2015;

Bhatt et al., 2012; Rabani et al., 2014), yet the kinetics observed for these transcripts may not

extend to all genes or to cellular contexts that do not involve gene induction. Recently, metabolic

labeling has been used to globally study specific stages of RNA lifespans (Berry et al., 2022;

Chen and van Steensel, 2017; Schott et al., 2021), but have not comprehensively characterized

the entire life cycle of an mRNA across multiple compartments in mammalian cells, and none

have investigated degradation in the nucleus.
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Here, we quantify the rates of mRNA flow across mammalian cells genome-wide. We

start by introducing subcellular TimeLapse-seq, a method that measures RNA turnover with

subcellular resolution, and couple this technique with kinetic modeling to estimate the rates at

which mRNAs flow across subcellular compartments. We measured RNA half-lives on

chromatin, in the nucleus, and in the cytoplasm, and additionally measured nuclear export and

polysome loading rates for all expressed genes in mouse NIH-3T3 and human K562 cells.

Strikingly, for ~5–10% of genes, mRNA flow was predicted to involve substantial nuclear

degradation. We found that RNA flow rates varied widely (>100-fold) between different genes

and subcellular compartments. Our results demonstrate that functionally related genes undergo

similar rates of RNA flow. The targets of many RNA binding proteins (RBPs) exhibit different

RNA flow rates compared to other genes, and these differences dissipated upon RBP

perturbation. Measurement of poly(A) tails with subcellular resolution revealed that tail lengths

reflect subcellular RNA half-lives. Finally, we identified the strongest genetic and molecular

features that are predicted to determine RNA flow through machine learning, including

transcription factors and sequence elements. Collectively, our findings provide a comprehensive

characterization of the dynamics of an mRNA throughout its life cycle within a mammalian cell.
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Results

Subcellular TimeLapse-seq measures the fraction of newly synthesized RNA across

subcellular compartments

To quantity RNA turnover genome-wide with subcellular resolution, we developed

subcellular Timelapse-seq, a method that combined metabolic labeling with the biochemical

purification of distinct RNA populations from different cellular compartments (Figure 1A). To

generate the samples for TimeLapse-seq, we pulse labeled human K562 and mouse NIH-3T3

cells with 4-thiouridine (4sU) for 0, 15, 30, 60, and 120 minutes. Because high concentrations of

4sU can broadly impact gene expression (Burger et al., 2013), we minimized the concentration

and duration of 4sU exposure and confirmed that the addition of 4sU did not affect mRNA

subcellular localization (Figure S1A-B) and led to minimal disruption of gene expression levels

within each subcellular compartment (Figure S1C). Following each 4sU pulse, we biochemically

purified chromatin-associated, nuclear, and cytoplasmic RNA (Figure 1B) (Mayer and

Churchman, 2017), as well as polysome-bound RNA (Figure S1D). We also collected total

cellular RNA. We then quantified the amount of newly synthesized RNA in each sample by

performing TimeLapse-seq, a nucleotide conversion protocol that detects 4sU-labeled RNA

within a mixture of labeled and unlabeled RNAs based on the presence of 4sU-induced T>C

sequencing mismatches (Figure 1A) (Schofield et al., 2018).

Previous applications of nucleotide conversion approaches have used labeling

conditions that achieved high 4sU incorporation rates, aiding the identification of labeled RNAs

(Erhard et al., 2019; Herzog et al., 2017; Schofield et al., 2018). Therefore, the lower 4sU

incorporation rates inherent to our minimal labeling conditions necessitated a new approach to

estimate the fraction of newly synthesized RNA (Figure S2A-B). We developed a binomial

mixture model to estimate upper and lower bounds on the T>C conversion rates for each 4sU

pulse time and compartment (Figure S2B). We then inputted these conversion rates into
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GRAND-SLAM (Jürges et al., 2018) and combined the outputs to quantify the posterior

distribution on the fraction of newly synthesized RNA per gene within each sample (Figure

S2B). We validated our approach with a NanoStrings-based assay that does not rely on

sequencing and predictions of T>C conversions (Figure S2C). With this technique, we observed

fractions of new nuclear, cytoplasm, and total RNA similar to those estimated by subcellular

TimeLapse-seq for select genes with both fast and slow turnover (Figure S2D-E), validating the

robustness of our analysis pipeline across a range of mismatch rates.

Genome-wide, we observed an increase in the proportion of new RNA with increasing

pulse durations within each compartment (Figure 1C-D). Furthermore, at each time point, we

saw delays in the fraction of new RNA across chromatin, nuclear, cytoplasm, and polysome

fractions (Figure 1C-D), even for genes with relatively fast turnover (e.g., Myc, Figure 1C). This

result confirmed that our assay has the time resolution suitable for detecting RNA flow across

subcellular compartments.

Kinetic modeling of RNA flow across subcellular compartments

To estimate the rates at which RNAs flow across subcellular compartments for each

gene, we fit a kinetic model consisting of a system of ordinary differential equations to our

subcellular TimeLapse-seq data (Figure 1E). By coupling this model to the Bayesian inference

framework of GRAND-SLAM (Figure S3A), we estimated the Bayesian posterior probability

distribution of each flow rate per gene (Figure 1F-G, Table S1). Using the posterior mean rate

(k), half-lives are then calculated as . We determined the half-lives of RNAs on𝑡
1/2

=  𝑙𝑛(2)
𝑘

chromatin (“chromatin half-lives”), in the nucleus (“nuclear half-lives”), and in the cytoplasm

(“cytoplasm half-lives”). We estimated rates of nuclear export (yielding “nuclear export

half-lives”) and the rates at which polysomes are loaded onto RNAs after entry into the

cytoplasm (yielding “untranslated cytoplasm half-lives”). Finally, we estimated the rates at which
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RNAs are turned over at the whole-cell level (yielding “whole-cell half-lives”), using only the total

RNA data (Figure 1E).

This initial model fit the data for most genes well (e.g. Myc and Foxg1, Figure 1F, Table

S1). The model predicts that whole-cell half-lives represent the sum of the nuclear and

cytoplasmic half-lives, because it did not include nuclear degradation of mRNA (Schmid and

Jensen, 2018) (Figure 1E). However, in the presence of substantial nuclear RNA degradation,

this relation will no longer hold true, as many RNAs never exist in the cytoplasm and whole-cell

data will no longer be fit by the model. We noticed this trend for a small group of genes in both

cell lines, including Rps24 in NIH-3T3 (Figure S3B). Therefore, we extended our model by

including a nuclear RNA degradation rate. To determine if adding this parameter yields a better

fit for each gene, we calculated a Bayes factor (Kass and Raftery, 1995), namely, the ratio of

likelihoods between the nuclear degradation model (alternative hypothesis) and the model with

no nuclear degradation (null hypothesis). In the absence of nuclear degradation, we were not

able to predict the total RNA data for Rps24 (Figure S3B), whereas a model with nuclear

degradation was successful (Figure 1F, Bayes factor=10136).

Chromatin, nuclear, nuclear export, nuclear degradation, cytoplasm, and whole-cell

half-lives were strongly correlated between biological replicates, with small 95% credible

intervals (CIs) (Figure S3D,E, Table S1, Pearson correlation r>0.75), and strong

correspondence with previously reported whole-cell half-lives (Figure S3C, Pearson correlation

r=0.65). However, most genes had larger 95% CIs for their untranslated cytoplasm half-lives

than for other flow rates, and the half-lives also exhibited greater variation between biological

replicates (Figure S3D,E, r=0.44 in K562 and r=0.45 in NIH-3T3). Nevertheless, the 95% CIs

reproduced between replicates (overlap for 86% genes in NIH-3T3, 79% genes in K562) and did

not exceed the variation between genes. To assess the robustness of our RNA flow rates across

modeling approaches, we compared our Bayesian distributions to least-squares estimates.

Although chromatin, nuclear, cytoplasm, and whole-cell half-lives were similar (r>0.67), the least
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squares model failed to estimate untranslated cytoplasm half-lives (r=0.42 in K562, r=0.17 in

NIH-3T3) due to its inability to take measurement uncertainties into account (Figure S3E). We

conclude that our Bayesian approach is capable of robustly quantifying the flow of RNAs across

subcellular compartments for endogenously expressed genes in mouse and human cells.

Wide gene-to-gene variability in RNA flow rates

In both cell lines, RNA flow rates varied considerably between genes (Figure 1H). For

90% of genes, chromatin half-lives ranged from 19 to 120 minutes in K562 and from 14 to 200

minutes in NIH-3T3, with medians around 40 minutes. Nuclear RNA half-lives in both cell lines

were often somewhat longer than, but highly correlated with, chromatin half-lives (r>=0.75,

Figure S4A-B), with median nuclear half-lives around 45 minutes that ranged between 20 and

greater than 260 minutes for 90% of genes. As expected from the similarity between chromatin

and nuclear half-lives for most genes, more than 70% of all genes had very rapid nuclear export

half-lives of less than 10 minutes. Thus, most mRNAs within the nucleus are associated with

chromatin (Figure S4C). Nevertheless, slow export does occur; at least 10% of genes had

longer export half-lives (>30 minutes) in both K562 and NIH-3T3.

In the cytoplasm, mRNAs were more stable in K562 cells with a median half-life of 78

minutes, compared to 36 minutes in NIH-3T3. Thus, turnover of mRNAs at whole-cell resolution

was also slower in K562 cells than in NIH-3T3 cells, with median whole-cell half-lives of 140 and

71 minutes, respectively. In both cell lines, cytoplasm half-lives varied greatly, ranging from 10 to

140 minutes for 90% of genes in NIH-3T3 and from 20 to 260 minutes in K562 cells. Notably,

differences in cytoplasm mRNA stability did not correspond with differences in rates of polysome

loading, which occurs relatively quickly after nuclear export. In both cell lines, the median

untranslated cytoplasm half-life was less than 15 minutes, with more than 75% of genes having

half-lives less than 30 minutes. Untranslated cytoplasm half-lives and cytoplasm half-lives were
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uncorrelated in K562 (r=0.06) and weakly correlated in NIH-3T3 (r=0.28) (Figure S4D-E). Thus,

loading of RNAs onto polysomes is not strongly coupled with cytoplasmic RNA turnover. On

average, mRNAs for most genes spent longer in the nucleus than the cytoplasm in NIH-3T3

cells. Although, in both cell lines, nuclear and whole-cell half-lives (r=0.66 in K562, r=0.83 in

NIH-3T3) were more strongly correlated than cytoplasm and whole-cell half-lives (r=0.36 in

K562, r=-0.06 in NIH-3T3) (Figure S4F-G). As expected, we accurately estimated the whole-cell

half-life by adding the nuclear and cytoplasm half-lives for most genes, but could not do so for

genes predicted to undergo nuclear RNA degradation (Figure S4H-I).

Genes encoding transcripts predicted to undergo nuclear degradation (PUNDs) are

conserved across mouse and human cells

The Bayes factors for 9% (n= 946/11,109) of genes in NIH-3T3 cells and 4% (n=

408/10,971) of genes in K562 cells reproducibly exceeded 100 (Figure 2A, S5A, Table S2),

indicating that the model with nuclear degradation is at least 100 times more likely to explain the

subcellular TimeLapse-seq data than the model without nuclear degradation, thus providing

decisive evidence (Kass and Raftery, 1995) that transcripts of these genes undergo nuclear

degradation. Hereafter, we refer to these genes as PUNDs (predicted to undergo nuclear

degradation). The model predicts that the large majority (>85%) of transcripts produced by

PUNDs are degraded in the nucleus.

We performed Gene Ontology (GO) enrichment analysis on our PUND gene lists (Table

S3) and found many common enriched terms between K562 and NIH-3T3 PUNDs, including

those pertaining to the ribosome, RNA splicing, and nuclear mRNA export (Figure 2A, S5A).

Ribosomal protein genes were highly enriched in PUNDs in both cell lines, including 24

individual ribosomal protein gene homologs. In total, we found 133 homologous genes that were

shared between both cell lines, a significant overlap (Fisher’s exact test: p=2.3×10-14) (Figure
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S5B). Given the common functions of PUNDs, as well as the overlap of individual PUNDs

between cell lines, we conclude that nuclear degradation is a conserved regulatory feature that

acts on select transcripts.

Functionally related genes exhibit similar RNA flow across subcellular compartments

Genes with related functions tend to be co-regulated such that their mRNAs have similar

rates of whole-cell turnover (Dölken et al., 2008; Friedel et al., 2009; Herzog et al., 2017; Rabani

et al., 2011; Schofield et al., 2018; Schwanhäusser et al., 2011). To determine whether

subcellular RNA flow rates may likewise serve a regulatory role, we first performed hierarchical

clustering on all genes in human K562 cells based on their subcellular half-lives (Figure 2B). By

allowing for sufficient granularity, we identified 27 total clusters ranging from the order of 10 to

103 genes with reproducibly distinct transcript kinetics (Figure 2B). We then performed GO

enrichment analysis on each cluster and found that a majority have several enriched terms

(Figure 2B, Table S3). Cluster 8, which contains the most genes (n=1,662), represents

“canonical” RNA flow: median whole-cell half-lives of 150 min., long cytoplasmic and relatively

short chromatin and nuclear residence, fast polysome loading, and no evidence for nuclear

degradation (Figure 2B). However, the vast majority of genes (n=8,662) were divided into

smaller groups that deviated from these canonical kinetics (Figure 2B). Genes involved in signal

transduction and response to stimuli (e.g., MYC, JUN, and CXCL2) were overrepresented in a

cluster of 70 genes with “fast flow” kinetics across all compartments (median whole-cell half-life

29 min.) (Figure 2C); however, even these genes spent more than half of their life cycle on

chromatin (median half-life 17 min.). We corroborated this result independent of our clustering

analysis by performing gene set enrichment analysis (GSEA) (Liberzon et al., 2015;

Subramanian et al., 2005) of all genes ranked by each subcellular half-life and found that many

hallmark gene sets involved in signaling pathways had significantly faster RNA flow across all
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compartments (e.g., TNF-alpha signaling, Figure S5C, Table S4). Thus, mRNAs with short

half-lives across all compartments were enriched for signaling and sensing functions.

Ribosomal protein genes (RPGs) were enriched in only five clusters (Figure 2D, Table

S2), rather than being uniformly distributed throughout all clusters (χ2 test p<10-16). Although all

five of these clusters shared long cytoplasm half-lives, consistent with previous reports (Eisen et

al., 2020a; Herzog et al., 2017; Munchel et al., 2011), other RNA flow rates differed. A majority

of RPGs were PUNDs with short half-lives on chromatin, with either slow (cluster 2) or average

(cluster 5) polysome loading kinetics. On the other hand, the remaining RPGs exhibited slower

and more canonical RNA flow without nuclear degradation and fast polysome loading kinetics

(clusters 11, 25, and 27). Thus, although not all RPGs exhibited the same rates of RNA flow, we

nonetheless observed two distinct patterns of RNA flow that they tended to follow.

Histone genes were primarily enriched in two separate clusters (Figure 2B, clusters 4

and 8). Closer inspection revealed that the first group contained mostly canonical,

replication-dependent histone genes, and the second contained variant histone genes (Figure

2E, Table S2). Whole-cell half-lives did not differ between these two groups; however, canonical

histones had ~2-fold longer nuclear (median 79 min.) than cytoplasm (median 28 min.) half-lives

(Figure 2E). Additionally, canonical histones were loaded onto polysomes very quickly, often

within just a few minutes, consistent with a previous study (Schott et al., 2021). Thus, canonical

histones experience relatively unique RNA flow, whereas variant histones behave more like the

average protein-coding transcript.

Finally, genes involved in gene expression clustered into several distinct groups (Figure

2F). Most of the enriched GO terms in clusters 2 and 6 are related to transcription, including

terms pertaining to transcription factors, RNA metabolism, and RNA polymerase II activity (Table

S3). These genes included several mediator subunits, splicing factors, chromatin remodelers,

and transcription factors (Table S1). By contrast, genes in cluster 5 are enriched for functions

related to cytoplasmic translation, peptide biosynthesis, and ribosomal subunit biogenesis
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(Table S3), and include many translation factors (Table S1). Overall, genes involved in

transcription had shorter whole-cell half-lives than genes involved in translation, consistent with

multiple reports (Herzog et al., 2017; Schofield et al., 2018; Schwanhäusser et al., 2011; Yang et

al., 2003) (Figure 2F). Surprisingly, despite their shorter whole-cell half-lives, genes involved in

transcription had longer chromatin and nuclear half-lives and shorter cytoplasm half-lives

compared to genes involved in translation (Figure 2F). Thus, genes involved in transcription and

translation are enriched in clusters representing opposite RNA flow patterns.

RNA flow rates are associated with RNA binding proteins

mRNAs exist as part of ribonucleoprotein complexes containing many RBPs, which

control RNA metabolism and are likely regulators of RNA flow. To determine which RBPs

correspond with specific RNA flow rates, we analyzed ENCODE eCLIP datasets for 120 RBPs

in K562 cells (Van Nostrand et al., 2020), classified the mRNAs targets of each RBP, and

identified all RBPs with target mRNAs that had significantly shorter or longer subcellular

half-lives than non-targets (Figure 3A-B, Figure S6A-E, Table S5). We identified significant

differences in the subcellular half-lives for nearly all (38/43) of the RBPs with fast or slow

whole-cell half-lives (Figure 3B), allowing us to pinpoint exactly where in the cell each RBP may

regulate RNA flow. Additionally, we identified significant differences in subcellular half-lives for

the targets of an additional 37 RBPs that did not show differences at the whole-cell level, and a

majority (25/37) of these RBPs only exhibited significant differences in chromatin and/or nuclear

half-lives (Figure 3B).

DDX3X and PABPC4 regulate nuclear export of target mRNAs

We next investigated the roles of RBPs in dictating RNA flow. We began by focusing on

DDX3X, an RNA helicase with many roles in RNA metabolism (Kanai et al., 2004; Lai et al.,
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2008; Samir et al., 2019; Shih et al., 2012; Soto-Rifo et al., 2012; Yedavalli et al., 2004). DDX3X

targets exhibited short chromatin half-lives and long nuclear half-lives, indicating slow export

from the nucleus (Figure 3C, Figure S6A-B). To analyze the role of DDX3X in determining the

flow rates of its target mRNAs, we used shRNAs to deplete DDX3X (Figure S6F) and performed

subcellular TimeLapse-seq. Upon depletion, nuclear RNA turnover of DDX3X target mRNAs

was no longer slower than non-targets (Figure 3D). Furthermore, DDX3X targets had long

cytoplasm and whole-cell half-lives in wild-type cells (Figure 3B, Figures S6C,E), consistent with

the association of DDX3X with several cytoplasmic RNA granules (Kanai et al., 2004; Samir et

al., 2019; Shih et al., 2012). However, RNA turnover on chromatin, in the cytoplasm, and at the

whole-cell level were not affected in the DDX3X knockdown (Figure S6H). We conclude that

DDX3X regulates RNA flow at the step of nuclear export.

We observed similar RNA flow rates for targets of cytoplasmic poly(A) binding protein

PABPC4, which had long cytoplasm and whole-cell half-lives (Figure 3B, Figures S6C,E),

consistent with the function of this RBP in stabilizing transcripts with short poly(A) tails

containing AU-rich motifs (Kini et al., 2014). However, PABPC4 targets had shorter chromatin

half-lives and longer nuclear half-lives than other transcripts (Figure 3E). As before, we used

shRNAs to deplete PABPC4 in K562 cells (Figure S6G) and performed subcellular

TimeLapse-seq. Surprisingly, we detected no differences in the chromatin, cytoplasm, or

whole-cell half-lives of target mRNAs upon PABPC4 depletion (Figure S6I). However, the target

mRNAs no longer had longer nuclear half-lives (Figure 3F), implicating PABPC4 in nuclear

export. Based on these findings, we conclude that although both PABPC4 and DDX3X bind to

their mRNA targets throughout the cell, their depletion only affects RNA flow at the step of

nuclear export. These observations highlight the ability of subcellular TimeLapse-seq to study

the role of RBPs within different subcellular compartments and demonstrate that RBPs regulate

RNA flow.
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mRNA poly(A) tail lengths are dynamic across and within subcellular compartments

Poly(A) tail lengths are connected to mRNA metabolism (Passmore and Coller, 2022), so

we next analyzed the relationship between poly(A) tail length and RNA flow rates. We measured

the tail length of each mRNA in chromatin, cytoplasm, and polysome fractions, as well as in total

cellular RNA, using nanopore direct RNA sequencing (Figure 4A) (Workman et al., 2019). We

confirmed that the 3’-end of >80% of sequenced RNAs mapped to annotated poly(A) sites

(Figure S7A). To control for technical variations between sequencing runs, we included a set of

six spike-in RNAs, each with a different poly(A) tail length. We calculated a poly(A) tail length

size factor for each sample and used it to normalize endogenous RNAs poly(A) tail lengths

(Figure S7B-C, methods). Within each fraction, the median tail length per gene correlated well

between the two biological replicates (Figure S7D, Table S6).

We observed that poly(A) tail lengths gradually shortened as RNAs flowed through the

cell, as expected (Figure S7C). These trends could be observed at the single gene level, albeit

with variability across genes (Figure 4B, Table S6). For example, median chromatin poly(A) tail

lengths ranged from below 200nt to above 250nt (e.g., TRAPPC3 and WSB1, Figure 4B).

Globally, the longest poly(A) tails were on chromatin. We measured shorter polyA tail lengths in

the cytoplasm, where most genes had median tail lengths of 85–110nt (Figure 4C). Total RNA

tail lengths closely resembled those of cytoplasm RNA (Figure 4C). In general, the distribution of

tail lengths in polysome RNA were slightly shorter than in cytoplasmic RNA (Figure 4C).

Poly(A) tail length increases with chromatin residence and decreases with cytoplasm

residence

To determine the relationship between poly(A) tail lengths and RNA flow across the cell,

we compared the median tail length per gene in each compartment to the respective subcellular
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half-life. On chromatin, median poly(A) tail lengths were the shortest for genes with chromatin

half-lives of less than 15 minutes, and chromatin tail lengths gradually increased with half-life

until ~40 minutes (Figure 4D). Across all genes, chromatin poly(A) tails were shortest on

completely unspliced transcripts, and tails increased in length on intermediately spliced

transcripts as more introns were removed from the pre-mRNA (Figure 4E). This observation

indicated that poly(A) tails grow as transcripts spend more time on chromatin, a period also

associated with continued splicing. We observed that median cytoplasm RNA poly(A) tail length

decreased with longer cytoplasm half-lives in both K562 cells and NIH-3T3 cells (Figure S7E-F),

and a negative correlation between median tail length in total RNA and whole-cell residence

(Figure 4F), consistent with previous reports (Lima et al., 2017; Subtelny et al., 2014).

Comparing across fractions, we found that transcripts with short cytoplasmic half-lives

(<30 minutes) experience a shorting of their polyA tails by ~50 nt, wheras mRNAs with much

longer half-lives (>345 minutes) shortened their tails much more by >100 nt (Figure 4G). These

observations are consistant with the notion that the tails of transcripts with long half-lives are

“pruned” to a certain length, at which point they remain relatively stable (Lima et al., 2017) and

findings that transcripts with faster turnover undergo more rapid deadenylation and degradation,

without such stabilization at shorter tail lengths (Eisen et al., 2020a).

Based on our findings that chromatin poly(A) tail length increases with chromatin

residence and cytoplasm poly(A) tail length decreases with cytoplasm residence, total RNA tail

length must be reflective of the relative time spent by transcripts in both compartments. mRNAs

that spent relatively more time on chromatin than in the cytoplasm had longer poly(A) tails in

total RNA, whereas mRNAs that spent relatively more time in the cytoplasm had shorter tails in

total RNA (Figure 4H). For example, TRAPPC3 and WSB1 had similar whole-cell half-lives, but

TRAPPC3 spent ~7x more time in the cytoplasm than on chromatin, whereas WSB1 mRNA

spent nearly the same amount of time on chromatin and in the cytoplasm (Figure 4B).

Consequently, TRAPPC3 had a much shorter median poly(A) tail in total RNA (median 89nt)
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than WSB1 (median 142nt) (Figure 4B). Thus, median poly(A) tail lengths in total RNA are not

only reflective of whole-cell residence times (Figure 4F), but also of the relative times spent on

chromatin and in the cytoplasm (Figure 4H-I).

PUND transcripts are spliceosome targets that exhibit distinct RNA flow, splicing, and

poly(A) tail phenotypes

Given the patterns of RBP binding and poly(A) tail lengths across compartments, we

wondered whether PUNDs behaved uniquely in any respect. To explore this possibility, we

began by comparing the half-lives in each compartment between PUNDs and all other

transcripts. In human K562 cells, PUND genes had faster turnover on chromatin, in the nucleus,

and at the whole-cell level than genes without evidence of nuclear degradation (Figure 5A,

S8A). Notably, PUND genes had longer cytoplasm half-lives than other mRNAs (Figure 5A,

S8A), indicating that the transcripts from PUNDs that do get exported are more stable in the

cytoplasm compared to transcripts of other genes. Thus, the high nuclear degradation of PUND

transcripts is not a trivial reflection of the breakdown of inherently unstable transcripts.

We found 68 RBPs with target genes significantly enriched for PUNDs (Figure 5B, Table

S5). Remarkably, five of the proteins most significantly enriched were components of the

spliceosome: AQR, EFTUD2, PRPF8, SF3B4, and BUD13 (Figure 5B). We also detected

splicing factor SRSF1 among the most significant RBPs (Figure 5B). In light of this finding, we

sought to determine whether PUND transcripts exhibited either slow or fast splicing compared to

other mRNAs. Analyses of our direct RNA sequencing libraries revealed PUND genes had more

incompletely spliced mRNAs on chromatin than other genes, but overall splicing levels did not

differ in other compartments (Figure 5C). Finally, we investigated whether PUND transcripts

exhibited any differences in poly(A) tail length relative to other transcripts, and found that they

had longer tails on chromatin (median PUND tail length= 210nt, median other= 193nt,
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p=1.40×10-16) (Figure 5D, S8B). This was surprising given that PUND transcripts generally

reside on chromatin for less time (Figure 5A), and we observed that transcripts with short

chromatin half-lives generally have short poly(A) tails (Figure 4D,I). PUNDs had slightly shorter

tails on polysomes than other mRNAs (median PUND tail length=80nt, median other=83nt,

p=0.013), but tail lengths did not differ in cytoplasm or total RNA. We conclude that PUND

transcripts have more incomplete splicing and longer poly(A) tails on chromatin,  but are largely

indistinguishable from other transcripts in the cytoplasm, on polysomes, and in total RNA.

Machine learning model identifies molecular features that explain RNA flow rates

Finally, we sought to identify genetic and molecular features that collectively explain the

variability in RNA flow rates (Figure 6A, Table S7). To this end, we developed a LASSO

regression model (Figure 6A, S9A) that identifies sparse relevant features through L1

regularization (Hastie et al., 2001). The 10× cross-validation and unseen test set performances

of our model varied between the subcellular compartments (Figure 6B), ranging from R2 = 0.4

for cytoplasmic turnover to R2 = 0.13 for polysome loading rates, likely due to the larger

uncertainty for these estimates (Figure 1G, S3D). Our model performed as well as the best

published whole-cell models when we trained it on our whole-cell rates or on published

“ensemble” values (Figure S9B) (Agarwal and Kelley, 2022; Blumberg et al., 2021; Chan et al.,

2018; Chen and van Steensel, 2017; Cheng et al., 2017; Sharova et al., 2009; Spies et al.,

2013; Yang et al., 2003).

Across all RNA flow rates, basic gene structure, histone modifications, sequence

features, codon frequencies, RBP target sets, and compartment-specific poly(A) tail lengths

were the feature classes that provided the most information (Figure 6C, Table S7). We also

observed subcellular-specific relevant classes, such as microRNAs promoting cytoplasmic

turnover and transcription factors targets associating with nuclear export and cytoplasmic
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turnover (Figure 6C). Sequence determinants and codon frequencies were collectively relevant

as feature classes (Figure 6C), albeit the effect sizes of individual features were generally small

and compartment-specific (Figure S9C, Table S7). For example, transcripts containing a 5’

terminal oligo-pyrimidine (TOP) motif (Cockman et al., 2020) had faster RNA flow dynamics,

including polysome loading rates, but were also more stable in the cytoplasm (Figure S9C,

Table S7).

Next, we investigated the strongest individual feature contributions across compartments

(Figure 6D). Both intron length and the number of exons were top predictors of chromatin

half-lives (Figure 6D). Accordingly, chromatin and nuclear half-lives increased with gene length

in both cell lines, likely due to transcription elongation time, albeit with a large variability

between genes (Figure 6E, S9E, Spearman correlations for K562: chromatin=0.16,

nuclear=0.19, nuclear; NIH-3T3: chromatin=0.20, nuclear=0.15). Gene GC content, histone

H3K36 tri-methylation, and SND1 binding all positively influenced chromatin, nuclear, and

nuclear export rates (Figure 6D). Consistent with our RBP analysis (Figure 3C-F), DDX3X and

PABPC4 were predicted to regulate nuclear export. Notably, the RNA modification

N6-methyladenosine (m6A) was also strongly predictive of slower nuclear export rates, but not

any other RNA flow rate (Figure 6D).

Our LASSO model predicted that genes targeted by the MYC transcription factor (TF)

had long cytoplasm half-lives (Figure 6D), and we confirmed this finding orthogonally by GSEA

(Table S4). However, other TFs with fewer target genes, and thus a smaller global contribution,

might have remained unidentified in our model. To more sensitively investigate whether more

TFs were associated with the RNA flow rates of their target genes, we systematically identified

TFs for which the half-lives of targets differed from non-targets (Figure S9F), similar to our RBP

target analysis (Figure 3A-B). Remarkably, 193 TFs were associated with altered RNA flow

rates (Figure S9F). For instance, targets of the stress-response TFs ATF4 and ATF5 had shorter

chromatin half-lives (Figure S9F). Our LASSO model and TF analysis revealed that many
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uncharacterized Zinc-finger proteins were also associated with altered RNA flow rates (Figure

S9F, Table S8). We conclude that many features, underlying a diverse set of regulatory

mechanisms, are responsible for subcellular transcriptome dynamics (Figure 6F).

Discussion

Here we have shown that our analysis of RNA flow, based on subcellular TimeLapse-seq

and kinetic modeling, is capable of characterizing the many possible life cycles of mammalian

transcripts across the cell and yields subcellular RNA half-lives genome-wide. We observed that

the variability in RNA turnover previously observed at whole-cell resolution persisted across all

subcellular compartments (Figure 1H). Transcripts with the same whole-cell half-lives flowed

throughout the cell at different rates (Figure S4F-G), highlighting the variability in regulation

between different genes. In both cell types analyzed, we identified many mRNAs that spent

equal or more time on chromatin than in the cytoplasm, even among transcripts with the fastest

whole-cell turnover (Figure 2C). We also obtained evidence that many mRNAs remain

associated with chromatin for an extended period of time after transcription has completed,

during which fully transcribed mRNAs continue to undergo splicing and polyadenylation (Figure

4E).

Subcellular TimeLapse-seq relies on the biochemical purification of subcellular

compartments, an operation with inherent limitations. Endoplasmic reticulum (ER) can partially

co-sediment with the nuclear fraction in similar cell fractionation methods (Bhatt et al., 2012;

Yeom and Damianov, 2017), and if this is occurring in our system, it may explain several minor

observations. First, transcripts enriched for functions related to the cell membrane, smooth ER,

and COPI-coated vesicles, which are translated at the ER membrane (Fazal et al., 2019; Jan et

al., 2014), were enriched in clusters with very long nuclear half-lives (clusters 17-20, n=703

genes, Figure 2B). We also identified a few genes that had extremely long chromatin half-lives
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but relatively short poly(A) tails (Figure 4D). We hypothesize that the chromatin and nuclear

fractions contain a mix of both newly synthesized and preexisting RNAs for these select genes,

resulting in artificially long half-lives and likewise, artificially short poly(A) tails. Finally, we are

uncertain where various granules and condensates sediment, given their wide range of

biochemical properties (Ditlev et al., 2018). Notably, however, P-bodies (monitored by marker

protein LSM14A) sedimented in the cytoplasm (Figure 1B) and did not colocalize with

polysomes (Figure S1D). In sum, we believe that our biochemical purification accurately assigns

the subcellular localizations of most transcripts.

We identified hundreds of genes that are predicted to undergo substantial nuclear

degradation in both cell types analyzed where most of the transcripts encoding these genes are

never exported from the nucleus. Genes with lower fractions of nuclear degraded transcripts

would not be distinguished reliably through our conservative Bayes Factor analysis, so it is likely

that more genes exhibit a significant, albeit lesser, degree of nuclear RNA degradation. Indeed,

reduction of the Bayes factor criterion from a value of 100 to 10 identifies an additional 98

PUNDs in NIH-3T3 cells and 50 PUNDs in K562 cells. Taking into account the high production

rates of many PUNDs, we estimate that at least 20% of all human and mouse protein-coding

transcripts are degraded in the nucleus. PUND transcripts have unique features, such as

incomplete splicing, long poly(A) tails, and association with splicing factors and other RBPs, that

may aid in their identification by nuclear degradation pathways. Given that many PUNDs

encode for splicing and nuclear RNA degradation factors, we speculate that nuclear degradation

plays a role in nuclear RNA homeostasis (Berry and Pelkmans, 2022; Berry et al., 2022).

Overall, we believe nuclear transcript degradation to be pervasive and to likely serve a

regulatory function, which is an exciting direction for future work.

We observed significant associations between the rates of RNA flow and many RBPs,

and also identified new functions for DDX3X and PABPC4 in regulating nuclear export. This

adds to the many known roles of DDX3X, which interacts with multiple nuclear export
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machineries (Lai et al., 2008; Yedavalli et al., 2004) and forms puncta at nuclear pores (Merz et

al., 2007). We report the first nuclear role for PABPC4, which has been shown to shuttle

between the nucleus and cytoplasm (Burgess et al., 2011). Collectively, these observations

complement the finding that most mRNAs are quickly exported into the cytoplasm following

release from chromatin (Figure 1H), but that this step is regulated by DDX3X, PABPC4, and

other RBPs.

Our comprehensive analysis of poly(A) tail dynamics across subcellular compartments

shows that tail length distributions differ between genes not only in the cytoplasm, but also on

chromatin. These results shed new light on the relationship between poly(A) tail length and RNA

stability. Although total RNA tail length inversely correlated with whole-cell half-lives in K562

(Figure 4F), this simple relationship does not capture the dynamics across all compartments as

cytoplasm half-lives are generally longer than chromatin half-lives (Figure 1H), obscuring the

contribution of chromatin RNA poly(A) tails. Indeed, we observed that total RNA tail lengths

reflect the ratio of time spent on chromatin and in the cytoplasm for each gene (Figure 4H-I).

Thus, we have furthered our understanding of the links between poly(A) tail lengths and mRNA

stability to a subcellular resolution, and its full dissection will be enabled by the methodologies

introduced here in future studies.

RNA flow represents the cumulative impact of multiple layers of gene regulation that act

to control the subcellular fates and trajectories of transcripts. Analysis of RNA flow throughout

development and in disease systems is expected to help further elucidate how regulatory

programs control cell fate and multicellular phenotypes through subcellular transcript dynamics.
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Methods

Cell Culture

NIH-3T3 cells (ATCC CRL-1658) were maintained at 37°C and 5% CO2 in DMEM

(ThermoFisher 11995073) with 10% cosmic calf serum (Cytiva SH30087.03), 100 U/mL

penicillin, and 100 ug/mL streptomycin (ThermoFisher 15140122). K562 cells (ATCC CCL-243)

were maintained at 37°C and 5% CO2 in RPMI (ThermoFisher 11875119) with 10% FBS

(Corning 35015CV), and 100 U/mL penicillin, and 100 ug/mL streptomycin (ThermoFisher

15140122). HEK-293T cells (ATCC CRL-3216) were maintained at 37°C and 5% CO2 in DMEM

(ThermoFisher 11995073) with 10% FBS (Corning 35015CV), 100 U/mL penicillin, and 100

ug/mL streptomycin (ThermoFisher 15140122).

4sU labeling

Pulse-labeling was performed with 4-thiouridine (4sU, Sigma T4509) resuspended in

conditioned cell media. Labeling was performed in NIH-3T3 with cells at 40% confluency

(approximately 8×106 cells in a 15cm plate) and a final 4sU concentration of 500uM. Labeling

was performed in K562 with 4-5×105 cells/mL at a final 4sU concentration of 50uM. At the

beginning of each labeling period, cells were removed from the incubator, 4sU was added

directly to the existing cell media, and cells were returned to the incubator for the remainder of

the pulse. At the end of the pulse, K562 cells were pelleted at 500xg for 2 minutes. The

supernatant (cell media) was discarded for both NIH-3T3 and K562 and cells were immediately

placed on ice and fractionated or lysed in 500uL RIPA buffer (ThermoFisher 89900) to collect

total RNA.
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SABER-FISH and data analysis

mRNA transcripts corresponding to Foxo3, Smad3, Gfod1, and Myc were detected in

NIH-3T3 cells by smRNA-FISH according to (Kishi et al., 2019). Briefly, 50-80 probes were

designed per gene using PaintSHOP (Hershberg et al., 2021) with additional sequences used

for SABER appended to the 3’ end in a gene-specific manner (Table S9). All probes

corresponding to the same gene were pooled at 10uM in 1x TE buffer (10 mM Tris pH 8.0, 0.1

mM EDTA). Probes were synthesized by first preparing a mix containing 10uL of 5uM hairpin

oligo, 10uL of 10x PBS, 10uL of 100mM MgSO4, 5uL of dNTP mix (containing 6mM of each

A,C,T), 10uL of 1uM Clean.g oligo, 0.5uL of BST enzyme (McLab, BPL-300), and 44.5uL water

(see Table S9 for oligo sequences). The reaction mix was incubated at 37°C for 15 minutes and

then 10uL of 10uM pooled probes were added. Probes were then concatemerized by incubating

at 37°C for 60 minutes before enzyme inactivation at 80°C for 20 minutes. Probes were purified

using the MinElute PCR Purification kit (Qiagen 28004) and quantified by Nanodrop (ssDNA

setting).

Cells were grown in 8-well poly-L-lysine coated chamber slides (ibidi 80826), labeled

with 500uM 4sU for 2 hours, and fixed with 4% PFA in 1x PBS for 10 minutes. Unlabeled cells

were also included as controls. Slides were washed 3x 5 minutes in 1x PBST and then

incubated in 1x Whyb solution (2x SSC, 1% Tween-20, and 40% deionized formamide) for at

least 1 hour at 43°C. 1ug of concatemerized probes were then incubated on slides in 1x Hyb

solution (2x SSC 1% Tween-20, 40% deionized formamide, 10% dextran sulfate) for at least 16

hours at 43°C (total volume per ibidi chamber well of 150uL). Slides were wrapped in parafilm

and placed in a humidifying chamber within the oven to prevent evaporation. After probe

hybridization, each well was washed 2x 30 minutes with 1x Whyb solution (pre-warmed to

43°C), followed by 2x 5 minutes in 2x SSC, 0.1% Tween-20 (pre-warmed to 43°C). Slides were

then moved to room temperature and washed 2x 1 minute with 1x PBST (1x PBS, 0.1%
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Tween). For fluorescent detection of the mRNAs, slides were then transferred to an oven set at

37°C and pre-warmed for 10 minutes. Fluorescent imager oligos were then incubated with the

sample at 37°C for 10 minutes, each at 0.2 uM concentration in Imager Hyb (1x PBS, 0.2%

Tween). Each well was then washed 3x 5 minutes in 1x PBST at 37°C, before the sample was

brought to room temperature.

Samples were then blocked for 1 hour at room temperature in Blocking Solution (1x

PBST, 10% Molecular-grade BSA (ThermoFisher AM2616)). Antibodies to detect Lamin B1 and

Tubulin were applied in Blocking Solution and incubated for 2 hours at room temperature (see

Table S9 for antibody details). Samples were washed 3x 5 minutes with 1x PBST before

secondary antibody incubation, which were applied for 1 hour at room temperature in Blocking

Solution (see Table S9 for antibody details). Before imaging, samples were washed 3x 5

minutes with 1x PBST and all samples were imaged in 1x PBST.

Images were acquired and puncta were detected according to (West et al., 2022).

Briefly, slides were imaged using a Nikon Ti-2 spinning disk inverted microscope with a 40x

objective at the Microscopy Resources on the North Quad (MicRoN) core at Harvard Medical

School. Images were acquired as multipoint, multichannel images and data were saved and

exported as .nd2 files. Images were then split by channel and position and used to generate

maximum projections across the z-stacks and a top-hat background subtraction was applied.

The nuclear regions within each position were identified by creating a mask from the Lamin B1

signal, and the cytoplasmic regions were similarly identified using Tubulin signal after

subtracting the nuclear mask. Finally, mRNA puncta were identified using a Laplacian of

Gaussian filter and were called as nuclear or cytoplasmic based on overlap with the masks.
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Cell fractionation

Chromatin, nuclear and cytoplasm RNA: Cells were fractionated as per (Danya J Martell,

Robert Ietswaart, Brendan M. Smalec, L. Stirling Churchman, 2021). Briefly, cells were lysed in

400uL cytoplasm lysis buffer (10mM Tris-HCl pH 7.0, 150mM NaCl, 0.15% NP-40) and

incubated on ice for 5 minutes. Lysate was then layered on top of 500uL sucrose buffer (25%

sucrose, 10mM Tris-HCl, 150mM NaCl) and centrifuged at 13,000 RPM at 4°C for 10 minutes to

pellet nuclei. The top (cytoplasm) fraction was isolated. Nuclei were resuspended in 800uL

nuclei wash buffer (1x PBS with 1mM EDTA, 0.1% Triton-X) and centrifuged at 3,500 RPM at

4°C for 1 minute. To isolate the nuclear fraction, the washed nuclei were resuspended in 500uL

RIPA buffer. To isolate the chromatin fraction, the washed nuclei were resuspended in 200uL

glycerol buffer (50% glycerol, 20mM Tris-HCl pH 8.0, 75mM NaCl, 0.5mM EDTA, 0.85mM DTT).

After resuspension, 200uL nuclear lysis buffer (20mM HEPES pH 7.5, 300mM NaCl, 1M urea,

0.2mM EDTA, 1mM DTT, 1% NP-40) was added and lysates were incubated on ice for 2

minutes before centrifuging at 14,000 RPM at 4°C for 2 minutes. The supernatant was

discarded and chromatin pellets were resuspended in 100uL chromatin resuspension solution.

The final volume of the chromatin fraction was brought to 250uL with RIPA buffer.

Polysome RNA: Cells were lysed in 500uL polysome lysis buffer (25mM HEPES pH 7.5,

5mM MgCl2, 0.1M KCl, 2mM DTT, 1% Triton-X, 0.1mg/mL cycloheximide) and incubated on ice

for 5 minutes. The lysate was centrifuged at 13,000 RPM at 4°C for 10 minutes to pellet nuclei.

The supernatant was then loaded on top of a 12mL 10-50% sucrose gradient (25mM HEPES

pH 7.5, 5mM MgCl2, 0.1M KCl, 2mM DTT, 0.1mg/mL cycloheximide) and spun in an

ultracentrifuge at 35,000 RPM at 4°C for 2 hours. Gradients were fractionated into 13 samples

and the RNA absorbance throughout the gradient was monitored with a BioComp 153 gradient

station ip (BioComp Instruments, Fredericton, New Brunswick), using a FC-2 Triax flow cell with
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software v1.53A (BioComp), and fractionated with a Gilson FC203B fraction collector. Lysate

from the puromycin-sensitive fractions (Figure S1D) was then pooled as the polysome fraction.

RNA extraction

RNA extraction was performed using Trizol LS according to the manufacturer’s protocol,

except with the addition of DTT at a final concentration of 0.2mM DTT in the isopropanol. For

polysome samples, isolated RNA was precipitated using standard ethanol precipitation to

reduce the volume of RNA after the Trizol extraction. RNA was quantified using a Nanodrop

2000 (ThermoFisher).

Western blotting

Samples were mixed at 1:1 volume with 2x Laemmli buffer (4% SDS, 20% glycerol, 0.2M

DTT, 0.1M Tris-HCl pH 7.0,   0.02% bromophenol blue), denatured at 95°C for 5 minutes, and

kept on ice. Samples were loaded onto a 4-12% Bis-Tris gel (Invitrogen NP0321BOX) in 1x

MOPs buffer and run at 160V for 1 hour. The gel was transferred to a nitrocellulose membrane

using the wet transfer method in 1x transfer buffer (25mM Tris base, 192mM glycine, 20%

methanol) at 400mA for 75 minutes at 4°C. The membrane was blocked in 1x blocking buffer

(5% non-fat milk powder in 1x TBST) for at least 60 minutes. Primary antibodies were diluted

according to (Table S9) in 1x blocking buffer and incubated with membranes for at least 16

hours at 4°C. Membranes were washed 4x 5 minutes with 1x TBST, incubated for 1 hour at

25°C with secondary antibodies (Table S9), washed again 4x 5 minutes with 1x TBST, and

imaged using a Li-Cor Odyssey.
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TimeLapse-seq chemistry and library preparation

Samples were prepared for sequencing according to (Schofield et al., 2018). Briefly,

2.5ug RNA was treated with 0.1M sodium acetate pH 5.2, 4mM EDTA, 5.2%

2,2,2-trifluoroethylamine, and 10mM sodium periodate at 45°C for 1 hour. RNA was then

cleaned using an equal volume of RNAClean XP beads (Beckman Coulter A63987) by washing

twice with 80% ethanol. The cleaned RNA was then treated with 10mM Tris-HCl pH 7.5, 10mM

DTT, 100mM NaCl, and 1mM EDTA at 37°C for 30 minutes. The RNA clean up with an equal

volume of RNAClean XP beads was repeated and RNA was quantified by Nanodrop. Library

preparation was performed using the SMARTer Stranded Total RNA HI Mammalian kit (Takara

634873) with 0.5-1ug of RNA and samples were sequenced on the NovaSeq (Illumina, San

Diego, CA) by the Bauer Core Facility at Harvard University.

Quantification of newly synthesized RNA from subcellular TimeLapse-seq data

Reads were filtered for quality and adaptor sequences were trimmed using cutadapt v2.5

(Martin, 2011). The first 3nt were trimmed from the 5’ of read1, and the last 3nt were trimmed

from the 3’ of read2, corresponding to the 3nts added by the strand-switching oligo during the

reverse transcription step in the library preparation. In order to minimize the background

mismatch rate, SNP-masked genomes were prepared starting with hg38 and mm10 using

non-4sU total RNA TimeLapse-seq reads from K562 and NIH-3T3, respectively (Figure S2B). To

prepare the SNP-masked genomes, reads were first mapped to the reference genome with

STAR v2.7.3a (Dobin et al., 2013) using parameters --outFilterMultimapNmax 100

--outFilterMismatchNoverLmax 0.09  --outFilterMismatchNmax 15

--outFilterMatchNminOverLread 0.66  --outFilterScoreMinOverLread 0.66

--outFilterMultimapScoreRange 0 --outFilterMismatchNoverReadLmax 1. Variants were then

called with BCFtools mpileup (Li, 2011) and call using two bam files as input. The resulting

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2022. ; https://doi.org/10.1101/2022.08.21.504696doi: bioRxiv preprint 

https://paperpile.com/c/46oGud/U2PW
https://paperpile.com/c/46oGud/ue9a7
https://paperpile.com/c/46oGud/XAb6
https://paperpile.com/c/46oGud/iQlFM
https://doi.org/10.1101/2022.08.21.504696
http://creativecommons.org/licenses/by-nc-nd/4.0/


variant call file (VCF) was then split into a file with INDEL records only and a file without INDEL

records (substitutions only). The "no INDEL" VCF was further split by frequency of substitution:

loci covered by >= 5 reads and with a variant frequency >75% to a single alternate base were

assigned the alternate base; loci with variants with an ambiguous alternate base were masked

by "N" assignment. The reference FASTA was modified for these non-INDEL substitutions using

GATK FastaAlternateReferenceMaker (McKenna et al., 2010). Finally, rf2m

(https://github.com/LaboratorioBioinformatica/rf2m) was used with the INDEL-only VCF file to

further modify the FASTA genome reference as well as the corresponding GTF annotation file.

The trimmed, filtered reads were aligned to the appropriate SNP-masked genome using

STAR v2.7.0a using the following parameters: --outFilterMismatchNmax 15

--outFilterMismatchNoverReadLmax 0.09 --outFilterScoreMinOverLread 0.66

--outFilterMatchNminOverLread 0.66 --alignEndsType Local --readStrand Forward

--outSAMattributes NM MD NH. Reads that were not mapped in proper pairs, non-primary and

supplementary alignments, and reads aligning to the mitochondrial genome were all discarded

using samtools v1.9 (Li et al., 2009). Samples were then grouped by compartment and replicate

and converted into .cit files using GRAND-SLAM v2.0.5d (Jürges et al., 2018). Samples were

processed through GRAND-SLAM twice, once with the -no4sUpattern option specified and a

second time without this parameter. This ensured that the background T>C mismatch rate (pE)

was calculated using the -4sU sample during the first run and then the data for the -4sU sample

was outputted during the second run.

The a priori unknown 4sU-induced T>C conversion rate (pC) increased with the cellular

4sU concentration throughout the pulse durations (Figure S2A). This resulted in T>C mismatch

distributions that differed between genes according to their rates of turnover, such that the

assumption of a single global pC for all genes, as in GRAND-SLAM (Jürges et al., 2018), was no

longer sufficient. We therefore estimated upper and lower bounds on the gene-specific fractions

of new RNA, for each sample as follows. The default GRAND-SLAM output was analyzed to

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2022. ; https://doi.org/10.1101/2022.08.21.504696doi: bioRxiv preprint 

https://paperpile.com/c/46oGud/3FMKA
https://paperpile.com/c/46oGud/78SzP
https://paperpile.com/c/46oGud/xQCru
https://paperpile.com/c/46oGud/xQCru
https://doi.org/10.1101/2022.08.21.504696
http://creativecommons.org/licenses/by-nc-nd/4.0/


select the 1,000 genes with the fastest turnover, i.e. the 1,000 protein-coding genes with the

highest MAP values at the lowest non-0 4sU time point, or the 500 genes with the slowest

turnover, i.e. the 500 protein-coding genes with the lowest MAP values > 0.2 at the longest 4sU

time point, within each compartment and replicate. Genes with high background T>C

mismatches, i.e. MAP in the unlabeled sample >0.05, were excluded from consideration. For

each sample, all reads aligning to either the fast or slow turnover set of genes were then

analyzed to determine the number of T>C mismatches and total number of T nts across each

fragment (considering both read1 and read2 in each pair) using custom scripts. Two

dimensional distributions were generated containing the number of fragments with n Ts and k

T>C mismatches, in each of the fast and slow turnover gene group.

To quantify the upper and lower bounds for the 4sU-induced and background T>C

conversion rates, we first developed a binomial mixture model for the background conversions

with 2 T>C conversion rates (pE1 and pE2) and a global fraction parameter ( ) of the twoπ
𝐸

populations, with a binomial distribution:𝐵𝑖𝑛𝑜𝑚

+ (1- ) . The three parameters in this𝑃
𝐵𝐺

(𝑘, 𝑛) = π
𝐸

 𝐵𝑖𝑛𝑜𝑚(𝑘, 𝑛, 𝑝
𝐸1

) π
𝐸

𝐵𝑖𝑛𝑜𝑚(𝑘, 𝑛, 𝑝
𝐸2

)

model were fitted to the above T>C distributions using linear regression (Python v3.7.4,

package lmfit v1.0.2, function minimize). We found that our binomial mixture error model better

fitted the T>C conversions of the untreated samples (Akaike Information Criterium (AIC): p =

1.0), when compared to the established approach of a binomial error model with a single

background T>C conversion (AIC: p < 1e-16) (Jürges et al., 2018). Because pE2 turned out to be

of similar magnitude (~2%) as the 4sU-induced T>C conversion rate (pC, see below), this

relatively small second background population ((1- ) ~ 2-3%) was essential to include in theπ
𝐸

model in order to then accurately estimate the 4sU-induced T>C conversion rate (pC) and global

fraction of newly synthesized RNA ( ). The 4sU sample T>C distributions were then modeledπ
𝐶
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as the 4sU-induced T>C conversions + background population:

𝑃(𝑘, 𝑛) = π
𝐶
 𝐵𝑖𝑛𝑜𝑚(𝑘, 𝑛, 𝑝

𝐶
) + (1 − π

𝐶
)𝑃

𝐵𝐺
(𝑘, 𝑛)

The above fitting procedure was applied to the T>C mismatch distributions of both the

fast and slow turnover genes, which generated pC_HI and pC_LO , our respective upper and lower

bound estimates on pC. GRAND-SLAM was run a final two times, once each using pC_HI and

pC_LO. For each bound , this resulted in a gene-specific fraction of new RNA ( )𝑋 ∈ {𝐻𝐼,  𝐿𝑂} π

posterior distribution: , a beta distribution characterized with parameters𝑃
𝑋
𝑔(π) = 𝐵𝑒𝑡𝑎(π ; α

𝑋
𝑔, β

𝑋
𝑔)

and . The final gene-specific posterior is then as follows:α
𝑋
𝑔 β

𝑋
𝑔 𝑃𝑔(π)

For the 1,000 genes used to calculate pC_HI: .𝑃𝑔(π) =  𝑃
𝐻𝐼
𝑔 (π)

For the 500 genes used to calculate pC_LO (and those with slower turnover): .𝑃𝑔(π) =  𝑃
𝐿𝑂
𝑔 (π)

For the other genes, incorporating the uncertainty over pC, the normalized sum over both bound

posteriors: .𝑃𝑔(π) =  1
2 𝑃

𝐿𝑂
𝑔 (π) + 𝑃

𝐻𝐼
𝑔 (π)( )

NanoStrings quantification of new RNA

RNA was denatured at 65°C for 5 minutes and immediately incubated on ice for 2

minutes. The biotinylation reaction was performed with 15ug of denatured RNA in 78ul water,

10ul of MTSEA biotin-XX (Biotium 90066) at 0.25mg/mL in dimethylformamide, and 10uL of 10x

buffer (100mM Tris pH 7.5, 10mM EDTA) on a thermoblock at 24°C at 800 RPM for 30 minutes.

The biotinylated RNA was purified using Phase Lock tubes (QuantaBio 2302830) using

standard chloroform/isoamyl alcohol and ethanol precipitation and quantified by Nanodrop. To

synthesize the spike-in RNA, ERCC-00048 DNA with an upstream T7 promoter was cloned into

pUC19 and PCR amplified (primers in Table S9) with Phusion polymerase (New England

Biolabs M0530S) using the following cycling conditions: 98°C for 30 seconds, then 35 cycles of
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98°C for 10 seconds, 61°C for 15 seconds, and 72°C for 30 seconds, followed by a final

extension of 72°C for 2 minutes. The PCR product was cleaned using the Monarch® PCR clean

up kit (New England Biolabs T1030S) according to the manufacturer’s protocol, quantified by

Nanodrop, and used as the template for in vitro transcription reaction (New England Biolabs

E2040S) performed according to the manufacturer’s protocol. RNA was purified using standard

ethanol precipitation and quantified by Nanodrop.

3ug of biotinylated RNA and 60pg of in vitro transcribed spike-in RNA (ERCC-00048) in

200ul water was mixed with 100ul of beads from the uMACS Streptavidin kit (Miltenyi Biotec

130-074-101) on a thermoblock at 24°C at 800 RPM for 15 minutes. The columns were washed

once with 900uL of wash buffer (100mM Tris pH 7.5, 10mM EDTA, 1M NaCl, 0.1% Tween-20).

The RNA/bead mixture was then passed through the washed columns twice and the

flow-through RNA was collected, purified using the miRNeasy Nano kit (Qiagen 217084)

according to (Schwalb et al., 2016), and quantified by Nanodrop. 150ng of RNA was hybridized

with gene-specific DNA probes (Table S9), XT Tagset-24 capture and target probes (NanoString

Technologies, Seattle, WA), and hybridization buffer (NanoString Technologies, Seattle, WA)

according to the manufacturer’s protocol at 67°C for at least 16 hours before being loaded onto

a nCounter Sprint Cartridge and quantified using the nCounter SPRINT Profiler (NanoString

Technologies, Seattle, WA) at the Boston Children’s Hospital Molecular Genetics Core. The

fraction of new RNA was calculated at each time point according to the following equation:

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑛𝑒𝑤(𝑡) =
(𝐺𝑒𝑛𝑒 𝑐𝑜𝑢𝑛𝑡𝑠

𝑡=0
 / 𝑠𝑝𝑖𝑘𝑒.𝑖𝑛 𝑐𝑜𝑢𝑛𝑡𝑠

𝑡=0
) − (𝐺𝑒𝑛𝑒 𝑐𝑜𝑢𝑛𝑡𝑠

𝑡
 / 𝑠𝑝𝑖𝑘𝑒.𝑖𝑛 𝑐𝑜𝑢𝑛𝑡𝑠

𝑡
)

(𝐺𝑒𝑛𝑒 𝑐𝑜𝑢𝑛𝑡𝑠
𝑡=0

 / 𝑠𝑝𝑖𝑘𝑒.𝑖𝑛 𝑐𝑜𝑢𝑛𝑡𝑠
𝑡=0

)  

Any negative fraction of new RNA values were replaced with 0s. Note that JUN and SHOX2

were included in the probe set but not analyzed due to low RNA counts (within the range of the

included manufacturer’s negative controls) across most time points. Non-coding transcripts

MALAT1 and COX1 were also included in the probe set but not analyzed for these experiments.
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Kinetic modeling of RNA flow

The kinetic model (Figure 1E), defined by a system of coupled ordinary differential

equations (ODEs, Figure S3A), describes the average time evolution of the variables, i.e. the

4sU-labeled RNA levels in their respective subcellular compartments at 4sU-pulse time t : T,

whole-cell (total); CH, chromatin;  N, nucleus; CY, cytoplasm; P, polysome; M, (mature)

untranslated cytoplasm. In addition to the RNA flow rates (vector , Figure S3A), the ODEs also𝑘
→

contain the a priori unknown RNA production rate . All rates are considered unaffected by 4sU𝑘
𝑃

treatment, a model assumption for which we provide evidence (Figure S1B-C). To solve these

ODEs analytically (Adams and Essex, 2021), we set all labeled RNA levels to zero at t=0, i.e.

before any 4sU pulsing (boundary conditions). Next, the integrating factor method was used to

obtain solutions for the fractions that only depend on a single RNA flow rate: T( , , t), CH(𝑘
𝑊𝐶

𝑘
𝑃

, t) and N( , t). Inserting these expressions then enabled solving the coupled ODEs𝑘
𝐶𝐻

,  𝑘
𝑃

𝑘
𝑁

,  𝑘
𝑃

of CY( , t), M( , t) and P( , t), again using an integrating factor. Since the observed𝑘
→

,  𝑘
𝑃

𝑘
→

,  𝑘
𝑃

𝑘
→

,  𝑘
𝑃

quantities are fraction of new RNA, rather than RNA levels we derived the model fraction of new

RNA for each compartment X: , with levels of all (labeled and unlabeled)Λ
𝑋

(𝑘
→

, 𝑡) = 𝑋(𝑡)
𝑋

𝑠𝑠
𝑋

𝑠𝑠

compartment RNA, which equals the steady state solution to the ODE, i.e. when . Both𝑑𝑋(𝑡)
𝑑𝑡 = 0

and are linear in , so no longer depends on . Full expressions of the𝑋
𝑠𝑠

𝑋(𝑡) 𝑘
𝑃

Λ
𝑋

(𝑘
→

, 𝑡) 𝑘
𝑃

solutions for all compartments are available atΛ
𝑋

(𝑘
→

, 𝑡)

https://github.com/churchmanlab/rna_flow/new_total_ratio_jit.py .

As described in section Quantification of newly synthesized RNA from subcellular

TimeLapse-seq data (Figure S2A), the gene-specific (g) fraction of new RNA ( ) Posteriorπ

probability density function, ( ), was experimentally estimated for 4 different 4sU-pulse times𝑃
𝑋,𝑡
𝑔 π
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(t = 15, 30, 60 and 120 minutes) for each compartment X, through GRAND-SLAM’s Bayesian

inference framework (Jürges et al., 2018). To analytically derive the (in some cases multivariate)

posterior on the RNA flow rates (Adams and Essex, 2021), we equated our model to ,Λ
𝑋

(𝑘
→

; 𝑡) π

multiplied the posteriors from all (independent) timepoints, and applied the calculus of

multivariate change of variables from to (see resulting expression in Figure S3A).π 𝑘
→

For the cases with a univariate RNA flow rate posterior (compartment X = T, CH, or N),

this immediately provided the posterior distribution on . Summary statistics (MAP, Mean𝑘
→

= 𝑘
𝑋

and 95% CIs) of the posterior were then determined as follows. Through numerical evaluation of

the posterior on a grid (N=1,000 data points) over the prior rate domain [10-4, 104] (unit: min-1),

the MAP (Python package numpy v1.16.5, function: argmax) and 95% CIs were determined

(see expressions in Figure S3A). The mean rate (expression in Figure S3A) was obtained

through numerical integration (Python package: scipy v1.6.2, function integrate.quad and

dblquad). To speed up the numerical integration calculations, integrand functions were coded

with “just in time” compilation (Python packages: numba v0.53.1, numba-scipy v0.3.0, function

jit). The mean is preferred when using a single number as the RNA flow rate estimate, because

it considers all of the posterior distribution. Summary statistics in the results section were

reported as the mean between both biological replicates unless noted otherwise. The MAP and

95% CI together provide a more fine-grained characterization.

For the multivariate posteriors (compartment: CY, P), we marginalized the posterior by

integrating over the 95% CIs of the already determined upstream RNA flow rate(s) (Figure S3A).

For example PCY depends on , and the 95% CI was already obtained through the𝑘
→

= [𝑘
𝑁

, 𝑘
𝐶𝑌

] 𝑘
𝑁

univariate procedure described above, so was integrated out, resulting in the posterior on𝑘
𝑁

. Then, posterior summary statistics were calculated as described above.𝑘
𝐶𝑌
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Lastly, the nuclear export rate was determined (Figure S3A). Deterministically, the𝑘
𝐸

time duration of nuclear export equals the difference between the nuclear and chromatin

residence times: . Using its probabilistic analog (Adams and Essex, 2021), the𝑘
𝐸
−1 = 𝑘

𝑁
−1 − 𝑘

𝐶𝐻
−1

export posterior is then obtained by numerical integration (as described above) over the

convolution of the nuclear and chromatin posteriors (see resulting expression in Figure S3A).

Deterministically, the whole-cell RNA levels equal the sum of nuclear and cytoplasmic

RNA: T(t) = N(t) + CY(t) (Figure S3A). In absence of nuclear RNA degradation, the whole-cell

half-life thus equals the sum of nuclear and cytoplasmic half-lives (Figure S4H-I). In presence of

nuclear degradation (Table S2, see the next section for the PUND identification procedure), this

simple relation between half-lives no longer holds (Figure S4H-I).

Furthermore, for PUNDs the above nuclear export rate posterior is not appropriate,

because that calculation assumes no nuclear degradation is occurring. Deterministically, when

including a nuclear degradation rate in the model (Figure 1E), the nuclear turnover rate

becomes the sum of nuclear degradation and export rates (Figure S3A): .𝑘
𝑁

= 𝑘
𝑁𝐷

+ 𝑘
𝐸
𝑃𝑈𝑁𝐷

This minimal model extension does not consider the chromatin compartment explicitly. However,

in the limit that nuclear export after release from chromatin is much faster than the other rates,

the above expression becomes an exact equation where represents the rate of release𝑘
𝐸
𝑃𝑈𝑁𝐷

from chromatin (plus nuclear export) if not nuclear degraded, whilst equals the nuclear𝑘
𝑁𝐷

degradation rate, which can occur on chromatin and in the nucleoplasm. Indeed, this limit

assumption is consistent with our observations, because for PUNDs the observed chromatin

and nuclear turnover rate distributions are similar (Figure 5A). To estimate , we first𝑘
𝐸
𝑃𝑈𝑁𝐷

derived the deterministic nuclear degradation model whole-cell new RNA levels 𝑇𝑃𝑈𝑁𝐷(𝑘
→

,  𝑘
𝑃
, 𝑡)

in terms of (Figure S3A), and used our approach above to now derive the𝑘
→

= [𝑘
𝑁

, 𝑘
𝐶𝑌

 , 𝑘
𝐸
𝑃𝑈𝑁𝐷]
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whole-cell multivariate posterior over , followed by marginalization over and , to obtain𝑘
→

𝑘
𝑁

𝑘
𝐶𝑌

the posterior. Summary statistics were then determined as described above. Lastly, given𝑘
𝐸
𝑃𝑈𝑁𝐷

the nuclear posteriors over and , the posterior over was then derived𝑘
𝑁

𝑘
𝐸
𝑃𝑈𝑁𝐷 𝑘

𝑁𝐷
= 𝑘

𝑁
− 𝑘

𝐸
𝑃𝑈𝑁𝐷

(see expression in Figure S3A) and calculated through numerical integration (as described

above).

Least squares estimation (LSE) of the RNA flow rates acted as a simple deterministic

comparison model for the above described Bayesian probabilistic model. LSE was performed by

fitting the model to the MAP( ) timecourse values (scipy.optimize.least_squares,Λ
𝑋

(𝑘
→

, 𝑡) π

arguments: bounds=[10-6,∞], gtol=1e-14, ftol=1e-14, loss='linear'). For the multivariate cases,

the stepwise estimation approach was used again, as described above. For example, for the

cytoplasm, the LSE nuclear turnover rate estimate was inserted to enable fitting of . The𝑘
𝑁

𝑘
𝐶𝑌

LSE model suffers from the limitation that the uncertainty on the estimates and upstream RNAπ

flow rates is not taken into account. For the polysome compartment, this meant that no

reproducible estimates could be obtained with the LSE model, in contrast to our Bayesian𝑘
𝑃𝐿

model (Figure S3E). Because of the same drawback, the LSE, but not the Baysian model, also

predicted a number of biologically unlikely fast rate values (Figure S3E). Besides these

differences, we generally observed a strong correspondence between our Bayesian MAP and

LSE rate estimates (Figure S3E). In addition to these “best fit” estimates, provided by both

models, only the Bayesian model provides a full posterior distribution over the rate domain

(Figure 1G), and thus also a 95% CI (Figure S3E), which indicates the range of rate values

consistent with the subcellular Timelapse-seq data.

Since the NanoString approach provides single fraction of new RNA values, as opposed

to a posterior distribution, NanoStrings RNA flow rate estimation was performed with the LSE

model, as described above.
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Bayes Factor model comparison to identify nuclear RNA degradation

To perform formal Bayesian model comparison, we calculated the Bayes factor (Kass𝐾

and Raftery, 1995), i.e. the ratio of likelihoods of the kinetic model that includes a nuclear

degradation rate (alternative hypothesis M1) over the simpler “nuclear residence” model with no

nuclear degradation (null hypothesis M0): . D indicates the data, in this case𝐾 =
𝑃(𝐷|𝑀

1
)

𝑃(𝐷|𝑀
0
)

subcellular Timelapse-seq used to distinguish the two models: the timeseries of nuclear,

cytoplasmic and whole-cell fraction of new RNA posteriors (Figure S2B), as described in the

above sections. The likelihood for the nuclear residence model for gene g is then:

𝑃𝑔(𝐷|𝑀
0
) = 1

𝑘
ℎ𝑖

−𝑘
𝑙𝑜( )2  

𝑘
𝑙𝑜

𝑘
ℎ𝑖

∫
𝑘

𝑙𝑜

𝑘
ℎ𝑖

∫
𝑖=1

4

∏ 𝑃
𝑁,𝑡

𝑖

𝑔 (π = Λ
𝑁

(𝑘
𝑁

, 𝑡
𝑖
))𝑃

𝐶𝑌,𝑡
𝑖

𝑔 (π = Λ
𝐶𝑌

(𝑘
𝑁

, 𝑘
𝐶𝑌

, 𝑡
𝑖
)) ×

𝑃
𝑇,𝑡

𝑖

𝑔 (π = Λ
𝑇
(𝑘

𝑁
, 𝑘

𝐶𝑌
, 𝑡

𝑖
))𝑑𝑘

𝑁
𝑑𝑘

𝐶𝑌

And the equivalent for the nuclear degradation model:

𝑃𝑔(𝐷|𝑀
1
) = 1

𝑘
ℎ𝑖

−𝑘
𝑙𝑜( )3  

𝑘
𝑙𝑜

𝑘
ℎ𝑖

∫
𝑘

𝑙𝑜

𝑘
ℎ𝑖

∫
𝑘

𝑙𝑜

𝑘
ℎ𝑖

∫
𝑖=1

4

∏ 𝑃
𝑁,𝑡

𝑖

𝑔 (π = Λ
𝑁

(𝑘
𝑁

, 𝑡
𝑖
))𝑃

𝐶𝑌,𝑡
𝑖

𝑔 (π = Λ
𝐶𝑌

(𝑘
𝑁

, 𝑘
𝐶𝑌

, 𝑡
𝑖
)) ×

 𝑃
𝑇,𝑡

𝑖

𝑔 (π = Λ
𝑇
𝑃𝑈𝑁𝐷(𝑘

𝑁
, 𝑘

𝐶𝑌
, 𝑘

𝐸
𝑃𝑈𝑁𝐷 , 𝑡

𝑖
))𝑑𝑘

𝑁
𝑑𝑘

𝐶𝑌
𝑑𝑘

𝐸
𝑃𝑈𝑁𝐷

=10-4 and =104 min-1 indicate the prior rate domain bounds. Note that, although the nuclear𝑘
𝑙𝑜

𝑘
ℎ𝑖

degradation rate is not explicitly present in the above equation, it is still included in this model

since by definition . We calculated these integrals numerically (as described in𝑘
𝑁𝐷

: = 𝑘
𝑁

− 𝑘
𝐸
𝑃𝑈𝑁𝐷

the previous section).

When , it is considered “decisive” evidence in favor of the alternative model,𝐾 > 100 

and “strong” evidence if ranges from 10 to 100 (Kass and Raftery, 1995). In our case, genes𝐾

with transcripts predicted to undergo nuclear RNA degradation (PUNDs) are defined as having
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for both biological replicates (Table S2). Bayes factors and model likelihoods for all𝐾 > 100

genes and replicates are included in Table S1.

Lastly, for each PUND gene, we estimated , the average fraction of transcripts that𝑓
𝑁𝐷

are nuclear degraded as opposed to exported: , using the mean nuclear𝑓
𝑁𝐷

=
𝑘

𝑁𝐷

𝑘
𝑁𝐷

+𝑘
𝐸
𝑃𝑈𝑁𝐷

degradation ( ) and export ( ) rates as described in the previous section. With these𝑘
𝑁𝐷

𝑘
𝐸
𝑃𝑈𝑁𝐷

fractions, we then estimated the total cellular fraction of nuclear degraded protein-coding

transcripts as: . indicates the gene-specific steady state mRNA𝑓
𝑁𝐷
𝑐𝑒𝑙𝑙 = 𝑃𝑈𝑁𝐷 𝑔𝑒𝑛𝑒𝑠 𝑔

∑ 𝑘
𝑝
𝑔𝑓

𝑁𝐷
𝑔

𝑎𝑙𝑙 𝑔𝑒𝑛𝑒𝑠 𝑔
∑ 𝑘

𝑝
𝑔

𝑘
𝑝
𝑔

production rate (unit: RPKM min-1 ), as estimated from the chromatin compartment RNA levels

(units: RPKM) and our chromatin turnover rates: . We also confirmed our𝑘
𝑝
𝑔 = 𝑅𝑃𝐾𝑀

𝐶𝐻
𝑔  × 𝑘

𝐶𝐻
𝑔

conclusions were consistent when using RNA production rate estimates derived from our

whole-cell Timelapse-seq data. Notably, whole-cell estimates suffer from the drawback that

whole-cell turnover rates are a convolution of nuclear and cytoplasmic degradation rates in the

case of PUNDs, which then underestimate the resulting production rate estimates. Using the

chromatin compartment data resolves this bias.

Hierarchical clustering of genes by RNA flow rates

Hierarchical gene clustering (scipy.hierarchy.linkage, arguments: metric ='seuclidean',

method='complete', optimal_ordering=False) was performed on log-transformed half-lives, i.e.

, with the MAP and 95% credible interval (CI) endpoints of the turnover𝑙𝑛(𝑡
1/2

) = 𝑙𝑛 𝑙𝑛(2)
𝑘( ) 𝑘

rate posteriors, for two biological replicates and all the subcellular compartments: chromatin,

nucleus, cytoplasm, polysome and whole-cell. Genes with missing half-live values were

excluded. Other RNA flow rates, i.e. nuclear export and degradation, are derived from these
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subcellular compartment posteriors, and therefore not used for clustering, but nevertheless

included in the heatmap for visualization (Figure 2B). For the polysome compartment, only the

95% CIs were used, given that their MAP values were less reproducible across biological

replicates (Figure S3D). To identify gene clusters (scipy.hierarchy.fcluster, arguments:

criterion='maxclust'), we allowed sufficient granularity through a total cluster number of 50. To

ensure the robustness of our findings (Figure 2B), the following downstream analyses were also

repeated with a total cluster number of 35 and 100. Next, we filtered out all clusters that

comprised of genes with irreproducible patterns, i.e. if the median of the half-lives within a

cluster differed at least 4 fold between biological replicates for any of the compartments. This

resulted in 27 clusters with reproducible patterns, comprising 10,326 genes. Lastly, we

reordered the genes from short to long half-lives, whilst respecting the hierarchical clustering (R

version 4.1.1, package pheatmap v1.0.12, function: reorder, arguments: agglo.FUN = mean),

after which the heatmap with clustered half-lives was visualized (package pheatmap, function:

pheatmap, Figure 2B).

Functional analysis of genes clustered by RNA flow rates

Gene Ontology enrichment analysis of each human gene cluster was performed in

Python (package: GOAtools v1.1.6, object: GOEnrichmentStudyNS, arguments:

propagate_counts = True,  alpha = 0.05/27, to correct for the multiple testing over all 27

clusters, methods = ['fdr_bh'], Benjamini Hochberg multiple testing correction over the GO

terms, and gene_universe = all human genes with any RNA flow rates) (Klopfenstein et al.,

2018). For each cluster, the most enriched GO term, i.e. with highest odds ratio (Figure 2B), and

all significant GO terms are listed (Table S3). GO enrichment analysis of the human and mouse

PUND genes was performed as for the gene clusters, except with alpha=0.05, and for mouse
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PUNDs with mouse GO annotations and mouse-specific gene_universe (Figure 2A, S5A, Table

S3).

Gene set enrichment analysis (GSEA) (Subramanian et al., 2005) was performed with

MSigDB (v7.5.1) gene sets h.all, c5.all, c3.all and c2.all (Liberzon et al., 2015), and parameter

settings as in (Ietswaart et al., 2021). Briefly, GSEAPreranked (v4.2.2) was run with ranked,

Z-score normalized, log-transformed mean half-lives of each human RNA flow rate type as .rnk

input file (Table S4).

RNA binding protein associations with RNA flow rates

K562 eCLIP data for a total of 120 RBPs from (Van Nostrand et al., 2020) was analyzed.

The following RNA binding proteins were excluded from the following analyses due to extremely

low number of target genes: SLBP, SBDS, UTP3, SUPV3L1, WDR3, PUS1, GNL3, and RPS11.

To identify RBPs with significant associations with RNA flow, each replicate of the K562 RNA

flow rates were analyzed independently. For each RBP and subcellular half-life, genes were

identified as “targets” if the gene contained at least one eCLIP peak with significant enrichment

over input. The half-lives of target genes were compared to the half-lives of “non-target” genes

(those lacking any significant eCLIP peaks) using a Wilcoxon test with Bonferroni multiple

testing correction. The target/non-target half-life was quantified by dividing the median target

half-life / median non-target half-life. To identify RBPs containing targets significantly enriched

for PUND genes, the targets and non-targets were defined as above. Enrichment was quantified

by performing a Fisher’s exact test with Bonferroni multiple testing correction.
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shRNA knockdown of DDX3X and PABPC4

K562 knockdown lines were generated according to (Sundararaman et al., 2016) with

slight modifications. Plasmid DNA was purified from pLKO.1 backbone vectors expressing

shRNAs targeting DDX3X (Horizon Discovery, TRCN0000000003), PABPC4 (Horizon

Discovery, TRCN0000074658), and a scrambled control (Addgene 1864). In parallel, psPAX2

(Addgene 12260) and pMD2.G (Addgene 12259) lentiviral plasmid DNA was purified. All

plasmid DNA was quantified by Nanodrop. HEK-293T cells growing in 6-well plates at 50%

confluency were transfected with 500ng of shRNA-expressing plasmid, 500ng of psPAX2

plasmid, 50ng of pMD2.G plasmid, and 3.1ul FuGENE HD transfection reagent (Promega

E2311) in a total volume of 100ul with Opti-MEM I media (ThermoFisher 31985062). Media was

discarded after 24 hours and lentiviral-containing media was collected at 48 and 72 hours after

transfection (replacing media every 24 hours) and stored at -80°C. Lentiviral transduction was

performed by combining 2×106 K562 cells in 1.75mL media, 1.25mL thawed lentiviral-containing

media, and 24ug polybrene (Sigma TR-1003-G). Cells were centrifuged at 1,000 RCF at 33°C

for 2 hours, the supernatant was discarded, and replaced with 3mL of K562 media. After 24

hours, 3ug/mL puromycin (Sigma P9620) was added and cells were maintained in the presence

of the antibiotic at 0.2-1.0×106 cells/mL for 4 days. Knockdowns were confirmed by western

blotting analyses.

Poly(A) selection and direct RNA sequencing

Poly(A)+ selected from 15-30ug of RNA using the Dynabeads mRNA purification kit

(ThermoFisher 61006) according to the manufacturer's protocol and quantified by Nanodrop.

Synthesis of yeast spike-in RNAs was modeled after the protocol described in

https://www.ebi.ac.uk/ena/browser/view/PRJEB28423?show=reads for the S. cerevisiae ENO2

gene. Briefly, six different S. cerevisiae genes (BDC1, ICT1, HIF1, ENO2, YKE4, HMS2) were
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amplified from their genomic locus using HiFi Hotstart DNA polymerase (KAPA ) (primers in

Table S9) in a total volume of 100 uL using the following cycling conditions: 3 minutes at 95°C,

then 30 cycles of 15 seconds at 95°C, 15 seconds at 62°C, 2 minutes at 72°C. The PCR

amplicons were purified using 1X volume RNA Clean XP beads and eluted in 33 uL water. A

second round of PCR was performed with nested primers, wherein the forward primer encodes

a T7 RNA polymerase promoter site and the reverse primers have either 10, 15, 30, 60, 80, or

100 thymidines on the 5’ end (primers in Table S9) using the following cycling conditions: 3

minutes at 95°C, then 18 cycles of 15 seconds at 95°C, 15 seconds at 62°C, 2 minutes at 72°C.

The PCR amplicons were purified using 1X volume RNA Clean XP beads and eluted in 33 uL

water. In vitro transcription was performed using 500ng of DNA template and the MEGAScript™

T7 Transcription kit (ThermoFisher AM1334) according to the manufacturer’s instructions. RNA

was cleaned up with the MEGAClear™ Transcription Clean-up kit (ThermoFisher AM1908)

according to the manufacturer’s instructions, the concentration was measured by Nanodrop,

and the size of the transcripts was verified by TapeStation (Agilent). The six transcripts were

pooled at an equimolar concentration (10 picomoles each). 400-700ng of poly(A)+ RNA was

combined with 5% spike-in RNA and used to generate direct RNA sequencing libraries with the

SQK-RNA002 kit (Oxford Nanopore Technologies) according to the manufacturer’s protocol,

except for the ligation of the reverse transcription adapter (RTA), which was incubated for 15

minutes instead of 10 minutes. Samples were sequenced on a MinION device (Oxford

Nanopore Technologies) with FLO-MIN106D flow cells for up to 72 hours with live basecalling

using MinKNOW.
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Direct RNA sequencing data analysis

All reads with a base calling threshold >7 were converted into DNA sequences by

substituting U to T bases. Reads were aligned to the reference human genome (ENSEMBL

GRCh38, release-86) concatenated with the six yeast spike-in sequences using minimap2

(version 2.10-r764-dirty) (Li, 2011) with parameters -ax splice -uf -k14. Poly(A) tail lengths were

estimated using nanopolish v0.13.3 (Workman et al., 2019). Raw signal fast5 files were indexed

with nanopolish index and poly(A) tail lengths were calculated with nanopolish polya using

default parameters. Reads with the quality control flag ‘‘PASS’’ and with estimated tail lengths

greater than 0 were used in subsequent analyses. To map aligned reads to annotated genes

from ENSEMBL GRCh38 (release-86), we used bedtools intersect (Quinlan and Hall, 2010) with

options -s -F 0.5 -wo -a $ensembl_bed_file -b $bam, requiring that at least half of the read map

to a given gene. For subsequent poly(A) tail length analyses, we filtered for protein-coding

genes with at least 10 mapped reads in each sample.

For normalization of poly(A) tail lengths to the spike-ins, we used a median of ratios

strategy modeled after the size factor calculation for differential gene expression in DESeq

(Love et al., 2014). Poly(A) tail lengths from reads mapping to the yeast spike-in sequences

were extracted. For each spike-in, the median poly(A) tail length was calculated in each sample

and the geometric mean of medians across samples was computed. The ratio of the median

poly(A) tail length per sample over the geometric mean was calculated. Finally, the size factor

was defined as the median of ratios across the six spike-ins in each sample. Poly(A) tail lengths

from endogenous genes were divided by this size factor for each read, yielding the normalized

poly(A) tail length. Of note, the size factors ranged between 0.95 and 1.02 (Figure S7B),

indicating low technical variability between sequencing runs.

Analysis of RNA 3’ ends (deriving from the 50 ends of sequenced reads) was performed

as described in (Drexler et al., 2020, 2021). Briefly, “Poly(A)’’ sites are defined as regions within
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50 nucleotides of the end coordinate of annotated protein-coding genes or RNA-PET

annotations from cytoplasm and chromatin fractions in K562 ENCODE data (ENCODE Project

Consortium, 2012). Determining the splicing status of introns and reads was performed as

described in (Drexler et al., 2020, 2021). Code for the analysis of RNA 3’ ends and determining

the splicing status of introns and reads are available at

https://github.com/churchmanlab/nano-COP.

LASSO machine learning model for RNA flow rate determinants

The objective was to develop a machine learning model that explains a gene-specific

RNA flow rate value in terms of that gene’s molecular and genetic features (Figure S9A). Given

the large number of input features (70145, Table S7), LASSO regression was chosen as a

model because it is a linear model, , with L1 regularization, which ensures sparse𝑦 = β𝑋

feature selection (Hastie et al., 2001): (Python, package𝐿𝑜𝑠𝑠 = 1
2𝑁 ||𝑦 −  β𝑋||

2
2 +  α||β||

1

scikit-learn v1.0.1, function linear_model.Lasso, arguments:  fit_intercept=False,

random_state=42, selection='random', max_iter and alpha as specified below). RNA flow rates

with genome-wide coverage, i.e. chromatin, nuclear, cytoplasmic, untranslated cytoplasm, and

whole-cell turnover and nuclear export, were log-transformed, followed by Z-score

normalization, resulting in the model dependent variable (y). Rates from different genes

constitute independent data points used for model training (N). The input features originated

from various sources and were grouped into classes based on their biological type (Table S7).

Features classes gene location, histone modifications, microRNA targets, RBP targets, and TF

targets correspond to gene sets, i.e. categorical features that were one hot encoded into the

LASSO feature matrix (X). All other features were quantitative, and therefore Z-score

normalized to facilitate regularization.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2022. ; https://doi.org/10.1101/2022.08.21.504696doi: bioRxiv preprint 

https://paperpile.com/c/46oGud/rdFy+nwfFY
https://github.com/churchmanlab/nano-COP
https://paperpile.com/c/46oGud/3R5lP
https://doi.org/10.1101/2022.08.21.504696
http://creativecommons.org/licenses/by-nc-nd/4.0/


To learn the relevant features, and their effect sizes (coefficient vector ), that bestβ

explain the rate variation across the genome, we took a two step learning approach. We split the

rates into a 90% training set and a 10% test set, with an identical split between biological

replicates. Next, we performed the following round 1 LASSO for each feature class separately

(Figure S9A): (1) Using the features from an individual class, we performed 10x cross validation

(CV) twice, once on the training rates from each biological replicate, for a range of values of

hyperparameter α : [10-4, 10-3, 10-2, 10-1] if the number of features < 1000, or else: [10-3, 10-2,

10-1], and max_iter_ = 2e4. (2) The optimal (round 1) α was then identified, such that the 10x CV

R2 distribution, joined over both replicate runs, was significantly larger than zero in a one-way

t-test (p < 0.05, scipy.stats.ttest_1samp, arguments: popmean=0, nan_policy='omit',

alternative='greater') and larger than any previously selected α in a two-way t-test (p < 0.05,

scipy.stats.ttest_rel, arguments: nan_policy='omit', alternative='greater'), similar to a selection

approach by (Agarwal and Kelley, 2022). If the average performance did not exceed 0 for any α,

none of the features were selected for LASSO round 2 from that particular class. (3) Given the

optimal α values for each replicate, any individual feature i with a model coefficient inβ
𝑖

> 0

both replicate runs, were thus reproducible and (round 1) relevant and thus selected for round 2

learning.

Next, round 2 LASSO was performed: (1) Reproducible round 1 relevant features from

all classes were merged into one feature matrix. (2) The training set rates from both biological

replicate were joined into the same 10x CV data split to increase the amount of training data. (3)

10x CV was then performed with a fine-grained range for α: [10-4, 3.3x10-4, 6.6x10-4, 10-3,

3.3x10-3, 6.6x10-3, 10-2, 3.3x10-2, 6.6x10-2, 10-1] and max_iter_ = 5e4. (4) The final optimal α was

then identified by finding the maximal average 10x CV R2, such that the average 10x CV

prediction R2 did not exceed the average 10x CV training R2 by more than 10% (Figure 6B,

S9B), to avoid overfitting and robust identification of relevant features. (5) Given the optimal α
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value, any feature i with a (round 2) model coefficient was considered a relevant featureβ
𝑖

> 0

(Figure 6C-D, S9C-D, Table S7). (6) Lastly, we tested the trained round 2 LASSO model by

determining its performance on the 10% unseen test set (Figure 6B, S9B).

For the “consensus” whole-cell half-lives (Agarwal and Kelley, 2022), the 10x CV and

testing was performed as in round 2 LASSO, described above, with reproducible round 1

relevant features from our whole-cell turnover rates (Figure S9B).

Continuous averaging plots (Figure 6E, S9E), were generated as in (Ietswaart et al.,

2017), with minor modifications. First, genes were ranked according to their gene𝑔 = 1 ..  𝑁

length from short to long, where N is the total number of genes. This was followed by calculation

of the “continuous” averages, with ), over these ranked gene< 𝐿
𝑘

> 𝑘 =  1 ..  (2𝑁 − 1

subpopulations of their gene length , i.e. the independent variable: and𝐿 < 𝐿
𝑘

>: = 1
𝑘

𝑔=1

𝑘

∑ 𝐿
𝑔

. Next, the corresponding continuous median, and Q25 and Q75< 𝐿
𝑁+𝑘

>: = 1
𝑁−𝑘

𝑔=1+𝑘

𝑁

∑ 𝐿
𝑔

(shaded error bands) of the hal- lives, i.e. dependent variables, were calculated over the same

gene subpopulations. The shortest 1% and longest 1% of genes were excluded from this

analysis.

Transcription factor associations with RNA flow rates

The same transcription factor target gene sets were used as the input features in our

LASSO model (Table S7). The statistical analysis was performed as for the RBP targets as

described above in RNA binding protein associations with RNA flow rates.
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Supplementary Tables

Table S1: RNA flow rates of protein-coding genes in human K562 and mouse NIH-3T3 cells.

Table S2: Gene lists generated and used in this study.

Table S3: Gene ontology (GO) enrichment results in human K562 and mouse NIH-3T3 cells.

Table S4: Gene set enrichment analyses (GSEA) of each RNA flow rate with genes ranked by

subcellular half-lives in human K562 cells.

Table S5: RNA binding proteins significantly associated with RNA flow rates in human K562

cells.

Table S6: Normalized median subcellular and whole-cell poly(A) tail lengths of protein-coding

genes in human K562 cells.

Table S7: LASSO model features and performances.

Table S8: Transcription factors significantly associated with RNA flow rates in human K562

cells.

Table S9: Primers, antibodies, and plasmids used in this study.
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Figure 1: Subcellular TimeLapse-seq and kinetic modeling estimate genome-wide RNA flow rates.

(A) Schematic representing subcellular TimeLapse-seq. Cells were pulse-labeled with 4-thiouridine
(4sU) and biochemically fractionated into subcellular compartments. TimeLapse-seq libraries
were prepared from each sample and the fraction of newly synthesized RNA per gene was
estimated (see Fig. S2B and Methods for details).

(B) Western blot of subcellular marker proteins: GAPDH and LSM14A, cytoplasmic proteins; U1
snRNA, nucleoplasmic protein; histone H3 and RNA pol II, chromatin proteins.

(C) Subcellular TimeLapse-seq data for example genes (Myc, Foxg1, Rps24) in mouse NIH-3T3
cells. Dots represent the fraction of new RNA MAP values for one replicate, while vertical lines
represent the 95% credible intervals (CIs).

(D) Genome-wide subcellular TimeLapse-seq data for all protein-coding genes in human K562 and
mouse NIH-3T3 cells. Fraction of new RNA MAP values for each gene are shown for one
replicate.

(E) Schematic of the RNA flow model (see Fig. S3A and Methods for details).

(F) RNA flow model fit to subcellular TimeLapse-seq data for the example genes shown in (C). The
dark lines represent the RNA flow rate MAPs while the ribbons show the 95% CIs. Colors are
consistent with the RNA populations in (C).

(G) Posterior distributions for each RNA flow rate modeled in (F) with the MAPs represented with
vertical lines and 95% CIs in shading. Colors are consistent with the rates shown below in (H).

(H) Genome-wide subcellular half-lives for all protein-coding genes in mouse NIH-3T3 and human
K562 cells. Nuclear degradation rates are only included for genes best explained by this model.
Mean half-lives are shown and the number of genes noted.
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Figure 2: Genes with similar rates of RNA flow across the cell are functionally related.

(A) Genes with a Bayes factor >100 in both replicates were labeled as those predicted to undergo
nuclear degradation (PUNDs, shown in red) in human K562 cells. PUNDs are additionally colored
by their associated enriched GO terms.

(B) Hierarchical clustering of human genes according to their RNA flow rates (MAPs and 95%
credible intervals). The most enriched GO annotations for each cluster are displayed on the right
(full results in Table S3).

(C) Fast flow genes, i.e. those in cluster 1 in (B), were enriched for functions related to intracellular
signaling and response to stimuli. All comparisons were statistically significant (p<0.0001,
Wilcoxon test).

(D) Half-lives of ribosomal protein genes (RPGs) from each cluster where they were enriched
(clusters 2, 5, 11, 25, and 27 in (B)). The number of RPGs within each cluster is noted.
Non-significant comparisons are indicated as “ns” and all other comparisons were statistically
significant (p<0.05, Wilcoxon test).

(E) Half-lives of histone genes. Canonical, replication-dependent histone genes were enriched in
cluster 4, while non-canonical, replication-independent histone genes (including histone variants)
were enriched in cluster 8. The number of histone genes of each type is noted, and significance
was noted as in (D).

(F) Half-lives of clusters 2 and 6, containing genes related to transcription, and cluster 5, containing
genes related to translation. The number of genes in each group is noted, and significance was
noted as in (D).
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Figure 3: The targets of many RNA binding proteins (RBPs) exhibit distinctive RNA flow rates
across the cell

(A) Schematic for RBP analysis. The mRNA binding targets of 120 RBPs in K562 were determined
by identifying genes with significant eCLIP peaks published in (Van Nostrand et al., 2020).

(B) All RBPs with targets that exhibited significantly fast or slow half-lives for target RNAs compared
to non-target RNAs in both biological replicates (adjusted p<0.01, Wilcoxon test, Bonferroni
multiple testing correction) across any RNA flow rate. The size of the dot indicates the number of
target mRNAs with measured half-lives within each compartment and the color reflects the
difference (red, faster; blue, slower) of the median target over non-target half-lives.

(C) Half-lives of DDX3X mRNA targets and non-targets. The chromatin, nuclear, and nuclear export
half-lives of targets are compared to non-target mRNAs (****: p<0.0001, ***: p<0.001, “ns:” not
significant, Wilcoxon test).

(D) Fraction of new nuclear RNA measured by subcellular TimeLapse-seq of DDX3X target mRNAs
compared to all other mRNAs in wild-type cells, cells expressing a DDX3X-targeting shRNA, and
cells expressing a scrambled shRNA. Significance was noted as in (C). Two biological replicates
(“rep”) are shown.

(E) Same as (C) for PABPC4 target genes.

(F) Same as (D) for PABPC4.
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Figure 4: Subcellular compartment-specific poly(A) tail lengths reflect RNA flow rates

(A) Schematic for poly(A) tail length analysis. Chromatin, cytoplasm, polysome, and total RNA from 
K562 cells were directly sequenced by nanopores. The poly(A) tail length on each RNA was 
estimated using nanopolish-polya (Workman et al., 2019), and synthetic RNA spike-ins were 
used to normalize poly(A) tail length across sequencing runs.

(B) Poly(A) tail lengths per RNA across compartments for example genes (RPL9, DDX5, WSB1, 
TRAPPC3). Each dot represents an individual RNA. The mean chromatin, nuclear degradation, 
cytoplasm, and whole-cell half-lives for one replicate are indicated below each gene, with the 
error bars representing credible intervals.

(C) Distribution of median poly(A) tail lengths for each gene covered by >=10 reads in each sample. 
The number of genes analyzed in each compartment is noted.

(D) Median poly(A) tail length for genes covered by >=10 reads in chromatin RNA libraries as a 
function of chromatin RNA half-life.

(E) Poly(A) tail lengths on chromatin as a function of splicing status. Poly(A) tail lengths were 
analyzed for all chromatin RNA reads with incomplete splicing (containing at least one 
unexcised intron), binned by the number of introns present.

(F) Median total RNA poly(A) tail length for genes covered by >=10 reads in total RNA libraries as a 
function of whole-cell half-life.

(G) The difference between the median chromatin poly(A) tail length and the median cytoplasm 
poly(A) tail length for all genes covered by >=10 reads in each library, as a function of their 
cytoplasm half-life.

(H) Median poly(A) tail length in total RNA as a function of the relative amount of time spent on 
chromatin and in the cytoplasm for each transcript, defined as the ratio of chromatin half-life to 
cytoplasm half-life. Genes covered by >=10 reads in total RNA libraries were included.

(I) Model of compartment-specific poly(A) tail lengths with respect to subcellular half-lives. Poly(A) 
tails of chromatin-associated RNAs lengthen with increased chromatin residence, while 
cytoplasmic poly(A) tails shorten with increased cytoplasmic residence.
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Figure 5: Genes predicted to undergo nuclear degradation (PUNDs) exhibit unique phenotypes
related to RNA flow, splicing, and poly(A) tail lengths.

(A) Half-lives of all PUND genes (n=408) compared to all other genes in human K562 cells (****:
p<0.0001, *: p<0.05, “ns:” not significant, Wilcoxon test).

(B) Volcano plot representing the odds ratio and adjusted p-value obtained from a Fisher’s exact test
comparing the target and non-target mRNAs for each RBP analyzed in Figure 3 (n=120) to
determine which RBPs have enriched PUND targets. RBPs are colored by function as defined by
(Van Nostrand et al., 2020), with “other” representing any function that is not “spliceosome.”

(C) Splicing levels of PUND and other transcripts in nanopore direct RNA sequencing data across
subcellular compartments and in total RNA. Error bars show standard error over two biological
replicates.

(D) Median poly(A) tail length of PUND genes relative to others across subcellular compartments.
The median poly(A) tail length was calculated for each gene covered by >= 10 reads in each
sample. Tail lengths were compared between PUND and other genes, significance was noted as
in (A).
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Figure 6: LASSO regression model identifies most relevant genetic and molecular features that
predict RNA flow rates.

(A) Schematic representing the genetic and molecular features for each gene included in LASSO
model (full list: Table S7).

(B) 10x cross validation and test set performances of LASSO models predicting subcellular rates.

(C) Class feature importances of LASSO models.

(D) Top individual features associated with RNA flow. The top 10 features with highest importance of
each flow rate were identified and their correlation with any flow rate was shown. Individual
features were grouped by feature family as in (C).

(E) Continuous averages of chromatin and nuclear half-lives as a function of gene length in human
K562 cells. Solid lines represent median half-lives and shaded ribbons represent the third quartile
(top) and first quartile (bottom) of half-lives.

(F) Schematic depicting relevant features related to RNA flow rates. Features are included in the
compartments where they associate with RNA flow rates (top: chromatin, nuclear, and nuclear
export half-lives; bottom: cytoplasm and untranslated cytoplasm half-lives).
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Supplemental Figure 1: Optimization of biochemical fractionation and 4-thiouridine labeling
conditions used in subcellular TimeLapse-seq, related to Figure 1.

(A) SABER-FISH was performed in mouse NIH-3T3 cells to visualize Myc mRNA according to (Kishi
et al., 2019) following 2 hours of 500uM 4sU treatment relative to no 4sU treatment. In addition to
hybridizing Myc mRNA probes, concurrent immunohistological staining of Lamin B1 and
alpha-Tubulin was performed to stain the nucleus and cytoplasm, respectively. mRNA puncta
were identified according to (West et al., 2022), and nuclear and cytoplasmic regions within the
image were segmented (see Methods for details). Using these defined regions, mRNA puncta
were identified as nuclear or cytoplasmic and the puncta intensity within each compartment was
summed over all cells in each field of view. A total of 25-30 fields of view were analyzed for all
genes.

(B) Summary of data for all genes (Myc, Foxo3, Smad3, Gfod1) analyzed according to (A). A t-test
was performed to compare the differences in intensities between 4sU-treated and control cells
(“ns:” non-significant).

(C) Number of differentially expressed genes across subcellular compartments in cells following 2
hours of 4sU pulse-labeling relative to no labeling. Differentially expressed genes were defined as
those with fold change>2 or <0.5 with an adjusted p-value of <0.01 when comparing RNA-seq
read counts to the unlabeled samples for each compartment using DESeq2 (Love et al., 2014).

(D) Purification of actively translating ribosomes by sucrose density gradient ultracentrifugation.
Polysome profiling traces of K562 cell lysate were measured following no drug treatment (red) or
1 hour of 100ug/ml puromycin treatment (blue). Each fraction was also analyzed by western
blotting for a ribosomal protein (RPS6) and a P-body component (LSM14A). Fractions 5+ were
pooled and used to isolate polysome-associated RNA.
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Supplemental Figure 2: Nucleotide conversion analysis estimates the fraction of new RNA in a
compartment- and time point-specific manner, related to Figure 1.

(A) Frequency of T>C mismatches in RNA-seq reads relative to 4sU pulse durations. The frequency
of mismatches is calculated for each read as the number of T>C mismatches over the total
number of Ts per fragment (using both forward and reverse reads). A total of 1,000 reads are
analyzed for each sample. Dots represent individual fragments.

(B) Computational analysis pipeline for subcellular TimeLapse-seq data (see Methods for details).

(C) Schematic for NanoStrings-based and subcellular TimeLapse-seq estimation of fraction of new
RNA. Top: TimeLapse-seq analysis uses an oxidative nucleophilic-aromatic substitution reaction
(Schofield et al., 2018) to recode the 4-thiouridine (4sU) molecules as cytosines, resulting in the
incorporation of a guanine nucleotide during the reverse transcription step of library preparation.
These are subsequently converted into cytosines during PCR amplification and identified
computationally as T (genome) to C (sequencing read) mismatches during alignment. The
fraction of new RNA per gene is estimated from sequencing reads as per (B). Bottom:
NanoStrings-based analysis starts with the covalent biotinylationation of 4sU molecules, followed
by the removal of 4sU-labeled RNAs by incubating the sample with streptavidin beads and
retaining the supernatant (unbound RNAs). The number of RNAs per gene in the remaining
sample (unlabeled RNAs) is determined by hybridization with NanoString probes. The fraction of
4sU-labeled is determined by normalizing the RNA counts to an unlabeled spike-in RNA and
comparing to no 4sU control (see Methods for more detail).

(D) Fraction of new RNA within nuclear (left), cytoplasmic (middle), and total RNA (right)
compartments as measured by subcellular TimeLapse-seq and NanoStrings for two example
genes (MED26 and FTSJ1) in human K562 cells. Two biological replicates (“rep”) are shown for
each approach.

(E) Correlation of fraction of new RNA between NanoStrings and subcellular TimeLapse-seq for all
genes and compartments. The data shown in (D) is summarized by calculating a nuclear,
cytoplasm, and whole-cell half-life for each gene included in the Nanostrings panel (n=20) with
the fraction of new RNA from each technique. Half-lives are calculated from NanoStrings-based
fraction of new RNA values with least squares estimates (see Methods for more detail). Each dot
represents one gene. Mean half-lives between replicates for each technique are plotted with the
Pearson correlation. The horizontal error bars represent the 95% credible intervals from the RNA
kinetic flow model from subcellular TimeLapse-seq.
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Supplemental Figure 3: RNA flow can be modeled using a series of ordinary differential equations
in a Bayesian framework, related to Figure 1.

(A) Schematic of RNA kinetic modeling (see Methods for more detail).

(B) Rps24 model fits in the absence of nuclear degradation, related to Figure 1F (subcellular
TimeLapse-seq in mouse NIH-3T3). Colors are consistent with Figure 1F.

(C) Correlation between whole-cell (total RNA) half-lives measured in K562 cells in this study and in a
previous study. The mean total RNA half-life between replicates, calculated using TimeLapse-seq
following a single 4sU pulse (Schofield et al., 2018), was compared to the mean whole-cell
half-lives between replicates in this study. Pearson’s correlation is shown and the number of
genes is noted. Each dot represents one gene.

(D) Reproducibility of RNA flow rates across biological replicates. For each flow rate, the mean
half-life is compared between replicates. Pearson's correlation is shown and the number of genes
is noted. Each dot represents one gene.

(E) Comparison between the Bayesian model and a least squares model. The Bayesian MAP
half-life for each subcellular compartment for one replicate is compared with the least squares
estimate. Pearson's correlation is calculated and the number of genes is noted. Each dot
represents one gene. Error bars indicate 95% credible interval of Bayesian half-lives.
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Supplemental Figure 4: RNA flow rates show consistent genome-wide patterns between cell lines,
related to Figure 1.

(A) Correlation between chromatin and nuclear RNA half-lives in human K562 cells. Mean half-lives
for each rate are compared with the Pearson correlation and number of genes noted. Each dot
represents one gene.

(B) Same as (A) in mouse NIH-3T3 cells.

(C) Distribution of the ratio of chromatin to nuclear half-lives, showing that nuclear RNA is
predominantly chromatin-associated (ratio>0.5) for a majority of genes. Data for both human
K562 and mouse NIH-3T3 cells is shown as a histogram.

(D) Correlation between untranslated cytoplasm and cytoplasm half-lives, showing that these rates
are not related in human K562 cells. Mean half-lives of each rate are compared with the Peason
correlation and number of genes noted. Each dot represents one gene.

(E) Same as (D) in mouse NIH-3T3 cells.

(F) Comparison of nuclear half-lives or cytoplasm half-lives to whole-cell half-lives in human K562
cells. Mean nuclear half-lives (left) or mean cytoplasmic half-lives (right) are compared to mean
whole-cell half-lives with the Pearson correlation and number of genes shown. Each dot
represents one gene.

(G) Same as (H) in mouse NIH-3T3 cells.

(H) Density distribution of the “predicted” whole-cell half-life (the sum of the nuclear and cytoplasm
half-lives) divided by the observed whole-cell half-life. Genes with model fits without nuclear
degradation are shown in gray and genes with model fits including nuclear degradation are
shown in red.

(I) Same as (H) in mouse NIH-3T3 cells.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2022. ; https://doi.org/10.1101/2022.08.21.504696doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.21.504696
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2022. ; https://doi.org/10.1101/2022.08.21.504696doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.21.504696
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure 5: Functionally related genes exhibit similar RNA flow, related to Figure 2.

(A) Identification of PUND genes in mouse NIH-3T3 cells. The Bayes factor and nuclear degradation
rate are shown for each gene as in Figure 2A.

(B) Venn diagram showing the number of unique and common PUND genes between mouse
NIH-3T3 and human K562 cells. A Fisher’s exact test was performed to test the significance of
the number of common genes. This common gene list included ribosomal protein genes (RPGs),
heterogeneous nuclear ribonucleoproteins (hnRNPs), and SR splicing factors (SRSFs).

(C) RNA flow rates for genes involved in TNF-alpha signaling via NF-κB, as defined by GSEA
MSigDB (Subramanian et al., 2005). Subcellular half-lives were compared between groups using
a Wilcoxon test (****: p<0.0001, ***: p<0.001, **: p<0.01).
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Supplemental Figure 6: RNA binding proteins are associated with RNA flow rates, related to
Figure 3.

(A) Comparison of chromatin RNA half-lives between target and non-target mRNAs of each RBP
according to Fig. 3A. The median chromatin half-life of the targets was compared to the median
chromatin half-life of the non-targets with a Wilcoxon test (x-axis) with RBPs associated with
slower target turnover in blue and RBPs with faster target turnover in red. The adjusted p-value
following a Bonferroni correction for each RBP is indicated on the y-axis, and the size of the dot
for each RBP indicates the number of target mRNAs.

(B) Same as (A) for nuclear half-lives.

(C) Same as (A) for cytoplasm half-lives.

(D) Same as (A) for untranslated cytoplasm half-lives.

(E) Same as (A) for whole-cell half-lives.

(F) Confirmation of DDX3X protein knockdown in K562. Cells were transduced with lentivirus
containing plasmids expressing a scrambled shRNA sequence or one targeting DDX3X and
knockdown efficiency was monitored by western blotting in samples collected for subcellular
TimeLapse-seq. Wild-type (non-transduced) cells were included as a control.

(G) Same as (F) for PABPC4.

(H) Fraction of new RNA in chromatin, cytoplasm, and whole-cell following DDX3X knockdown for
target and non-target mRNAs. Fraction of new RNA MAP values were compared between targets
and non-targets with a Wilcoxon test (****: p<0.0001, *: p<0.05).

(I) Same as (H) for PABPC4.
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Supplemental Figure 7: Poly(A) tail lengths are related to RNA flow rates, related to Figure 4.

(A) Distribution of 3’ ends of poly(A)-selected RNA direct sequencing reads. The genomic region
corresponding to the 3’ end of reads across all samples was determined according to (Drexler et
al., 2020).

(B) Distribution of poly(A) tail lengths for synthetic spike-in RNAs across nanopore sequencing runs.
Six transcripts (shown on the x-axis) from S. cerevisiae with templated poly(A) tails ranging from
10 to 100 nucleotides were transcribed in vitro and added to each sample prior to nanopore
library preparation. The median poly(A) tail length of each spike-in transcript within each sample
was then used to calculate a poly(A) tail length size factor for each sample (noted in gray). Raw
poly(A) tail lengths for each read were normalized to this size factor (see Methods for more
details).

(C) Distribution of poly(A) tail lengths per read, normalized to the synthetic spike-ins, across all
samples and replicates.

(D) Correlation of median compartment-specific poly(A) tail lengths between biological replicates.
Median tail lengths are calculated for all genes containing >=10 reads for each compartment, with
the Pearson correlation between biological replicates and the number of total genes noted. Each
dot represents one gene.

(E) Distribution of cytoplasm poly(A) tail lengths as a function of cytoplasm half-lives in human K562
cells. The median cytoplasm RNA poly(A) tail length is shown for all genes containing >=10
reads.

(F) Distribution of cytoplasm poly(A) tail lengths as a function of cytoplasm half-lives in mouse
NIH-3T3 cells. The mean steady state poly(A) tail length in cell line 1 (Eisen et al., 2020a) was
compared to the cytoplasm half-lives (this study).
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Supplemental Figure 8: PUND phenotypes, related to Figure 5.

(A) Comparison of half-lives of all PUND genes (n=946) and all other genes not predicted to undergo
nuclear degradation across all RNA flow rates in NIH-3T3 using a Wilcoxon test (****: p<0.0001,
*: p<0.05).

(B) Distribution of median chromatin poly(A) tail lengths for PUND genes relative to all other genes as
a function of chromatin half-life. The median poly(A) tail length was calculated for all genes
containing >=10 reads. Within each bin, the lighter blue represents PUND genes while the darker
blue represents other genes.
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Supplemental Figure 9: LASSO model predictions, related to Figure 6.

(A) Schematic of LASSO feature selection and model training, 10x cross-validation and testing.

(B) Comparison of our LASSO 10x cross-validation and test performance with alternative whole-cell
turnover rate estimate and models.

(C) The 10 individual features with highest importance for each RNA flow rate. Features are colored
by family.

(D) The importance of individual sequence and codon features compared to individual features of
other families.

(E) Continuous averages of chromatin and nuclear half-lives as a function of gene length in mouse
NIH-3T3 cells (see Methods). Gene length was defined as the median genomic length of all
transcripts per gene. Solid lines represent median half-lives and shaded ribbons represent the
third quartile (top) and first quartile (bottom) of half-lives.

(F) All transcription factors with targets that exhibited significantly fast or slow half-lives for target
RNAs compared to non-target RNAs in both biological replicates (adjusted p<0.01, Wilcoxon test,
Bonferroni multiple testing correction) across any RNA flow rate. The size of the dot indicates the
number of target mRNAs with measured half-lives within each compartment and the color reflects
the difference (red, faster; blue, slower) of the median target over non-target half-lives (see
Methods for details).
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