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Abstract. Strictly ultrametric matrices appear in many domains of mathematics and science;
nevertheless, they can be large and dense, making them difficult to store and manipulate, unlike
large but sparse matrices. In this manuscript, we exploit that strictly ultrametric matrices can be
represented as binary trees to sparsify them via an orthonormal base change based on Haar-like
wavelets. We show that, with overwhelmingly high probability, only an asymptotically negligible
fraction of the off-diagonal entries in random but large strictly ultrametric matrices remain non-zero
after the base change; and develop an algorithm to sparsify such matrices directly from their tree
representation. We also identify the subclass of matrices diagonalized by the Haar-like wavelets and
supply a sufficient condition to approximate the spectrum of strictly ultrametric matrices outside this
subclass. Our methods give computational access to the covariance matrix of the microbiologists’
Tree of Life, which was previously inaccessible due to its size, and motivate introducing a new
wavelet-based (beta-diversity) metric to compare microbial environments. Unlike the established
(beta-diversity) metrics, the new metric may be used to identify internal nodes (i.e., splits) in the
Tree that link microbial composition and environmental factors in a statistically significant manner.
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1. Introduction. Ultrametric matrices appear across many domains of mathe-
matics and science. They comprise an important class of matrices called inverse-M
matrices [11] and are a key object of study in potential theory and Markov Chains
[12]. In scientific applications, ultrametric matrices act as covariance models in phy-
logenetic comparative analysis [47], network inference [30], and energy models in sta-
tistical physics [8]. Further hinting at the pervasiveness of ultrametric matrices in
modern data science, recent work has shown that the matrix of normalized Euclidean
distances between points in some random subsets of Rd converge in probability to an
ultrametric matrix as d tends to infinity [61, 62].

In many applications, the underlying ultrametric matrix can be dense and poten-
tially too large to store in computer memory and manipulate. Nonetheless, if a sparse
representation of such a matrix can be found, many otherwise impossible tasks be-
come computationally feasible, such as matrix inversion, eigenvalue decompositions,
and principal component analysis (PCA).

This paper addresses the challenge of sparsifying the subclass of so-called strictly
ultrametric matrices, which we define next.

In what remains of this manuscript, n ≥ 1 is an integer and [n] := {1, . . . , n}.
Vectors and sometimes functions are represented as column vectors, and the transpose
of a vector or matrix A is denoted A′.

Definition 1.1 ([57]). A matrix S ∈ Rn×n is ultrametric if it is symmetric with
nonnegative entries and S(i, j) ≥ min{S(i, k), S(k, j)} for all i, j, k ∈ [n]. If in addi-
tion S(i, i) > max{S(i, t) : t 6= i}, for all i ∈ [n], S is called strictly ultrametric. For
n = 1, the last inequality is replaced with S(i, i) > 0.
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2 E.D. GORMAN AND M.E. LLADSER

Ultrametric matrices have rich properties that are not made evident by their def-
inition [11]. In particular, if S is strictly ultrametric then it is positive definite (hence
invertible), S−1 is strictly diagonally dominant with non-positive off-diagonal entries,
and S(i, j) = 0 if and only if S−1(i, j) = 0. These properties were initially proved
using probabilistic methods [40]. An alternative proof is based on an equivalence
between strictly ultrametric matrices and a subclass of binary trees [44]. The key
ingredient for this equivalence is that for n > 1, if S ∈ Rn×n is symmetric with non-
negative entries then it is strictly ultrametric if and only if there exists a permutation
matrix P and strictly ultrametric matrices A and B such that

(1.1) P
(
S −min(S) 11′

)
P ′ =

[
A 0
0 B

]
,

where min(S) is the smallest entry in S, and 1 ∈ Rn is the column vector of ones [44,
Proposition 2.1]. Since A and B are of the same kind as S, this process may be
applied recursively and the matrix S encoded as a weighted rooted binary tree with
special characteristics. Here we adopt a slightly different encoding to the one in [44],
which is more suitable for our purposes. The reader unfamiliar with the jargon and
notation of trees may skip ahead to Section 1.2 and come back to make better sense
of the construction below.

Let S be a strictly ultrametric matrix of dimensions n × n. We can represent S
as a rooted binary tree with 2n nodes (of which half are leaves) and hence (2n − 1)
edges, satisfying the following definition.

Definition 1.2. An out-rooted bifurcating tree (ORB-tree) with n leaves is a
weighted rooted tree with the following properties: each vertex has degree 1 or 3; its
leaf set is [n] and excludes the root, which has degree 1; each edge is labeled by the
subset of leaves that descend from it; and the length `(e) of each edge e is non-negative
but `(e) > 0 when e connects a leaf with its parent.

The representation of a strictly ultrametric matrix S as an ORB-tree may be
obtained as follows. The only edge emanating from the root is labeled as [n] and
defined to have length min(S). The only child of the root has two children. One
child descends from an edge labeled by the rows (or columns) of S associated with
the matrix A before applying the permutation matrix P in (1.1). This edge has
length min(A). Likewise, the other child descends from an edge labeled by the rows
associated with the matrix B and has length min(B). Since A and B are strictly
ultrametric, just of smaller dimensions, the tree may be grown recursively from any
descendent of the root that is not associated with a strictly ultrametric matrix of
dimensions 1 × 1. The latter represent edges that parent a leaf in the ORB-tree.
These edges must have a strictly positive length because 1 × 1 strictly ultrametric
matrices are strictly positive real numbers. To fix ideas see Figure 1.

Conversely, the matrix may be recovered from its ORB-tree as follows. For each
edge e in the ORB-tree, let δe be the vector of dimension n with entries δe(i) = 1 for
i ∈ e and δe(i) = 0 for i /∈ e. It follows from [44, Theorem 2.2] that

(1.2) S =
∑
e∈E

`(e) δe δ
′
e.

The representation of strictly ultrametric matrices as ORB-trees is therefore one-to-
one. In fact, starting from an ORB-tree we may compute directly the entries of its
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SPARSIFICATION OF LARGE STRICTLY ULTRAMETRIC MATRICES 3
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1 2

{1, 2, 3}

{1, 2} {3}

{1} {2}

e `(e) δe
{1, 2, 3} 2 (1, 1, 1)′

{1, 2} 0 (1, 1, 0)′

{1} 3 (1, 0, 0)′

{2} 1 (0, 1, 0)′

{3} 2 (0, 0, 1)′

Fig. 1: ORB-tree and strictly ultrametric matrix correspondence. The ma-

trix encoding of the tree is

5 2 2
2 3 2
2 2 4

 = 2 δ{1,2,3}δ
′
{1,2,3} + 0 δ{1,2}δ

′
{1,2} + 3 δ{1}δ

′
{1} +

δ{2}δ
′
{2} + 2 δ{3}δ

′
{3}.

associated matrix using that

(1.3) S(i, j) =
∑

e∈[i∧j,◦]

`(e),

where the ◦ denotes the root of the tree. We may say therefore that the entries of a
strictly ultrametric matrix are indexed by the leaves of its associated ORB-tree.

We call a matrix with entries such as (1.3) the covariance matrix of the ORB-tree.
This terminology is borrowed from the ecology literature where matrices like this are
commonly referred to as a tree-structured or phylogenetic covariance matrices [9]. In
this setting, the leaves represent organisms, and the matrix entries denote a trait’s
covariance between pairs of organisms. (The term of cophenetic matrix or cophenetic
distance has also been used occasionally in the hierarchical clustering literature [50].)

Due to the identity in equation (1.3), strictly ultrametric matrices are usually
fully dense. Nevertheless, precisely because of this identity, their entries contain much
redundancy, suggesting they may be amenable to some form of compression. In this
manuscript, we apply a change of bases—a discrete wavelet, in fact—with respect to
which the covariance matrix of an ORB-tree often becomes sparse.

Wavelets are localized, wave-like functions developed to analyze non-stationary
and noisy continuous signals. Traditional wavelets are defined only in Euclidean spaces
and have been remarkably successful in identifying multiscale structures in signals and
producing sparse representations of the same [39].

The Haar wavelet is among the oldest and involves averaging a signal locally
at different time or space scales [23]. Recently, the authors of [21] extended it past
continuous signals introducing the Haar-like wavelet. This new, discrete, wavelet is
designed for the multiscale analysis of discrete datasets equipped with a partition
tree—a hierarchical structure that clusters the data into smaller subsets recursively.
Due to the organization of such datasets into different tree levels (i.e., scales) and clus-
ters (i.e., localizations), Haar-like wavelets may identify meaningful patterns in data
that would be impossible to detect otherwise—especially in noisy high dimensional
datasets.

This paper exploits the equivalence between strictly ultrametric matrices and
ORB-trees to sparsify the former via a change of basis. This basis is composed of the
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4 E.D. GORMAN AND M.E. LLADSER

so-called Haar-like wavelets of the associated ORB-trees. The sparsification achieved
by these wavelets can be substantial in large, strictly ultrametric matrices, which
would otherwise be inaccessible due to their size. These sparse representations can
be valuable in phylogenetic applications [47], network inference [30], and hierarchi-
cal clustering problems [50] as their models often rely on tree-structured covariance
matrices.

1.1. Paper organization. In Section 2 we specialize the Haar-like basis from
[21] and give a geometric interpretation of its action on ORB-trees. This results in a
closed form expression for the transformed ultrametric matrix that can be computed
efficiently—without having to pre-compute the matrix from the tree. In Section 3,
we present conditions under which the Haar-like basis can be used to sparsify large,
strictly ultrametric matrices, and show that the basis can substantially sparsify most
large random ORB-tree’s covariance matrices. Following in Section 4, we detail the
case in which the Haar-like basis diagonalizes a strictly ultrametric matrix and provide
examples of such for well-known tree topologies. And, in Section 5, we show that
the Haar-like basis can be used sometimes to estimate eigenvalues of ORB-tree’s
covariance matrices.

Finally, Section 6 is devoted to an extensive proof of concept of our methods in
metagenomics (i.e., the study of microbial environments based on genetic material
extracted directly from them). Specifically, we sparify the covariance matrix associ-
ated with microbiologists’ Tree of Life. The significant sparsification achieved by our
methods motivates introducing a new but wavelet-based phylogenetic (β-diversity)
distance, corresponding to a multiscale analysis of organism abundances in microbial
environments. This new distance gives remarkably similar results to other well-known
metrics on a previously studied dataset. However, unlike the established metrics, it
can also determine the splits in the Tree responsible for the observed microbial com-
positions and quantify their respective importance.

1.2. General notation and terminology. For real-vectors x = (xi)1≤i≤k and

y = (yi)1≤i≤k of dimension k, let 〈x, y〉 := x′y =
∑k
i=1 xiyi and ‖x‖2 :=

√
〈x, x〉.

Also, let [[·]] denote the indicator function of the proposition within the parentheses.
In our context, trees are finite undirected connected graphs without cycles.
In what remains of this manuscript, T denotes an ORB-tree with n leaves and

branch length function ` : E → R. We denote the vertex and edge set of T as V
and E, respectively. The root of T is denoted as ◦. The set of internal nodes of T
is denoted as I, whereas its set of leaves is denoted as L. By definition, ◦ ∈ I and I
and L partition V . From the definition of ORB-tree it also follows that |L| = |I| = n,
hence |V | = 2n. Note that |E| = |V | − 1 because T is a tree. We define |T | := |V |.
We use this later notation when we want to emphasize a direct relationship with the
ORB-tree.

For i, j ∈ V , a path of length l between i and j is a sequence v0, . . . , vl ∈ V such
that v0 = i, vl = j, and {vk, vk+1} ∈ E for 0 ≤ k < l. Unless otherwise stated, we
write [i, j] to denote the set of edges in the shortest path in T between i and j. This
path is unique because T has no cycles. The depth of i, denoted depth(i), is defined
as |[i, ◦]| i.e. the number of edges that connect i with the root. We say that i is an
ancestor of j, or alternatively j is a descendent of i, when i ∈ [◦, j]. In particular,
every node is an ancestor and a descendant from itself. Further, (i ∧ j) denotes the
so-called least-common ancestor to i and j. This is the v ∈ V that maximizes |[v, ◦]|,
among all the nodes that are ancestors to both i and j.
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SPARSIFICATION OF LARGE STRICTLY ULTRAMETRIC MATRICES 5

We define
`(i, j) :=

∑
e∈[i,j]

`(e).

In addition, for J ⊂ L and i ∈ V , define `(J, i) as the column vector of dimension |J |
with entries `(j, i), for j ∈ J . `(i, J) is the transpose of `(J, i).

For each i ∈ V , T (i) denotes the subtree of T rooted at i. In particular, the
vertex set of T (i) is the subset of nodes in T that descend from i, and its edge set
is the subset of edges that connect two descendants of i. L(i) denotes the leaf set of
T (i). Likewise, for each e = {i, j} ∈ E, if i is a node closest to the root than j, T (e)
and L(e) denote T (i) and L(i), respectively.

2. Haar-like basis of ORB-trees. In this section we specialize the concept
of Haar-like basis given in [21] to our setting of ORB-trees. The key new result in
this section is an expression for the change of basis of the covariance matrix (i.e. the
strictly ultrametric matrix associated with the tree) into the Haar-like basis. The
simplicity of this expression is somewhat unexpected because the covariance matrix
is determined by the topology of the tree and its branch length function, whereas the
basis is solely determined by the tree’s topology.

To construct the Haar-like wavelets, it is convenient to represent the nodes in
I \ {o} momentarily as binary strings. With this convention, the (only) child of the
root is denoted as ε—the so-called empty string. Further, the children of each node
v ∈ I \ {o} are v0 (i.e. the string v with the character zero appended at the end) and
v1 (i.e. v with the character one appended at the end).

Definition 2.1 (Specialization from [21]). The Haar-like basis associated with T
is the set of transformations {ϕv}v∈I defined as follows:

ϕo(i) :=
1√
|L|

, for all i ∈ L;

and, for each v ∈ I with v 6= o:

ϕv(i) :=


+
√

|L(v1)|
|L(v0)|·|L(v)| , i ∈ L(v0);

−
√

|L(v0)|
|L(v1)|·|L(v)| , i ∈ L(v1);

0 , otherwise.

The Haar-like matrix associated with T is the matrix Φ with columns ϕv, v ∈ I.

To fix ideas see Figure 2.
We remark that, in the context of compositional data analysis, the Haar-like basis

is equivalent to the orthonormal basis used in the isometric log ratio (ILR) transform
[15]. We revisit the implications of this connection in Section 6.

The terminology of basis in Definition 2.1 is justified by the fact that

(2.1) if u, v ∈ I then 〈ϕu, ϕv〉 = [[u = v]].

(From now on, [[·]] denotes the indicator function of the proposition within.) In partic-
ular, {ϕv}v∈I is an orthonormal basis of R|L|. (See the Appendix for a self-contained
justification of the orthonormality of the Haar-like basis.) Note that the Haar-like
matrix Φ has its rows indexed by L and its columns indexed by I. Hence, since
|L| = |I|, Φ is a square matrix, an orthonormal one.
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3

1 2

{1, 2, 3}

{1, 2} {3}

{1} {2}

1/
√

3

Support partition:{1,2,3}

1/
√

6

−2/
√

6

Support partition:{1,2},{3}

1/
√

2

−1/
√

2

Support partition:{1},{2}

Fig. 2: Visualization of the Haar-like Wavelet basis associated with an ORB-
tree. Left: ORB-tree with leaves 1, 2, 3. Edges are labeled by the subsets of leaves
that descend from them. Right: Haar-like basis associated with the ORB-tree on the
left.

Clearly, for each v ∈ I, ϕv has L(v) as its support. Further, because ϕo is
constant, the orthogonality property implies for v 6= o that

∑
i∈L ϕv(i) = 0. These

two properties are essential for our arguments onwards.
The following definition is useful to understand the relationship between the Haar-

like basis of an ORB-tree and its associated covariance matrix.

Definition 2.2. The trace branch length of T is the function `∗ : E → [0,∞)
defined as `∗(e) := |L(e)| `(e), for each e ∈ E.

Theorem 2.3. If v ∈ I then S ϕv = diag(`∗(L, v))ϕv.

Proof. Consider v ∈ I and j ∈ L. If j /∈ L(v) then (i ∧ j) = (v ∧ j), hence

(S ϕv)(j) =
∑
i∈L(v)

`(i ∧ j, ◦)ϕv(i) = `(v ∧ j, ◦)
∑
i∈L(v)

ϕv(i).

But, if v = ◦ then `(v ∧ j, ◦) = 0. Instead, if v 6= ◦ then
∑
i∈L(v) ϕv(i) = 0. In either

case: (S ϕv)(j) = 0. This shows the lemma for j /∈ L(v) because the entry associated
with j in diag(`∗(L, v))ϕv is `∗(v, j) · ϕv(j), and the support of ϕv is L(v).

Next suppose that j ∈ L(v). Then

(S ϕv)(j) =
∑
i∈L(v)

∑
e∈[i∧j,o]

`(e)ϕv(i)

=
∑
i∈L(v)

∑
e∈[i∧j,v]

`(e)ϕv(i) +
∑
i∈L(v)

ϕv(i) ·
∑
e∈[v,o]

`(e)

=
∑
i∈L(v)

ϕv(i)
∑

e∈[i∧j,v]

`(e),

where for the last identity we have used that
∑
i∈L(v) ϕv(i) = 0 if v 6= ◦, and∑

e∈[v,o] `(e) = 0 if v = ◦. But note that if i ∈ L(v) is such that (i ∧ j) = v
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SPARSIFICATION OF LARGE STRICTLY ULTRAMETRIC MATRICES 7

then
∑
e∈[i∧j,v] `(e) = 0. Instead, if (i ∧ j) 6= v then ϕv(i) = ϕv(j). As a result

(S ϕv)(j) = ϕv(j)
∑

i∈L(v): i∧j 6=v

∑
e∈[i∧j,v]

`(e)

= ϕv(j)
∑
e∈[j,v]

∑
i∈L(v): e∈[i∧j,v]

`(e)

= ϕv(j)
∑
e∈[j,v]

`(e) |L(e)|

= ϕv(j) `
∗(j, v),

which shows the result.

It follows from the theorem that for each u, v ∈ I:

(2.2) (Φ′SΦ)(u, v) = ϕ′uSϕv =
∑

i∈L(v)∩L(u)

ϕu(i)ϕv(i) `
∗(i, v).

The importance of the diagonal of Φ′SΦ in the discussion ahead, motivates to define
for v ∈ I the quantities

(2.3) λv := (Φ′SΦ)(v, v) =
∑
i∈L(v)

ϕ2
v(i) `

∗(i, v).

For v ∈ I, because ϕv has L(v) as its support and ‖ϕv‖2 = 1, λv is a weighted
average of the trace branch length between each leaf in L(v) and v. In particular,
since L(u) ⊃ L(v) when u is an ancestor of v, the closer the internal node v is to the
root, the more terms are averaged. (This emulates the averaging at different scales
that the standard Haar wavelet transform does to a continuous signal.) Furthermore,
since `∗(e) = `(e) > 0 when e joins a leave with its parent, λv > 0.

On the other hand, the identity in (2.2) implies that (Φ′SΦ)(u, v) = 0 when
u, v ∈ I are such that L(u) ∩ L(v) = ∅. This suggests that the Haar-like matrix can
be used to sparsify the covariance matrix of the ORB-tree. The following result is
critical to assess how effective this sparsification is in practice.

Lemma 2.4. For all u, v ∈ V , L(u) ∩ L(v) 6= ∅ if and only if u is an ancestor of
v or vice versa.

Proof. If u is an ancestor of v then L(v) ⊂ L(u); in particular, L(u) ∩ L(v) =
L(v) 6= ∅. The same conclusion applies if v is an ancestor of u. Conversely, suppose
that L(u) ∩ L(v) 6= ∅. Without loss of generality assume that u 6= v. From the
hypothesis, there is w ∈ L that descends from both u and v. But, since there is a
unique path from w to ◦, u and v must be both in this path; in particular, either u is
an ancestor of v or vice versa.

2.1. Fast Sparsification Algorithm. A non-trivial challenge to storing and
manipulating large strictly ultrametric matrices is that they are almost always fully
dense in practice. In many applications, particularly metagenomics, the ORB-trees
associated with such matrices are assumed to be known in advance. This allows us to
sparsify these matrices without computing them, or even storing them in computer
memory. It also allows us to anticipate which entries may remain nonzero after
sparsification. In fact, due to equation (2.2) and Lemma 2.4, all that is required to
sparsify these matrices from their ORB-tree is to precompute the leaves that descend
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8 E.D. GORMAN AND M.E. LLADSER

from each internal node (i.e., the sets L(v), with v ∈ I) and the trace branch length
between them (Definition 2.2). This can be achieved with two postorder traversals of
the ORB-tree. We convey these ideas in the following pseudo-code (Algorithm 2.1),
which is fully coded and available on GitHub.

Algorithm 2.1 Phylogenetic covariance matrix sparsification

Input. ORB-tree T with covariance matrix S
Output. Only possibly non-zero entries in Φ′SΦ
for v ∈ I in postorder traversal of T do

for i ∈ L do
if v = ◦ then
ϕo(i)← 1√

|L|

else if i ∈ L(v0) then

ϕv(i)← +
√

|L(v1)|
|L(v0)|·|L(v)|

`∗(v, i)← `∗(i, v0) + |L(v0)| · `(v0, v)
else if i ∈ L(v1) then

ϕv(i)← −
√

|L(v0)|
|L(v1)|·|L(v)|

`∗(v, i)← `∗(i, v1) + |L(v1)| · `(v1, v)
else
ϕv(i)← 0

end if
end for

end for
for v ∈ I in postorder traversal of T do

while parent(v) 6= ∅ do
u← parent(v)
M(u, v)←

∑
i∈L(v)∩L(u)

ϕu(i)ϕv(i) `∗(v, i)

end while
end for
return M(u, v) for u, v ∈ I such that L(u) ∩ L(v) 6= ∅ =0

3. Sparisfication of Covariance Matrices of ORB-trees. In this section we
quantify how much of the covariance matrix of an ORB-tree can be sparsified by its
Haar-like matrix. To state our main result we require the following definitions.

Definition 3.1. Recall that |T | denotes the total number of nodes in T . The
average subtree size of T is the quantity avg(T ) := 1

|T |
∑
v∈V
|T (v)|.

Definition 3.2. The internal and external path lengths of T are the quantities
defined as IPL(T ) :=

∑
v∈I depth(v) and EPL(T ) :=

∑
v∈L depth(v), respectively [51].

The total path length of T is the quantity TPL(T ) := IPL(T ) + EPL(T ).

We note the relationship:

(3.1) avg(T ) = 1 +
TPL(T )

|T |
,

because

TPL(T ) =
∑
v∈V

∑
u∈V \{◦}

[[v ∈ T (u)]] =
∑

u∈V \{◦}

|T (u)| =

{∑
u∈V
|T (u)|

}
− |T |.
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SPARSIFICATION OF LARGE STRICTLY ULTRAMETRIC MATRICES 9

Definition 3.3. The interior of T is the tree T̊ obtained by trimming the leaves
of T .

Clearly, IPL(T ) = TPL(T̊ ).
As mentioned earlier, the identity in (2.2) guarantees that some entries of Φ′SΦ

vanish. The following result gives a lower bound for the number of such entries. This
bound is independent of the branch lengths and depends—only—on the tree topology.

Theorem 3.4. If ζ denotes the fraction of vanishing entries in Φ′SΦ then

ζ ≥ 1 +
1

|L|
− 2

avg(T̊ )

|T̊ |
= 1− 1

|L|
− 2

TPL(T̊ )

|T̊ |2
.

Proof. Recall that |I| = |L| and, for v ∈ I, the support of ϕv is L(v). Hence,
from the identity in (2.2), (Φ′SΦ)(u, v) = 0 when u, v ∈ I and L(u) ∩ L(v) = ∅. As a
result, using that L(u) 6= ∅ when u ∈ I, and Lemma 2.4, we obtain that

|I|2ζ ≥ |I|2 − |{(u, v) ∈ I × I such that L(u) ∩ L(v) 6= ∅}|
= |I|2 − |I|
− 2|{(u, v) ∈ I × I such that v 6= u descends from u and L(u) ∩ L(v) 6= ∅}|

= |I|2 − |I| − 2
∑
u∈I

(
|T̊ (u)| − 1

)
= |I|2 + |I| − 2

∑
u∈I
|T̊ (u)|,

Since |I| = |L| = |T̊ | = |T |/2, |L|2ζ ≥ |L|2 + |L| − |T̊ | · avg(T̊ ), which shows the
inequality in the theorem. The alternative lower-bound for ζ follows by applying the
identity in equation (3.1) to T̊ , completing the proof of the theorem.

It follows from the first lemma in [51, Section 6.4] that for an ORB-Tree T,
EPL(T )−IPL(T ) = 2|I|−1, which together with the previous theorem let us conclude
the following asymptotic result.

Corollary 3.5. If either avg(T̊ ) � |T̊ |, TPL(T̊ ) � |T̊ |2, IPL(T ) � |I|2, or
EPL(T )� |L|2 as |T | → ∞, then ζ = 1− o(1).

In other words, if T grows so that either of the asymptotic inequalities in the
above corollary applies, then an asymptotically negligible fraction of the off-diagonal
entries in Φ′SΦ will be non-zero.

The last asymptotic condition in the corollary (i.e., that EPL(T ) � |L|2) is of
relevance in phylogenetic studies. In that context, the external path length of a tree is
called its Sackin’s index [3, 10, 32]. This index is used as a measure of the imbalance
of phylogenetic trees. In particular, since phylogenetic trees are neither too balanced
nor too imbalanced [2, 4]; Haar-like bases should be rather effective in sparsifying
covariance matrices of phylogenetic trees in practice. We come back to this point in
Section 6.

3.1. Covariance matrices of maximally balanced ORB-trees. In our con-
text, the following definition gives the most balanced topology among the ORB-trees.

Definition 3.6 (Perfect Binary Trees). A perfect binary tree is an ORB-tree in
which all leaves have the same depth.
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10 E.D. GORMAN AND M.E. LLADSER

To fix ideas see Figure 3.
Let T be a perfect binary tree of height (h + 1). In particular, |L| = 2h and

|V | = 2h+1. At level k ≥ 1, T contains 2k−1 nodes, each of which is the root of a
perfect binary tree of height (h− k). Since a perfect binary tree of height h contains
(2h+1−1) nodes, and the interior of a perfect binary tree of height (h+1) is a perfect
binary tree of height h:

avg(T̊ ) =

2h +
h∑
k=1

2k−1 · (2h−k+1 − 1)

2 · 2h−1
= h+ 2−h � |T̊ |.

In particular, due to Theorem 3.5, we can conclude that the Haar-like matrix can be
used to asymptotically annihilate (via a similarity transformation) the off-diagonal
entries of the covariance matrix of a perfect binary tree as its height tends to infinity.

o

ε

0 1

00 01 10 11

000 001 010 011 100 101 110 111

`ε

`1`0

`00 `01 `10 `11

`000 `001 `010 `011 `100 `101 `110 `111

Fig. 3: Visualization of a perfect binary tree of height 4. Such tree is trace-
balanced if and only if `α = `β for each pair of binary strings α and β of the same
length. If all these lengths are strictly positive, the eigenvalues of its covariance matrix
are `000 (multiplicity 4), `000 + 2 `00 (multiplicity 2), `000 + 2 `00 + 4 `0 (multiplicity
1), and `000 + 2 `00 + 4 `0 + 8 `ε (multiplicity 1). Otherwise, some multiplicities need
to be added up.

3.2. Covariance matrices of maximally imbalanced ORB-trees. The fol-
lowing definition provides what we may regard as the most unbalanced topology
among the ORB-trees.

Definition 3.7 (Binary Caterpillar Trees). The binary caterpillar tree of height
h ≥ 1 is the ORB-tree with nodes ◦, 1, . . . , h, 1′, . . . , (h − 1)′ and edges of the form
{◦, 1}, {i, i+ 1}, for i = 1, . . . , (h− 1), and {j, j′} for j = 1, . . . , (h− 1).

To fix ideas see Figure 4.
Let T be a binary Caterpillar tree of height h. In particular, |V | = 2h, |L| = h,

and each node in level k ≥ 1 is the root of a snake binary subtree of height (h − k).
Therefore, each internal node has as children one leaf node and one internal node
that is the root of a binary caterpillar subtree. Furthermore, the subgraph of internal
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SPARSIFICATION OF LARGE STRICTLY ULTRAMETRIC MATRICES 11

nodes is a path. As a result:

avg(T̊ ) =

2
h−1∑
k=1

(
h− k

)
2(h− 1)

=
h

2
+ 1 ∼ |T̊ |

2
.

Hence, the lower-bound provided by Theorem 3.4 is trivial, and we cannot guarantee
that the Haar-like matrix associated with a sizeable binary caterpillar tree annihilates
its off-diagonal entries in any significant way.

o

1

1′ 2

2’ 3

3′ 4

`0

`1`′1

`′2 `2

`′3 `3

Fig. 4: Visualization of a binary caterpillar tree of height 4. This tree is
trace-balanced if and only if `′3 = `3, `′2 = `3 + 2 `2, and `′1 = `3 + 2 `2 + 3 `1. In such
case, if `3, `2, `1, `0 > 0 then its covariance matrix spectrum is {`3, `3 +2 `2, `3 +2 `2 +
3 `1, `3 + 2 `2 + 3 `1 + 4 `0}, and each eigenvalue is simple.

3.3. Covariance matrices of large random ORB-trees. Perfect binary trees
and caterpillar trees are opposite extremes of how balanced (or imbalanced) ORB-
trees can be. It is therefore unclear how much sparsification the Haar-like matrix of
a large but generic ORB-tree can induce on its covariance matrix. To address this
issue we consider a natural ensemble of random ORB-trees

In what follows, T denotes a uniformly at random ORB-tree with |I| internal
nodes. Such trees may be generated using the Catalan distribution [51, Section 6.7].
This probability model produces full binary trees (i.e. trees in which each node has
0 or 2 children) with a given number of internal nodes; which we may turn into an
ORB-tree by appending their root to a new one.

Let S denote the covariance matrix of T, and ζ the number of zeroes in the random
matrix Φ′SΦ, where Φ is the Haar-like matrix associated with T. It turns out that
the mean and variance of the internal path length of T are given by

E
(

IPL(T)
)
∼
√
π|I|3/2;(3.2)

V
(

IPL(T)
)
∼
(

10

3
− π

)
|I|3.(3.3)

The identity in equation (3.2) follows from [18, Proposition VII.3.]. The identity
in (3.3) may be regarded a refinement of [18, Note VII.12].

As the following result implies, the Haar-like basis of most large ORB-trees should
be highly effective in sparsifying their covariance matrix.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2022.08.21.504697doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.21.504697
http://creativecommons.org/licenses/by/4.0/


12 E.D. GORMAN AND M.E. LLADSER

Corollary 3.8. If T is a uniformly at random ORB-tree with |I| internal nodes
then ζ = 1− o(1) with overwhelmingly high probability, as |I| → ∞.

Proof. Let t > 0. Let µ and σ2 denote the mean and variance of IPL(T), respec-
tively. Due to Cantelli’s inequality (a one sided version of the well-known Chebyshev’s
inequality): P

(
IPL(T) ≥ µ+ tσ

)
≤ (1 + t2)−1. But (µ+ tσ) = Ω

(
t|I|3/2

)
because of

equations (3.2)-(3.3). In particular, there is a constant c > 0 such that

P

(
IPL(T)

|I|2
≤ ct√

|I|

)
≥ t2

1 + t2
.

So, if t→∞ so that t = o(
√
|I|) then IPL(T)

|I|2 = o(1) with a probability converging to

one as |I| → ∞. The result now follows from Corollary 3.5.

4. Spectrum of Covariance Matrices of Trace-balanced ORB-trees. While
Theorem 3.4 guarantees that some entries in Φ′SΦ vanish—regardless of branch
lengths, additional constraints on the latter can lead to further sparsification. In
this section, we identify the class of ORB-trees whose Haar-like basis fully sparsifies
(i.e, diagonalizes) their associated strictly ultrametric matrix.

Definition 4.1. T is called trace-balanced at a node v when, for all i, j ∈ L(v),
`∗(i, v) = `∗(j, v). T is called trace-balanced when it is trace-balanced at each v ∈
I \ {◦}.

We note that a tree is always trace-balanced at a leaf. Also, if an ORB-tree
is trace-balanced at the child of its root then it is also trace-balanced at the root.
This is why the definition of trace-balanced trees only considers nodes in I \ {o}. See
Figures 3-4 for depictions of trace-balanced trees.

The following two results show the relevance of the above definition in terms of
the eigenvalues of the ultrametric matrix associated with an ORB-tree.

Lemma 4.2. If v ∈ I then ϕv is an eigenvector of S if and only if T is trace-
balanced at v, in which case the eigenvalue associated with ϕv is `∗(i, v), for any
i ∈ L(v).

Proof. Fix v ∈ I. Due to Theorem 2.3, (Sϕv)(i) = `∗(i, v)ϕv(i), for each i ∈ L.
This shows the lemma because ϕv(i) > 0 if and only if i ∈ L(v).

Since the covariance matrix S of T has dimensions |L|× |L|, but |I| = |L| because
T is an ORB-tree, the following result is immediate from the previous lemma.

Corollary 4.3. The Haar-like basis of T diagonalizes its covariance matrix if
and only if T is trace-balanced. In this case, the spectrum of S is

σ(S) =
⋃
v∈I
{`∗(v, i) for any i ∈ L(v)},

and the multiplicity of `∗(v, i) is
∣∣{u ∈ I : `∗(v, i) = `∗(u, j), for some j ∈ L(u)}

∣∣.
Our next corollary recovers some of the results in [48], which investigated perfect

binary trees in the phylogenetic setting with the goal of predicting features of protein
structure.

Corollary 4.4. A perfect binary tree of height h is trace-balanced if and only if
it has constant branch lengths at each level. In this case, if `j denotes the common
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length of the edges that connect a node at depth j with another at depth (j + 1), the
spectrum of the associated covariance matrix is

σ(S) =


h−1∑
k=j

2h−k`k, with j = 0, . . . , h− 1

 .

Furthermore, the multiplicity of the eigenvalue λ =
h−1∑
k=j

2h−k`k is max

{
1,
∑
j∈Λ

2j−1

}
,

where

Λ :=

j′ ∈ {0, . . . , h− 1} such that
h−1∑
k=j′

2h−k`k =
h−1∑
k=j

2h−k`k

 .

Next, consider the binary caterpillar tree from Definition 3.7. In particular, its
internal and leaf set are I = {◦, 1, . . . , h−1} and L = {1′, . . . , (h−1)′, h}, respectively.
Let `0 denote the branch length of {◦, 1}, `i the length of {i, i+1} for i = 1, . . . , (h−1),
and `′j the branch length of {j, j′} for j = 1, . . . , (h − 1). Due to Corollary 4.3, we
have the following result.

Corollary 4.5. A Caterpillar tree of height h is trace-balanced if and only if

`′j =
h−1∑
k=j

(h− k) · `k,

for j = 1, . . . , h − 1. In this case, the eigenvalues of its covariance matrix are as
follows, repeated according to their multiplicity: `′0 ≥ `′1 ≥ · · · ≥ `′h−1, where

`′0 :=

h−1∑
k=0

(h− k) · `k.

We finish this section with a result that characterizes all the possible spectrums
of covariance matrices of trace-balanced trees. Because its proof is constructive, it
can be used to form strictly ultrametric matrices with the desired spectrum and
multiplicities. In particular, it is of consequence for the symmetric nonnegative inverse
eigenvalue problem (SNIEP), which aims to classify the possible spectra of symmetric
nonnegative matrices [54, 16, 13].

Definition 4.6. In a tree T , a function f : I → [0,∞) is called decreasing when,
for all distinct u, v ∈ I, if u is an ancestor of v then f(u) ≥ f(v). In addition, f is
called strictly positive at the fringe when f(u) > 0 whenever u is a parent of a leaf.

Corollary 4.7. In a trace-balanced ORB-tree T the function v −→ `∗(v, i), with
v ∈ I and any i ∈ L(v), is decreasing, and strictly positive at the fringe. Conversely,
given any ORB-tree topology T and decreasing function f : V → [0,∞) that is strictly
positive at the fringe, there is a branch length function ` : E → [0,∞) such that
σ(S) = f(I). Furthermore, the multiplicity of λ ∈ σ(S) is |f−1({λ})|.

Proof. From the definitions of trace-balanced and ORB-tree, it is immediate that
the transformation v ∈ I −→ `∗(v, i), with i ∈ L(v), is well-defined and strictly
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14 E.D. GORMAN AND M.E. LLADSER

positive at the fringe of T . Also, f is decreasing because if u is an ancestor of v
then, for each i ∈ L(v): `∗(u, i) = `∗(u, v) + `∗(v, i) ≥ `∗(v, i). This shows the first
statement in the corollary.

For the second statement consider an ORB-tree topology T = (V,E) and function
f : I → [0,∞) that is both decreasing and strictly positive at the fringe. Due to
Corollary 4.3, it suffices to show that there is a branch length function ` : E → [0,+∞)
such that f(v) = `∗(v, i), for all i ∈ L(v). To do so, let e = {u, v} ∈ E be so
depth(u) < depth(v). Define

(4.1) `(e) :=

{
f(u) , v ∈ L;
f(u)−f(v)
|L(e)| , v ∈ I.

Observe that if v ∈ L then |L(e)| = 1 so f(u) = `∗(e). Further, `(e) > 0 because f is
strictly positive at the fringe of T . Instead, if v ∈ I then f(u) = f(v) + `(e) · |L(e)| =
f(v) + `∗(e), and `(e) ≥ 0 because f is decreasing. In particular, if we extend the
domain of f to all of V defining f(v) := 0 for v ∈ L then, for all e = {u, v} ∈ E
such that depth(u) < depth(v): f(u) = f(v) + `∗(e). From this, a simple inductive
argument on the difference d := depth(v) − depth(u) > 0 shows that f(u) − f(v) =
`∗(u, v); implying that f(u) = `∗(u, i), for all i ∈ L(u), as claimed.

5. Spectrum Approximation in Roughly Trace-balanced ORB-trees.
The ORB-tree representation of strictly ultrametric matrices offers new approaches
to studying their spectrum. This is of interest for PCA, as well as domains such
as structural biology [48] and metagenomics [45], where strictly ultrametric matrices
emerge as covariance ones. This section examines how to approximate the spectrum of
strictly ultrametric matrices associated with possibly non-trace-balanced ORB-trees.

We have seen that the Haar-like wavelet associated with an internal node of an
ORB-tree is an eigenvector of its covariance matrix if and only if the node is trace-
balanced (Lemma 4.2). We have also seen that the Haar-like matrix of an ORB-tree
can sometimes sparsify its covariance matrix significantly (Theorem 3.4). These facts
suggest that the diagonal entry in Φ′SΦ associated with an “approximately” trace-
balanced internal node should be near the spectrum of S. Next, we formalize this
intuition by quantifying what suffices for an internal node to be approximately trace-
balanced. We stress that when our upper bound for the approximation error is small,
the approximate eigenvalue can be computed efficiently using equation (2.3).

In what follows, for a given function x : L→ R and non-empty J ⊂ L, we define
the mean value and variance of average value and variance of x over J naturally as
the quantities:

avg(x; J) :=
1

|J |
∑
j∈J

x(j);

var(x; J) :=
1

|J |
∑
j∈J

(
x(j)− avg(x; J)

)2
.

In addition, for each v ∈ V , let parent(v) denote the parent of node v in T . Define

ρv :=
|L(v)|

|L
(
parent(v)

)
|
.

The following simple result aids in formalizing the intuition mentioned earlier.
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Lemma 5.1. If A is a symmetric matrix of dimensions n× n then, for all λ ∈ R:

distance
(
λ, σ(A)

)
≤ min
x∈Rn: ‖x‖2=1

‖(A− λ)x‖2.

Next, we provide a sufficient condition for λv, with v ∈ I, to be a good approxi-
mation of an eigenvalue of S. We also quantify explicitly the cosine between Sϕv and
λvϕv to assess how close ϕv is to be an eigenvector of S.

In the following result we use the notation: ¬0 = 1 and ¬1 = 0.

Theorem 5.2. If v ∈ I then

λv = ρv1 · `∗
(
L(v0), v

)
+ ρv0 · `∗

(
L(v1), v

)
,

and

distance
(
λv, σ(S)

)
≤

√√√√ρv0 · ρv1 ·
{
`∗(L(v1), v)− `∗(L(v0), v)

}2

+
∑

α∈{0,1}

ρvα · var
(
`∗(L, v);L(v¬α)

)
.

Furthermore,

cos(Sϕv, λvϕv) =
1√

1 +
{
‖(S−λv)ϕv‖2

λv

}2
.

Proof. Fix v ∈ I. To make the λv more explicit, observe that if x : L → R is a
function (or vector) then

(5.1)
∑
i∈L

ϕ2
v(i) · x(i) = ρv1 · avg

(
x;L(v0)

)
+ ρv0 · avg

(
x;L(v1)

)
.

In particular, due to Theorem 2.3:

(5.2) λv = ϕ′v Sϕv =
∑
i∈L(v)

ϕ2
v(i) · `∗(v, i) = ρv1 · `∗

(
L(v0), v

)
+ ρv0 · `∗

(
L(v1), v

)
,

which shows the first identity in the theorem.
On the other hand, Lemma 5.1 implies that

distance(λv, σ(S)) ≤ ‖(S − λv)ϕv‖2.

But, from Theorem 2.3, we also have for i ∈ L that (Sϕv − λvϕv)(i) = ϕv(i) ·(
`∗(v, i)− λv

)
. As a result

‖(S − λv)ϕv‖22 =
∑
i∈L(v)

ϕ2
v(i) ·

(
`∗(v, i)− λv

)2
=

ρv1

|L(v0)|
∑

i∈L(v0)

(`∗(i, v)− λv)2 +
ρv0

|L(v1)|
∑

i∈L(v1)

(`∗(i, v)− λv)2,(5.3)
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where for the last identity we have used the equation (5.1). To complete the proof
of the theorem note that (ρv0 + ρv1) = 1. In particular, from the identity in equa-
tion (5.2), we may rewrite∑

i∈L(v0)

(`∗(i, v)− λv)2

=
∑

i∈L(v0)

(
ρv0

{
`∗(L(v1), v)− `∗(L(v0), v)

}
+ `∗(i, v)− `∗

(
L(v0), v

))2

= |L(v0)| ρ2
v0

{
`∗(L(v1), v)− `∗(L(v0), v)

}2

+
∑

i∈L(v0)

(
`∗(i, v)− `∗

(
L(v0), v

))2

.

Namely

1

|L(v0)|
∑

i∈L(v0)

(`∗(i, v)− λv)2

= ρ2
v0

{
`∗(L(v1), v)− `∗(L(v0), v)

}2

+ var
(
`∗(L, v);L(v0)

)
.

Similarly,

1

|L(v1)|
∑

i∈L(v1)

(`∗(i, v)− λv)2

= ρ2
v1

{
`∗(L(v1), v)− `∗(L(v0), v)

}2

+ var
(
`∗(L, v);L(v1)

)
.

The second identity in the theorem is now a direct consequence of (5.3) and the last
two identities.

Finally, again due to Theorem 2.3, we find that

cos(Sϕv, λvϕv) =
ϕ′vSϕv
‖Sϕv‖2

=
λv√

ϕ′v diag(`∗(L, v))2ϕv
.

But, similarly as we argued before

ϕ′v diag(`∗(L, v))2ϕv =
∑
i∈L

ϕ2
v(i)`

∗(i, v)2

= λ2
v +

∑
i∈L

ϕ2
v(i)(`

∗(i, v)− λv)2

= λ2
v + ‖(S − λv)ϕv‖22,

which implies that

cos(Sϕv, λvϕv) =
1√

1 +

∑
i∈L

ϕ2
v(i)(`∗(i,v)−λv)2

λ2
v

.

The third identity in the theorem follows now from equation (5.3).

It follows that Sϕ = λvϕv if and only if `∗(L(v1), v) = `∗(L(v0), v) and also
var
(
`∗(L, v);L(v0)

)
= var

(
`∗(L, v);L(v1)

)
= 0. But these conditions are precisely

equivalent to having the ORB-tree trace-balanced at v. Lemma 4.2 may be therefore
regarded a corollary of Theorem 5.2.
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Fig. 5: Circular layout of the 97% Greengenes tree. The tree has 99,322 leaves,
198,642 edges, and height (i.e. maximal leaf depth) 107. The average branch length
is 1.42× 10−2 units, with lengths varying between 1.5× 10−4 and 1.0.

6. New Insights into the Microbial Tree of Life. In this section we apply
our results to a phylogenetic covariance matrix associated with a standard reference
phylogeny. The significant sparsification of this matrix opens the door for otherwise
impossible tasks related to this model, such as computing the spectrum or inverse
of its covariance matrix—standard tasks in phylogenetic comparative methods. In
addition to the sparsification, the spectral approximation properties motivate the a
new wavelet based metric used to compare microbial environments.

Many methods in microbiology rely on a phylogenetic tree relating microorgan-
isms. At the microbial level, however, the notions of genus or species are ill-defined
because microorganisms do not interbreed. So microbes’ taxonomy and phylogeny
are often based on the so-called 16S ribosomal RNA (16S rRNA) gene. This gene is
present in all known single cell organisms and can therefore be used as a phylogenetic
marker. An operational taxonomic unit (OTU) is a cluster of these markers defined
by some least level of DNA sequence similarity among its (highly) conserved regions.

Greengenes is a standarized database based on the 16S rRNA marker. It has
been a standard reference in microbial studies, particularly metagenomics, and is

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2022.08.21.504697doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.21.504697
http://creativecommons.org/licenses/by/4.0/


18 E.D. GORMAN AND M.E. LLADSER

the default option in QIITA [22]—a widely used open-source management platform
for microbial analyses. Greengenes phylogenetic trees are built using FastTree [46]
and their associated taxonomies are assigned using tax2tree [41]. Trees are typically
stored in the newick format [17], which encodes their topology and branch lengths,
and visualized using software such as FigTree [1] or the ETE Toolkit [26].

Figure 5 displays the Greengenes tree when OTUs are thresholded at a 97%
sequence similarity—the average similarity of macro-organisms’ DNA in the same
species. The tree represents the inferred evolutionary history of modern day micro-
organisms from common ancestors. Its root is at the center of the circular layout, and
each OTU is associated with a single leaf in the tree and vice versa. Branch lengths
are a proxy of evolutionary time such as the estimated expected number of mutations
per nucleotide site [25], and interior nodes (called splits) are inferred speciation events
that have led to the present-day microorganisms in the database.

A fundamental problem in microbiology is to link environmental factors (such
as acidity, light, nutrients, salinity, temperature, etc) with microbial composition.
A valuable tool for this has been the concept of β-diversity (i.e., a measure of dif-
ferences between microbial composition across different environments). Early ap-
proaches [6, 28] ignored the evolutionary relationships between microorganisms when
comparing environments. Nonetheless, one would expect microbes with a shared evo-
lutionary history to similarly thrive or struggle in similar environments. Phylogenetic
informed metrics were introduced precisely to convey this idea. These metrics require
a phylogenetic tree relating the microorganisms observed in samples from all the en-
vironments under study. We emphasize that the construction and selection of these
trees are outside the scope of this paper; as is typical in many metagenomics studies,
we work with a pre-computed tree. Among other more recent phylogentic trees such
as SILVA [49] and WoL [60], Greengenes has been a common choice of representative
phylogeny. So, we base our application on the latter—though our methods could be
applied to any reference phylogeny.

Double Principal Coordinate Analysis (DPCoA) [45] is a phylogenetically in-
formed β-diversity metric between pairs of microbial environments, which provides
similar insights [20] to other more recent though more widely used distances such as
unweighted and weighted UniFrac [36].

Let T be the ORB-tree associated with a phylogenetic tree (e.g. the 97% Green-
genes tree), and S the covariance matrix of T . In the context of phylogenetic informed
metrics, environments are represented as probability mass functions over the OTUs
(i.e. leaves). We denote those functions with lower-case letters such as a and b, and
interpret them as probability models over L. In particular, a : L → [0,+∞) satisfies
that

∑
x∈L a(x) = 1 and, for each e ∈ E, a(e) =

∑
x∈e a(x). With this convention,

the DPCoA distance between two environments a and b is defined as [45, 20]:

(6.1) d(a, b) :=

{∑
e∈E

`(e)
(
a(e)− b(e)

)2}1/2

=
√

(a− b)′S(a− b).

In particular, since S is positive definite, DPCoA corresponds to a Mahalanobis dis-
tance [38]; implying that d(·, ·) is a metric—in the mathematical sense—in R|L|.
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The weighted and unweighted UniFrac distances are instead defined as follows [36]:

dw(a, b) :=
∑
e∈E

`(e) |a(e)− b(e)|;

du(a, b) :=

∑
e∈E `(e)

∣∣[[a(e) > 0]]− [[b(e) > 0]]
∣∣∑

e∈E `(e)
.

Both versions of UniFrac are known to satisfy the triangular inequality [37]. DPCoA
is also more robust to unbiased noise but more sensitive to outliers than UniFrac [20].

Regardless of the metric of choice, the standard approach to linking environmental
factors with microbial composition goes roughly as follows [34]. First, environmental
samples are collected, and each environment is represented by its OTU composi-
tion on the leaves of the phylogeny of reference. Then, the pairwise distance matrix
between the environments is computed, and the environments are embedded into
a low-dimensional Euclidean space using standard techniques such as multidimen-
sional scaling (MDS) [5]. Despite the noisy and high-dimensional nature of microbial
datasets [53, 35, 24], this approach has been remarkably reliable for the ordination [31]
of microbial environments in as little as 1-2 dimensions, and for correlating environ-
mental factors with microorganisms. However, this approach does not usually explain
correlations, which need to be justified by other means.

In what remains of this section, we apply our methods to the Greengenes phy-
logeny. First, we demonstrate significant sparsification of the associated covariance
matrix after applying the Haar-like wavelet transform. Then, we motivate a new
wavelet-based phylogenetic β-diversity metric corresponding to a multiscale analysis
of the phylogenetic tree. Finally, we show that this wavelet-based metric can give novel
insights into the relationship between environmental factors and OTU composition.

6.1. Greengenes Phylogenetic Covariance Matrix Sparsification. The
97% Greengenes tree has about 100,000 leaves. We can think of it as an ORB-tree
by adding an external root ◦ and connecting it to the original root with a branch
of length 0. (Alternatively, we could think of the Greengenes tree as two ORB-trees
with their roots merged.) We denote the resulting ORB-tree as T .

The identity in equation (1.3) implies that the covariance matrix S of T is a
2× 2 block diagonal matrix, with each block corresponding to an ORB-subtree. Ap-
proximately 94% of the almost 10 billion entries in S are non-zero because one of
the ORB-subtrees (corresponding to the Archaea domain) is much smaller than the
other—see Figure 6(a). This makes storing the covariance matrix of T challenging.
Further, basic computational tasks such as finding the spectrum and inverting S for
parameter estimation in phylogenetic comparative methods [29, 19] is infeasible be-
cause this large matrix is almost fully dense. We may use, however, the Haar-like
matrix Φ associated with T to sparsify S. From Theorem 3.4, we can guarantee that
ζ ≥ 0.9989, i.e. at least 99.89% of the entries in the similar matrix Φ′SΦ vanish. This
significant compression of the matrix S can be appreciated in Figure 6(b).

We implemented Algorithm 2.1 using the sparse matrix packages from SciPy
[58] to compute Φ′SΦ. As proof-of-principle, we used this compressed representa-
tion to compute the largest 500 eigenvalues of S to machine precision using SciPy’s
implementation of the Lanczos algorithm. As seen in Figure 7, the eigenvalues of S
decay rapidly. In fact, we found that λ1(S) ∼ 1.27 × 105, λ2(S) ∼ 4.75 × 103, and
trace(S) ∼ 1.65 × 105, so the top-two eigenvalues already account for approximately
80% of the trace of S.
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(a) (b)

Fig. 6: Heatmaps of matrices associated with the 97% Greengenes. Black
(white) pixels denote non-zero (vanishing) entries. (a) Phylogenetic covariance matrix
S of the 97% Greengenes tree. S has dimensions ∼ 105 × 105. (b) Sparsified matrix
Φ′SΦ.

As seen in Figure 7 also, the sorted diagonal entries in Φ′SΦ (i.e. the quantities
λv, with v ∈ I) approximate with ample accuracy the spectrum of S. For instance,
maxv∈I λv underestimates λ1(S) with only about a 0.06% relative error. Anticipating
this overall accuracy from T alone remains an open problem as neither our mathemat-
ical results, particularly Theorem 5.2, nor more general ones such as the Gershgorin’s
circle theorem, Sylvester’s determinant theorem, and bounds found in [56, 7, 27] have
been able to explain it.

6.2. A Wavelet Based Phylogenetic β-diversity Metric. Let T be the
ORB-tree associated with a phylogenetic tree. Recall that ϕv, with v ∈ I, is supported
on L(v), and together these functions form an orthonormal base of R|L|. In particular,
just as wavelets are traditionally used to localize signals at different scales, we may
use the Haar-like basis of T to localize environmental OTU distributions on subsets
of leaves defined by splits in the tree. This is particularly appealing from a biological
standpoint. Indeed, the opposite signs of ϕv on the leaves of the left and right subtrees
dangling from v may be interpreted as a speciation event that conferred more fitness
to present-day microorganisms descending from one of the subtrees than the other.
We propose the following definition to convey these features into a phylogenetic β-
diversity metric.

Recall that λv = (Φ′SΦ)(v, v) > 0, for each v ∈ I. Further, for a given environ-
ment a (i.e., OTU distribution over L), Φ′a is the projection of a onto the Haar-like
basis of the reference tree.

Definition 6.1. The Haar-like distance between two environments a and b is the
quantity

dh(a, b) :=

√∑
v∈I

λv ∆2
v, where ∆ = (∆v)v∈I := Φ′(a− b).

The specifics of this distance can be motivated as follows. On one hand, the
terms ∆2

v, with v ∈ I, convey the idea that dh regards two environments similar
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Fig. 7: Spectrum decay of 97% Greengenes tree covariance matrix and
corresponding approximation using Haar-like wavelets. Only the 500 most
dominant eigenvalues of S are plotted as a function of their rank. Logarithms are in
base-10.

(different) when their OTU compositions project similarly (differently) onto the Haar-
like basis of the reference tree. On the other hand, the weights λv, with v ∈ I, are
motivated by the success of DPCoA in various biological investigations. To explain
this, consider the matrices D := diag(λv : v ∈ I) and E := Φ′SΦ−D. Observe that
dh(a, b) =

√
∆′D∆; in particular, dh is a metric in R|L| because D is positive definite,

and d(a, b) =
√

∆′D∆ + ∆′E∆. In large phylogenetic trees, however, we expect E to
be mostly filled with zeroes due to Corollary 3.8—which suggests considering dh as
an alternative metric to DPCoA.

We have mentioned before that while traditional phylogenetic metrics (in con-
junction with embedding techniques) have been remarkably successful at correlating
microbial composition with environmental factors, these correlations cannot usually
be explained from the metrics alone. The wavelet nature of the Haar-like distance
has, however, the potential to explain said correlations. Indeed, the biological inter-
pretation of the Haar-like basis conveyed by their sign flip suggests that if λv ∆2

v is
comparatively large (small) for some v ∈ I, then the speciation event associated with
v has a significant (little) influence differentiating the OTU distributions between two
environments a and b. (There may be discrepancies between taxonomy and splits in
a tree. In particular, while the aforementioned correlations may be explained by a
phylogeny, they are not necessarily explained by a taxonomic classification.)
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Fig. 8: 2-D MDS embeddings of samples from Guerrero Negro w.r.t. dif-
ferent metrics. The embeddings are based on unweighted UniFrac (top), DPCoA
(middle), and the Haar-like distance (bottom). Depth varies from 0-0.034 meters.

Previously we mentioned the equivalence of the Haar-like basis and ILR basis.
Accordingly, compositional metrics with similar interpretations [42, 52] can be defined
by projecting log-ratios of OTU counts onto the Haar-like basis (equivalently ILR
basis). However, contrary to the Haar-like distance, these metrics do not account for
phylogenetic induced covariance between OTUs.

6.3. Haar-like Distances of the Guerrero Negro microbial mat. A micro-
bial mat is a bio-film of layered groups of microorganisms with coupled biochemistries.
Their rich biodiversity, combined with the environmental gradients of light, oxygen,
etc., offer an ideal setting to test phylogenetic β-diversity metrics.

The Guerrero Negro mat is hypersaline. It is located in Baja California Sur,
Mexico. To demonstrate the insights possibly gained from the Haar-like distance, we
applied it to a 16S rRNA data set of 18 samples at different depths of the Guerrero
Negro mat [33, 22]. We used the 97% Greengenes as the reference phylogeny.

Earlier work [33] based on unweighted UniFrac showed a gradient of microbial
composition in the mat with respect to depth—see top plot in Figure 8. (For a
discussion regarding the “horseshoe” shape in the plot see [33, 43, 14].) As seen on
the bottom plot of the same figure, we can practically reproduce this gradient using
the Haar-like distance instead. Furthermore, as seen on the bottom two plots, the
DPCoA and Haar-like distance produce nearly indistinguishable embeddings.

While the three phylogenetic β-diversity metrics imply that mat depth drives a
measurable change in OTU composition, we can go a step further with the Haar-like
distance and determine which splits in the 97% Greengenes tree are responsible for
this trend and quantify their importance. We demonstrate this by comparing the two
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Fig. 9: Plot of λv ∆2
v, with v ∈ I, to measure the Haar-like distance between

the shallowest and deepest sample in the Guerrero Negro dataset. The
average non-zero value of λv ∆2

v is ∼ 2.09 × 10−5. The standard deviation of these
values is ∼ 7.55× 10−4.

extremes in the dataset: let a and b be the OTU compositions of the shallowest and
deepest environment, respectively. Define ∆ = Φ′(b−a). Following the logic described
in Section 6.2, we computed v ∈ I −→ λv ∆2

v, indexing interior nodes according
to a postorder traversal of the 97% Greengenes tree. These values are shown in
Figure 9. For our analysis, we focus on the largest 3 values, all of which are statistically
significant (via the number of standard deviations they deviate from the mean). These
are associated with the Haar-like wavelets ϕ99311 (λv∆

2
v-value ∼ 4.84× 10−2), ϕ67317

(λv∆
2
v-value ∼ 4.84×10−3), and ϕ6079 (λv∆

2
v-value ∼ 4.75×10−3). These correspond

to splits at depths 10, 34, and 18 of the 97% Greengenes tree, respectively.
Notably, the split associated with ϕ99311 corresponds to the largest λv∆

2
v-value.

According to the associated taxonomic classification, the (say) left descendants of this
split correspond to the phylum level classification of Cyanobacteria. This is consistent
with the conclusion in [33], which correlated Cyanobacteria abundance changes with
mat depth and explained the correlation by their ability to photosynthesize.

The other two wavelets provide novel insight into other important OTU com-
position differences driving the observed mat depth gradient in the Guerrero Negro
dataset. Indeed, while the descendants of the split associated with ϕ67317 do not
exhaust a taxonomic classification, all leaves under that split are classified as Anaero-
lineae. This differentiation between the shallowest and deepest sample may be due to
Anaerolineae’s role as a anaerobic digester [59].

Finally, the split associated with ϕ6079 subdivides the Cyanobacteria phylum into
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further classes, including Oscillatoriophycideae, which is the third most abundant
class of the Guerrero Negro dataset. The relevance of this split to differentiate shal-
low from deep samples may be explained by Oscillatoriophycideae’s photoautotrophic
capability [55].

Our analysis of the Guerrero Negro mat shows that the Haar-like distance may
be a valid alternative to other more common phylogenetic β-diversity metrics, pri-
marily because it provides a systematic method for detecting statistically significant
speciation events (and corresponding levels of OTU classification) that can link OTU
composition with environmental factor gradients.

7. Conclusions. We have presented an approach to analyze and manipulate
strictly ultrametric matrices through their ORB-tree representation. We demon-
strated that the Haar-like wavelets associated with an ORB-tree provide an orthonor-
mal basis with respect to which their associated matrix can be sparsified. Sparse
representations may allow otherwise computationally infeasible but standard manip-
ulations of these matrices, such as inverting and factoring them and characterizing
their spectrum and eigenvectors. We also detailed a sparsification algorithm and
showed that, with overwhelmingly high probability, only an asymptotically negligible
fraction of the off-diagonal entries in random but large, strictly ultrametric matrices
would remain non-zero after its application. Additionally, we provided some exact and
approximate spectral results for ultrametric matrices based on the trace branch length
“balancedness” of their ORB-tree. We also characterized the possible spectrums of
strictly ultrametric matrices, giving further insight into the symmetric nonnegative
inverse eigenvalue problem.

Conversely, the strictly ultrametric matrix associated with an ORB-tree corre-
sponds to the phylogenetic covariance matrix of the tree. We applied our methods to
the microbiologist’s Tree of Life covariance matrix as proof of concept. This covari-
ance model is a standard reference in metagenomic studies, which rely on metrics such
as UniFrac and Double Principal Coordinate Analysis (DPCoA). Motivated by the
fact that the Tree of Life’s covariance matrix is significantly sparsified by the Haar-like
wavelets, and that the diagonal of the sparsified matrix approximates with striking
accuracy its spectrum, we introduced the Haar-like distance. Like the established
metrics, this new metric measures the distance between pairs of microbial environ-
ments taking into account the relative abundance of microbes and their evolutionary
relatedness. Unlike the established metrics, however, this new distance may be used to
identify statistically significant speciation events linking microbial composition with
environmental factors.

Appendix A. Orthonormality of Haar-like bases. The statement that the
Haar-like basis {ϕv}v∈I associated with an ORB-tree is orthonormal is based on the
concept of multiresolution analysis of Euclidean spaces in [21]. Here we justify this
fact by first principles.

Let u, v ∈ I. If u = v then

〈ϕu, ϕv〉 =
|L(u1)|+ |L(u0)|

|L(u)|
= 1.

Instead, there are two possibilities when u 6= v. If L(u) ∩ L(v) = ∅ then 〈ϕv, ϕu〉 =
0 because ϕv and ϕu have disjoint supports. Otherwise, if L(u) ∩ L(v) 6= ∅ then
Lemma 2.4 let us assume without any loss of generality that u is an ancestor of v. In
particular, L(v) ⊂ L(u) but also ϕu remains constant over L(v). Therefore, for any
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given x ∈ L(v):

〈ϕu, ϕv〉 = ϕu(x) ·
∑

y∈L(v)

ϕv(y)

= ϕu(x) ·

{√
|L(v1)| · |L(v0)|

|L(v)|
−

√
L(v0)| · |L(v1)|
|L(v)|

}
= 0.
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