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ABSTRACT	

Humans	are	generally	risk	averse:	they	prefer	options	with	smaller	certain	outcomes	over	

those	with	larger	uncertain	ones.	This	risk	aversion	is	classically	explained	with	a	concave	

utility	 function,	 meaning	 that	 successive	 increases	 in	 monetary	 payoffs	 should	 increase	

subjective	 valuations	 by	 progressively	 smaller	 amounts.	 Here,	 we	 provide	 neural	 and	

behavioural	evidence	that	risk	aversion	may	also	arise	from	a	purely	perceptual	bias:	The	

noisy	logarithmic	coding	of	numerical	magnitudes	can	lead	individuals	to	underestimate	the	

size	 of	 larger	monetary	 payoffs,	 leading	 to	 apparent	 risk	 aversion	 even	 when	 subjective	

valuation	 increases	 linearly	 with	 the	 estimated	 amount.	 A	 formal	 model	 of	 this	 process	

predicts	 that	 risk	 aversion	 should	 systematically	 increase	 when	 individuals	 represent	

numerical	magnitudes	more	noisily.	We	 confirmed	 this	prediction	by	measuring	both	 the	

mental	and	neural	acuity	of	magnitude	representations	during	a	purely	perceptual	task	and	

relating	 these	 measures	 to	 individual	 risk	 attitudes	 during	 separate	 financial	 decisions.	

Computational	model	fitting	suggested	that	subjects	based	both	types	of	choices	on	similar	

mental	magnitude	representations,	with	correlated	precision	across	the	separate	perceptual	

and	risky	choices.	Increased	stimulus	noise	due	to	the	presentation	format	of	risky	outcomes	

led	to	increased	risk	aversion,	just	as	predicted	by	the	model.	The	precision	of	the	underlying	

neural	magnitude	representations	was	estimated	with	a	numerical	population	receptive	field	

model	fitted	to	the	fMRI	data	of	the	perceptual	task.	Subjects	with	more	precise	magnitude	

representations	 in	 parietal	 cortex	 indeed	 showed	 less	 variable	 behaviour	 and	 less	 risk-

aversion	in	the	separate	 financial	choices.	Our	results	highlight	that	 individual	patterns	of	

economic	 behaviour	 may,	 at	 least	 partially,	 be	 determined	 by	 capacity	 limitations	 in	

perceptual	processing	rather	 than	by	processes	 that	assign	subjective	values	 to	monetary	

rewards.	
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INTRODUCTION	

Risk	aversion	is	the	tendency	of	human	and	non-human	decision-makers	to	choose	smaller	

certain	options	over	 larger	 risky	ones	 (Fox	 et	 al.,	 2015;	Holt	 and	Laury,	 2002;	Rabin	 and	

Thaler,	2001).	While	the	population	on	average	is	risk	averse,	there	is	considerable	variability	

in	the	individual	strength	of	this	tendency,	and	some	people	display	risk-neutral	or	even	risk-

seeking	behaviour	 (Bruhin	et	al.,	2010;	von	Gaudecker	et	al.,	2011).	Traditional	economic	

theories	account	for	risk	aversion	by	the	non-linear,	concave	shape	of	the	utility	function	that	

maps	monetary	outcomes	to	subjective	utility	of	wealth	(Kahneman	and	Tversky,	1979;	von	

Neumann	and	Morgenstern,	1944).	Such	accounts	thus	conceptualise	individual	differences	

in	 risk	 aversion	 as	 differences	 in	 how	 the	 brain	 assigns	 subjective	 values	 to	 objective	

monetary	outcomes.	However,	such	theories	fail	to	capture	two	key	phenomena	in	real-life	

decision-making	under	risk	(Mosteller	and	Nogee,	1951;	Rabin,	2000).	

First,	if	utility	functions	are	concave	enough	to	account	for	risk	aversion	in	laboratory	

choices	involving	very	small	amounts	of	money,	then	decision	makers	should	be	risk	averse	

even	 for	 gambles	with	 very	 large	potential	 gains	 and	only	moderate	 losses	 (Rabin,	 2000;	

Rabin	 and	 Thaler,	 2001).	 Human	 subjects,	 however,	 do	 not	 behave	 according	 to	 these	

assumptions.	Second,	many	existing	utility-based	theories	fail	to	explain	the	stochasticity	in	

risky	choice:	Empirical	evidence	consistently	shows	that	choices	vary	across	repetitions	of	

the	same	choice	options	(Gai	and	Vause,	2004;	Hertwig	et	al.,	2019;	Hey,	2005;	Khaw	et	al.,	

2021;	 Loomes	 and	 Sugden,	 1995;	Mosteller	 and	Nogee,	 1951).	Click or tap here to enter 

text.While	this	phenomenon	can	be	incorporated	in	models	by	simply	adding	a	random	error	

term	 to	 the	utility	 function	 (Stott,	 2006;	Wilcox,	 2008),	 such	 an	 approach	 fails	 to	 explain	

mechanistically	 why	 this	 choice	 stochasticity	 arises	 and	 whether	 it	 reflects	 some	

fundamental	 properties	 of	 neural	 computations	 that	 may	 lead	 to	 systematic	 biases	 and	

irrationalities.	

Despite	 these	 conceptual	 problems,	 dominant	 neurocomputational	 accounts	 of	

individual	differences	in	risky	choice	behaviour	have	mainly	focussed	on	identifying	neural	

valuation	 processes	 that	 may	 correspond	 to	 the	 computations	 captured	 by	 the	 utility	

function.	 While	 consistent	 correlations	 have	 been	 found	 in	 various	 brain	 prefrontal	 and	

subcortical	 regions	 (Christopoulos	 et	 al.,	 2009;	Gilaie-Dotan	et	 al.,	 2014;	Heilbronner	 and	

Hayden,	2013;	Platt	and	Huettel,	2008;	Roitman	and	Roitman,	2010),	it	is	still	unclear	from	

these	findings	what	properties	of	neural	processing	may	give	rise	to	the	individual	variation	

in	how	the	brain	assigns	value.	This	is	particularly	unclear	since	these	computations	are	often	

conceptualized	 as	 a	 final	 stage	 in	 the	 value	 construction	 process	 that	 draws	 heavily	 on	
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information	passed	on	 from	preceding	sensory	and	cognitive	processing	 (Padoa-Schioppa	

and	Conen,	2017;	Spitmaan	et	al.,	2019).		

Here	we	 test	 an	 alternative	 theoretical	 framework	 that	 explains	 risk	 aversion	 and	

stochasticity	in	risky	choice	not	by	idiosyncratic	valuation	processes,	but	as	consequences	of	

capacity	 restrictions	 and	 biases	 in	 the	 initial	 perception	 of	 the	 choice	 options.	 The	 core	

assumption	of	this	framework	is	that	even	if	decision	makers	take	risky	choices	rationally	–	

and	thus	attempt	to	maximize	the	expected	value	of	the	payoffs	from	their	choices	-	they	do	

not	have	access	to	the	objective	information	about	the	option	payoffs	but	only	to	capacity-

constrained	 internal	 representations	of	 it	 (Khaw	et	al.,	2021).	That	percepts	of	numerical	

magnitudes	are	noisy	and	subject	to	several	biases	-	resembling	those	observed	for	lower-

level	sensory	percepts	-	has	been	well	established	by	decades	of	work	in	psychophysics.	For	

examples,	perceptual	 judgments	are	 stochastic	 (i.e.,	 vary	across	 repetitions)	when	human	

decision	makers	need	to	quickly	estimate	or	remember	the	numerical	magnitudes	of	a	set	of	

stimuli	 (Dehaene	 and	Marques,	 2002;	 Izard	 and	Dehaene,	 2008;	Nieder	 and	Miller,	 2003,	

2004;	 Nieder	 et	 al.,	 2002;	 van	 Oeffelen	 and	 Vos,	 1982).	 Moreover,	 humans	 tend	 to	

increasingly	 underestimate	 larger	 (numerical)	 magnitudes	 in	 purely	 perceptual	 tasks	

(Anobile	et	al.,	2012;	Indow	and	Ida,	1977;	Kaufman	et	al.,	1949;	Kramer	et	al.,	2011;	Krueger,	

1972,	1984;	Petzschner	et	al.,	2015).	Related	studies	in	perceptual	neuroscience	suggest	that	

this	noise	and	biases	in	magnitude	perception	may	be	a	direct	consequence	of	the	noisy	and	

logarithmic	way	in	which	numerical	magnitudes	are	encoded	by	neurons	in	parietal	cortex	

(Harvey	and	Dumoulin,	2017;	Harvey	et	al.,	2015;	Lasne	et	al.,	2019;	Nieder	and	Dehaene,	

2009;	Nieder	and	Miller,	2003;	Piazza	et	al.,	2004).	This	offers	the	intriguing	possibility	that	

from	a	neurocognitive	perspective,	individual	differences	in	financial	decision	making	may	

originate	from	biased	perception	originating	in	properties	of	parietal	magnitude	processing,	

rather	 than	 from	subjective	valuation	processes	 instantiated	 in	prefrontal	and	subcortical	

brain	areas.	

Recent	economic	models	of	risky	choice	have	started	to	adopt	this	perspective	and	

have	proposed	that	risk	attitudes	may	arise	from	the	imprecision	in	mental	representations	

of	magnitudes	(Frydman	and	Jin,	2022;	Khaw	et	al.,	2021).	These	models	assume,	in	line	with	

the	literature	on	perceptual	judgments	(Petzschner	et	al.,	2015),	that	logarithmic	coding	of	

the	payoff	information	and	Bayesian	integration	with	an	individual’s	prior	beliefs	(shaped	by	

more	frequent	exposure	to	smaller	magnitudes)	leads	to	more	variable	and	systematically	

underestimated	 percepts	 for	 larger	 magnitudes	 (Petzschner	 et	 al.,	 2015).	 This	 has	 the	

consequence	that	even	a	decision	rule	that	is	adapted	to	maximize	expected	payoffs	can	result	
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in	 choices	 that	 show	 hallmark	 patterns	 of	 risk	 aversion,	 in	 a	 manner	 that	 depends	

systematically	on	the	noisiness	of	assumed	magnitude	representations	(Khaw	et	al.,	2021).		

This	 perceptual	 account	 of	 risk	 aversion	 naturally	 accounts	 for	 two	 key	 empirical	

phenomena	that	utility-based	models	fail	to	explain.	First,	it	naturally	follows	that	economic	

choice	 will	 be	 stochastic,	 given	 that	 they	 are	 based	 on	 noisy	 mental	 magnitude	

representations	 (Woodford,	 2020).	 Second,	 the	 logarithmic	 compression	 of	 mental	

magnitude	representations	can	explain	why	subjects	are	risk	averse	even	for	arbitrarily	small	

gambles	(Rabin,	2000;	Rabin	and	Thaler,	2001),	since	diminishing	sensitivity	 for	different	

payoffs	should	simply	be	a	function	of	the	log-ratio	of	potential	payoffs	(i.e.,	the	distance	on	

a	 logarithmic	 scale),	 irrespective	 of	 overall	 magnitude	 (Woodford,	 2020).	 Crucially,	 the	

perceptual	 account	 of	 risk	 aversion	 also	 makes	 the	 novel	 prediction	 that	 individual	 or	

situational	differences	in	risk	aversion	should	be	negatively	related	to	the	precision	of	the	

mental	magnitude	representations	employed	by	the	decision	maker	(Petzschner	et	al.,	2015;	

Pouget	et	al.,	2013;	Woodford,	2020).		

While	 these	 theories	 thus	 formalize	how	apparent	 risk	aversion	may	emerge	 from	

biased	perception	and	the	noise	in	magnitude	representations,	empirical	support	for	these	

theories	 is	 limited.	 In	 particular,	 the	 existing	 studies	 have	 fitted	 their	 model	 to	 a	 single	

economic	 choice	 task	 and	 inspected	 the	 relation	 of	 the	 fitted	parameters	with	 the	 choice	

variability	in	the	same	dataset	(Frydman	and	Jin,	2022;	Khaw	et	al.,	2021).	No	study	to	date	

has	 linked	any	of	 these	behavioural	measures	of	 risk	preferences	 to	characteristics	of	 the	

neural	coding	of	magnitudes.	It	is	therefore	unclear	whether	an	individual’s	risk	aversion	can	

indeed	be	traced	back,	in	a	mechanistic	sense,	to	the	acuity	with	which	her	brain	represents	

magnitude	 information,	 and	 whether	 the	 noisiness	 (or	 inversely	 precision)	 of	 these	

magnitude	representations	is	a	stable	trait	that	can	parsimoniously	account	for	the	way	in	

which	an	individual	takes	both	perceptual	and	financial	choices.		

Here,	we	 provide	 this	 evidence,	 by	measuring	 the	 precision	 of	mental	 and	 neural	

magnitude	 representations	 in	 a	 purely	 perceptual	magnitude	 task	 and	 testing	 how	 these	

neurocognitive	measures	of	perceptual	magnitude	precision	can	account	for	individual	risk-

taking	behaviour	in	different	contexts	with	varying	sensory	noise.	By	using	a	single	unifying	

model	capturing	principles	of	magnitude	representations	(Izard	and	Dehaene,	2008;	Khaw	

et	al.,	2021;	van	Oeffelen	and	Vos,	1982),	we	can	thus	not	only	link	risk	aversion	to	estimates	

of	behavioural	precision	of	mental	magnitude	perception,	but	also	to	its	neural	substrate	of	

numerical	 representations	 in	 the	 intraparietal	 sulcus	 (IPS),	 which	 we	 measure	 with	

functional	magnetic	resonance	imaging	(fMRI).		
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RESULTS	

The	experiment.	To	test	whether	numerical	acuity	is	an	individual	neurocognitive	trait	that	

(a)	 generalizes	 across	 perceptual	 and	 economic	 tasks	 and	 (b)	 determines	 individual	

differences	in	risk	aversion,	we	devised	an	experiment	comprising	of	two	sets	of	tasks.	First,	

we	 presented	 a	 perceptual	magnitude	 comparison	 task	 in	 the	MRI	 scanner	 during	which	

subjects	(𝑁 = 64)	had	to	 indicate	which	of	two-coin	clouds	was	more	numerous	(Fig	1a).	

This	task	allowed	us	to	obtain	both	behavioural	(Izard	and	Dehaene,	2008;	van	Oeffelen	and	

Vos,	1982)	and	neural	measures	(van	Bergen	et	al.,	2015;	Harvey	et	al.,	2013)	of	numerical	

acuity.	Then,	in	a	second	set	of	experiments	outside	of	the	scanner,	we	presented	two	sets	of	

risky	choice	tasks	to	measure	individual	differences	in	risk	aversion	(Fig	1b-c).	In	one	half	of	

the	risky-choice	trials,	we	presented	payoff	magnitudes	as	coin	clouds	(Fig	1b)	and	thus	in	

the	same	presentation	format	as	also	employed	for	the	perceptual	task.	In	the	other	half	of	

trials,	we	presented	the	payoffs	symbolically	using	Arabic	numerals	(Fig	1c).	This	allowed	us	

to	test	whether	individual	differences	in	numerical	acuity	and	risk	aversion	generalise	across	

non-symbolic	 and	 symbolic	 settings,	 and	 whether	 risk	 aversion	 decreases	 if	 stimulus	

discriminability	is	increased	(i.e.,	from	non-symbolic	to	symbolic	presentation).	This	latter	

hypothesis	follows	from	model	predictions	(see	below)	that	if	 internal	noise	in	magnitude	

representations	 is	 reduced,	 any	 perceptual	 bias	 giving	 rise	 to	 risk	 aversion	 should	 also	

decrease.	 Variations	 in	magnitude	were	matched	 across	 both	 risky-choice	 tasks,	 allowing	

explicit	comparisons	of	precision	between	presentation	formats	(see	Methods	for	details).	

To	formally	model	behavioural	data,	we	used	a	variant	of	a	noisy	logarithmic	coding	(NLC)-

model	(Khaw	et	al.,	2021)	that	builds	on	established	models	of	numerical	cognition	(Dehaene,	

2003;	Dehaene	and	Marques,	2002;	Izard	and	Dehaene,	2008;	van	Oeffelen	and	Vos,	1982)	

and	could	be	fitted	to	all	choice	tasks.	

	

A	common	model	 for	perceptual	and	risky	choice.	We	employed	the	noisy	 logarithmic	

coding	(NLC)	model	as	the	guiding	framework	to	test	the	generalisability	of	numerical	acuity	

across	perceptual	and	risky	choice	tasks	(see	Methods	for	more	details).	The	NLC	posits	that	

decisions	 maximize	 expected	 payoffs	 based	 on	 the	 mean	 Bayesian	 posterior	 magnitude	

estimate,	which	systematically	integrates	the	prior	belief	about	the	magnitude	distribution	

and	 the	 noisiness	 of	 the	 internal	 representations	 of	 the	 current	 magnitudes	 at	 stake	

(Petzschner	et	al.,	2015).	The	model	assumes	that	the	brain	represents	the	magnitudes	of	the	

risky	payoff	X	and	the	certain	payoff	C	by	𝑟!	and	 	𝑟" ,	 two	noisy	estimates	on	a	 logarithmic	

internal	scale	modelled	as	samples	from	log-normal	distributions,		
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𝑟!	~	𝑁(log𝑋, 𝜈#) , 𝑟$ 	~	𝑁(log 𝐶, 𝜈#).	

	

Perception	is	formalized	as	a	Bayesian	inference	process	that	combines	these	internal	

estimates	with	a	common	prior,	𝑋, 𝐶	~	𝑁(𝜇, 𝜎#)	that	specifies	the	distribution	of	numerical	

magnitudes	the	decision	maker	expects	to	encounter	in	the	testing	environment.	Central	to	

the	 model	 is	 the	 individual	 parameter	 𝜈	 that	 represents	 the	 noise	 of	 the	 internal	

representations	of	numerical	magnitudes.	The	parameter,	𝜎,	on	the	other	hand,	is	the	width	

of	the	prior	that	accounts	for	the	dispersion	of	numerosities	that	the	decision-maker	deems	

plausible.	The	decision	process	 involves	optimization	of	 the	expected	payoff	based	on	 the	

mean	posterior	magnitude	estimate	

	

𝔼[𝑋|𝑟] = exp(𝛼 + 𝛽𝑟!) , 𝔼[𝐶|𝑟] = exp(𝛼 + 𝛽𝑟$)	

	

where	𝛼	is	a	constant	and	𝛽 = %!

%!&'!
	is	the	linear	weighting	of	the	prior	versus	the	likelihood.	

Here,	the	larger	the	noise	in	mental	magnitude	representations	𝑟	(reflected	by	a	larger	𝜈),	the	

shallower	and	more	regressive	the	expected-value	function	over	the	payoffs.		

With	these	underlying	representational	mechanisms,	we	can	derive	a	psychometric	

function	and	predict	the	probability	with	which	the	decision-maker	chooses	𝑟!	over	𝑟$ ,	

	

Pr(𝑟! > 𝑟$|𝑋, 𝐶) = ΦB
log(𝑋 𝐶⁄ ) − 𝛽() log 𝑝()

√2𝑣
I	

	

where	Φ(∙)	is	the	standard	normal	cumulative	density	function	and	𝑝	is	the	probability	of	the	

risky	payoff.	In	our	task,	𝑋	and	𝐶	represent	the	objective	magnitudes	of	the	second-	and	first-

coin	clouds	during	the	perceptual	magnitude	task	and	the	magnitudes	of	the	risky	and	certain	

payoffs	 during	 the	 risky	 choice	 task,	 respectively.	We	 can	 conveniently	 estimate	 the	NLC	

parameters	using	a	standard	probit	model,	

	

Pr(𝑟! > 𝑟$) = ΦK𝛾 log K
𝑋
𝐶M − 𝛿M.	

	

This	parametrization	is	equivalent	to	the	NLC	via	the	relationships	in	the	slope,	𝛾 =
)
√#'
,		and	intercept,	𝛿 = O+

"# ,-./0"#1
√#2

P.		
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FIGURE	1.	Experimental	paradigm	and	behavioural	results.	(a)	Participants	performed	a	numerical	

decision-making	task	inside	the	MRI	scanner.	On	every	trial,	 two	clouds	of	1-CHF	coins	were	presented	

sequentially,	and	participants	had	to	indicate	which	of	the	two	clouds	contained	more	coins.	We	collected	

both	neural	and	behavioural	measurements	to	estimate	the	precision	of	 the	magnitude	representations	

used	for	the	task.	Outside	of	the	scanner,	participants	took	risky	choices	in	which	they	had	to	choose	either	

a	risky	gamble	or	a	sure	offer.	We	visually	displayed	the	potential	payoffs	of	the	offers	as	either	(b)	non-

symbolic	coin	clouds	similar	to	the	perceptual	task	or	(c)	symbolic	Arabic	numerals.	Probabilities	were	

presented	as	pie	charts,	and	we	fixed	the	probabilities	at	𝑝 = 0.55	in	favor	of	the	risky	monetary	offer.	(d)	

Observed	probabilities	of	choosing	 the	second	stimulus	 for	magnitude	 judgments	(left)	or	choosing	 the	

risky	option	for	risky	choices	(middle	and	right)	plotted	in	linear	space,	separated	by	visual	display	type	

(non-symbolic	payoffs,	middle	and	symbolic	payoffs,	right).	The	six	psychometric	curves	correspond	to	the	

magnitudes	of	the	first	stimulus	arrays	in	the	magnitude	task	or,	analogously,	the	six	possible	sure	offers	

in	the	risky-choice	task.		

	

The	 following	 are	 key	 measures	 for	 our	 analysis.	 First,	 the	 slope	 𝛾	 captures	 the	

precision	in	mental	magnitude	representations	(the	inverse	of	noise,	𝜈)	while	the	intercept	𝛿	

captures	the	indifference	point	between	both	options.	More	precisely,	the	indifference	point,	

𝜃 = exp O3
4
P,	 is	where	the	 individual	 is	 indifferent	 in	choosing	between	𝑟!	and	𝑟$ .	A	crucial	

corollary	of	locating	the	indifference	point	is	the	ability	to	index	risk	aversion	as	risk-neutral	

probability,	𝜋5678 = expO− 3
4
P,	 the	probability	 level	at	which	the	decision	maker	should	be	

indifferent	between	the	risky	and	the	safe	option.	The	NLC	prescribes	that	a	decision-maker	

with	imprecise	mental	magnitude	representations	should	show	𝜋5678 < 0.55	and	thus	behave	

as	 if	 the	 probability	 of	 receiving	 the	 risky	 payoff	 is	 smaller	 than	 it	 actually	 is	 (which,	 by	

definition,	 is	apparent	risk	aversion).	The	“risk-neutral”	probability	during	 the	perceptual	
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magnitude	comparison	task,	on	the	other	hand,	should	trivially	be	𝜋095$90:;<= ≈ 1,	since	both	

options	are	associated	with	the	same	degree	of	(subjective)	uncertainty.		

	

The	NLC	model	is	a	better	account	for	risky	choice	behaviour	than	established	utility-

based	models.	As	a	necessary	condition,	we	established	that	our	perceptual	account	of	risk	

aversion	can	capture	the	empirical	data	at	least	as	well	as	dominant	economic	theories.	We	

used	 formal	 techniques	 to	 compare	 the	NLC’s	 fit	 to	 the	 risky	 choice	 data	with	 the	 fits	 of	

classical	 decision-making	 theories	 like	 expected	 utility	 maximization	 (EUM),	 cumulative	

prospect	theory	(CPT),	and	salience	theory	(ST),	all	in	logit	and	probit	form	(see	Methods	for	

details).	The	formal	model	comparison	revealed	that	the	NLC	fit	the	data	best	since	it	always	

had	the	lowest	deviance	information	criterion	(DIC),	regardless	of	presentation	format	(see	

Supplementary	Fig	1a,b).	This	underlines	the	plausibility	of	the	neurocognitive	operations	

formalized	in	the	model.		

	

Decoding	magnitude	from	neural	activity.	The	NLC	model	assumes	that	both	numerical	

magnitudes	 and	potential	 payoffs	 are	 represented	 in	 the	 same	noisy	 logarithmic	manner.	

This	 builds	 on	 established	 neuroscientific	 findings	 that	 neural	 population	 activity	 in	

numerical	parietal	cortex	(NPC)	is	tuned	to	numerical	magnitudes,	with	the	width	of	neural	

tuning	reflecting	moment-to-moment	noisiness	(or	inversely,	precision)	of	neural	magnitude	

representations	across	repeated	stimuli	(Harvey	et	al.,	2013;	Piazza	et	al.,	2004;	Pouget	et	al.,	

2013).	We	now	directly	test	these	implicit,	mechanistic	links	between	neural	and	cognitive	

magnitude	representations,	by	investigating	the	relationship	between	behavioural	precision	

in	 the	 perceptual	 magnitude	 task	 and	 the	 fidelity	 of	 parietal	 magnitude	 representations	

measured	 by	 BOLD-fMRI	 during	 the	 perceptual	 decision-making	 task	 (van	 Bergen	 et	 al.,	

2015).	 To	 this	 end,	 we	 fitted	 a	 numerical	 population	 receptive	 field	 (nPRF)	 model	 that	

assumes	that	every	patch	of	(parietal)	cortex	responds	to	a	specific	part	of	the	number	line,	

with	its	response	profile	characterized	as	a	Gaussian	kernel	on	the	logarithmic	number	line	

(Fig	2a)	(Dumoulin	and	Wandell,	2008;	Harvey	and	Dumoulin,	2017;	Harvey	et	al.,	2013).	We	

fitted	the	model	in	a	cross-validated	manner	to	a	training	set	of	5	runs	and	then	inverted	it	

using	 Bayesian	 model	 inversion.	 This	 allowed	 us	 to	 obtain	 a	 posterior	 distribution	 over	

possible	stimuli,	given	the	BOLD	activity	patterns	from	the	6th,	hold-out	run	(van	Bergen	et	

al.,	2015).	Thus,	we	could	decode	from	the	population	response	underlying	the	(previously	

unseen)	 BOLD	 activation	 patterns	 the	most	 likely	 numerical	magnitude	 of	 the	 presented	

stimulus	(Fig	2b;	see	Methods	for	details).		
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FIGURE	2.	Decoding	the	precision	of	neural	magnitude	representations	in	parietal	cortex.	(a)	The	

nPRF	model	fits	a	numerical,	log-Gaussian	receptive	field	(dashed	curve	lines)	to	BOLD	activation	patterns	

elicited	by	the	magnitude	of	the	first	stimulus	arrays	in	the	perceptual	task.	In	this	hypothetical	illustration,	

the	first	receptive	field	(RF,	blue)	activates	stronger	for	larger	magnitudes,	the	second	RF	(orange)	strongly	

activates	(roughly)	between	7	and	10,	and	the	third	RF	(green)	between	10	and	14.	(b)	An	illustration	of	

decoding	using	Bayesian	model	inversion:	The	bar	plots	(left,	top	panel)	are	hypothetical	beta	estimates	of	

BOLD	 activation	 responses	 to	 unseen	 stimuli.	We	 invert	 the	 fitted	 nPRF	model	 using	 Bayesian	model	

inversion	to	obtain	a	posterior	over	possible	numerical	magnitudes	of	a	stimulus,	given	a	BOLD	activity	

pattern.	Our	measure	of	imprecision	in	the	neural	magnitude	representation	is	the	standard	deviation	of	

this	posterior	(middle	panel).	The	peaks	of	the	posterior’s	bimodal	distribution	(solid	vertical	lines,	middle	

panel)	represent	the	most	likely	stimulus,	according	to	the	BOLD	activation	in	a	single	cortical	location	with	

a	single	receptive	field	(solid	horizontal	lines,	top	panels).	The	shaded	areas	correspond	to	the	standard	

deviations	of	 the	beta	estimates	 in	 the	 left	panel.	The	posteriors	of	multiple	 cortical	 locations	are	 then	

integrated	into	a	single	distribution	that	quantifies	the	posterior	probability	that	different	magnitudes	have	

elicited	 the	multivariate	BOLD	response	pattern,	as	well	as	 the	uncertainty	 inherent	 in	 this	assessment	

(bottom	panel).	(c)	In	line	with	earlier	work,	we	found	topographic	organization	of	different	numerosity	

preferences	 in	 bilateral	 numerical	 parietal	 cortex	 (NPC).	 (d)	The	 confusion	matrices	 of	 the	 numerical	

magnitude	 decoder	 show	 consistent	 and	 unbiased	 decoding	 of	 unseen	 numerosity	 stimuli.	 (e)	 The	

precision,	 !
"#
,	of	the	decoded	posteriors	is	significantly	correlated	with	the	precision	of	mental	magnitude	

representations	 employed	 during	 the	 perceptual	 decision-making	 task,	 as	 indexed	 by	 the	 parameter	

𝛾$%&'%$()*+ .	*	𝑝 < 0.05,	**	𝑝 < 0.01,	and	***	𝑝 < 0.001.	

	

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.22.504413doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.22.504413
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 10	

In	 line	with	previous	 findings	of	 topographic	neural	magnitude	 representations	 in	

parietal	cortex	(Harvey	and	Dumoulin,	2017;	Harvey	et	al.,	2013,	2015),	we	found	that	large	

regions	in	parietal	cortex	were	sensitive	to	numerical	magnitude	stimuli,	and	that	many	of	

these	were	topographically	organised	according	to	their	most-preferred	numerosity	(Fig	2c).	

Given	 established	 links	 between	 neural	 decoding	 accuracy	 in	 IPS	 and	 task	 performance	

(Kersey	and	Cantlon,	2017;	Lasne	et	al.,	2019),	we	manually	segmented	a	region	in	IPS	that	

was	both	magnitude-sensitive	and	showed	topographic	organisation,	which	we	labelled	left	

and	right	NPC.	The	neural	magnitude	representations	in	this	NPC	area	were	indeed	highly	

specific,	 as	we	 ascertained	 by	 inverting	 the	 encoding	model	 and	 decoding	 the	 presented	

stimulus	from	NPC-BOLD	activity	patterns	in	held-out	data.	This	worked	better	than	chance	

(16.67%)	in	56	out	of	64	subjects	in	left	NPC	(average	accuracy	23.6%,	s.d.	5.4%)	and	60	out	

of	 64	 subjects	 in	 right	 NPC	 (average	 accuracy	 23.8%,	 s.d.	 5.2%).	 These	 accuracies	 were	

significantly	 different	 from	 chance	 level	 decoding	 (16.67%)	 at	 the	 group	 level	 (𝑡(63) =

10.4, 𝑝 < 0.001	 for	 left	 NPC	 and	 𝑡(63) = 11.4, 𝑝 < 0.001	 for	 right	 NPC).	 Reassuringly,	

misclassified	stimuli	were	usually	classified	as	a	stimulus	relatively	close	in	magnitude	(Fig	

2d).	Moreover,	 in	 line	with	 the	notion	 that	magnitude	 representations	may	be	 somewhat	

right-lateralized	(Lasne	et	al.,	2019),	the	correlation	between	the	presented	magnitude	and	

the	mean	decoded	posterior	was	 higher	 for	 right	NPC	 (𝑟 = 0.216)	 than	 for	 left	NPC	 (𝑟 =

0.117)	(paired	t-test:	𝑡(63) = 6.17, 𝑝 < 0.001),	and	the	standard	deviations	of	the	decoded	

posterior	were	 smaller	 (right:	 6.9	vs	 left:	 17.4).	Overall,	 in	 line	with	our	expectations,	we	

could	identify	topographic	areas	in	parietal	cortex	for	each	individual	that	reliably	encoded	

numerical	magnitudes	in	the	perceptual	task.	
	

Behavioural	 differences	 in	 numerical	 acuity	 relate	 to	 the	 precision	 of	 neural	

magnitude	 representations.	 Crucially,	 our	neural	model	 allowed	us	 to	 not	 only	 identify	

neural	magnitude	representations	in	parietal	cortex	but	also	to	derive	a	standard	index	of	

how	precisely	magnitudes	are	represented	by	neural	population	activity	(see	van	Bergen	and	

Jehee,	2019;	van	Bergen	et	al.,	2015;	Li	et	al.,	2021;	Walker	et	al.,	2020):	We	can	measure	each	

individual’s	general	degree	of	neural	precision	in	encoding	magnitudes	by	the	mean	precision,	
)
7>
,	 of	 the	 posterior	 across	 all	 stimulus	 categories	 (Fig	 3a,	 red	 arrow).	 The	 NLC	 model	

implicitly	assumes	that	its	measure	of	precision	in	mental	magnitude	representations	should	

reflect	the	precision	of	the	corresponding	neurobiological	representations.	Consistent	with	

this	 hypothesis,	 we	 found	 significant	 positive	 correlations	 between	 each	 subject’s	

performance	on	the	perceptual	task,	measured	by	the	precision	parameter,	𝛾095$90:;<= ,		and	
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the	index	of	general	neural	precision,	 )
7>
	of	decoded	posteriors	(averaged	over	all	6	stimuli	

categories)	in	both	left	and	right	NPC	(𝑟=9?: = 0.32, 𝑟56@A: = 0.42,	both	are	𝑝 < 0.001;	Fig	2e).	

This	 confirms	 a	 strong	 link	 between	 the	 noise	 in	 neural	 representations	 of	 numerical	

magnitudes	 and	 variability	 in	 performance	 during	magnitude	 perception,	 particularly	 for	

right	NPC	(Kersey	and	Cantlon,	2017;	Lasne	et	al.,	2019).	

	

Evidence	 that	 similar	 logarithmic	 magnitude	 representations	 may	 guide	 both	

perceptual	and	risky	choices.	A	central	assumption	of	 the	NLC	 is	 that	noisy	 logarithmic	

magnitude	representations	should	be	scale	invariant,	which	should	be	evident	in	at	least	two	

ways:	(a)	the	probability	of	choosing	the	second	coin	cloud	in	the	perceptual	task	and	the	

risky	 gamble	 in	 the	 risky	 choice	 task	 should	 be	 determined	 by	 the	 log-ratio	 of	 the	 two	

magnitudes,	 B
C
,	 rather	 than	 by	 their	 absolute	 magnitudes;	 and	 (b)	 the	 noise	 in	 internal	

magnitude	 representations	 should	 increase	 with	 magnitude.	 To	 visually	 test	 for	 these	

hallmark	signs	of	the	representations	assumed	by	NLC,	we	plotted	the	probabilities	of	judging	

the	 second	 set	 of	 coins	 larger	 than	 the	 reference	 stimulus	 (Fig	1a)	 or	 choosing	 the	 risky	

gamble	over	the	sure	gamble	(Fig	1b,c)	in	both	linear	(Fig	1d)	and	log	(Fig	3a)	spaces.	Initial	

visual	inspection	already	shows	that	in	linear	space,	the	choice	curves	vary	differently	and	

are	skewed.	But	when	replotted	on	a	log	scale,	the	slopes	(𝛾)	become	very	similar	and	even	

more	 so	 in	 log-ratio	 scale,	 where	 all	 choice	 curves	 are	 practically	 identical	 (Fig	 3b),	

suggesting	scale-invariance.	We	also	formally	tested	for	scale	invariance	by	comparing	model	

fits	of	a	single	NLC	psychometric	curve	to	an	unrestricted	model	 that	separately	 fitted	six	

such	psychometric	curves	for	each	of	the	six	reference	stimuli.	Model	comparisons	revealed	

that	the	NLC’s	single	psychometric	curve	fitted	to	all	magnitude	stimuli	explained	the	data	far	

better	than	the	unrestricted	model	(Fig.	3c),	thus	confirming	scale	invariance	in	the	choice	

data.		
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FIGURE	3.	Domain-generality	of	scale	invariance	across	perceptual	and	risky	choice	tasks.	(a)	The	

same	observed	choice	probabilities	as	in	Fig	1(d)	but	plotted	in	logarithmic	space	and	(b)	as	the	ratio	of	

the	second-	and	first-coin	cloud	magnitudes	(magnitude	task)	or	of	the	risky	and	sure	payoffs	(risky-choice	

task),	to	test	for	scale	invariance;	initial	inspection	indicates	that	the	slopes	of	these	psychometric	curves	

are	 similar	 irrespective	 of	 task	 domain	 or	 visual	 display,	 already	 suggesting	 common	 logarithmic	

magnitude	coding	across	tasks.	Moreover,	the	slopes	of	the	six	psychometric	curves	stack	over	each	other,	

and	we	can	fit	a	single	psychometric	curve	(solid	black	curve)	to	account	for	all	choice	probabilities	in	all	

task	domains	and	visual	displays.	(c)	Difference	in	deviance	information	criterion	(DIC)	between	the	best	

model	(the	NLC	with	one	slope	parameter	for	all	experimental	conditions)	and	the	competing	unrestricted	

model	with	separate	slopes	for	each	combination,	for	all	types	of	choices	and	displays.	(d)	The	dispersion	

(s.d.)	 of	 the	 decoded	 posteriors	 increases	 as	 a	 function	 of	 stimulus	 magnitude—a	 hallmark	 of	 scale	

invariance.	 We	 quantified,	 on	 a	 subject-to-subject	 basis,	 both	 the	 average	 neural	 precision	 ( !
"#
	 of	 the	

posterior)	 across	magnitudes,	 as	 well	 as	 the	 neural	 diminishing	 sensitivity,	 the	 extent	 to	which	 neural	

representations	get	noisier	as	a	function	of	stimulus	magnitude.	

	

Crucially,	we	also	 tested	whether	scale	 invariance	applies	 to	 the	neural	magnitude	

representations	 identified	 with	 our	 encoding-/decoding	 approach.	 In	 addition	 to	 the	

precision	of	neural	representations	across	all	magnitude	levels	(mean	precision,	 )
7>
,	Fig	3a,	
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red	 arrow),	 we	 could	 also	 derive	 measure	 of	 neural	 diminishing	 sensitivity	 (DM):	 The	

regression	slope	of	the	decoded	posterior’s	mean	sd	on	stimulus	magnitude,	indexing	how	

strongly,	in	a	given	individual,	neural	representations	become	less	precise	with	increasing	

magnitudes	 (Fig	 3a,	green	 arrows).	 Note	 that	 the	 first	measure	 (neural	 precision)	 can	 be	

contaminated	by	non-cognitive	 factors	unspecific	 to	magnitude	coding,	such	as	size	of	 the	

cortical	 sheet,	neurovascular	coupling,	attention,	and	head	movement	 (Naselaris	and	Kay,	

2015;	Snoek	et	al.,	2019).	The	second	measure	(neural	DM)	is	less	likely	to	be	affected	by	such	

unspecific	general	noise	factors,	which	presumably	do	not	vary	systematically	with	trialwise	

stimulus	magnitudes.	Thus,	 for	subjects	who	exhibit	 imprecision	specifically	 in	 the	neural	

coding	of	magnitudes,	and	for	whom	this	coding	follows	scale	invariance,	we	expect	the	slope	

of	decoding	uncertainty	across	magnitude	levels	to	be	systematically	higher,	on	top	of	any	

general	neural	noise	also	affected	by	non-cognitive	noise	sources.	

In	line	with	these	predictions,	we	found	that	the	larger	the	stimulus	magnitude,	the	

noisier	 the	 neural	 magnitude	 representation	 (in	 natural	 space;	 repeated-measures	

correlation;	for	both	left	NPC	(average		𝑟 = 0.23, 𝑝 = 0.001)	and	right	NPC	(Fig	3d,	average	

𝑟 = 0.43, 𝑝 < 0.001).	This	also	confirms	scale	invariance	in	neural	magnitude	encoding	and	

suggests	 that	 decisions	 in	 all	 tasks	 and	 contexts	 were	 guided	 by	 similar	 neurocognitive	

magnitude	representations.	

	

The	NLC	captures	how	noise	 in	magnitude	representations	mechanistically	 leads	 to	

perceptual	bias	and	risk	aversion.	A	crucial	implication	of	the	NLC	model	is	that	it	specifies	

the	link	between	magnitude	representation	noise	and	the	point	at	which	participants	become	

indifferent	between	the	choice	options.	In	perceptual	magnitude,	where	it	is	known	a	priori	

that	 there	 is	 no	 outcome	 uncertainty	 (i.e.,	 probabilities	 are	 equal	 to	 1),	 the	 individual’s	

indifference	point	should	 lie	around	𝜃095$90:;<= ≈ 1,	 the	point	where	both	magnitudes	are	

equal,	𝑋 = 𝐶.	 In	risky	choice,	the	objective	outcome	probability	p	=	0.55	should	lead	to	an	

indifference	 point	 𝜃	 = 	B
C
	= )

D.FF
	 for	 perfectly	 precise	 magnitude	 representations	 (𝜈 = 0).	

However,	any	degree	of	non-zero	noise	(𝜈 > 0)	will	shift	the	indifference-point	threshold	to	

𝜃 > )
D.FF

	and	thus	to	apparent	risk	aversion	(since	people	become	indifferent	only	for	larger	X	

at	the	given	p).	This	prediction	by	the	NLC	should	be	evident	by	the	location	of	the	probit	

intercept,	 which	 should	 not	 be	 statistically	 different	 from	 zero,	 𝛿 = 0,	 for	 perceptual	

judgements	but	greater	than	zero,	𝛿 > 0,	for	risky	choice.		

Indeed,	 population-level	 posterior	 distributions	 of	 the	 intercept	 estimated	 with	 a	

hierarchical	Bayesian	framework	were	all	in	line	with	model	prescriptions.	(Supplementary	
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Fig.	 2a	 and	 5a,	 𝛿095$90:;<= = −0.168, 𝑝G$G$ = 0.204;	 Supplementary	 Fig.	 2b,	

𝛿HIH7"GJI=6$ = 2.41	and	𝛿7"GJI=6$ = 2.97,			𝑝G$G$ < 0.001		for	both	measures).	Post-hoc	tests	

revealed	 that	 the	 indifference-point	 threshold	 for	 perceptual	magnitude	was	 no	 different	

from	1	(Supplementary	Fig.	2c,	𝜃095$90:;<= = 0.95,	𝑝G$G$ = 0.204)	while	 the	 indifference	

points	 for	 risky	 payoffs	 across	 visual	 presentation	 formats	 were	 greater	 than	 )
D.FF

	

(Supplementary	 Fig.	 2d,	 (left	 panel),	 𝜃HIH7"GJI=6$ = 2.46	 and,	 𝜃7"GJI=6$ = 2.24,	 𝑝G$G$ <

0.001	for	both	measures).	Given	that	previous	work	(Khaw	et	al.,	2021)	only	tested	the	NLC	

within	 a	 single	 economic	 choice	 task,	 our	 results	 extend	 the	 NLC’s	 generalisability	 as	 a	

normative	model	that	can	flexibly	account	for	biases	in	both	perceptual	and	risky	economic	

choices.	

	

Similar	magnitude	representations	guide	risky	choice	across	visual	display	 formats	

and	individuals.	The	NLC	defines	the	noisiness	of	mental	magnitude	representations	𝜈	as	a	

function	of	𝛾,	 the	precision	with	which	individual	decision-makers	can	mentally	represent	

magnitude	 stimuli.	 At	 the	 same	 time,	 the	 NLC	 assumes	 that	 choice	 behavior	 should	

independently	be	influenced	by	different	beliefs	about	the	variability	of	magnitudes	in	the	

environment	 (measured	 by	 the	width	 of	 the	 prior,	𝜎)	 as	well	 as	 by	 sensory	 noise	 in	 the	

stimulus	 display	 (which	 should	 also	 affect	 the	 precision	 of	 magnitude	 representations).	

However,	these	core	features	of	the	NLC	remained	thus	far	untested,	since	previous	studies	

that	have	related	risk	aversion,	𝜋,	 to	the	precision	 in	mental	magnitude	representation,	𝛾,	

have	done	so	with	parameters	fitted	to	a	single	economic	task	with	only	one	type	of	visual	

display	(e.g.,	symbolic	payoffs).	If	𝛾	really	reflects	an	individual	trait,	then	the	relationship	

between	𝜋	and	𝛾	should	be	robust	to	variations	in	sensory	noise;	but	the	sensory	noise	level	

should	nevertheless	have	independent	systematic	effects	on	risk	aversion.	

We	 tested	 this	 hypothesis	 by	 comparing	 the	 same	 risky	 choices	 presented	 either	

symbolically	as	numbers	or	non-symbolically	as	coin	clouds	(Fig	1b,c).	First,	we	predicted	

that	 individuals	 should	be	more	 risk-averse	when	 faced	with	non-symbolic	 payoffs,	 since	

symbolic	payoffs	are	easier	to	identify	and	map	onto	mental	magnitude	representations	(note	

that	 by	 matching	 the	 distribution	 of	 stimulus	 magnitude	 of	 non-symbolic	 and	 symbolic	

payoffs,	 the	prior	 between	 the	 two	 stimulus	displays	 should	be	no	different).	 Second,	we	

expected	 that	 we	 will	 replicate	 previous	 results	 of	 a	 positive	 and	 nonlinear	 relationship	

between	risky	payoff	precision	and	risk	aversion	(Khaw	et	al.,	2021)	for	both	display	formats,	

but	we	crucially	predicted	that	each	individual’s	magnitude	noise	will	be	related	across	both	

visual	display	formats.		
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FIGURE	4.	Noise	in	mental	magnitude	representations	is	individually	robust	across	different	types	

of	visual	displays	of	risky	prospects.	Population	posterior	distributions	of	(a)	risky	payoff	precision,	(b)	

the	prior,	and	(c)	risk	aversion	for	risky	symbolic	payoffs	and	risky	non-symbolic	payoffs	in	risky	choice	

behaviour.	Top	plots	are	distributions	for	both	types	of	displays	(symbolic	payoffs	in	blue,	non-symbolic	

payoffs	in	yellow)	while	bottom	plots	are	distributions	of	differences	between	display	formats	(in	pink).	

The	light-shaded	mass	of	the	highest	density	interval	(HDI)	covers	95%	of	the	posterior	distribution	while	

the	dark-shaded	tail-ends	represent	5%	of	the	posterior	distribution.	In	top	plots,	the	vertical	dashed	line	

represents	 the	 ‘rational’	 risk-neutral	probability,	𝑝 = 0.55,	whereas	 in	bottom	plots,	 it	 represents	zero.	

Representations	 were	 more	 precise	 during	 symbolic	 payoffs,	𝛾",-./+0' ,	 than	 non-symbolic	 payoffs,	

𝛾1/1",-./+0' .	This	 is	reflected	as	 larger	risk	aversion	(or	 lower	risk-neutral	probability)	 in	non-symbolic	

payoffs,	𝜋1/1",-./+0'	 relative	 to	 symbolic	 payoffs,	𝜋",-./+0' .	 There	 is	 no	 difference	 between	 the	 priors,	

𝜎1/1",-./+0'	 and	𝜎",-./+0' .	 *	𝑝 < 0.05,	 **	𝑝 < 0.01,	 and	 ***	𝑝 < 0.001.	 Individual	measures	 of	 (d)	 risky	

payoff	precision	and	(e)	risk	aversion	for	symbolic	and	non-symbolic	payoffs	are	related:	the	two	measures	

are	positively	correlated.	*	𝑝 < 0.05,	**	𝑝 < 0.01,	and	***	𝑝 < 0.001.	

	

	 Our	results	confirm	all	these	predictions.	Population-level	posterior	distributions	of	

the	corresponding	parameters	confirmed	that	representations	of	non-symbolic	payoffs	were	

less	precise	than	symbolic	ones	(Fig	4a,	𝛾HIH7"GJI=6$ = 2.76, 𝛾7"GJI=6$ = 3.56, 𝑝G$G$ < 0.001)	

and	 that	 the	 individual	 indifference	 points	 between	 risky	 and	 sure	 gambles	were	 indeed	
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higher	during	non-symbolic	payoff	presentations	(𝜃HIH7"GJI=6$ > 𝜃7"GJI=6$ 	(Supplementary	

Fig	2d	(right	panel),	𝑝G$G$ = 0.003).	As	expected	given	the	noisiness	of	mental	magnitude	

representations,	 risk	aversion	was	substantial	 for	both	display	 formats	 (Fig.	4c	(top-right	

panel),	𝜋HIH7"GJI=6$ = 0.408,		𝜋7"GJI=6$ = 0.448	are	less	than	0.55, 𝑝G$G$ < 0.001)	and	risk-

neutral	 probabilities	 were	 indeed	 systematically	 smaller	 (corresponding	 to	 more	 risk	

aversion)	 for	non-symbolic	payoff	display	 formats	 (Fig.	4c	 (middle-right	panel),	 	𝑝G$G$ =

0.003).	Importantly,	these	differences	in	the	indifference	point	and	risk-neutral	probability	

did	not	appear	to	reflect	different	beliefs	about	stimulus	magnitude	distributions,	since	the	

estimated	priors	were	not	different	between	non-symbolic	and	symbolic	payoffs	 (Fig.	4b,	

𝜎HIH7"GJI=6$ = 0.366, 𝜎7"GJI=6$ = 0.343, 𝑝G$G$ = 0.204).		

In	 line	with	our	 second	hypothesis	 –	 that	 common	magnitude	 representations	 are	

employed	during	both	display	types,	but	are	subject	to	differing	sensory	noise	-		we	found	

significant	 positive	 correlations	 across	 visual	 display	 types	 between	 the	 risk	 precision	

measures	 (Fig	 4d,	 𝑟4 = 0.777, 𝑝 < 0.001),	 the	 measures	 for	 the	 indifference	 point	

(Supplementary	Fig	2e,	𝑟4 = 0.703, 𝑝 < 0.001),	and	the	risk-neutral	probabilities	(Fig	4e,	

𝑟K = 0.792, 𝑝 < 0.001).	 Finally,	 we	 plotted	 risk-neutral	 probability,	 𝜋,	 as	 a	 function	 of	

precision,	𝛾,	for	all	visual	displays	(Fig	5a).	The	significant	positive	correlations	between	risk-

neutral	probability,	𝜋,	and	precision,	𝛾,	across	all	visual	displays	(𝑟HIH7"GJI=6$ = 0.734, 𝑝 <

0.001;	 𝑟7"GJI=6$ = 0.567, 𝑝 < 0.001)	 show	 that	 individual	 risk	 attitudes	 are	 indeed	

systematically	related	to	the	precision	of	mental	magnitude	representations	as	predicted	by	

the	model,	and	that	this	precision	may	reflect	a	psychophysical	trait	that	is	robust	to	sensory	

noise	inherent	in	specific	visual	displays.	

	

Risk	 aversion	 in	 financial	 choices	 correlates	 with	 precision	 in	 mental	 magnitude	

representation	during	independent	perceptual	tasks.	We	tested	whether	the	individual	

precision	of	mental	magnitude	representations	generalizes	across	both	perceptual	and	risky	

decision-making	 tasks,	 and	 whether	 risk	 aversion	 in	 the	 financial	 choices	 can	 thus	 be	

predicted	by	the	preceding,	fully	independent	perceptual	task.	We	first	related	the	slope	of	

the	 psychometric	 curves	 of	 the	 independent	 perceptual	magnitude	 decision-making	 task,	

𝛾095$90:;<= 	 to	 the	 analogous	 ‘consistency’	 slopes	 from	 the	 two	 visual	 display	 formats,	

𝛾HIH7"GJI=6$	and	𝛾7"GJI=6$ 	of	the	risky-choice	task,	across	subjects	(Supplementary	Fig	3a).	

In	line	with	a	shared	representational	mechanism,	we	found	significant	positive	correlations	

for	 both	 display	 formats	 (𝑟HIH7"GJI=6$ = 0.349, 𝑝 = 0.0025;	 𝑟7"GJI=6$ = 0.437, 𝑝 < 0.001).	

Second,	we	tested	whether	individual	apparent	risk	aversion	was	systematically	related	to	
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the	 precision	 of	 mental	 magnitude	 representations	 from	 the	 separate	 perceptual	 task.	

Indeed,	we	found	significant	positive	correlations	between	our	measure	of	precision	from	the	

perceptual	magnitude	task,	𝛾095$90:;<= ,	and	apparent	risk	aversion	for	the	financial	choices,	

in	 both	 presentation	 formats,	𝜋HIH7"GJI=6$	 and	𝜋7"GJI=6$ 	 (Fig	 5b,	 𝑟HIH7"GJI=6$ = 0.350, 𝑝 =

0.0025;	𝑟7"GJI=6$ = 0.283, 𝑝 = 0.012).	This	provides	 crucial	 evidence	 that	 common	mental	

magnitude	representations	are	used	as	basis	for	both	perceptual	and	economic	choices,	and	

that	seemingly	irrational	biases	in	economic	choice	may	in	fact	be	rooted	in	basic	properties	

of	perceptual	magnitude	representations.	

	

	
FIGURE	5.	The	precision	of	mental	magnitude	representations	systematically	relates	to	individual	

risk	attitudes.	 (a)	The	estimated	precision	of	 the	 representation	of	potential	 payoffs,	𝛾1/1",-./+0'	 and	

𝛾",-./+0' ,	and	the	index	of	risk-aversion	(measured	by	individual	risk-neutral	probability,	𝜋1/1",-./+0'	and	

𝜋",-./+0')	 are	 related	 across	 all	 visual	 displays.	 The	 curved	 dashed	 line	 is	 the	 prediction	 from	 the	

psychometric	model	 linking	the	relationship	between	risk	payoff	precision	and	risk-neutral	probability.	

Subjects	(represented	as	circular	dots)	whose	risk	neutral	probability	are	on	the	horizontal	dashed	line	are	

risk-neutral	while	subjects	below	the	dashed	line	are	risk-averse	and	subjects	above	the	dashed	line	are	

risk-seeking.	(b)	The	estimated	precision	of	magnitude	representations	during	perceptual	decision-making	

and	individual	risk	attitudes	are	related,	consistently	across	visual	display	type.	The	horizontal	dashed	lines	

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.22.504413doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.22.504413
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 18	

represent	risk-neutral	behaviour	while	the	curved	dashed	line	is	now	the	prediction	linking	risk-neutral	

probability	with	magnitude	comparison	precision.	p-values	were	estimated	from	Pearson	correlations:	*	

𝑝 < 0.05,	**	𝑝 < 0.01,	and	***	𝑝 < 0.001.	

	

	

Risk	 aversion	 is	 related	 to	 the	 precision	 of	 neural	magnitude	 representations.	Our	

findings	so	far	suggest	that	both	perceptual	and	risky	financial	choices	are	determined	by	the	

noisiness	of	domain-general	magnitude	representations	that	are	similarly	employed	across	

different	types	of	tasks	and	visual	displays.	We	finally	tested	to	what	degree	this	noise	and	

the	ensuing	risk	aversion	in	financial	choices	is	also	related	across	purely	behavioural	and	

neural	measurement	 techniques,	 as	already	shown	 in	 the	perceptual	domain	 (Kersey	and	

Cantlon,	2017;	Lasne	et	al.,	2019).	Such	a	relation	would	entail	that	 just	by	measuring	the	

noise	 in	perceptual	 neural	magnitude	 representations	with	 fMRI,	 one	would	 already	 gain	

information	 about	 an	 individual’s	 risk	 aversion	 in	 future	 financial	 choices.	 To	 test	 this	

hypothesis,	we	 first	 examined	whether	 the	precision	of	 risky	 choice	behaviour,	𝛾5678 ,	 and	

apparent	 risk	 aversion,	 𝜋,	 were	 correlated	 with	 neural	 measures	 of	 representational	

precision	in	the	perceptual	task.	This	showed	that	the	risk	precision,	𝛾5678 ,	correlated	only	

weakly	with	 the	neural	precision	measure	 for	either	display	(𝑟HIH7"GJI=6$ = 0.12, 𝑝 = 0.17;	

𝑟7"GJI=6$ = 0.12, 𝑝 = 0.18;	Supplementary	Fig	3b),	but	correlated	significantly	with	neural	

diminishing	 sensitivity	 for	 non-symbolic	 payoffs	 (𝑟HIH7"GJI=6$ = −0.21, 𝑝 = 0.045;	

Supplementary	Fig	3c,	orange	markers)	and	marginally	for	symbolic	 	payoffs	(𝑟7"GJI=6$ =

−0.18, 𝑝 = 0.08;	Supplementary	 Fig	3c,	blue	markers).	 Correspondingly,	 the	 risk-neutral	

probability	𝜋	 correlated	 significantly	with	neural	 precision	 for	 non-symbolic	 payoffs	 (𝑟 =

0.26, 𝑝 = 0.02;	Fig	6a,	orange	markers)	and	showed	a	non-significant	relation	in	the	same	

direction	for	symbolic	payoffs	(𝑟 = 0.09, 𝑝 = 0.25;	Fig	6a,	blue	markers).	A	similar	pattern	

was	 evident	 for	 neural	 diminishing	 sensitivity,	 which	 correlated	 significantly	 with	𝜋	 (𝑟 =

−0.27, 𝑝 = 0.02;	Fig.	6b,	orange	markers)	for	non-symbolic	payoffs	and	non-significantly	for	

symbolic	payoffs	(𝑟 = −0.14, 𝑝 = 0.13;	Fig	6b,	blue	markers).	Thus,	we	found	evidence,	albeit	

less	robust	across	visual	display	types,	that	the	noisier	the	neural	magnitude	representations	

(neural	 precision)	 and	 the	 stronger	 the	 deterioration	 of	 neural	 representation	 for	 larger	

magnitudes	(neural	diminishing	sensitivity),	the	more	risk	averse	the	individual.		
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FIGURE	6.	Relationship	between	neural	measures	of	 the	precision	of	magnitude	representations	

and	risk	aversion.	(a)	Subjects	with	more	precise	neural	magnitude	representations	tended	to	be	less	risk	

averse	for	the	separate	financial	choices	(in	particular	for	non-symbolic	presentation	format).	(b)	Similarly,	

subjects	who	showed	larger	neural	diminishing	sensitivity	tended	to	be	more	risk	averse.	Both	findings	are	

in	line	with	the	behavioural	finding	that	more	risk-averse	people	perform	better	on	the	purely	perceptual	

numerosity	task.	*	𝑝 < 0.05.	

	

Effects	 of	 neural	magnitude	 precision	 on	 individual	 risk	 aversion	 are	mediated	 by	

noise	 in	mental	magnitude	representations.	While	 the	purely	behavioural	estimates	of	

magnitude	precision	were	strongly	related	across	all	task	and	display	types,	the	neural	and	

behavioural	 magnitude	 representation	 measures	 were	 more	 strongly	 related	 within	 the	

perceptual	task	than	across	both	choice	types.	This	suggest	that	non-specific	noise	during	the	

perceptual	fMRI	measurements	(e.g.,	measurement,	physiological)	may	have	overshadowed	

the	relationship	between	neural	magnitude	precision	and	risk	aversion	measured	outside	the	

scanner.	 To	 account	 for	 all	 our	 measures	 using	 a	 single	 integrative	 framework,	 we	 thus	

performed	mediation	analyses	to	test	whether	risk	aversion	related	specifically	to	that	part	

of	 the	variance	 in	neural	precision	 that	was	correlated	with	behavioural	precision.	 Indeed,	

behavioural	precision,	𝛾095$90:;<= ,	significantly	mediated	(𝛼 × 𝛽)	the	effect	between	neural	

precision	and	risk	aversion,	𝜋,	for	both	non-symbolic	(𝑝G$G$ = 0.013)	and	symbolic	(𝑝G$G$ =

0.019)	 visual	 displays	 (Fig	 7a,b).	 In	 line	 with	 this	 result,	 𝛾095$90:;<= 	 also	 significantly	

mediated	the	effect	between	neural	precision	and	risky	payoff	precision	for	both	symbolic	

(𝛾HIH7"GJI=6$; 	𝑝G$G$ = 0.008)	 and	 symbolic	 (𝛾7"GJI=6$; 	𝑝G$G$ = 0.004)	 displays	

(Supplementary	Fig.	4a,b).	
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FIGURE	7.	The	mediating	effect	of	behavioural	magnitude	precision	reveals	the	association	between	

neural	magnitude	precision	and	risk	aversion.	The	effect	of	decoded	neural	precision	on	risk	aversion	

is	 significantly	mediated	 by	 𝛾$%&'%$()*+	 for	 (a)	 no-symbolic	 and	 (b)	 symbolic	 presentation	 formats.	 In	

contrast,	 there	 is	 a	direct	 effect	 of	 neural	 diminishing	 sensitivity	 on	 risk	 aversion	 for	 (c)	 non-symbolic	

payoffs	and	no	mediation	effect	from	𝛾$%&'%$()*+ .	This	effect	was	not	significant	for	(d)	symbolic	payoffs	

(mirroring	 the	 correlation	 pattern	 in	 Fig	 6b).	 Bayesian	 “p-values”	 were	 calculated	 using	 hierarchical	

Bayesian	mediation	analysis	(see	Supplementary	Fig.	5a):	*	𝑝 < 0.05,	**	𝑝 < 0.01,	and	***	𝑝 < 0.001.	
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	 On	the	other	hand,	for	neural	diminishing	sensitivity	we	found	no	such	mediating	effect	

of	𝛾095$90:;<= 	on	𝜋	and	𝛾HIH7"GJI=6$ ,	𝛾7"GJI=6$ ,	but	a	significant	direct	effect	(𝑐L)	on	𝜋	for	non-

symbolic	payoffs	(𝑝G$G$ = 0.017;	but	no	effect	for	symbolic	payoffs,	𝑝G$G$ = 0.16)	(Fig	7c,d)	

and	marginal	effects	on	𝛾HIH7"GJI=6$	(𝑝G$G$ = 0.054)	and	𝛾7"GJI=6$ 	(𝑝G$G$ = 0.08)	(see	also	

Supplementary	Fig	4).	These	findings	are	in	line	with	the	significant	positive	relationship	

between	 neural	 diminishing	 sensitivity	 and	 risk	 aversion	 for	 non-symbolic	 payoffs	 (see	

above),	which	suggests	 that	diminishing	sensitivity	may	capture	a	 latent	 feature	of	neural	

processing	that	is	not	fully	accounted	for	by	the	NLC	model.	Irrespective	of	these	details,	our	

data	confirm	that	neural	precision	is	an	aspect	of	the	same	latent	trait	that	determines	the	

precision	of	mental	magnitude	representations,	and	that	this	trait	is	related	to	risk	aversion	

after	controlling	for	unspecific	noise.		

	

DISCUSSION		

Individual	 differences	 in	 risk	 aversion	 have	 traditionally	 been	 thought	 to	 emerge	 from	

valuation	processes,	either	as	a	consequence	of	individual	differences	in	the	concavity	of	the	

utility	curve	(Holt	and	Laury,	2002;	Rabin	and	Thaler,	2001)	or	as	individual	‘appetites’	for	

outcome	 variability	 (Gai	 and	 Vause,	 2004;	 Hertwig	 et	 al.,	 2019).	 Here	 we	 provide	 direct	

behavioural	and	neural	evidence	to	support	a	perceptual	account	of	risk	aversion	(Frydman	

and	Jin,	2022;	Khaw	et	al.,	2021)	proposing	that,	at	least	in	certain	contexts,	risk	aversion	may	

also	arise	from	systematic	biases	of	perceiving	potential	payoffs.	A	crucial	prediction	of	this	

account	is	that	the	degree	of	risk	aversion	should	be	related	to	the	fidelity	with	which	subjects	

perceive	numerical	magnitudes.	In	line	with	this	prediction,	we	found	that	both	behavioural	

performance	during	fast,	intuitive	numerosity	judgements,	as	well	as	the	fidelity	with	which	

the	 corresponding	 magnitudes	 could	 be	 read-out	 from	 neural	 fMRI	 activity,	 are	

mechanistically	related	to	risk	aversion	in	independent	risky	choices	that	were	taken	under	

very	different	circumstances.	Our	data	thus	suggest	that	risk-averse	decision-makers	may	not	

actually	“shy	away	from	risks”	-	instead,	they	may	attempt	to	rationally	maximise	expected	

reward,	but	may	be	limited	in	their	ability	to	do	so	because	of	cognitive	limitations	that	make	

them	underestimate	the	larger	payoff	magnitudes	that	come	with	increased	risk,	just	as	they	

also	underestimate	larger	magnitudes	in	purely	perceptual	tasks.		

	 Previous	work	 has	 already	 sought	 to	 understand	 the	 link	 between	 numeracy	 and	

rationality	in	economic	choice	(Kacelnik	and	Brito	e	Abreu,	1998;	Schley	and	Peters,	2014)	

and	financial	decision-making	(Frydman	and	Jin,	2022;	Khaw	et	al.,	2021),	but	purely	on	the	

basis	 of	 behavioural	 data,	 without	 any	 study	 of	 the	 underlying	 neurocomputational	
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processes.	By	applying	a	unifying,	comprehensive	computational	model	rooted	in	normative	

theories	 from	perceptual	 computational	neuroscience	 (Wei	and	Stocker,	2015;	Woodford,	

2020),	we	show	here	how	risk	aversion	may	mechanistically	emerge	from	the	precision	of	

neural	and	mental	magnitude	representations.	These	mechanistic	links	are	domain-general	

not	only	across	differences	 in	visual	displays	with	different	 sensory	noise	but	also	across	

tasks	 with	 different	 behavioural	 goals	 (perceptual	 accuracy	 versus	 maximising	 financial	

value).	Our	results	thus	provide	evidence	that	a	similar	neurocognitive	mechanism	guides	

both	numerical	magnitude	perception	and	risky	choice,	suggesting	that	at	least	part	of	the	

individual	differences	in	risk-averse	behaviour	can	be	explained	by	variability	in	the	acuity	

of	numerical	magnitude	perception.		

	 Our	results	contribute	to	an	ongoing	research	program	that	seeks	to	understand	the	

extent	 to	 which	 principles	 of	 lower-level	 perceptual	 neural	 processing	 can	 account	 for	

idiosyncrasies	in	economic	and	risky	decision	making	(Khaw	et	al.,	2021;	Louie	et	al.,	2013;	

Polanía	et	al.,	2019;	Rustichini	et	al.,	2017;	Summerfield	and	Tsetsos,	2012;	Woodford,	2020).	

Previous	neuroimaging	work	along	these	lines	has	so	far	mainly	focussed	on	characterising	

how	neural	valuation	processes	may	be	constrained	by	such	principles	 (Grueschow	et	al.,	

2015;	Polanía	 et	 al.,	 2014),	 and	 investigations	of	perceptual	magnitude	 coding	 in	parietal	

cortex	had	 largely	been	confined	to	perceptual	 tasks	(Dehaene,	2003;	Harvey	et	al.,	2013;	

Merten	 and	 Nieder,	 2009;	 Nieder	 and	 Dehaene,	 2009).	 However,	 work	 in	 psychophysics	

(Brus	et	al.,	2019;	Dehaene,	2003;	Pardo-Vazquez	et	al.,	2019;	Weber,	2004)	and	on	efficient	

(Wei	and	Stocker,	2015,	2017)	and	noisy	(Petzschner	et	al.,	2015;	Pouget	et	al.,	2013,	2016;	

Stocker	 and	 Simoncelli,	 2006)	 sensory	 coding	 has	 proposed	 that	 seemingly	 fundamental	

properties	 of	 perceptual	 processing	 (e.g.,	 Weber’s	 law	 or	 regressive	 bias)	 may	 in	 fact	

generalise	across	many	task	contexts.	Recent	work	has	also	shown	that	neurons	in	inferior	

parietal	 sulcus	 are	 tuned	 to	 represent	 magnitudes	 beyond	 pure	 numerosities,	 but	 more	

generally	across	multiple	domains,	such	as	 time	 intervals	(Harvey	et	al.,	2020)	and	object	

sizes	 (Harvey	 et	 al.,	 2015).	 This	 makes	 it	 plausible	 that	 such	 psychophysically-defined	

perceptual	 limitations	may	also	affect	behaviour	in	higher-order	cognitive	domains,	as	we	

show	here	for	risk-taking	in	the	financial	domain.		

That	being	said,	our	results	do	not	 imply	 that	 individual	variability	 in	risky	choice	

solely	reflects	properties	of	parietal-encoded	mental	magnitude	representations.	Previous	

studies	 have	 identified	 other	 sources	 of	 neural	 variability	 that	 may	 relate	 to	 individual	

differences	in	risky	decision-making,	such	as	fluctuations	in	striatal	regions	(Blankenstein	et	

al.,	2018;	Chew	et	al.,	2019)	and	in	anterior	insula	(Paulus	et	al.,	2003;	Preuschoff	et	al.,	2008)	
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or	even	neural	lateralisation	(Sacré	et	al.,	2019).	More	generally,	recent	findings	have	also	

suggested	that	economic	choice	variability	may	be	associated	with	weaker	value	signals	in	

orbitofrontal	 cortex	 (Shi	 et	 al.,	 2022).	Thus,	our	 results	highlight	 the	precision	of	parietal	

magnitude	representations	as	just	one	of	several	fundamental	sources	of	decision-relevant	

noise	 that	 can	 lead	 to	 individual	 choice	 variability	 and	 risk	 attitudes.	 In	 line	 with	 the	

hypothesis	 of	 value	 construction	 (O’Doherty	 et	 al.,	 2021;	 Shi	 et	 al.,	 2022),	 the	 brain	may	

flexibly	 and	 actively	 construct	 subjective	 value	 representations	 from	 several	 context-

dependent	 attributes,	 with	 noise	 in	 magnitude	 representations	 being	 one	 of	 the	 brain	

features	 affecting	 economic	 choice	 variability	 and	 bias,	 alongside	more	 affective	 reward-	

(Chew	 et	 al.,	 2019)	 and	 value-based	 (Conen	 and	 Padoa-Schioppa,	 2015;	 Padoa-Schioppa,	

2013;	Padoa-Schioppa	and	Conen,	2017)	neural	variability.	The	degree	to	which	individual	

or	 contextual	 choice	 variability	 and	 bias	 reflects	mixtures	 of	 perceptual-,	 reward-,	 value-

based,	or	even	emotional	factors	(Kusev	et	al.,	2017;	Paulus	et	al.,	2003)	is	thus	an	exciting	

question	that	should	be	considered	in	future	work.			

Our	findings	that	perceptual	and	neural	magnitude	noise	can	mechanistically	affect	

economic	choice	bias	and	variability	suggest	that	normative	and	predictive	models	such	as	

the	 NLC	 can	 capture	 basic	 magnitude	 representations	 commonly	 underlying	 both	 risky	

choice	as	well	 as	perceptual	 judgments.	However,	 the	 current	 form	of	 the	NLC	 is	actually	

agnostic	 to	 whether	 choices	 are	 information-maximising	 (i.e.,	 perceptual	 choice)	 or	

maximising	 expected	 reward	 or	 payoff	 (i.e.,	 economic	 choice).	 Previous	 results	 have	

suggested	that	models	can	be	set	up	to	explicitly	dissociate	these	two	behavioural	goals	(Heng	

et	al.,	2020;	Park	and	Pillow,	2020;	Rustichini	et	al.,	2017;	Schaffner	et	al.,	2021).	However,	

while	the	NLC	may	not	be	as	computationally	detailed	as	these	more	recent	optimal	coding	

models,	our	approach	establishes	it	as	one	of	the	few	choice	models	for	whom	there	is	an	

empirical	correspondence	between	model	parameters	and	independent	measures	of	neural	

processing.	This	paves	the	way	for	other	uses	of	this	general	approach	to	validate	complex	

model	 assumptions,	 and	 to	predict	 choice	 behaviours	 based	on	 independent	measures	 of	

basic	neural	processes.		

Our	 approach	 of	 demonstrating	 that	 risk-averse	 behaviour	 is	 partially	 rooted	 in	

capacity	 constraints	 of	 perceptual	 brain	 processes	 dovetails	with	 other	 (neuro)economic	

choice	models	that	have	taken	inspiration	in	neurocomputational	accounts	of	vision	(Khaw	

et	al.,	2017;	Louie	et	al.,	2013),	sensory	processing	(Heng	et	al.,	2020;	Polanía	et	al.,	2019),	

perception	(Fiedler	and	Glöckner,	2012;	Frydman	and	Jin,	2022),	attention	(Gluth	et	al.,	2018;	

Krajbich	et	al.,	2010),	or	memory	(Azeredo	da	Silveira	and	Woodford,	2019),	among	others.	
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Crucially,	our	specific	neurocognitive	account	of	risk	aversion	 illustrates	how	a	principled	

understanding	 and	 empirical	measures	 of	 basic	 brain	mechanisms	may	 lend	 credence	 to	

choice	models	 that	have	originally	been	developed	mainly	based	on	 theory	and/or	 fits	 to	

empirical	choice	data.	Thus,	perhaps	in	analogy	to	how	economic	modelling	of	choice	data	

may	benefit	 from	being	constrained	by	choice	axioms	(Caplin	and	Dean,	2009),	our	study	

suggests	that	the	vast	space	of	possible	choice	models	can	be	narrowed	down	by	empirical	

measures	 of	 the	 basic	 information-processing	 operations	 assumed	 by	 the	 model.	 Our	

approach	 therefore	 directly	 runs	 counter	 to	 previous	 concerns	 that	 the	 study	 of	 brain	

processes	 and	 neural	 data	may	 provide	 little	 information	 of	 relevance	 to	 knowledge	 and	

theories	about	economic	choice	(Gul	and	Pesendorfer,	2008).	In	fact,	more	recent	economic	

models	 have	 already	 begun	 to	 propose	 cognitive	micro-foundations	 that	 offer	 interesting	

computational	hypotheses	about	choice	variability,	bias,	and	context-dependent	behaviour,	

e.g.,	(Bordalo	et	al.,	2012,	2019;	Frydman	and	Jin,	2022;	Khaw	et	al.,	2021;	Steverson	et	al.,	

2019;	Webb,	2019).	However,	we	highlight	again	that	cognitive	or	economic	models	that	are	

theoretically	based	on	a	neurobiological	account	should	substantiate	their	assumptions	with	

neural	 data.	 This	will	 be	 essential	 for	 disambiguating	 between	 the	 ballooning	 number	 of	

choice	models	that	draw	on	such	theoretical	frameworks	(Bhatia	et	al.,	2021;	He	et	al.,	2022),	

and	 to	 establish	 which	 of	 the	 assumptions	 underlying	 these	 flexible	 models	 are	 in	 fact	

plausible	in	the	light	of	empirical	data.	

Finally,	 our	 current	 results	 offer	 correlational	 evidence	 of	 a	 relationship	 between	

mental	magnitude	representations	encoded	in	parietal	cortex	and	risk-averse	behaviour	as	

predicted	by	the	NLC	model.	More	powerful	future	tests	of	the	model	may	investigate	with	

brain	stimulation	methods	whether	parietal	cortex	is	indeed	causally	involved	during	risky	

decision-making,	and	to	what	degree	a	perceptual	account	of	risky-choice	behaviour	can	be	

generalised	 to	 atypical	 populations,	 such	 as	 patients	 diagnosed	 with	 dyscalculia	

(Butterworth	et	al.,	2011;	Price	et	al.,	2007),	impulse-control	disorders	(Specker	et	al.,	1995),	

and	 chronic	 stress	 (Engelmann	 et	 al.,	 2015).	 It	 would	 also	 be	 interesting	 to	 map	 the	

correspondence	between	numerical	ability	and	risky	choice	behaviour	across	various	stages	

of	human	development	with	dynamic	changes	of	risk	attitudes	(Tymula	et	al.,	2013);	or	even	

across	 various	 real-world	 contexts	 with	 strong	 differences	 in	 risk	 attitudes,	 such	 as	 in	

countries	with	different	stages	of	economic	development	(Dillon	et	al.,	2017;	Haushofer	and	

Fehr,	2014).	Last	but	not	 least,	our	 findings	may	also	have	policy	 implications	 if	we	could	

reliably	measure	such	representations	in	environmental	contexts	that	go	beyond	controlled	

laboratory	 settings.	 For	 example,	 studies	 on	 educational	 outcomes	 have	 shown	 that	
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increasing	numeracy	has	clear	long-term	consequences	in	improving	financial	literacy	and	

lifelong	 incomes,	 which	 may	 depend	 on	 the	 individual’s	 ability	 to	 accurately	 gauge	 and	

evaluate	risk	(Almenberg	and	Widmark,	2011;	Peters,	2020;	Skagerlund	et	al.,	2018).		
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MATERIALS	AND	METHODS	
	

Participants.	Sixty-four	right-handed	participants	(26	females,	ages	18	to	35)	volunteered	

to	participate	in	this	study.	We	informed	them	about	the	study’s	objectives,	the	equipment	

used	in	the	experiment,	the	data	recorded	and	obtained	from	them,	the	tasks	involved,	and	

their	 expected	 payoffs.	We	 also	 screened	 participants	 for	MR	 compatibility	 prior	 to	 their	

participation	 in	 the	 study.	 No	 participant	 had	 indications	 of	 psychiatric	 or	 neurological	

disorders	 or	 needed	 visual	 correction.	 Our	 experiments	 conformed	 to	 the	 Declaration	 of	

Helsinki	and	our	protocol	had	the	approval	from	the	Canton	of	Zurich’s	Ethics	Committee.			
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Procedure.	Participants	completed	the	MRI	screening	and	consent	forms	upon	their	arrival,	

before	 the	 experiment.	 They	 then	 went	 into	 a	 behavioural	 testing	 room	 and	 read	 the	

instructions	for	the	perceptual	magnitude	and	risky	choice	tasks,	as	well	as	information	on	

MRI	safety.	Participants	performed	two	tasks	sequentially:	a	perceptual	magnitude	task	and	

an	economic	risky-choice	task.	Participants	first	completed	the	perceptual	magnitude	task	

inside	the	MRI	scanner,	where	we	recorded	their	behavioural	and	neural	measures	of	mental	

magnitude	precision.	Participants	then	subsequently	completed	the	risky	choice	task	outside	

the	MR	scanner,	inside	a	behavioural	testing	room.	We	designed	the	experiment	in	a	way	that	

they	first	performed	the	perceptual	magnitude	task	before	the	gambling	task,	to	prevent	the	

statistics	of	 the	gambling	task	from	altering	participants’	priors	and	thereby	 influence	the	

neural	measures	of	magnitude	 representation.	We	also	 recorded	and	collected	peripheral	

pupil	 and	 physiological	 measures,	 particularly	 eye	 movements,	 heartbeat	 and	 breathing	

measurements	 during	 the	 perceptual	 magnitude	 task	 while	 we	 recorded	 and	 collected	

behavioural	 measures	 of	 magnitude	 precision.	 After	 completing	 both	 tasks,	 we	 paid	

participants	based	on	both	their	cumulative	score	in	the	perceptual	magnitude	task	and	one	

decision	trial	randomly	selected	by	our	algorithm	in	the	risky	choice	task	(see	below).	We	

additionally	 paid	 out	 a	 show-up	 fee	 of	 10	 CHF	 for	 their	 attendance	 and	 participation.	

Participants	 familiarised	 themselves	with	 the	 tasks	 and	performed	practice	 trials	 of	 both	

before	they	were	brought	to	the	MRI	scanner	room.	

	

Perceptual	magnitude	task.	Participants	had	to	choose	which	of	two	sequentially	presented	

clouds	 of	 coins	 contained	 a	 larger	 quantity	 of	 coins.	 Before	 the	 start	 of	 every	 trial,	 a	 red	

fixation	cross	was	presented	for	1	second.	Then	the	first	cloud,	𝑚,	was	overlaid	on	the	red	

fixation	for	600	milliseconds.	After	an	interval	lasting	between	6	and	9	seconds	the	second	

set	of	coin	clouds,	𝑛,	appeared	on	the	screen.	Only	the	red	fixation	remained	on	the	screen	

during	this	interval.	We	chose	the	presentation	timing	and	interval	length	in	a	way	that	would	

provide	sufficient	 time	 to	model	 the	haemodynamic	response	 function	(HRF)	 from	neural	

data	 and	would	 prevent	 the	 HRF	 response	 of	 the	 first	 stimulus	 presentation	 from	 being	

contaminated	 by	 response-related	 activity	 during	 the	 second	 stimulus	 presentation.	 The	

second	 set	 appeared	 for	 another	600	milliseconds,	whereafter	 the	 fixation	 cross	 changed	

from	red	to	green,	prompting	participants	to	decide	which	cloud	had	the	larger	quantity	of	

coins.	They	had	2.5	seconds	to	respond.	A	green-coloured	letter	“𝑙”	appeared	on	the	screen	

to	 indicate	 participants	 had	 pressed	 left	 and	 if	 they	 chose	 the	 first	 set;	 otherwise,	 when	

participants	 pressed	 right	 and	 had	 chosen	 the	 second	 cloud,	 a	 green-coloured	 letter	 “𝑟”	

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.22.504413doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.22.504413
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 30	

appeared	on	the	screen.	Responses	made	too	early	(fixation	had	not	turned	green)	or	too	late	

(after	 2.5	 seconds	 and	when	 fixation	 had	 reverted	 back	 to	 red)	were	 labelled	 as	missed	

responses.	Each	correct	response	corresponded	to	a	reward	of	0.25	CHF,	but	participants	had	

no	feedback	on	the	accuracy	of	their	responses	or	the	accumulation	of	points	throughout	the	

task.	The	perceptual	magnitude	task	had	a	total	of	216	trials	distributed	across	6	runs	and	

lasted	 a	 total	 of	 30	 to	 40	minutes.	 The	 first	 set	 varied	 from	 5	 to	 28	were	 drawn	 from	 a	

geometric	sequence	with	steps	of	√2	(5,	7,	10,	14,	20,	18),	while	we	varied	the	second	set	by	

multiplying	each	magnitude	from	the	first	set	by	a	factor	of	2A M⁄ 	where	h	is	in	discrete	steps	

from	−6	to	6.	

	

Risky	choice	task.	Participants	had	to	choose	between	a	certain	gamble	with	monetary	offer,	

𝑠,	and	a	100%	probability	of	payout,	and	a	risky	gamble	with	a	monetary	offer,	𝑟.	We	fixed	

the	probability	of	payout	for	the	risky	offer	at	𝑝 = 0.55.	Thus,	a	participant	choosing	the	risky	

gamble	had	a	55%	chance	of	being	paid	the	risky	offer	and	a	45%	chance	of	no	payment.	

When	 a	 participant	 chose	 the	 safe	 option,	 they	 had	 a	 100	 percent	 probability	 of	 payout.	

During	 the	 task,	 the	monetary	 payouts	were	 presented	 in	 two	 display	 formats:	 symbolic	

payoffs	 of	 Arabic	 numerals	 or	 a	 cloud	 of	 1-CHF	 coins.	 The	 gambles	 were	 presented	

simultaneously	at	the	left	and	right	sides	of	the	monitor	screen.	In	the	beginning	of	every	trial,	

the	stated	certain	and	risky	probabilities	appeared	on	the	screen	alongside	the	red	fixation	

cross,	with	 the	 position	 (left/right	 from	 the	 fixation	 cross)	 of	 these	 probabilities	 varying	

randomly	from	trial	to	trial.	We	used	grey-shaded	pies	to	represent	the	probabilities	in	both	

formats.	The	light-grey	shade	in	the	risky	gamble	represented	the	probability	the	individual	

would	 receive	 the	 stated	 monetary	 amount,	 while	 the	 dark	 grey	 shade	 represented	 the	

probability	 the	 individual	would	 receive	 nothing.	We	 overlaid	 numerical	monetary	 offers	

inside	 the	 probability	 pies	 when	 we	 displayed	 them	 as	 risky	 symbolic	 payoffs	 while	 we	

positioned	the	amounts	below	the	pies	when	displayed	as	a	cloud	of	1-CHF	coins.	Both	display	

formats	were	presented	in	alternating	blocks	of	40	trials	per	block,	totalling	12	blocks.	The	

monetary	amounts	were	displayed	once	the	fixation	cross	changed	from	red	to	green,	and	

participants	had	3	seconds	to	choose	the	gamble	on	the	left	or	on	the	right.	A	green-coloured	

letter	“𝑙”	appeared	on	the	screen	when	participants	pressed	left	and	a	green-coloured	letter	

“𝑟”	 appeared	 on	 the	 screen	 when	 participants	 pressed	 right.	 Responses	 made	 too	 early	

(fixation	had	not	turned	green)	or	too	late	(fixation	had	already	reverted	back	to	red)	were	

missed	responses,	and	these	missed	trials	were	not	included	in	the	draw	of	the	final	trial	that	

determined	the	monetary	payout	of	the	participant.			
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After	participants	finished	all	the	trials,	one	trial	was	randomly	drawn	as	basis	for	the	

payout.	If	on	that	trial	a	participant	chose	the	certain	option,	she	would	immediately	receive	

that	amount.	If,	on	the	other	hand,	a	risky	option	was	chosen,	they	had	to	roll	from	a	virtual,	

hundred-sided	die,	and	if	the	resulted	roll	was	a	number	smaller	than	or	equal	to	55,	they	

were	paid	out	according	to	the	indicated	amount;	otherwise,	they	received	nothing.	The	task	

had	 a	 total	 of	 480	 trials	 lasting	 between	 30	 and	 40	 minutes	 (240	 trials	 per	 display	

presentation	format).	We	varied	the	distribution	of	monetary	payoffs	with	the	sure	gamble	

varying	 from	 5	 to	 28	 drawn	 from	 a	 geometric	 sequence	 with	 steps	 of	√2	 similar	 to	 the	

perceptual	magnitude	task	and	the	probabilistic	lotteries	varying	by	a	factor	of	2A M⁄ 	in	steps	

of	0	to	8.	

	

The	noisy	logarithmic	coding	model.	The	NLC	model	assumes	that	the	coding	of	numerical	

magnitudes	occurs	in	logarithmic	space,	and	that	the	amount	of	noise	of	this	representation	

is	constant	after	accounting	for	the	log-ratio	of	magnitudes	(i.e.,	scale	invariance).	The	NLC	

prescribes	 that	 the	 psychometric	 curves	 of	 each	 stimulus	magnitude	 should	 have	 similar	

slopes	when	plotted	on	a	logarithmic	scale,	while	a	single	psychometric	curve	can	fit	all	the	

choice	data	when	plotting	the	log-ratio	of	these	magnitudes.	To	this	end,	we	separately	fitted	

six	 psychometric	 curves	 for	 the	 perceptual	 magnitude	 task,	 where	 each	 curve	 plots	 the	

probability	of	judging	the	second	cloud	of	coins,	𝑋,	to	be	of	greater	magnitude	than	the	first	

cloud,	𝐶,	as	a	function	of	the	amount	of	𝑋;	and	the	reference	of	each	curve	is	the	magnitude	

of	the	first	coin	cloud,	𝐶 = {5,7,10,14,20,28}.	The	six	psychometric	curves	for	risky	choice,	on	

the	other	hand,	represented	the	probability	of	choosing	the	risky	gamble,	𝑋,	over	the	sure	

gamble,	𝐶,	as	a	function	of	𝑋;	and	the	reference	of	each	curve	is	the	amount	of	the	sure	offer,	

𝐶 = {5,7,10,14,20,28}.	We	used	a	two-parameter	probit	model	with	slope,	𝛾C ,	and	intercept,	

𝛿C ,	to	fit	choice	data	in	both	perceptual	magnitudes	and	risk	in	both	linear	space,	

	

Pr(𝑟! > 𝑟$) = Φ(𝛾C𝑋 − 𝛿C),	

and	in	log	space,		

Pr(𝑟! > 𝑟$) = Φ(𝛾C log 𝑋 − 𝛿C),	

	

where	Φ(∙)	is	the	cumulative	distribution	function	of	the	standard	normal	distribution.	We	

separately	estimated	the	parameters,	(𝛿C , 𝛾C)	at	the	population	and	individual	levels	using	a	

hierarchical	Bayesian	framework	in	RJAGS	(Supplementary	Fig.	5a).		
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We	similarly	fitted	the	NLC	using	a	probit	model,	but	instead	of	fitting	six	separate	

psychometric	 curves	 as	we	did	 in	 the	previous	 step,	we	 fitted	one	psychometric	 curve	 to	

choice	data	in	both	tasks.	The	model	assumes	a	log-ratio	encoding	of	numerical	magnitudes,	

and	we	estimated	one	slope,	𝛾,	and	intercept,	𝛿,	

	

Pr(𝑟! > 𝑟$) = ΦK𝛾 log K
𝑋
𝐶M − 𝛿M.	

	

Similarly,	we	measured	(𝛿, 𝛾)	at	the	population	and	individual	levels.	The	NLC	prescribes	that	

𝛾	 measures	 the	 precision	 of	 our	 mental	 magnitude	 representations	 while	 𝛿	 contains	

information	 about	 the	 indifference	 point.	 We	 constrained	 the	 standard	 probit	 and	

rationalised	it	as	the	NLC	by	mapping	the	probit	parameters	with	NLC	model	specifications,	

	

𝛾 ≡
1
√2𝜈

, 𝛿 ≡ B
𝛽() log(𝑝())

√2𝜈
I,	

	

where	𝜈	 is	 the	 noise	 in	mental	magnitude	 representations	 of	magnitudes;	𝑝	 is	 the	 stated	

probability	(0 < 𝑝 < 1	during	risk	and	𝑝 = 1	during	perceptual	magnitudes);	and,	𝛽 = %!

%!&2!
	

is	the	linear	weighting	between	the	width	of	the	prior,	𝜎,	and	noise	in	mental	representation,	

𝜈	(see	(Khaw	et	al.,	2021)	for	the	full	derivation).		

We	can	 then	calculate	an	 individual’s	 indifference	point	and	 index	of	risk	aversion	

using	the	probit	parameters.	First,	the	indifference	point	is	the	level	to	which	the	individual	

is	indifferent	in	choosing	either	𝑋	or	𝐶,	and	this	indifference	is	determined	by	the	following	

threshold	rule,	

𝑋
𝐶 = K

1
𝑝M

)
+
.	

	

We	can	derive	and	estimate	the	threshold,	𝜃,	using	the	NLC’s	intercept	and	slope	parameters	

during	risky	choice	(𝛿5678 , 𝛾5678),	

𝜃 ≡ expK
𝛿5678
𝛾5678

M.	

	

Second,	we	can	also	calculate	a	standard	economic	index	of	risk	aversion,	namely	the	risk-

neutral	probability:	the	degree	to	which	the	probability-of-payoff	in	the	risky	choice	options	

seems	to	be	underestimated.	For	example,	if	a	subject	is	so	risk-averse	that	her	indifference	
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point	 lies	 at	 B
C
= 3	 (note	 that	 an	 optimal,	 risk-neutral	 decision-maker	 would	 have	 the	

indifference	point	at	B
C
= 0$%&'()*

0&)+,-
=	 )

D.FF
≅ 1.82),	 she	chooses	equivalent	 to	an	optimal	 risk-

neutral	 decision-maker	 in	 the	 same	paradigm	but	 a	𝑝 = )
O
.	 	 According	 to	NLC,	 a	 decision-

maker	will	only	behave	with	a	risk-neutral	probability	equal	to	the	objective	probability,		𝑝 =

0.55,	in	the	absence	of	noise,	𝜈 = 0;	otherwise,	the	individual’s	risk-neutral	probability	in	the	

presence	of	noise,	𝜈 > 0,	is,		

	

0.55P
)
+Q ≤ 0.55,	

	

and,	 thus,	by	definition,	 subjects	are	risk	averse.	We	can	similarly	derive	and	measure	an	

individual’s	 risk-neutral	 probability	 using	 the	 NLC	 intercept	 and	 slope	 parameters	

(𝛿5678 , 𝛾5678),	

	

𝜋 ≡ exp K−
𝛿5678
𝛾5678

M.	

	

	 Finally,	the	NLC	predicts	a	positive	nonlinear	relationship	between	the	precision	in	

mental	 magnitude	 representations,	 𝛾5678 ,	 and	 our	 index	 of	 risk	 aversion,	 𝜋.	 We	 fitted	 a	

psychometric	model	 that	 assumes	 a	 common	 prior,	𝜎	 (see	 (Khaw	 et	 al.,	 2021)	 for	more	

details),		

𝜋 = 0.55
R)& )

#%!4&)+,
! S

.	

	

We	estimated	𝜎	by	regressing	participant	precision	measures	of	payoff	offers,	𝛾5678 ,	to	their	

corresponding	risk-neutral	probability,	𝜋.	We	also	fitted	the	relationship	between	𝛾5678	and	

𝜋	using	simple	linear	regression.	Given	that	our	central	hypothesis	is	to	determine	whether	

individual	 risk-averse	 behaviour	 can	 be	 predicted	 by	 an	 external	 measure	 of	 magnitude	

precision,	𝛾095$90:;<= ,	from	an	independent	perceptual	magnitude	task,	we	fitted	both	linear	

and	nonlinear	models,	but	instead,	regressed	our	index	of	risk	aversion,	𝜋,	on	𝛾095$90:;<= .	

	
Preference-based	models.	We	also	fitted	behavioural	data	from	the	risky	choice	task	using	

stochastic	versions	of	 standard	economic	models	 to	 test	whether	 the	NLC	 is	a	model	 that	

explains	our	empirical	data	better	than	do	models	that	assume	expected	utility	maximisation	

to	explain	risk	aversion.	We	also	used	a	hierarchical	Bayesian	framework	to	fit	these	models	
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to	 data.	 We	 considered	 three	 classes	 of	 canonical	 preference-based	 models	 for	 model	

comparison,	namely	(a)	constant	relative	risk	aversion	(CRRA),	a	standard	model	of	expected	

utility	theory	(EUT)	(Apesteguia	and	Ballester,	2018;	von	Neumann	and	Morgenstern,	1944);	

(b)	cumulative	prospect	theory	(CPT)	(Kahneman	and	Tversky,	1979;	Nilsson	et	al.,	2011;	

Tversky	and	Kahneman,	1992);	and,	(c)	salience	theory	(Bordalo	et	al.,	2012).	We	used	probit	

(i.e.,	the	random	error	term,	𝜀,	is	drawn	from	a	Gaussian	distribution)	and	logit	(i.e.,	𝜀	is	drawn	

from	 a	Gumbel	 or	 extreme-value	 distribution)	models	 to	 account	 for	 stochasticity	 during	

risky	choice.	

	 Constant	relative	risk	aversion.	In	CRRA,	the	subjective	utility	of	the	monetary	offer,	

𝑦,	is	represented	by	a	utility	function,	𝑢(∙),	which	takes	the	form,	

	

𝑢(𝑦) =
𝑦)(T

1 − 𝜆	

	

where	the	parameter,	𝜆,	accounts	for	the	nonlinearity	of	subjective	utility	over	𝑦.	 	We	can	

then	 calculate	 the	 expected	 utility	 of	 each	 of	 the	monetary	 amounts,	𝑦 ∈ {𝑋, 𝐶},	 and	 then	

estimate	the	probability	of	choosing	the	risky	relative	to	the	sure	gamble,	

	

Prno𝔼[𝑢(𝑋)] > 𝔼[𝑢(𝐶)]pq 	= Ω s𝜅 B
𝑝𝑋)(T − 𝐶)(T	

1 − 𝜆 Iu	

	

where	𝜅	is	the	sensitivity	parameter	and	Ω(∙)	represents	the	distribution	function	of	either	

Probit	or	Logit	error	distributions.		

	 Cumulative	Prospect	theory.	Distortions	in	monetary	offers	in	CPT	are	accounted	for	

by	the	value	function,	𝑣(∙),	

𝑣(𝑦) = (𝑦)U 	

	

such	that	𝛼 > 0	 is	 the	parameter	which	accounts	 for	 the	degree	of	risk	preference	(𝛼 < 1	

suggests	risk	aversion;	otherwise,	risk-seeking	behaviour);	and,	for	completeness,	𝜔(∙)	is	the	

probability	weighting	function	of	the	form,	

	

𝜔(𝑝) =
𝑝V	

[𝑝V + (1 − 𝑝)V]
)
V
,	
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where	 the	 parameter,	𝜙,	 accounts	 for	 the	 nonlinear	 probability	 distortion.	 By	 combining	

payoff	and	probability	distortions	into	a	weighted	value	function,	𝑉(𝑦8; 𝑝8) = ∑ 𝜔(𝑝8)𝑣(𝑦8)8 	

(where	𝑘	indexes	a	gamble’s	possible	payoff	outcomes),	we	estimate	probability	of	choosing	

the	risky	relative	to	the	sure	gamble,	

	

Prn𝑉(𝑋) > 𝑉(𝐶)q 	= Ω(𝜅[𝜔(𝑝)𝑋U − 𝐶U])	

	

where	𝜅	 is	 similarly,	 the	 sensitivity	 parameter,	 and	Ω(∙)	 is	 either	 a	 Probit	 or	 Logit	 error	

distribution	function.		

	 Salience	 theory.	 ST	 assumes	 that	 risky	 choice	 bias	 arises	 from	 salience-driven	

probability	distortions,	where	these	distortions	are,	in	turn,	due	to	both	the	degree	of	saliency	

and	 diminishing	 sensitivity	 of	 monetary	 payoffs.	 Both	 these	 distortionary	 features	 are	

captured	by	a	salience	function,	𝑤(∙),	

	

𝑤A6@A(𝑋, 𝐶) =
|𝑋 − 𝐶|

|𝑋| + |𝐶| + 𝜏 , 𝑤=IW(0, 𝐶) =
|𝐶|

|𝐶| + 𝜏	

	

where	the	parameter,	𝜏,	accounts	for	the	degree	of	diminishing	sensitivity.	Here,	the	larger	

the	difference	between	the	payoffs,	𝑋	and	𝐶,	the	more	salient	the	difference;	and,	the	larger	

the	 𝜏,	 the	 less	 sensitive	 the	 decision-maker	 can	 discriminate	 between	 payoffs.	 Salience	

distorts	probabilities	by	way	of	the	probability	distortion	function,	𝑊(∙),	

	

𝑊O𝑤A6@A(𝑋, 𝐶)P =
𝑝𝜈(W.)/.

𝑝𝑣(W.)/. + (1 − 𝑝)𝑣(W012 ,	

	

where	𝑝	is	the	probability	and	the	parameter,	𝜈,	captures	the	amount	of	distortion	from	the	

salience	function.	Similarly,	all	of	these	are	combined	into	a	weighted	value	function,	𝑆(𝑦8) =

∑ 𝑊(𝑤8)𝑦88 ,	and	the	probability	of	choosing	the	risky	relative	to	the	sure	gamble	is,	

	

Pr([𝑆(𝑋) > 𝑆(𝐶)]) 	= ΩO𝜅 �𝑊 O𝑤A6@A(𝑋, 𝐶)P𝑋 − 𝐶�P	

	

with	the	sensitivity	parameter,	𝜅,	and	Ω(∙)	is	either	a	Probit	or	Logit	distribution	function.		
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Hierarchical	 Bayesian	 parameter	 estimation.	We	 estimated	 model	 parameters	 using	

hierarchical	 Bayesian	 estimation	 and	 Markov	 Chain	 Monte	 Carlo	 (MCMC)	 techniques	

(Gelman	 et	 al.,	 2013;	 Kruschke,	 2015)	 We	 used	 a	 Gibbs	 sampler	 implemented	 in	 JAGS	

(Plummer,	2003).	We	used	weakly	informative	hyperpriors	for	the	group-level	distributions.	

The	exact	model	specification	and	used	priors	can	be	found	in	Supplementary	Fig.	5.	We	

drew	 a	 total	 of	 50,000	 burn-in	 samples	 to	 let	 the	 MCMC	 sampler	 reach	 a	 stationary	

distribution.	Then,	for	each	model,	we	drew	a	total	of	50,000	new	samples	with	three	chains	

each.	We	sampled	each	chain	using	different	random	number	generator	engines	and	different	

seeds.	We	thinned	 the	 final	sample	by	a	 factor	of	50,	 thus	resulting	 in	a	 final	set	of	1,000	

samples	for	each	parameter.	We	used	Gelman-Rubin	tests	to	confirm	chain	convergence	of	

each	 parameter.	 All	 estimated	 parameters	 in	 our	 Bayesian	 models	 showed	 a	 𝑅� < 1.05,	

indicating	 that	 all	 three	 MCMC	 chains	 converged	 properly.	 Wherever	 we	 wanted	 to	 test	

whether	a	parameter	is	larger/smaller	than	0,	we	reported	Bayesian	“p-values”	that	directly	

quantify	the	probability	of	the	reported	effect	being	smaller/larger	than	zero.	We	computed	

these	values	using	posterior	population	distributions	estimated	for	each	parameter.	During	

model	 comparison,	 we	 used	 the	 deviation	 information	 criterion	 (DIC)	 to	 perform	model	

comparisons	(Meyer,	2016;	Pooley	and	Marion,	2018).	

	

MRI	 acquisition	 and	 pre-processing.	We	 acquired	 functional	 MRI	 data	 using	 a	 Philips	

Achieva	3T	whole-body	MR	scanner	equipped	with	a	32-channel	MR	head	coil.	Specifically,	

we	 collected	 6	 runs	with	 a	 T2*-weighted	 gradient-recalled	 echo-planar	 imaging	 (GR-EPI)	

sequence	(189	volumes	+	5	dummies;	flip	angle	90	degrees;	TR	=	2827	ms,	TE	=	30ms;	matrix	

size	96	×	96,	FOV	240	×	240mm;	in-plane	resolution	of	2.5	mm;	44	slices	with	thickness	of	

2.5	mm	and	a	slice	gap	of	0.5mm;	SENSE	acceleration	in	phase-encoding	direction	with	factor	

1.5;	 time-of-acquisition	 9:14	 minutes).	 Additionally,	 we	 acquired	 high-resolution	 T1-

weighted	3D	MPRAGE	image	(FOV:	256 × 256 × 170	mm;	resolution	1	mm	isotropic;	𝑇𝐼 =

2800	ms;	256	shots,	flip	angle	8	degrees;	𝑇𝑅 = 8.3	ms;	𝑇𝐸 = 3.9	ms;	SENSE	acceleration	in	

left-right	direction	2;	time-of-acquisition	5:35	minutes)	for	image	registration	during	post-

processing.		

Pre-processing	was	performed	using	fMRIPrep	1.4.0	(Esteban	et	al.,	2019),	which	was	

based	 on	 Nipype	 1.2.0	 (Gorgolewski	 et	 al.,	 2011).	 The	 T1-weighted	 (T1w)	 image	 was	

corrected	 for	 intensity	 non-uniformity	 (INU)	with	N4BiasFieldCorrection	 (Tustison	 et	 al.,	

2010)	 distributed	 with	 ANTs	 2.2.0	 (Avants	 et	 al.,	 2008),	 and	 used	 as	 T1w-reference	

throughout	 the	 workflow.	 The	 T1w-reference	 was	 then	 skull-stripped	 with	 a	 Nipype	
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implementation	of	the	antsBrainExtraction.sh	workflow	(from	ANTs),	using	OASIS30ANTs	as	

target	template.	Brain	tissue	segmentation	of	cerebrospinal	fluid	(CSF),	white-matter	(WM)	

and	 grey-matter	 (GM)	 was	 performed	 on	 the	 brain-extracted	 T1w	 using	 fast	 (FSL	 5.0.9)	

(Zhang	et	 al.,	 2001).	Brain	 surfaces	were	 reconstructed	using	 recon-all	 (FreeSurfer	6.0.1)	

(Fischl	et	al.,	1999),	and	the	brain	mask	that	was	estimated	previously	was	refined	with	a	

custom	 variation	 of	 the	 method	 to	 reconcile	 ANTs-derived	 and	 FreeSurfer-derived	

segmentations	of	the	cortical	grey-matter	of	Mindboggle	(Klein	et	al.,	2017).	Volume-based	

spatial	 normalization	 to	 one	 standard	 space	 (MNI152NLin2009cAsym)	 was	 performed	

through	 nonlinear	 registration	 with	 antsRegistration	 (ANTs	 2.2.0),	 using	 brain-extracted	

versions	 of	 both	 T1w	 reference	 and	 the	 T1w	 template.	 We	 used	 ICBM	 152	 Nonlinear	

Asymmetrical	 template	 version	 2009c	 (Fonov	 et	 al.,	 2009)	 as	 our	 template	 for	 spatial	

normalisation.		

For	each	of	the	6	BOLD	runs	per	subject	(across	all	tasks	and	sessions),	we	performed	

the	 following	 pre-processing	 procedure:	 First,	 a	 reference	 volume	 and	 its	 skull-stripped	

version	were	 generated	 using	 a	 custom	methodology	 of	 fMRIPrep.	 A	 deformation	 field	 to	

correct	 for	 susceptibility	 distortions	 was	 estimated	 based	 on	 a	 field	 map	 that	 was	 co-

registered	 to	 the	 BOLD	 reference,	 using	 a	 custom	workflow	 of	 fMRIPrep	 derived	 from	D.	

Greve’s	epidewarp.fsl	script	and	further	improvements	of	HCP	Pipelines	(Glasser	et	al.,	2013).	

The	deformation	field	is	that	resulting	from	co-registering	the	BOLD	reference	to	the	same-

subject	T1w-reference	with	its	intensity	inverted	(Huntenburg,	2014;	Wang	et	al.,	2017).		

Registration	was	performed	with	antsRegistration	(ANTs	2.2.0),	and	the	process	 is	

regularised	 by	 constraining	 deformation	 to	 be	 nonzero	 only	 along	 the	 phase-encoding	

direction	and	modulated	with	an	average	fieldmap	template	(Treiber	et	al.,	2016).	Based	on	

the	estimated	susceptibility	distortion,	an	unwarped	BOLD	reference	was	calculated	 for	a	

more	accurate	co-registration	with	the	anatomical	reference.	The	BOLD	reference	was	then	

co-registered	 to	 the	 T1w	 reference	 using	 bbregister	 (FreeSurfer)	 which	 implements	

boundary-based	registration	(Greve	and	Fischl,	2009;	Jenkinson	et	al.,	2002).	Co-registration	

was	 configured	with	nine	degrees	of	 freedom	 to	 account	 for	distortions	 remaining	 in	 the	

BOLD	 reference.	 Head-motion	 parameters	 with	 respect	 to	 the	 BOLD	 reference	

(transformation	matrices,	and	six	corresponding	rotation	and	translation	parameters)	are	

estimated	 before	 any	 spatiotemporal	 filtering	 using	 mcflirt	 (FSL	 5.0.9)	 (Jenkinson	 et	 al.,	

2002).	BOLD	runs	were	slice-time	corrected	using	3dTshift	from	AFNI	20160207	(Cox	and	

Hyde,	 1997).	 The	 BOLD	 time-series	were	 resampled	 to	 surfaces	 on	 the	 following	 spaces:	

fsaverage5,	 fsaverage6.	 The	 BOLD	 time-series	 (including	 slice-timing	 correction	 when	
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applied)	were	resampled	onto	 their	original,	native	space	by	applying	a	single,	 composite	

transform	to	correct	for	head-motion	and	susceptibility	distortions.		

These	 resampled	 BOLD	 time-series	 will	 be	 referred	 to	 as	 preprocessed	 BOLD	 in	

original	 space,	 or	 just	 preprocessed	 BOLD.	 The	 BOLD	 time-series	 were	 resampled	 into	

standard	 space,	 generating	 a	 preprocessed	 BOLD	 run	 in	 [‘MNI152NLin2009cAsym’]	 space.	

First,	 a	 reference	 volume	 and	 its	 skull-stripped	 version	 were	 generated	 using	 a	 custom	

methodology	 of	 fMRIPrep.	 Several	 confounding	 time-series	were	 calculated	 based	 on	 the	

preprocessed	 BOLD:	 framewise	 displacement	 (FD),	 DVARS	 and	 three	 region-wise	 global	

signals.	 FD	 and	 DVARS	 were	 calculated	 for	 each	 functional	 run,	 both	 using	 their	

implementations	 in	Nipype	 (following	 the	 definitions	 by	 (Power	 et	 al.,	 2014)).	 The	 three	

global	 signals	 were	 extracted	 within	 the	 CSF,	 the	 WM,	 and	 the	 whole-brain	 masks.	

Additionally,	a	set	of	physiological	regressors	were	extracted	to	allow	for	component-based	

noise	correction	(CompCor)	(Behzadi	et	al.,	2007).	

Principal	components	were	estimated	after	high-pass	filtering	the	preprocessed	BOLD	

time-series	(using	a	discrete	cosine	filter	with	128s	cut-off)	for	the	two	CompCor	variants:	

temporal	 (tCompCor)	 and	 anatomical	 (aCompCor).	 tCompCor	 components	 were	 then	

calculated	from	the	top	5%	variable	voxels	within	a	mask	covering	the	subcortical	regions.	

This	subcortical	mask	was	obtained	by	heavily	eroding	the	brain	mask,	which	ensures	it	does	

not	 include	 cortical	 GM	 regions.	 aCompCor	 components	 were	 calculated	 within	 the	

intersection	of	the	aforementioned	mask	and	the	union	of	CSF	and	WM	masks	calculated	in	

T1w	space,	after	their	projection	to	the	native	space	of	each	functional	run	(using	the	inverse	

BOLD-to-T1w	transformation).	Components	are	also	calculated	separately	within	 the	WM	

and	CSF	masks.	For	each	CompCor	decomposition,	the	k	components	with	the	largest	singular	

values	 were	 retained,	 such	 that	 the	 retained	 components’	 time	 series	 were	 sufficient	 to	

explain	50	percent	of	variance	across	the	nuisance	mask	(CSF,	WM,	combined,	or	temporal).	

The	remaining	components	were	dropped	from	consideration.	The	head-motion	estimates	

calculated	in	the	correction	step	were	also	placed	within	the	corresponding	confounds	file.	

The	 confound	 time	 series	 derived	 from	 head	 motion	 estimates	 and	 global	 signals	 were	

expanded	 with	 the	 inclusion	 of	 temporal	 derivatives	 and	 quadratic	 terms	 for	 each	

(Satterthwaite	 et	 al.,	 2013).	 Frames	 that	 exceeded	 a	 threshold	 of	 0.5	 mm	 FD	 or	 1.5	

standardised	DVARS	were	annotated	as	motion	outliers.	All	resamplings	can	be	performed	

with	a	single	 interpolation	step	by	composing	all	 the	pertinent	 transformations	(i.e.,	head-

motion	 transform	 matrices,	 susceptibility	 distortion	 correction	 when	 available,	 and	 co-

registrations	 to	 anatomical	 and	 output	 spaces).	 Gridded	 (volumetric)	 resamplings	 were	
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performed	 using	 antsApplyTransforms	 (ANTs),	 configured	 with	 Lanczos	 interpolation	 to	

minimize	 the	 smoothing	 effects	 of	 other	 kernels	 (Lanczos,	 1964).	 Non-gridded	 (surface)	

resamplings	were	performed	using	mri_vol2surf	(FreeSurfer).	

Many	 internal	 operations	 of	 fMRIPrep	 use	 Nilearn	 0.5.2	 ((Abraham	 et	 al.,	 2014),	

RRID:SCR_001362),	mostly	within	the	functional	processing	workflow.	For	more	details	of	

the	pipeline,	see	the	section	corresponding	to	workflows	in	fMRIPrep’s	documentation.	

	

Activation	modelling.	After	preprocessing,	fMRI	data	of	all	subjects	were	resampled	to	the	

fsaverage6	 standard	 surface	 space	of	 Freesurfer	 (Fischl	 et	 al.,	 1999).	 The	data	were	 then	

moderately	smoothed	on	the	surface	with	a	Gaussian	kernel	with	a	full-width-half-maximum	

(FWHM)	of	5mm.	A	general	linear	model	(GLM)	was	fitted	to	the	data	with	one	regressor	per	

trial	(36	trials	per	run),	as	well	as	separate	regressors	for	all	the	23	possible	second	stimulus	

arrays	presented,	all	convolved	with	a	canonical	hemodynamic	response	function.	This	model	

also	 included:	 (a)	 5	 anatomical	 compCor	 components	 accounting	 for	 physiological	 noise	

(Behzadi	et	al.,	2007);	(b)	3	translational	realignment	parameters	and	their	derivatives	(c)	3	

rotational	realignment	parameters	and	their	derivatives	(Friston	et	al.,	1996);	(d)	DVAR	and	

Framewise	displacement	time	series	(Power	et	al.,	2014);	(e)	7	discrete	cosine	regressors	to	

perform	high-pass	filtering	with	a	cutoff	frequency	of	1/128	seconds.		

	

Numerosity	encoding	model.	We	used	a	numerical	population	receptive	field	model	(nPRF)	

𝑓(𝑠)	(Dumoulin	and	Wandell,	2008),	to	model	BOLD	responses	to	the	first	stimulus	array.	We	

modelled	the	data	separately	for	every	vertex	and	for	every	individual,	yielding	thirty-six	(six	

trial-wise	regressors	per	stimulus	type	per	run)	activation	values	for	each	of	the	six	possible	

magnitudes	 of	 the	 first	 stimulus	 array.	We	 used	 gradient	 descent	 optimization	 to	 find	 a	

Gaussian	 receptive	 field	on	 the	 logarithmic	number	 line	 that	best	predicted	number-wise	

beta	estimates	in	terms	of	𝑅#.	The	model	contained	four	free	parameters,	𝜃:	(a)	a	baseline	

activation,	𝑏;	(b)	a	peak	activation,	𝐴;	(c)	the	numerical	center	of	the	logarithmic	Gaussian,	μ;	

and;	(d)	the	standard	deviation	of	the	logarithmic	Gaussian,	σ.	All	these	parameters	we	jointly	

estimated	using	maximum	likelihood	estimation.	

We	averaged	the	vertex-wise,	𝜇,	parameter	estimates	over	subjects	by	weighting	their	

𝑅#	and	rendered	them	on	the	fsaverage6	cortical	surface	reconstruction	using	Pycortex.	The	

parameter	estimates	were	 thresholded	on	 the	mean	𝑅#	 across	subjects	at	𝑅# > 0.09.	This	

allowed	us	to	qualitatively	replicate	the	topological	number	fields	in	the	parietal	and	frontal	

cortex	reported	by	(Harvey	and	Dumoulin,	2017;	Harvey	et	al.,	2013)	at	3-Tesla,	in	the	group	
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space	of	a	large	number	of	subjects	(n	=	64).	We	manually	selected	all	vertices	in	and	around	

the	intraparietal	sulcus	(IPS)	(Eger	et	al.,	2009;	Jacob	and	Nieder,	2009;	Lasne	et	al.,	2019;	

Piazza	et	al.,	2004)	that	showed	clear	numerical	sensitivity	in	this	map.	For	all	subjects,	we	

used	this	same	cortical	mask,	as	defined	is	fsaverage6-space.	

	

Numerosity	decoding	model.	We	implemented	a	Bayesian	inversion	of	the	nPRF	encoding	

model,	𝑓(𝑠),	extending	upon	previous	work	of	encoding-decoding	models	(van	Bergen	and	

Jehee,	2018;	van	Bergen	et	al.,	2015)1.	This	allowed	us	to	probe	the	uncertainty	of	numerical	

magnitude	 representations,	 operationalized	 as	 dispersions	 of	 the	 posterior	 distributions	

𝑃𝑟(𝑠|𝑌),	representing	the	probability	of	different	numerical	magnitudes,	given	the	BOLD	data	

of	a	particular	trial	type	for	a	particular	trial/run.	We	then	extended	the	univariate	encoding	

model,	which	mapped	stimuli	to	the	univariate	activation	patterns,	𝑦H	(𝑓H(𝑠): 𝑠 → 𝑦H),	with	a	

multivariate	Gaussian	noise	model,	𝜀,	yielding	a	conditional	probability	distribution	over	a	

multivariate	activation	pattern,	𝑌 = [𝑦), … , 𝑦H],	given	stimulus	numerosity,	𝑠:	

	

Pr(𝑌|𝑠) = [𝑓)(𝑠)], … , 𝑓H(𝑠)] + 𝜀	

where	

𝜀	~	𝑁(0, 𝚺).	

	

Here	the	covariance	matrix	of	the	noise	model,	𝚺,	is	crucial	for	Bayesian	decoding	(van	

Bergen	 and	 Jehee,	 2018).	 In	 our	 model,	 𝚺	 	 is	 constructed	 as	 the	 weighted	 sum	 of	 (a)	 a	

perfectly-correlated	covariance	matrix,	𝜏𝜏X;	(b)	a	perfectly-uncorrelated	covariance	matrix,	

𝐼 ∘ 𝜏𝜏X;	(c)	a	matrix	𝑊𝑊X 	that	quantifies	the	amount	of	overlap	in	receptive	fields	of	different	

vertices	 (putatively	 corresponding	 to	 the	 overlap	 in	 neural	 populations);	 and,	 (d)	 an	

exponential	 transformation	 of	 the	 geodesic	 distance	 matrix	 on	 the	 cortical	 surface,	

exp(−𝛽𝐷):	

	

𝚺 = 𝜚𝜏𝜏X + (1 − 𝜚)𝐼 ∘ 𝜏𝜏X + 𝜎𝑊𝑊X + 𝛼 exp(−𝛽𝐷) ∘ 𝜏𝜏X ,	

	

where	𝜚 ∈ [0,1]	is	a	scalar	that	quantifies	the	noise	correlation	between	different	vertices;	𝜏	

is	a	vector	containing	the	standard	deviation	of	the	residuals	of	every	individual	vertex;	𝐼	is	

the	identity	matrix;	and,	𝜎#	is	a	scalar	that	quantifies,	in	absolute	terms,	how	much	variance	

can	be	explained	by	overlapping	neural	populations.	

 
1	The	resulting	Python	package	can	be	found	on	GitHub	https://github.com/Gilles86/braincoder		
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	 To	obtain	the	𝑊-matrix	for	our	nPRF	model	(𝑛	neural	populations	×	𝑛	vertices)	we	

discretized	 the	 estimated	 logarithmic	Gaussian	 receptive	 fields	 into	 a	 set	 of	 two	hundred	

logarithmically	spaced	bins	between	1	and	five	times	28	(140).	We	can	then	interpret	the	

𝑊𝑊X 	matrix	as	the	amount	of	overlap	between	the	receptive	fields	of	every	vertex	pair.	The	

geodesic	distance	matrix,	𝐷	represents	the	distance	between	two	cortical	 locations	on	the	

surface,	and	we	used	it	to	account	for	spatial	correlation	in	BOLD	signal.	We	calculated	this	

distance	using	the	Heat-based	method	(Crane	et	al.,	2013),	as	implemented	in	Pycortex.	We	

modeled	the	proportion	of	this	distance-based	effect	using	the	𝛼-parameter,	and	we	modeled	

the	spatial	correlation’s	rate	of	falloff	by	the	𝛽-parameter.	

	 We	implemented	the	noise	model	in	Tensorflow,	used	gradient	descent	(Kingma	and	

Ba,	2014)	to	estimate	ϱ,	𝜏,	 	𝜎#,	𝛼	and	𝛽	with	a	maximum	likelihood	cost	function.	We	fixed	

𝜃�	of	the	encoding	model	to	the	values	estimated	before.	Fitting	the	noise	model	allows	us	to	

calculate	the	posterior	probability	of	the	different	numerosity	stimuli,	𝑠,	conditional	on	the	

activation	patterns	of	unseen	data,	𝑌∗,	

	

Prn𝑠�𝑌∗; 𝜃�q =
Prn𝑌�𝑠; 𝜃�q Pr(𝑠)
∫ Pr(𝑌|𝑠) Pr(𝑠)𝑑𝑠

	

	

We	numerically	approximated	the	integral	in	250	equally	spaced	steps	between	1	and	

50	in	natural	space.	We	used	the	mean	of	this	posterior,	𝐸[𝑠],	to	predict	the	numerosity,	𝑠,	of	

the	 unseen	data,	𝑌∗,	 and	we	used	 the	 standard	deviation	 of	 the	 posterior	 to	 quantify	 the	

associated	uncertainty	 of	 numerical	 representations	 on	 a	 trial-to-trial	 basis.	 Crucially,	we	

fitted	and	evaluated	the	model	on	all	data	according	to	a	leave-one-run-out	cross-validation	

scheme,	where	we	used	the	data	of	five	runs,	𝑌,	for	estimating	the	model,	𝑓(𝑠)	and	𝑃(𝑌|𝑠),	

which	we	then	used	to	estimate	the	uncertainty	of	numerical	encoding	on	the	sixth,	left-out	

run,	𝑌∗.	

	

Model	validation.	To	estimate	the	robustness	of	the	decoding	approach,	we	evaluated	the	

posterior	 of	 unseen	 data	 at	 𝑝(𝑠 = {5,7,10,14,20,28})	 to	 check	 the	 mostly	 likely	 possible	

stimulus	 (maximum	 a	 posteriori;	 MAP	 stimulus)	 according	 to	 the	model.	We	 could	 then	

compare	 the	 accuracy	 of	 the	 decoding	model	 versus	 a	 null	model	 that	would	 perform	 at	

chance,	𝑝(correct) = )
Z
		or	16.7%.	
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Individual	behavioural	and	neural	variability	tests.	The	hierarchical	Bayesian	estimation	

procedure	for	both	behavioural	performance	during	perceptual	magnitudes	and	risky	choice	

produced	posterior	distributions	of	NLC	model	parameters	at	both	population	and	individual	

levels.	Thus,	we	extracted	 the	mean	of	 each	 subject’s	posterior	distribution.	On	 the	other	

hand,	our	neural	encoding/decoding	approach	was	able	to	extract,	on	a	subject-to-subject	

basis,	a	measure	of	neural	precision,	which	is	the	inverse	of	the	mean	standard	deviation	(s.d.)	

of	the	decoded	trial	magnitude.	We	also	regressed	these	standard	deviations	on	the	stimulus	

magnitudes	 that	 were	 presented	 to	 produce	 a	 measure	 of	 neural	 diminishing	 sensitivity,	

which	accounts	 to	which	extent	 the	acuity	of	neural	 representations	decreased	 for	 larger	

magnitudes.	This	measure	may	be	 less	prone	to	general	noise	 in	the	MR	data	that	equally	

affects	all	magnitudes.	The	neural	precision	had	a	very	non-Gaussian	distribution,	because	

some	subjects	had	a	precision	very	close	to	0.	Therefore,	we	log-transformed	this	measure	

before	 we	 ran	 any	 correlations.	 To	 test	 for	 individual	 differences,	 we	 performed	 simple	

Pearson	correlation	and	reported	correlation	coefficients	and	corresponding	p-values.	We	

employed	 one-sided	 p-values	 to	 test	 the	 hypothesised	 relationship	 between	 individual	

behavioural	and	neural	measures	because	we	already	had	a	very	strong	a	priori	hypothesis	

about	the	direction	of	possible	correlations.	

	

Bayesian	 mediation	 analysis.	 We	 used	 hierarchical	 Bayesian	 mediation	 analysis	

(Supplementary	 Fig.	 5b)	 to	 test	whether	 the	 association	 between	 our	 individual	 neural	

measurements,	𝛾H9;5I	(neural	precision	and	neural	diminishing	sensitivity,	obtained	from	our	

generative	 encoding/decoding	 model)	 in	 the	 perceptual	 magnitude	 task,	 and	 individual	

measurements	of	risk	aversion,	𝜋5678	(and	also,	risk	precision,	𝛾5678)	is	mediated	by	individual	

behavioural	magnitude	precision,	𝛾095$90:;<= ,	(estimated	using	the	NLC	model).	In	mediation	

analysis	 (Cohen	et	al.,	2003),	we	 first	expressed	the	relationship	between	𝛾5678	and	𝛾H9;5I	

with	the	following	linear	regression,		

	

𝜋5678 = 𝑐D + 𝑐𝛾H9;5I + 𝜀5678	

	

where	𝑐D	 is	the	intercept,	𝜀5678	 is	the	residual,	and	the	parameter	𝑐	(the	total	effect)	 is	the	

slope	determining	the	strength	of	the	relationship	between	𝛾H9;5I	and	𝛾5678 .		

To	 determine	 whether	 the	 relationship	 between	 𝛾H9;5I	 and	 𝜋5678	 is	 mediated	 by	

𝛾095$90:;<= ,	we	then	applied	structural	equation	modelling	(SEM),	which	involves	two	sets	of	
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regression	models:	first,	we	regressed	the	mediating	variable,	𝛾095$90:;<= 	on	the	independent	

variable,	𝛾H9;5I	,	

𝛾095$90:;<= = 𝛼D + 𝛼𝛾H9;5I + 𝜀095$90:;<= 	

	

and,	then	we	regressed	𝜋5678 ,	on	both	independent	and	mediating	variables	

			

𝜋5678 = 𝑐DL + 𝛽𝛾095$90:;<= + 𝑐L𝛾H9;5I + 𝜀5678	.	

	

Here,	 {𝛼D, 𝑐DL }	 are	 intercepts;	 �𝜀095$90:;<= , 𝜀5678�	 are	 residuals;	𝛼	measures	 the	 relationship	

between	𝛾H9;5I	and	𝛾095$90:;<=;	𝛽	measures	 the	relationship	between	𝛾095$90:;<= 	and	𝜋5678;	

and,		𝑐′	(the	direct	effect)	measures	the	relationship	between	𝛾H9;5I	and	𝜋5678	after	taking	into	

account	 the	 mediating	 effect	 of	 𝛾095$90:;<= .	 The	 mediation	 effect,	 𝛼 × 𝛽,	 measures	 the	

relationship	between	𝜋5678	and	𝛾H9;5I	after	accounting	for	the	mediating	effect	of	𝛾095$90:;<= .		

	 We	 drew	 inferences	 using	 a	 hierarchical	 Bayesian	 framework	 and	 estimated	

parameters	using	MCMC	sampling	in	JAGS	(Plummer,	2003).	We	used	a	normal	distribution	

as	our	prior	for	the	parameters	for	our	regression	coefficients	and	intercepts,	and	a	Gamma	

distribution	as	our	prior	 for	the	variance	parameters	(Miočević	et	al.,	2018;	Nuijten	et	al.,	

2015).	We	then	estimated	our	Bayesian	SEM	using	the	following	posterior	distributions,		

	

𝛾095$90:;<= 	~	𝑁n𝜇095$90:;<=(𝛾H9;5I), 𝑣095$90:;<=q	

	

𝜋5678	~	𝑁n𝜇5678n𝛾095$90:;<= , 𝛾H9;5Iq, 𝑣5678q,	

	

where	n𝑣095$90:;<= , 𝑣5678q	are	the	variances	and	n𝜇5678 , 𝜇095$90:;<=q	are	the	conditional	means	

for	each	of	the	dependent	and	mediator	variables,	respectively,		

	

𝜇095$90:;<=(𝛾H9;5I) = 𝛼D + 𝛼𝛾H9;5I,	

	

𝜇5678n𝛾095$90:;<= , 𝛾H9;5Iq = 𝑐DL + 𝛽𝛾095$90:;<= + 𝑐L𝛾H9;5I	

	

		 We	performed	posterior	inferences	for	the	mediating	(𝛼 × 𝛽),	direct	(𝑐L),	and	total	(𝑐)	

effects,	for	each	area	of	numerical	parietal	cortex,	through	a	Gibbs	sampler	implemented	in	

RJAGS.	Similar	to	previous	analyses,	we	used	three	chains	and	the	same	initial	burn-in	and	
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thinning	steps	to	obtain	a	final	set	of	1,000	samples	for	each	parameter	at	the	population	and	

individual	levels.	We	used	Gelman-Rubin	tests	to	check	whether	all	our	latent	variables	had	

𝑅� < 1.05,	which	indicated	that	all	three	MCMC	chains	had	converged.	Finally,	we	performed	

inference	using	Bayesian	p-values,	inferred	from	the	highest	density	interval	(HDI).	
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SUPPLEMENTARY	MATERIALS	
	

	
	

SUPPLEMENTARY	FIGURE	1.	Model	comparison	between	the	NLC	and	competing	economic	choice	

models.	DIC	difference	between	the	best	model	(the	NLC	in	all	cases)	and	the	competing	economic	choice	

models,	particularly	constant	relative	risk	aversion	(CRRA),	cumulative	prospect	theory	(CPT),	and	salience	

theory	 (ST)	 in	both	 (a)	non-symbolic	 and	 (b)	 symbolic	 visual	 display	 formats.	We	 fitted	 each	of	 these	

economic	choice	models	using	the	Logit	(1)	and	Probit	(2)	model	specifications.	
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SUPPLEMENTARY	 FIGURE	 2.	 Behavioural	 effects	 of	 the	 presentation	 format	 of	 monetary	

magnitudes.	 (a)	 Population	 posterior	 distributions	 of	 the	 (a-b)	 intercept,	 𝛿,	 as	 well	 as	 (c-d)	 the	

indifference	point	,	𝜃,	for	both	(a,c)	perceptual	magnitude	and	(b,d)	risky	choice	tasks.	The	intercept	during	

perceptual	magnitude	 is	 no	 different	 from	 zero	 (indicated	 here	 by	 the	 vertical	 dashed	 line)	while	 it	 is	

significantly	larger	than	zero	during	risky	choice	in	both	visual	displays.	Similarly,	the	indifference	point	in	

perceptual	magnitude	 is	 no	 different	 from	 one	while	 in	 risky	 choice,	 it	 is	 significantly	 larger	 than	 the	

threshold,	 !
2.44

	(the	vertical	dashed	line).	*	𝑝 < 0.05,	**	𝑝 < 0.01,	and	***	𝑝 < 0.001.		(e)	Individual	measures	

of	 the	 indifference	 point	 for	 non-symbolic	 and	 symbolic	 payoffs	 are	 related.	 The	 two	 measures	 are	

positively	correlated.	Distributions	coloured	pink	represent	data	from	perceptual	magnitude	while	blue	

represent	data	from	risky	symbolic	payoffs	and	yellow-orange	for	risky	non-symbolic	payoffs.	The	light	

pink-shaded	mass	of	the	highest	density	interval	(HDI)	covers	95%	of	the	posterior	distribution	while	the	

dark-shaded	tail-ends	represent	5%	of	the	posterior	distribution.	Post-hoc	tests	reveal	that	the	posterior	

distribution	 is	significantly	different	 from	zero	(represented	here	as	a	vertical	dashed	 line)	 if	 the	 light-

shaded	mass	does	not	cross	zero.	*	𝑝 < 0.05,	**	𝑝 < 0.01,	and	***	𝑝 < 0.001.	
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SUPPLEMENTARY	FIGURE	3.	Behavioural	and	neural	measures	of	representation	acuity	and	risky	

choice	variability.	 	(a)	The	estimated	precision	of	mental	magnitude	representations	employed	for	the	

perceptual	task,	𝛾$%&'%$()*+ ,	and	the	risky	decision-making	task,	𝛾1/1",-./+0'	and	𝛾",-./+0' ,	are	related,	for	

both	types	of	visual	displays,	as	predicted	by	the	NLC	model.	(b)	The	neural	precision	parameter	was	not	

correlated	with	the	risky	choice	precision	parameter	𝛾,	although	the	correlations	were	in	the	hypothesized	

direction:	the	higher	the	neural	precision,	the	less	variable	the	behaviour.	(c)	Neural	diminishing	sensitivity	

was	significantly	correlated	with	the	risky	choice	precision	parameter	𝛾	for	the	non-symbolic	presentation	

format	 and	marginally	 significant	 for	 the	 symbolic	 presentation	 format.	 p-values	were	 estimated	 from	

Pearson	correlations:	*	𝑝 < 0.05,	**	𝑝 < 0.01,	and	***	𝑝 < 0.001.	
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SUPPLEMENTARY	 FIGURE	 4.	 The	 mediating	 effect	 of	 behavioural	 precision	 on	 the	 association	

between	precision-related	measures	on	risky	choice	precision.	(a)	The	effect	of	neural	noise	on	risky	

choice	variability	for	the	task	using	symbolic	numbers	is	mediated	by	perceptual	choice	variability.	There	

is	no	significant	direct	or	total	effect.	(b)	The	effect	of	neural	noise	on	risky	choice	variability	for	the	task	

using	 non-symbolic	 presentation	 format	 is	 mediated	 by	 perceptual	 choice	 variability.	 There	 is	 no	

significant	direct	or	total	effect.	The	effect	of	diminishing	sensitivity	on	risky	choice	variability	for	the	task	

using	(c)	non-symbolic	numbers	is	mediated	by	perceptual	choice	variability,	and	less	so	with	(d)	symbolic	

numbers.	 Bayesian	 “p-values”	 were	 calculated	 using	 hierarchical	 Bayesian	 mediation	 analysis	 (see	

Methods	and	Supplementary	Fig	5b):	*	𝑝 < 0.05,	**	𝑝 < 0.01,	and	***	𝑝 < 0.001.		

D
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SUPPLEMENTARY	 FIGURE	 5.	 Hierarchical	 Bayesian	 models.	 Graphical	 representations	 of	 the	

hierarchical	 Bayesian	 (a)	 noisy	 logarithmic	 coding	 model	 and	 (b)	 mediation	 analysis.	 Clear	 circles	

represent	latent	variables	while	filled	circles	are	observed	variables,	such	as	trialwise	choice	(𝑟'"0)	data,	

subject-wise	 behavioural	 and	 neural	 measurements	 (𝑦5),	 and	 numerosity	 /	 payoff	 inputs	 (𝑋, 𝐶).	 The	

following	equations	show	the	distributions	assumed	for	each	of	the	model	latent	variables:	

	

(a)	Noisy	logarithmic	coding	model	

Trial-by-trial,	i	

	

	

	

Subject,	s		

	

𝑟'"0 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖<𝑃𝑟𝑜𝑏𝑖𝑡(𝑋, 𝐶)@	

𝑃𝑟𝑜𝑏𝑖𝑡(𝑋, 𝐶) = ΦB𝛾 log B
𝑋
𝐶F − 𝛿F	

	

when	estimating	for	group-level	differences:		
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Observable	variables:		

	

	

	

	

	

	

	

Hyper-group	or	latent	parameters:	

𝛾'"	~	ℕ J𝜇6(𝑐), 𝜎67(𝑐)M , 𝛿'"	~	ℕ(𝜇8(𝑐), 𝜎87(𝑐))	

	

when	estimating	for	each	condition	separately:		

	

𝛾'"	~	ℕ<𝜇6 , 𝜎67@, 𝛿'"	~	ℕ(𝜇8 , 𝜎87)	

	

Choice:	

𝑟'"0 = N1,													if	correct0, if	incorrect	

Stimuli:	

𝐶 = {5,7,10,14,20,28}	

𝑋1)-%&/"0(, = 29 :⁄ , ℎ = [−6,6]	

𝑋&0"< = 29 :⁄ ,														ℎ = [0,8]	

	

𝜇6	~	𝑈𝑛𝑖𝑓(−10,10), 𝜎6	~	𝑈𝑛𝑖𝑓(0.0000001,1)	

𝜇8 	~	𝑈𝑛𝑖𝑓(−10,10), 𝜎= 	~	𝑈𝑛𝑖𝑓(0.0000001,1)	

	

when	estimating	for	group-level	differences:		

	

𝜇6(𝑐 = 1)	~	ℕ(0,104), 𝜎6	(𝑐 = 1)	~	ℕ(0,104)	

𝜇8(𝑐 = 1)	~	ℕ(0,104), 𝜎8(𝑐 = 1)	~	ℕ(0,104)	

	

(b)	Mediation	analysis	

Subject-wise,	j	

	

	

	

	

	

	

	

	

	

	

Observable	variables:		

	

	

	

	

Neural	measure	→	Perceptual	variability		

	

𝛾5
-*>~	ℕ<𝜃5

-*>, 𝜏-*>@	

𝜃5
-*> =	𝛼2 + 𝛼5𝑦51%)&/	

	

Perceptual	variability	+	Neural	measure	→	Risk	measure	

	

𝑦5&0"<~	ℕ<𝜃5&0"< , 𝜏&0"<@	

𝜃5&0"< = 𝛽2 + 𝛽5𝑦5
-*> + 𝑐′𝑦51%)&/	

	

Neural	measure:	𝑦51%)&/ = NNeural	precision																										Neural	diminishing	sensitivity	

	

Perceptual	variability,	𝛾5
-*>	
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Hyper-group	or	latent	parameters:	

Risky	choice	measure:	𝑦51%)&/ = r
Risky	payoff	precision, 𝛾?&0"<			
Risk	neutral	probability, 𝜋5

	

	

Slopes:	

𝛼	~	ℕ(0,107), 𝛽		~	ℕ(0,107), 𝑐′~	ℕ(0,107)	

	

Intercepts:					

𝛼2	~	ℕ(0,10:), 𝛽2		~	ℕ(0,10@)	

𝜏-*>	~	𝐺𝑎𝑚𝑚𝑎(0.01,0.01), 𝜏&0"<			~	𝐺𝑎𝑚𝑚𝑎(0.01,0.01)	
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