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ABSTRACT 

For evolutionary biology, the phenotypic consequences of epigenetic variations and 

their potential contribution to adaptation and diversification are pressing issues. Marine 

and freshwater sticklebacks represent an ideal model for studying both genetic and 

epigenetic components of phenotypic plasticity that allow fish to inhabit water with 

different salinity. Here, we applied single-cell genomics (scRNA-seq and scATAC-seq) 

and whole-genome bisulfite sequencing to characterize intercellular variability in 

transcription, the abundance of open chromatin regions, and CpG methylation level in 

gills of marine and freshwater stickleback morphs. We found little difference in overall 

transcriptional variance between the morphs but observed significant changes in 

chromatin openness dispersion. In addition, genomic divergence islands (DIs) 

coincided with regions of increased methylation entropy in freshwater fish. Moreover, 

analysis of transcription factor binding sites within DIs revealed that СTCF motifs 

around marker SNPs were significantly enriched within the region. Altogether our data 

confirm the role of epigenetic variance in the adaptation of marine sticklebacks to 

freshwater. 

 

 

INTRODUCTION 

Any kind of phenotype in complex organisms results from the action of two forces - 

genetic and environmental. However, even external conditions exert their influence on 

the organism through modulation of genome functioning. The main mechanisms of 

gene regulation in vertebrates involve DNA methylation, combinatorial histone code, 

noncoding RNAs. If the environment suddenly changes, these mechanisms are the 

immediate frontline to adopt the genotype to the new surroundings. 
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Similar to genetic diversity serving to increase the chances of a population to 

survive and reproduce, variability of epigenetic marks may provide an additional source 

of such changes. Until recently, most if not all studies that put epigenetic noise in focus 

concentrated on DNA methylation since whole-genome bisulfite sequencing naturally 

produced per allele information with single-nucleotide resolution. For instance, cancer 

cells increase DNA methylation dispersion in so-called Variably Methylated Regions 

(VMRs) (Pujadas & Feinberg, 2012). In surrounding normal somatic cells, the 

dispersion was not detected. Surprisingly, these VMRs are found at critical loci for 

development, such as axial pattern formation, neurogenesis, immune system 

development, and gut development (Pujadas & Feinberg, 2012). Later it became clear 

that borders between regions with high and low methylation entropy mainly coincide 

with borders between topologically associating domains (TADs) (Jenkinson et al., 

2017). 

NGS revolution generated a new methodology based on the analysis of genetic 

and epigenetic information of single cells. Today it is possible to analyze not only DNA 

methylation but information on histone modifications (Bartosovic et al., 2021) and open 

chromatin structures (ATAC-seq), allowing to evaluate the role of epigenetic 

stochasticity as an additional dimension of functional genomics in a variety of 

biological processes. 

Biologists are now discussing how environmental changes are translated into 

epigenetic variations of both somatic and germinal cells, what are molecular 

mechanisms that conform epigenetic information through sexual reproduction, and how 

genetic selection influences epiallele selection and diversity. For evolutionary biology, 

the phenotypic consequences of non-genetic inheritance (NGI) and their potential 

contribution to adaptation and diversification are pressing issues. The fact that parental 
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exposure to any kind of unusual surrounding conditions may influence the progeny has 

been shown for morphology (Herman & Sultan, 2016), physiology (Shama & Wegner, 

2014), behavior (Bohacek & Mansuy, 2015), longevity (Greer et al., 2011), and disease 

(Ben Maamar et al., 2019). Upon adaptation scenario, it increases offspring fitness 

(Shama & Wegner, 2014; Schunter et al., 2017; Ryu et al., 2018; Herman et al., 2012). 

Epigenetics has been shown to contribute to the adaptation of whole populations to the 

altered environment, thus maintaining new phenotypes in generations (Yin et al., 2019; 

English et al., 2015; Shea et al., 2011). The overall significance of epigenetics for 

evolutionary processes depends on the relative importance of NGI and genetic variation 

in creating phenotypic diversity (Baugh & Day, 2020). Indeed, environmental variation 

can mediate the evolution of NGI regulation in roundworms (Silva et al., 2021). 

However, data on the variability of NGI and its genetic basis from natural populations 

and from vertebrates is scarce. 

Several groups have studied the genetic and epigenetic adaptation of marine 

threespine sticklebacks to freshwater (Jones et al., 2012; Terekhanova et al., 2014, 

Artemov et al., 2017)). Such a switch happened around 700 years ago when fish from 

the White sea were isolated in Mashinnoe lake due to the steady glacio-isostatic rise of 

the coast at the rate of 3.8 mm per year. Since then, freshwater morph has adapted to 

low-salt water and changed some phenotypic traits. Briefly, seawater and freshwater 

genomes are different at a few dozens of divergency islands, showing significantly 

different allele frequencies between two morphs (Terekhanova et al., 2019; 

Terekhanova et al., 2014). Apart from genetic features, there are multiple differentially 

methylated regions that distinguish them (Artemov et al., 2017). Moreover, we found 

that individual gill cell genomes of freshwater morph are characterized by higher 
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interindividual dispersion of CpG methylation within CG-rich regions when compared 

to their seawater relatives. 

Here, we used single-cell genomics and transcriptomics to characterize 

intraindividual epigenetic dispersion (terms dispersion, entropy, or variation will be 

further used in intraindividual context) in seawater and freshwater sticklebacks: highly 

abundant transcripts, number and coverage of open chromatin regions, stochasticity of 

DNA methylation. These characteristics were studied both for the whole genomes and 

specifically for DIs. Altogether, we aimed to find an epigenetic component in the 

biology of stickleback adaptation to the altered environment with different salinity. 

 

RESULTS 

scRNA-seq analysis allows transcriptional characterization of different cell types 

in the gills 

To explore gene expression changes associated with adaptations to water salinity 

conditions, we studied the gills of two marine sticklebacks and two freshwater 

sticklebacks (Fig. 1A). Gills contact the surrounding water directly, thus being highly 

affected by the water salinity. Sequencing of RNA from gills’ individual cells (scRNA-

seq) resulted in a total of 19,964 cells with at least 100 unique detected molecules: 1,905 

and 8,002 cells in two marine sticklebacks, 4,753 and 5,304 cells in two freshwater 

sticklebacks (Suppl. Fig. 1,2). Thus, 50% of cells were derived from marine 

sticklebacks and 50% from freshwater sticklebacks. The extent of marine-freshwater 

expression divergence agreed well between the averaged scRNA-seq and the bulk 

RNA-seq (Rastorguev et al., 2018) data (Pearson’s R=0.2, p-value<10-10, Fig. 1B)  
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Fig. 1. Transcriptomics in marine and freshwater sticklebacks. (A) Study design. 

Gene expression was profiled in gills of marine and freshwater sticklebacks using 

conventional RNA sequencing (bulk RNA-seq) and single-cell RNA sequencing 

(scRNA-seq). (B) Correlation of marine to freshwater expression fold change between 

bulk RNA-seq and averaged snRNA-seq datasets in log scale. Pearson’s R = 0.2, p-

value < 10-10. (C) UMAP plot of 19,964 cells colored by cluster identity. (D) UMAP 

plot of 804 cells colored by cluster identity. Erythrocytes were removed. (E) Projection 

of expression levels averaged across cell type marker genes onto the UMAP plot shown 

in panel 1D. Labels above the UMAP plots mark cell types. (F) Average expression 

levels of cell-type marker genes in clusters. The same marker genes were used in panel 

1E. 
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Visualization of the total expression variation across cells revealed that the 

majority of cells represented erythrocytes (Fig. 1C, Suppl. Table 2 - cluster markers). 

The remaining 804 cells could be separated into several clusters (Fig. 1D). Several 

resolutions were tested for clustering (0.05, 0.1, 0.3, 1.5, Suppl. Fig. 3). The best 

resolution for separating groups of cells with distinct patterns of expression was 0.3. 

Higher resolution divided cells into several clusters with similar content and expression 

of marker genes, while lower resolutions did not provide enough separation. We 

identified marker genes for each of these clusters (Suppl. Table 3 - cluster markers) and 

plotted four best markers for each cluster on a heatmap (Fig. 1F, Suppl. Fig. 4). To 

assign cell types to the resulting cell clusters, we manually searched marker genes that 

had zebrafish orthologs in the ZFIN database (Ruzicka et al., 2018). For each cluster, 

we searched for a recurring pattern of tissue specificity in categories for its marker 

genes in the ZFIN database. At the first step, coro1a, arpc1b, zgc:64051 were identified 

as clear markers of immune cells, clarifying further annotation. The macrophage cluster 

showed high expression of mpeg1.2, which is a macrophage-specific marker (Rougeot 

et al., 2019), and additional markers cd79a and swap70a. Neutrophils were easily 

identifiable by several highly specific markers: npsn, mpx, and mmp9 (Di et al., 2017). 

The lymphocyte cluster was identified as the only one expressing T cell-specific 

tyrosine kinase lck gene; additionally, prf1.9 expression was also exclusive for this 

cluster. The cluster of ionocytes, or mitochondria-rich cells, MRCs (Wilson & Laurent, 

2002), had elevated expression of genes responsible for catabolism as well as several 

specific markers: atp1a1a.4, slc4a1b, atp1b1, slc4a1b. Atp1b1b and slc4a1b, in 

particular, are gill ionocyte-specific markers (Farnsworth et al., 2020). Gill integument 

cluster containing Pavement cells, most likely (Wilson & Laurent, 2002), had high 
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expression of keratin genes as well as rhcga gene which has homology to rhcgl1 that 

was identified as gill integument gene (Farnsworth et al., 2020). Gill integument cluster 

was the most abundant out of the clusters that expressed keratin genes enriched in the 

various epithelium, and it is expected to be the biggest of epithelial cell clusters in gills. 

There was another smaller epithelial cluster with markers S100P, ptgdsb.1, 

ENSGACG00000004694 specific for it, but there was not enough information to 

distinguish the type of epithelium. A small cluster of neuron-like cells, possibly 

neuroepithelium (Wilson & Laurent, 2002), had to be separated manually based on the 

UMAP visualization since clustering at the resolution of 0.3 did not isolate it. However, 

this cluster had highly specific markers s100a1, scilna, sptbn2, CKB, all of which are 

supposed to be elevated in the neuronal tissue. The first cluster of leukocytes 

(leukocytes_1) did not show any specific markers apart from the high expression of 

genes typical for blood immune cells, present in all blood immune cell clusters of this 

dataset. The second cluster of leukocytes (leukocytes_2) had several specific markers: 

cxcl19, ctsa, tcn2. However, none of the markers provided enough information to 

identify which type of immune cells it corresponded to.  

Further, we analyzed gene expression diversity in saline and freshwater 

samples. The largest homogeneous cell cluster representing erythrocytes was selected 

for this analysis to explore marine-freshwater expression divergence separately from 

possible effects of cell-type composition changes between marine and freshwater 

sticklebacks. We performed the F-test for dispersion difference between saline and 

freshwater samples per each expressed gene (see Methods). This analysis revealed a 

slight increase of intraindividual transcription dispersion in saline sticklebacks 

compared to the freshwater population (median F-ratio = 1.1, Fig. 2A). The same 

analysis repeated on all cells, including erythrocytes and other cell types, produced 
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highly similar results, indicating that the observed slight increase of divergence within 

the saline stickleback population cannot be explained by cell-type composition changes 

(Suppl. Fig. 5). 

We further searched for highly variable genes (HVG) indicating high expression 

diversity within either the freshwater stickleback population or the marine population. 

For each gene, we calculated expression variability among cells of one sample and 

obtained lists of HVG ranked by their variability in marine or freshwater stickleback 

samples (Suppl. Table 4). This analysis was performed before the sample integration 

step in Seurat (Hao et al., 2021) to avoid possible technical confounders associated with 

the procedure of sample integration.  

A total of 4,832 genes were identified as HVG in at least one of four stickleback 

samples. A comparison of HVG lists between samples revealed that 178 genes were 

defined as HVG in both marine samples and neither freshwater samples (Fig. 2B). 

Similarly, 235 genes were defined as HVG in both freshwater samples and neither 

marine samples (Fig. 2B). Functional enrichment analysis of 178 marine-specific HVG 

did not reveal significant functional categories, according to the Gene Ontology (GO) 

database (Carbon et al., 2020) (Suppl. Fig. 6). By contrast, a similar analysis of 235 

freshwater-specific HVG resulted in eight significant functional categories (Fig. 2C), 

mostly related to chromatin binding and its nested GO terms. Analysis of all cells, 

including erythrocytes and other cell types, produced highly similar results (Suppl. Fig. 

12). This functional analysis suggests that gene expression regulation at the level of 

chromatin accessibility might be an important component of stickleback adaptation to 

altered salt concentration in water.  
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Fig. 2. Transcriptional diversity in marine and freshwater sticklebacks. (A) The 

ratio of expression variance among marine stickleback cells to the expression variance 

among freshwater stickleback cells (in log scale). The dashed line represents the median 

of ratios among all genes. (B) Venn diagram of overlapping HVG defined in each 

sample of marine (green) and freshwater (brown) sticklebacks separately. Numbers 

indicate HVG. (C) Functional enrichment analysis of 235 HVG specific to freshwater 

sticklebacks, performed according to the Gene Ontology (GO) database (Carbon et al., 

2020). Only erythrocyte cells are analyzed in panels A-C. 

 

scATAC-seq analysis reveals higher variability in number and coverage of open 

chromatin sites in seawater sticklebacks 

To explore changes associated with adaptations to water salinity conditions at the level 

of gene expression regulation, we studied chromatin accessibility in the gills of the 

same specimens of marine sticklebacks and freshwater sticklebacks at the single-cell 

resolution. We performed the scATAC-seq experiment (Fig. 3A) and obtained clusters 

of cells (Fig. 3B), where a distinct cluster represented erythrocyte cells (Fig. 3C, Suppl. 

Fig. 21). Similarly to gene expression analysis, we performed F-test for dispersion 

difference between saline and freshwater samples in scATAC-seq peaks and observed 

significantly higher variability of chromatin accessibility in marine sticklebacks 

compared to freshwater sticklebacks (median F-ratio = 1.5, Fig. 3D). For consistency 

with gene expression divergence analysis, we additionally calculated F-ratio for 
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erythrocytes only, to factor out chromatin accessibility divergence explained by cell-

type composition changes, and obtained similar results (Suppl. Fig. 27).  

Functional enrichment analysis of genes located next to saline-specific highly 

variable scATAC-seq peaks (calculated using two metrics: mean number of non-zero 

peaks in a gene and mean peak height in a gene, see Methods) resulted in five significant 

functional categories (Fig. 3E), according to the Gene Ontology (GO) database (Carbon 

et al., 2020). All these categories were related to methyltransferase activity, suggesting 

an important role of DNA methylation in the adaptation of stickleback populations to 

water salinity conditions. 

 

 

Fig. 3. Diversity of chromatin accessibility in marine and freshwater sticklebacks. 

(A) Chromatin accessibility was profiled in gills of marine and freshwater sticklebacks 

using single-cell ATAC-seq method (sсATAC-seq). (B) UMAP plot of 1,757 cells 

colored by cluster identity. (C) Expression level of HBE1 gene marker of erythrocytes 

in cells. (D) The ratio of chromatin accessibility variance among marine stickleback 
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cells to the chromatin accessibility variance among freshwater stickleback cells, 

calculated for each peak for the unified set (in log scale). The dashed line represents the 

median of ratios. (E) Functional enrichment analysis of genes located next to saline-

specific highly variable peaks (calculated using two metrics, see Methods), performed 

according to the Gene Ontology (GO) database (Carbon et al., 2020). 

 

DNA methylation entropy 

To explore the diversity of DNA methylation in stickleback populations, we analyzed 

24 freshwater and 22 marine sticklebacks, among which there were 19 males and 27 

females, and calculated the methylation entropy in windows of five consecutive CpGs 

across the genome (see Methods). Within each window, we counted the number of 

possible epiallele states, normalized it for the read coverage, and defined the 

methylation entropy as a function of the frequency of each epiallele per window. 

Principle component analysis of entropy variation revealed separation of samples by 

the environment (PC1) and sex (PC2) (Fig. 4A-B). At the genome-wide level, mean 

entropy among both males and females was higher in marine fish compared to 

freshwaters (Fig. 4C). 
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Fig. 4. DNA methylation entropy. (A) PCA plot based on entropy variation among all 

analyzed samples. Each circle represents a sample. Circle colors represent 

environments and sexes. (B) PC1 separates samples by the environment (U test, p-value 

< 0.0001). PC2 separates samples by sex (U test, p-value < 0.01). (C) F-test shows 

differences in entropy between saline (SL) and freshwater (FW) populations at the 

genome-wide level (p-value < 0.0001). (D) The ratio between the windows of increased 

methylation entropy in freshwater (F-WIMEs) to the sum of freshwater (F-WIMEs) and 

saline (S-WIMEs) fish as a function of the U test p-value. (E) Entropy in the bodies of 

HVG was divided by the entropy of control genes. The resulting values were used to 

construct the distributions for two classes of HVG bodies. (F) Correlations between 
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chromatin accessibility and averaged methylation entropy values Circles represent 

ATAC-seq peaks. (G) Correlation between the chromatin accessibility fold change 

(saline/freshwater) and the fold change of averaged methylation entropy values. Only 

50 ATAC-seq peaks selected by sPLS-DA procedure (see Methods and Suppl. Fig. 35-

38) are shown. 

 

In our scRNA-seq and scATAC-seq experiments, four (two marine and two 

freshwater) fish were males. Thus, we used only males in our DNA methylation 

analysis to enable comparisons with no sex bias. By performing the U-test among 

males, we obtained 16,361 and 12,057 five-CpG windows (p-value < 0.001) that 

increased and decreased the methylation entropy in the freshwater population compared 

to the marine. The ratio of differential windows demonstrated a strong dependence: the 

higher the significance, the greater the shift towards freshwater (Fig 4D).  

Next, we studied entropy distribution among the HVG and calculated the level 

of methylation entropy for all genes with altered transcriptional variance. Two types of 

X-axis scaling were used - in nucleotides and in relative units showing the percentage 

of gene length (0% near TSS and 100% at the gene end). Consistent with previous 

findings, the overall shape of the distribution displayed a significant drop in methylation 

entropy around TSS (Suppl. Fig. 32). Additionally, we observed a slight increase in the 

entropy for marine fish at a distance of around 5 Kb from the TSS and further explored 

it at the scaling of 60kb (Suppl. Fig. 33,34). Moreover, for both marine HVG and 

freshwater HVG, we observed an increase within gene bodies in marine fish. Higher 

overall entropy in marines (Fig. 4C) raises the possibility that the observed effect for 

gene bodies is not specific for HVG. Normalization by the remaining expressed genes 

showed a statistically significant increase of methylation entropy in gene bodies of 
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HVG: in marine HVG, the entropy was higher in marines, while in freshwater HVG, 

the entropy was higher in freshwaters (Fig. 4E). Therefore, higher entropy of DNA 

methylation in gene bodies produces variation in gene transcription.  

Further, we studied the dependencies between the methylation entropy and 

chromatin accessibility. First, we calculated Pearson correlation coefficients between 

the absolute values of entropy and pseudobulk ATAC-seq signal values for freshwater 

and marine fish separately, and observed strong and significant negative correlations in 

both cases (Pearson’s R = -0.38, p < 10-10 and Pearson’s R = -0.43, p < 10-10 for 

freshwater and marine fish, respectively; Fig. 4F). Next, we considered fold changes 

between marine and freshwater populations instead of absolute values of methylation 

entropy and ATAC-seq signal and observed a strong and significant negative 

correlation for a subset of ATAC-seq peaks, which allows the best classification of our 

samples into two classes, freshwater and marine, according to the sPLS-DA procedure 

(see Methods; Fig. 4G; Suppl. Fig. 35-38; Pearson’s R = -0.37, p = 0.048). 

 

Freshwater fish show elevated DNA methylation entropy in DIs and DI-like 

regions 

We next studied how sequence divergence is correlated with methylation entropy. 

Many studies have reported that the marine stickleback genome has hundreds of low 

frequency standing adaptive haplotypes that all sweep to fixation upon freshwater 

colonization (Terekhanova et al., 2019; Roberts Kingman et al. 2021). These haplotypes 

are old, and in general are marked by substantial sequence divergence between marine 

and fw haplotypes.  

Genetics traces the difference between freshwater and marine populations. 

According to previous studies, the whole-genome fixation index (Fst) for the 
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populations is significantly lower than Fst in divergency islands (Terekhanova et al., 

2019). These results suggest that the main genetic variation explained by the 

environment is concentrated within marker SNPs of the DIs. To check whether DNA 

methylation entropy is also different in DIs, we analyzed DIs and +/- 50 kb flanking 

genomic regions. All 19 DIs produced significantly higher DNA methylation entropy 

within the DIs (Fig. 5A).  

We next estimated the abundance of five-CpG windows with increased entropy 

in freshwaters within the DIs as a function of U test significance and calculated a 

proportion of the windows in DIs among all windows (Fig. 5B). 45% of the windows 

with increased entropy in freshwaters concentrated in DIs (U test p-value = 0.0001).  

 

Thus, some DIs that are divergent in sequence are characterized with differential 

entropy level but are not differentially methylated. Vice versa, 50% of all difference in 

entropy is concentrated within DIs. These results suggest some uncoupling between the 

genome and epigenome. 

 

To dissect the genetic effect on the F-WIMEs (Windows with Increased 

Methylation Entropy in Freshwaters), all marker SNPs in DIs were tested for 

coincidence with CpGs. While transversions were filtered out by the pipeline (see 

Methods), transitions could create a potential source for the entropy bias. Indeed, for a 

CpG in freshwaters that matched a TpG in marines, the entropy within the window 

containing the CpG was obligatory increased in freshwaters. 100% of marine reads 

were classified as unmethylated (less chaos), while freshwaters had a chance to produce 

both methylated and unmethylated reads (more chaos). Accordingly, we detected 3.2% 

of CpG being affected by C->T and G->A transitions (in absolute numbers, С(f)->T(s) 
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= 862 and G(f)->A(s) = 117; Fig. 5C). Moreover, some transitions, although with two-

fold lower rates, occurred in a way that could potentially increase the entropy in marine 

sticklebacks (T(f)->C(s) = 480 and A(f)->G(s)=121).  

In addition to 19 presented DIs, we examined how the methylation entropy is 

distributed in other known stickleback loci that drive the adaptation process. For 

example, the (Roberts Kingman et al. 2021) paper presents a newly defined set of 

EcoPeaks (haplotypes seen to convergently evolve in freshwater conditions) and 

TempoPeaks (haplotypes that evolve in contemporarily evolving ponds). While we 

observed a small decrease in entropy in freshwater environments genome-wide, 

specific Eco and TempoPeaks demonstrated a similar behavior of entropy to DIs 

(Suppl. Fig. 39, 40). This effect was most noticeable in global specific EcoPeaks (Fig. 

5D). In sensitive Eco and TempoPeaks, the direction of entropy change coincided with 

the genome-wide picture (Suppl. Fig. 41-43).  

In addition, we studied the inversions on chromosomes 1, 11, and 21, which 

were involved in the adaptation process (Jones et al. 2012). Since there was a rather 

large intersection between these inversions and DIs (Jaccard index = 0.77), we expected 

that the entropy in the inverted regions would be significantly higher in freshwater fish 

(Fig. 5E-F). 

Overall, our data suggest that DIs represent a significant fraction of the fish 

genome with characteristically increased methylation entropy in freshwater fish. This 

difference cannot be explained solely by genetic variability and, thus, it represents a 

unique epigenetic feature of the sticklebacks adaptation. 

 

 

Enrichment in motifs within DIs 
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Genetic variability cannot fully explain WIME’s in DIs. However, it may create 

multiple motifs for the binding of key transcription or chromatin factors that, in turn, 

through interactions with de novo methyltransferases, cause an increase in the 

methylation entropy. Thus, we analyzed ATAC-seq peaks within DIs to focus on 

potential regulatory elements concentrated in open chromatin regions. Short 11-bp 

sequences (marker SNPs inside ATAC-seq peaks +/- 5 flanking nucleotides) were 

considered as potential binding sites for methylation modifying factors. A total of 3,089 

such sequences were subjected to the enrichment analysis of known motifs and de novo 

motifs using HOMER software (Heinz et al., 2010). Interestingly, we found the CTCF 

binding site (CTCF-bs) at the top of the list containing the most presented motifs. 

Notably, CTCF-bs enrichment within DIs was three-fold higher compared to the 

background sequences (Suppl. Table 9). Although HOMER operates with motifs 

defined mainly for humans and mice by default, we can be confident in the detected 

enrichment of CTCF-bs in the stickleback genome due to the conservative nature of the 

CTCF-bs sequence (Kadota et al., 2017), as well as very dramatic and significant three-

fold enrichment. 
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Fig. 5. Freshwater fish show elevated DNA methylation entropy in DIs and DI-like 

regions. (A) DNA methylation entropy of freshwater (red) and saline fish (blue) within 

19 DIs and 50-kb flanking regions. The scaling of each DI is different and adjusted to 

the flanking regions to contain 50 kb. DIs are highlighted by blue boxes. Coordinates 

correspond to the Stickleback Feb. 2006 (Broad/gasAcu1) genome assembly. (B) The 

relative amount of F-WIMEs located in DIs. (C) The number of transitions C->T and 
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G->A occurring within CpG dinucleotides in DIs given as a function of the U test p-

value. (D) DNA methylation entropy in the global specific EcoPeaks shows the 

opposite trend compared to random regions. (E) DNA methylation entropy of 

freshwater (red) and saline (blue) fish within breakpoints of the inversions, flanking 

inverted repeats (highlighted in green), and 100-kb flanking regions. Flanks included 

in the chromosomal inversions are highlighted in blue. (F) Boxplot representation of 

the methylation entropy distribution for the same inversions as in panel E. 

 

DISCUSSION 

Three-spined sticklebacks have been in the focus of evolutionary biologists since the 

late 1960s (Hagen, 1967). Small, easily accessible polymorphic fish were available for 

scientists in America, Europe, and Asia. Stickleback became popular as a model to 

study different aspects of adaptation: the role of a diet in explanation of a difference 

between benthic and limnetic morphs (Day et al., 1994); body shape changes between 

stream and lake fish (Hendry et al., 2002); marine and freshwater populations 

(Terekhanova et al., 2014; Jones et al., 2012). In all these cases, genetics was an obvious 

field of science that formed a basis for measurable characteristics to describe morphs. 

However, diet, water flow, and water salinity have an obvious environmental 

constituent that affects not only the natural choice of best genotypes but also forms 

favorable epigenetic landscapes that facilitate the survival, growth, and reproduction of 

fish in particular surrounding circumstances. Because of the incomparable time that is 

needed to establish fitted features, epigenetics is preferable to genetics to adopt fast 

changes. However, epigenetic landscapes such as DNA methylation cooperate with 

genotypes: upon activation of adaptive gene reprogramming, some genotypes may be 

more or less favorable to gene functioning, and vice versa, epigenetic changes may 
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compensate for unfavorable genotypes. Moreover, epigenetics produces an additional 

level of within-population diversity, resulting in more adaptive power of a species. 

Accordingly, we focused on the dispersion of the magnitude of gene transcription, 

chromatin accessibility, and DNA methylation in this work. Apart from genetic 

diversity, dispersion is an additional characteristic of the population which may point 

to its ability to adopt changes on the level of gene functioning or reflect the variability 

of the environment. In the round goby fish, maternal RNA expression levels correlated 

with the water temperature experienced by the mother before oviposition and identified 

temperature-responsive gene groups such as core nucleosome components or the 

microtubule cytoskeleton (Adrian-Kalchhauser et al., 2018). The more variation in 

temperature, like in wild nature, the more dispersion in RNA level. Presumably, one 

might detect very low RNA dispersion in cultured fish compared to those in wild 

nature.   

Previously, we have shown that CpG-rich regions of freshwater sticklebacks 

maintain higher levels of DNA methylation dispersion among individual fish compared 

to marines. Here, we tested its possible consequences on transcription and chromatin. 

We did not find dramatic changes in the dispersion of gene transcription between two 

morphs in the scRNA-seq experiment. Single-cell transcriptomics quantitatively 

detects RNAs from highly expressed genes; thus, variations in expressions of lowly 

represented genes might be obscured by low coverage sequencing of thousands of 

individual cells. However, HVG were still detected, and GO analysis has pointed to 

chromatin factors as most dispersed in their transcriptional level. Indeed, we have 

detected higher variability in the number and coverage of open chromatin sites in 

seawater sticklebacks. However, these sites were located in genes with low 

transcription that were undetectable by scRNA-seq. Thus, we can not conclude that 
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higher variations in open chromatin sites cause a higher transcriptional variance. 

However, GO analysis of ATAC-seq HVG led us to the hypothesis that marine 

sticklebacks may have higher variance in the level of enzymes that maintain DNA 

methylation homeostasis. Bisulfite sequencing has confirmed an increase in DNA 

methylation entropy at the whole-genome level in marine fish. In males, the entropy 

difference was more profound than in females. Since all fish were almost the same age, 

a possible explanation for the observed sex-dependent entropy difference may be the 

action of female-specific hormones, which somehow modulate actors of the 

methylation pathway. 

The genetic difference between marine and freshwater sticklebacks is mainly 

concentrated in DIs (mDIs and fDIs, correspondingly) with much lower Fst across the 

rest of the genome (Terekhanova et al., 2019) (Fig. 6A,B). Since the sticklebacks are 

originally seawater animals, each SNP within DIs has a relatively sharp Linkage 

Disequilibrium (LD) peak in marine sticklebacks (Fig. 6A): the fish live in elevated salt 

conditions for millions of years. The genome of freshwater fish results from the 

selection of particular haplotypes that eventually form DIs with relatively linked SNPs, 

which leads to a broad peak of LD within DIs in freshwater fish. Most of the genetic 

diversity in a given fDI comes from the diversity of haplotypes but not particular SNPs. 

Elevated entropy of DNA methylation in fDIs (Fig. 6B,C) may create a new interface 

for transcription factors - some of them are stripped from methylated DNA, but the 

others may bind to their consensus sites that contain m5C and resemble T (Fig. 6D). 

Thus, increased variability in DNA methylation may compensate for the decrease in the 

genetic variability of fDIs in the sense of the diversity of bound transcription factors. 

Indeed, results of scATAC-seq experiments show no significant changes in the number 

and coverage of open chromatin regions within DIs, suggesting that chromatin structure 
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is upon adaptation (Fig. 6E). It is known that the borders between ordered and 

disordered DNA methylation coincide with borders between TADs (Jenkinson et al., 

2017). It is well known that the latter are enriched in bound CTCF (Dixon et al., 2012; 

Nora et al., 2012). Here, we observe that СTCF motifs are enriched around marker 

SNPs of the DIs. Adaptation results in a shift of frequencies of the marker SNPs and 

may change the frequency of appearance of the CTCF binding domain, which in turn 

may affect TAD boundary organization. Further studies are needed to reveal the role of 

CTCF and TAD structure in the adaptation of sticklebacks. In general, more and more 

data shows that modulation of chromatin structure is an important player in evolution. 

Our observation may be the first example where chromatin acts in the generation of 

morphs at a relatively short time interval (around 800 years). From a more locus-

specific perspective, multiple lines of evidence, from biochemistry to comparative 

genomics, indicate that chromatin influences the local mutation rate (Chen et al., 2012; 

Prendergast & Semple, 2011; Tolstorukov et al., 2011; Warnecke et al., 2008).  

Linking phenotypes to the DIs is problematic in sticklebacks. Clearly, 

freshwater adaptation occurs via a genome-wide program of haplotype replacement. 

But we do not understand what phenotypes nearly all of these haplotypes affect. The 

present study adds a much-needed epigenetic dimension to stickleback adaptation. 

However, one should be much careful about conclusions that confound correlation with 

causation. Do these regions "enable adaptation" or instead correlate with adaptation? 

Did these mutations increase in frequency "to allow more flexibility in functional 

states"? It remains unclear because separating the flexibility in functional states from 

changes in gene expression seems impossible. The finding that genetic divergence 

within DIs happens in part due to nucleotide substitutions within CTCF binding sites 
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provides us with a hope that future studies may link genetic and epigenetic flexibility 

with functional gene biology of adaptation. 

 
 

 

 

Fig. 6. Schematic representation of major genetic and epigenetic changes in DIs. 

(A) A DI  for marine (mDI, left) and freshwater (mDI, right) fish. SNPs are marked by 

colored circles if they reside within CpGs, by squares - outside CpGs. Violet G and 

blue T are marker SNPs. Green T is a passenger SNP. Linkage Disequilibrium (LD) 

plots are schematically shown for each SNP. Yellow and brown As are outside the DI. 

(B) Schematic plots for Fst values across the DI (gray) and methylation entropy in 

marine (blue) and freshwater (red) fish. (C) Methylated (black circles) and non-

methylated (white circles) CpG dinucleotides are shown for five arbitrary epialleles. 

Note that blue T in mDI decreases methylation entropy. (D) Variety of transcription 

factors that can bind the DI. Stars and pentagons designate 5mC-dependent and 

independent factors, correspondingly. The higher variation in DNA methylation, the 
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more 5mC-dependent factors may bind different epialleles. (E) ATAC-seq peaks of the 

DI as revealed by single-cell sequencing.  

 

 

METHODS 

Samples 

Fish were collected in the Mashinnoe Lake (freshwater morph, 66o17.749N, 

33o21.829E, estimated age 700 years) and from marine shore at White Sea Biological 

Station (marine morph, 66o57.040N, 33o10.400E). Gills were cut with sterile scissors. 

Gills were thoroughly washed with chilled 1 × PBS and transferred to a Petri dish. The 

tissue was cut into small pieces with sterile scissors and washed twice with chilled 1 × 

PBS. The pellet was trypsinized with 200 μl TrypLE ™ Express Enzyme (Gibco, USA) 

for 2 minutes. One ml of fetal bovine serum (FBS; Hyclone, USA) was added to the 

cell suspension to inhibit trypsin activity. The cells were harvested by filtering the cell 

suspension through a filter (80 microns). The filtrate was centrifuged at 2000 rpm for 5 

minutes. 

 

Isolation of nuclei 

Nuclei were isolated according to the 10x Genomics protocol for “Nuclei Isolation for 

Single Cell Multiome ATAC + Gene Expression Sequencing'' available at 

https://www.10xgenomics.com/. The cells were washed 2 times with 1 × PBS + 0.04% 

BSA, and the number of cells was determined. Nuclei were isolated from 100,000-

1,000,000 cells. Added 100,000-1,000,000 cells to a 2 ml microcentrifuge tube. It was 

centrifuged at 300 rpm for 5 min at 4 ° C. All supernatant was removed without 

destroying the cell sediment. Then we added 100 μl of chilled lysis buffer (10 mM Tris-
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HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 0.1% Nonidet P40 

Substitute (if using Sigma (74385) 100% solution, prepare a 10% stock), 0.01% 

Digitonin (incubate at 65°C to dissolve precipitate before use), 1% BSA, 1 mM DTT, 

1 U/µl RNase inhibitor, Nuclease-free water), and incubated for 3-5 minutes on ice. We 

next evaluated the efficiency of lysis using an automatic cell counter and added 1 ml of 

chilled wash buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 1% BSA, 

0.1% Tween-20, 1 mM DTT, 1 U/µl RNase inhibitor, Nuclease-free water) to the lysed 

cells. It was centrifuged at 500 rpm for 5 min at 4 ° C. The supernatant was removed 

without disturbing the pellet of the nuclei. Based on cell concentration and assuming ~ 

50% of nuclei lost during cell lysis, we resuspended in a chilled diluted nuclei buffer 

(1XNuclei Buffer (20X), 1mM DTT, 1 U/µl RNase inhibitor, Nuclease-free water). See 

Suppl. Table 8. All work procedures were performed on ice. We determined the 

concentration of nuclei using an automatic cell counter, and then immediately switched 

to Chromium Single Cell ATAC Reagent. 

 

Single-cell RNA sequencing (scRNA-seq) 

Single-cell experiments were performed using a 10x Chromium single cell 3’ v2 

reagent kit by precisely following the manufacturer’s detailed protocol to construct 10x 

Genomics single-cell 3’ libraries. Single-cell libraries were run using paired-end 

sequencing on the HiSeq1500 platform (Illumina) according to the manufacturer’s 

instructions. 

 

Single-cell ATAC sequencing (scATAC-seq) 

Single-nuclei experiments were performed using a 10x Chromium Single Cell ATAC 

Library & Gel Bead Kit by precisely following the manufacturer’s detailed protocol to 
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construct a 10x Single Cell ATAC Library. Single-nuclei libraries were run using 

paired-end sequencing on the HiSeq1500 platform (Illumina) according to the 

Chromium Single Cell ATAC Reagent Kits User Guide. 

  

scRNA-seq data processing 

A total of 1,133,906,325 paired-end sequencing reads of scRNA-seq were processed 

using publicly available 10x Genomics software – Cell Ranger v3.1.0 [Zheng et al., 

2017] (Suppl. Table 1). The sparse expression matrix generated by the Cell Ranger 

analysis pipeline with the list of 21,474 cells was used as input to the Seurat software 

v3.1 [Stuart et al., 2019].  

 Seurat pipeline standard quality control steps were performed, and cells were 

filtered for nFeature_RNA > 100 and percent of mitochondrial genes < 2 (Suppl. Fig. 

1). Doublet detection was performed with Scrublet [Wolock et al., 2019]. The detected 

doublet rate was below 0.7% for all samples. 

To account for technical variation, we performed cross-species integration. At 

the first step, for marine and freshwater samples separately, we performed 

normalization using “LogNormalize” with the scale factor of 10,000 and identified 

2,000 variable features. Next, we performed cross-species integration by finding 

corresponding anchors in marine and freshwater samples using 30 dimensions. We then 

computed 50 principal components and tested their significance by JackStraw. We 

selected the first 20 principal components for subsequent UMAP and Seurat clustering 

analyses.  

To compare scRNA-seq with the bulk RNA-seq datasets, we calculated 

differential expression between marine and freshwater sticklebacks for scRNA-seq and 
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bulk datasets (Fig. 1B). Differentially expressed genes between freshwater and marine 

samples in scRNA-seq were identified with the Seurat FindMarkers function.  

All cells in the scRNA-seq dataset were clustered with the Seurat FindClusters 

function with resolution=0.1 and plotted using UMAP dimensionality reduction (Fig. 

1C). In addition, a UMAP plot with the same clustering parameters and coloring of cells 

by the sample was produced (Suppl. Fig. 2). 804 non-erythrocyte cluster cells were re-

clustered separately with resolution=0.3 (Fig. 1D). 

Marker genes were identified among clusters of 804 non-erythrocyte cluster 

cells with the Seurat FindAllMarkers function. FindAllMarkers was run 3 separate 

times with different parameters: (1. only.pos = TRUE, 2. only.pos = TRUE,  assay = 

"RNA", 3. only.pos = TRUE, test.use = "MAST", assay = "RNA") top 20 marker genes 

for each cluster from each run of the function were taken, aggregated, duplicates 

removed and plotted on a heatmap (Suppl. Fig. 4). Percentages of cells with any 

expression of a marker gene in a cluster were used for generating the heatmap. Colors 

in the heatmap were generated with the row-normalized percentages matrix. Four best 

markers were chosen from each cluster and plotted on a separate heatmap (Fig. 1F). 

The average expression of characteristic markers for clusters was plotted on the UMAP 

dimensionality reduction plot using the Nebulosa package (Alquicira-Hernandez & 

Powell, 2021) plot_density function (Fig. 1E). 

 Highly variable genes (HVG) for Venn diagrams and subsequent analyses (Fig. 

2B-D) were identified as the top 2,000 HVG produced by FindVariableFeatures 

function in the Seurat pipeline for each sample separately.  

 Functional enrichment analysis of 235 HVG specific to freshwater sticklebacks 

was performed with the clusterProfiler R package (Yu et al., 2012) using the Gene 

Ontology (GO) database (Ashburner et al., 2000, Carbon et al., 2020, Mi et al., 2018) 
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(Fig. 2C). As a background, a union of all HVG identified for each sample was used. 

The adjusted p-value cutoff was set to 0.1. Additionally, the same analysis was 

performed for saline-specific HVG (Suppl. Fig. 6) as well as functional enrichment 

analysis using the KEGG database (Kanehisa et al., 2020), both for freshwater- and 

saline-specific HVG (Suppl. Fig. 7, 8).  

 F-ratio was calculated per gene as a ratio of expression variance among marine 

stickleback cells (N=9,345) to the expression variance among freshwater stickleback 

cells (N=9,814). Genes for F-ratio calculation were chosen as a union between 2,000 

HVG identified per each sample (N=4,832). The resulting F-ratios were plotted as a 

histogram (Fig. 2D). Additionally, the same procedure was redone for all genes from 

all cells in the dataset (Suppl. Fig. 5). Functional enrichment analysis using the GO and 

KEGG databases was performed for 100 top and bottom genes ordered by their F-ratio 

(Suppl. Fig. 9, 10). GO enrichment produced no terms that passed the significance 

threshold. 

 

scATAC-seq data processing 

A total of 444,039,620 paired-end sequencing reads from 4 samples of scATAC-seq 

were processed using publicly available 10x Genomics software Cell Ranger ATAC 

v2.0 (Satpathy et al., 2019). (Suppl. Table 6) The sparse open chromatin peaks matrix 

generated by the Cell Ranger ATAC analysis pipeline with the list of 42,569 cells was 

used as input to the Signac software v1.2.1 (Stuart et al., 2020). Signac pipeline standard 

quality control and cell filtration steps were performed for each sample individually 

(Suppl. Fig. 14-17); parameters for filtration for each sample are presented in the table 

(Suppl. Table 7).  
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Next, peaks from all four samples were merged following the Signac default 

“merging objects” procedure. For this, a unified set of peaks for all samples was created 

using the GenomicRanges package reduce() approach, which merges the overlapping 

peaks to form a single one. The resulting count matrix over a unified set of peaks was 

used for further differential variance analysis. There was no integration of samples (as 

was the case for scRNA-seq data) since tools for integration and batch correction 

perform poorly for scATAC-seq, especially with low cell count in some samples (Baek 

& Lee, 2020). To calculate differences in variance in open chromatin peaks in cells 

from marine and freshwater samples, the F-test was used. F-test was applied to each 

peak - a row in the count matrix from the previous step. Variances in cells from marine 

compared to freshwater samples (“marine cells” compared to “freshwater cells”) were 

tested. The resulting ratios of variances (F-ratios) for each peak between marine or 

freshwater cells were plotted as a histogram (Fig. 3D). The same procedure was 

performed for erythrocyte cells only (Suppl. Fig. 27). 

F-ratio for divergence islands was calculated in the following way: the number 

of peaks with non-zero counts overlapping the DI was calculated for each DI for each 

cell to create a DIs/cells matrix. Saline and freshwater cells were downsampled to a 

random subset of 6,000 cells each to equalize the number of cells. Next, the F-ratio per 

DI was calculated as the ratio of variances between saline and freshwater cells in this 

matrix. Downsampling and F-ratio calculation were repeated 1,000 times. Mean F-

ratios per DI from the 1,000 bootstraps were presented as a box-plot (Suppl. Fig. 31). 

The same procedure was repeated for the erythrocyte cells alone (Suppl. Fig. 30).  

Functional enrichment analysis based on the Gene Ontology database (Yu et al., 

2012) was performed on the sets of top variable genes in cells from samples in each 

salinity condition. To estimate gene variance between cells from the peaks count 
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matrix, the following procedure was used. For each gene, two metrics were calculated: 

(1) the number of peaks with non-zero counts overlapping the gene and (2) mean counts 

in peaks overlapping the gene. Using these two metrics, two genes/cells matrices were 

calculated from the original peaks/cells count matrix. The same F-test procedure was 

performed for each of the genes/cells matrices, as for the peaks/cells one. The result 

was two lists of genes with corresponding F-ratio values. From these lists, two sets of 

genes with high variance in marine cells (F-ratio > 2) and two sets of genes with high 

variance in freshwater cells (F-ratio < 0.7) were calculated. Next, for each salinity 

condition, the two sets of HVG were intersected. That produced two sets of HVG, 254 

genes in marine and 254 in freshwater fish, which resulted from intersecting 

calculations based on the metrics (1) and (2) described above. These two sets of 

condition-specific HVG were converted to Danio rerio orthologs and provided as an 

input to the GO enrichment analysis using the clusterProfiler package with the adjusted 

p-value threshold of 0.1. The resulting top 30 GO terms for saline-specific (Fig. 3E) 

and freshwater-specific (Suppl. Fig. 26) HVG were selected. The same procedure was 

repeated for the erythrocyte cells alone (Suppl. Fig. 28, 29). 

Blood clusters were identified for each sample as clusters with the high 

estimated activity of genes: HBE1, cpox, snx3, and open chromatin peaks in the HBE1 

region. Gene activities were calculated from the pattern of open chromatin from 

scATAC-seq data using the GeneActivity() Signac function. Estimated gene activities 

were plotted as violin and average expression UMAP plots using Seurat Vln_plot() and 

Dim_plot() functions. HBE1 open chromatin peaks were plotted using 

Signac  CoveragePlot() function (region = "groupXI:13662623-13663375") (Suppl. 

Fig. 21-24). 
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Cells from the first marine sample were clustered into 10 distinct clusters. Gene 

activity was calculated from the pattern of open chromatin from scATAC-seq data 

using the GeneActivity() Signac function. Cells were annotated using labels of non-

erythrocyte cells from scRNA-seq analysis. Labels were assigned on a cell-by-cell basis 

using FindTransferAnchors() Signac function. The first marine sample without 

erythrocyte clusters was used for direct label transfer (Suppl. Fig. 25). Next, clusters 

based on ATAC-seq data were annotated with consistent labels and refined using cell 

markers, the same as for scRNA-seq. The resulting labels were plotted with UMAP 

dimensionality reduction (Fig. 3B). 

 

Bisulfite conversion and whole-genome bisulfite sequencing  

1 mkg of Stickleback genomic DNA was mixed with 10 ng lambda phage DNA and 

sheared with ultrasound to the average size of 300 bp. End-repair, dA tailing, and 

methylated adaptor ligation were performed with NebNext DNA UltraII kit (NEB). 

After adaptor ligation, libraries were bisulfite converted with EZ DNA Methylation 

Kits (ZYMO RESEARCH) according to the manufacturer’s protocol. After conversion, 

final libraries were amplified with NEBNext Q5U® Master Mix (NEB) and sequenced 

with Illumina HiSeq1500. 

 

WGBS data processing 

Paired-end reads were processed with Trim Galore ver. 0.5.0 (Krueger et al., 2021) to 

remove adapter sequences and trim bases with low quality scores (<20). Validated reads 

were aligned to Broad/gasAcu1 genome assembly with Bismark software (Krueger & 

Andrews, 2011). Most of the CpGs were covered by at least 10 reads in all samples. 

Bisulfite conversion efficiency (> 99%) was assessed using both lambda phage and 
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methylation of non-CpG context. Aligned reads were randomly downsampled to 

achieve an uniform number across all samples (42mln).  

The methylation entropy for five-CpG bins was calculated using an approach 

implemented in the MethPipe pipeline (Song et al., 2013). For each sliding window, 

the frequencies of methylation patterns were calculated, then the products were 

summed up according to the formula: 

1

𝑏
∑ (−𝑁𝑖 ∗ 𝑙𝑜𝑔2𝑁𝑖), 

where b is the number of CpG sites and Ni is the frequency of methylation pattern i. 

To select five-CpG bins that have different entropy, we performed the U-test 

followed by the Benjamini-Hochberg procedure. We used an average value across all 

samples belonging to the same group to plot entropy distributions (near TSS, in gene 

bodies, etc.).  

To verify the robustness of our method for assessing epigenetic heterogeneity 

at different levels of coverage, we merged all reads by sample groups (Freshwater-

Males, Saline-Males, Freshwater-Females, Saline-Females), performed downsampling, 

and calculated methylation entropy in the way described above. 

Data for constructing correlations were obtained in two ways. In the first case, 

we took a random sample of 1000 peaks and averaged the entropy values for the 

selected peaks. In the second case, we did similar steps, but instead of absolute values, 

we averaged the log2FCs between freshwater and marine fish. 

We used splsda() function of mixOmics package (Rohart et al., 2017) for feature 

selection purpose. We also determined the optimal peaks number using the function 

tune.splsda() with 5-fold cross-validation and 50 repeats.We used CrossMap software 

(Zhao et al., 2014) to liftover coordinates between gasAcu1-4 and gasAcu1 assemblies. 
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DATA AND CODE AVAILABILITY 

The R code performing the main steps of data analysis described in this paper is freely 

available at GitHub: https://github.com/artgolden/stickleback_paper. The raw 

sequencing reads are deposited at SRA under the BioProject PRJNA765182. 
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