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Abstract 

Attention reorienting is a critical cognitive function which drives how we respond to 
novel and unexpected stimuli. In recent years, arousal has been linked to attention 
reorienting. The timing and spatial organization of the interactions between the arousal 
and reorienting systems, however, remain only partially revealed. Here, we investigate 
the dynamics between the two systems through simultaneous recordings of 
pupillometry, EEG, and fMRI of healthy human subjects while they performed an 
auditory target detection task. We used pupil diameter and activity in the noradrenergic 
locus coeruleus to infer arousal, and found these measures linked to distinct cortical 
activity at various temporal stages of the reorienting response. Specifically, our results 
provide the first demonstration in humans of how phasic pupil-linked arousal relates to 
the reduction of response inhibition, an inference which otherwise would remain hidden 
without the help of simultaneous multi-modal acquisitions.  
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Introduction 

Attention reorienting is one of the most fundamental and critical cognitive functions for 
both animals and humans. The ability to redirect attention to certain novel and 
unexpected stimuli enables us to adapt to and interact with the environment in a highly 
efficient manner 1-3. Successful reorienting allows us to timely avoid danger and reap 
rewards, whereas impaired reorienting can impede a spectrum of daily activities (for 
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instance in populations with autism or depression 4-7). Previous work indicates that 
arousal modulates the reorienting response through a coordinated action of both cortical 
and subcortical systems 1,8,9. The exact spatiotemporal dynamics of such modulation, 
however, remains less clear. This work describes a multi-modal approach which enables 
comprehensive examination and interpretation of dynamics between the arousal and 
reorienting systems. Techniques and inferences developed from this study can therefore 
yield insights for both nonclinical and clinical research.  

One of the major challenges in investigating the dynamics between arousal and 
attention reorienting originates from the complex physiological basis of arousal. As an 
index for the level of wakefulness, arousal is regulated by a number of subcortical 
brainstem structures 8,9. Fluctuations in cortical arousal are thus enabled via the 
widespread release of neurotransmitters (such as acetylcholine and norepinephrine) 
from the brainstem to the cortex  8-12. In in-vivo animal studies, dynamics of arousal can 
be monitored with high fidelity via direct recordings at brainstem nuclei such as the 
noradrenergic locus coeruleus (LC) and cholinergic basal forebrain (BF) 8,11,13. In 
noninvasive human studies, however, acquiring high quality recordings from brainstem 
structures is particularly challenging. This is mainly due to the difficulties in acquisition, 
and potential contaminations on acquired signal from physiological noise 14-17. This 
problem has in part precluded direct investigation of arousal in human studies, and 
motivated researchers to look for indirect yet robust markers indicative of internal 
arousal state.  

Pupil diameter under constant luminance emerged as one of the widely used markers to 
index arousal 8,18-21. In recent human studies where high quality recordings from 
brainstem structures were successfully acquired, a tight link has also been observed 
between changes in pupil diameter and responses in brainstem nuclei such as the LC 
and BF 12,22. Along with previous evidence from animal studies reporting synchrony 
between pupil diameter and the activity of neuromodulatory nuclei 8,13,23, these findings 
demonstrate the reliability of pupil as a proxy for the internal arousal state. 

Many groups have capitalized on the convenience of pupillometry and used it 
concurrently with scalp electroencephalography (EEG) or functional magnetic 
resonance imaging (fMRI) to infer the relationship between pupil-linked arousal and 
attention relevant neural processes 12,18,22,24,25. Simultaneous pupil-fMRI studies have 
identified spatial correlates of pupil-linked arousal such as the frontal eye field, anterior 
cingulate cortex, and visual cortex 22,26,27. Meanwhile, simultaneous pupil-EEG studies 
report that tonic pupil-linked arousal correlates with P3, an event related potential (ERP) 
indicative of attention reorienting towards less frequent target stimuli 18,24,25.  
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While recent work has furthered our understanding of the dynamic interactions between 
the arousal and reorienting systems, measures used in previous studies limit the 
inferences that can be drawn. For instance, in pupil-fMRI studies 12,22, both pupil 
diameter and blood oxygenation level dependent (BOLD) signal fluctuates on 
timescales of seconds. It is therefore difficult for these measures to capture millisecond-
level reorienting relevant processes, and to pinpoint the exact timing when interactions 
between the arousal and reorienting systems take place. Meanwhile, in pupil-EEG 
studies 18,24,25, a large number of analyses investigate the dynamics between systems 
by correlating amplitudes of ERPs to pupil diameter. ERP amplitudes are generally 
computed by averaging the maximal deviation of evoked responses across trials (e.g., 
amplitudes of the P3 component are generally extracted from 250 to 500 ms after 
stimulus onset). While ensuring the signal-to-noise ratio of EEG, this approach dilutes 
the millisecond resolution of EEG. It also masks trial-by-trial variability, which may be 
important for investigating dynamics that are independent of the stimulus. Moreover, in 
pupil-EEG studies where temporal specificity and trial-by-trial variability of EEG are 
indeed preserved, the suboptimal spatial resolution of EEG makes it difficult to identify 
precise locations of interactions. 

To address these limitations, we used a simultaneous acquisition to capture 
physiological and neural activity at both high temporal and spatial resolutions. 
Specifically, we simultaneously measured pupillometry, EEG, and fMRI of healthy 
human subjects while they performed an auditory oddball task inside the MR scanner. 
The auditory oddball paradigm was used to minimize ocular confounds and facilitate 
fluctuations of internal arousal. We operationalized arousal in terms of pupil diameter 
and functional BOLD activity of the LC, and investigated relationships between arousal 
and reorienting relevant systems. First, we used temporally specific EEG measures to 
inform fMRI analysis. This allowed us to identify spatial correlates of reorienting relevant 
cortical activity with millisecond resolution. Second, we defined results from the EEG-
fMRI analysis as cortical regions of interest (ROI), and examined relationships between 
ROI-extracted BOLD signal and both baseline pupil diameter (BPD) and task-evoked 
pupil response (TPR). With the baseline and evoked pupillary measures indicative of 
tonic (i.e., slow and spontaneous) and phasic (i.e., fast and task-evoked) arousal 
respectively, this analysis assessed the time and prevalence of relationships between 
pupil-linked arousal and reorienting relevant cortical activity with high spatiotemporal 
precision. Next, we evaluated the relationship between LC-linked arousal and 
reorienting with an analysis analogous to the EEG-informed fMRI analysis. Specifically, 
in this analysis, temporally specific EEG measures were correlated to task-evoked LC 
responses (whereas in the EEG-informed fMRI analysis, the EEG measures were 
correlated to BOLD responses in the cortex). Lastly, we evaluated the extent to which 
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pupil reflects LC activity by quantifying task-evoked LC response with pupillary 
measures.  

In summary, we first used ROIs resulted from the EEG-fMRI analysis to parse the timing 
of cortical activity and lay out the cortical dynamics. We then correlated activity at these 
ROIs to pupillary measures and LC responses to link the cortical dynamics to arousal. 
With this approach, we found that phasic and tonic pupil-linked arousal interact with the 
reorienting response in a coordinated fashion. Specifically, our findings revealed that 
ROI-extracted BOLD signal at 225 ms and 275 ms poststimulus were linked to TPR, 
whilst ROI-extracted BOLD signal at 275 ms and 425 ms poststimulus were linked to 
BPD. On the other hand, LC activity was not linked to cortical activity located at those 
exact windows, but at windows in close temporal vicinity (i.e., at 250 and 300 ms). 
Meanwhile, we found LC activity to be correlated with BPD, confirming the tight link 
between pupil, LC and cortical arousal. Taken together, these findings enabled 
inferences on the potential role of phasic pupil-linked arousal in reducing response 
inhibition, and on the role of tonic pupil-linked arousal in favoring exploration over 
exploitation. It also allowed us to tease apart the common and unique cortical activity 
captured by both pupil- and LC-linked arousal, and to provide one of the first lines of 
evidence on inferring the specific roles played by task-evoked and spontaneous pupil-
linked arousal in modulating cortical activity at different temporal stages of attention 
reorienting. 

Results 

We collected simultaneous pupillometry, EEG, and fMRI data from 19 participants while 
they performed an auditory oddball task inside the MR scanner (Fig. 1a and 1b). 
Subjects were instructed to respond with a right hand button press once they heard the 
target (oddball) sound, and to maintain a stable fixation to a crosshair on the screen 
throughout the experiment. Overall, subjects completed the task with high accuracy 
(99.4% ± 0.1%), and responded to the target stimuli with an average response time (RT) 
of 414.7 ± 69 ms. 

Single modality results were consistent with previous findings 

Despite the technical challenges in data acquisition and the high-amplitude artifacts 
introduced to EEG by the MR scanner, trial-averaged ERPs showed typical patterns as 
observed in previous studies 19,28-31. The typical sequence of ERPs elicited by an 
auditory oddball paradigm were all present: N1, P2, N2, and P3, as shown at three 
midline sites (Fz, Cz, and Pz) in Fig. S1.  
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Similarly, consistent with previous findings 18,19, evoked changes in pupil diameter did 
not take place until a few hundred milliseconds into the trial (Fig. 1d). Meanwhile, 
traditional fMRI analysis revealed a distributed network of areas showing stronger 
BOLD responses for target versus standard stimuli (Fig. 1e). Activations in cortical 
regions involved in sensory processing (Heschl’s gyrus), decision making (prefrontal 
gyrus, cingulate cortex) and motor response (precentral gyrus) were all present (Fig. 
S2), as reported in previous studies 32,33. Interestingly, a subset of brainstem structures 
also showed greater BOLD for target versus standard stimuli (Fig. 1f). This observation 
supports recent findings on the role of subcortical neuromodulatory systems in attention 
modulation and reorienting 12,13,34. 
 

Figure 1. Simultaneous acquisition of pupillometry, EEG, and fMRI with an 
auditory oddball paradigm. (a) Experimental design. Subjects were instructed to 
maintain fixation to a fixation target on the screen, and press a button once they heard 
the oddball (target) sound (20% of occurrence rate). Each trial was composed of a 200 
ms stimulus presentation, and a 1800 to 2800 ms period for subjects to respond. (b) 
Acquisition environment. Multi-modal data were acquired concurrently inside the 
scanner. (c) Time course of trial-averaged ERP at Pz. Stimulus onset is at time 0, with 
dark gray line at the bottom indicating significant difference (P < 0.001) between ERPs 
of different stimulus types. (d) Time course of trial-averaged z-scored pupillary 
response. (e) Traditional fMRI analysis results showing greater BOLD response to 
target than standard stimuli in the cortical and (f) brainstem regions. X, Y, Z are 
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Montreal Neurological Institute (MNI) coordinates. BS, brainstem. All panels: group 
average (N = 19); shading, s.e.m.; statistics, one-sample t-test (panels c and d) or 
Gaussian random field theory (panels e and f). 
 

Figure S1. Related to Figure 1. Trial-averaged evoked potentials at Fz (a), Cz (b), and 
Pz (c) from top to bottom. Stimulus onset is at time 0, with dark gray line at the bottom 
indicating significant difference (P < 0.001) between ERPs of different stimulus types. All 
panels: group average (N = 19); shading, s.e.m.; statistics, one-sample t-test. 
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Figure S2. Related to Figure 1. Traditional fMRI analysis results for the oddball (target) 
> standard contrast (i.e., activation maps showing greater BOLD response to oddball 
than standard stimuli). All results were multiple comparisons corrected with z > 3.1 and 
P < 0.05. 
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EEG-informed fMRI analysis revealed cascade of cortical activity linked to single 
trial variability in the reorienting response 

To identify temporally specific neuronal components associated with different task 
conditions, we performed a single-trial analysis on the EEG signal 35. Specifically, for 
each subject, we trained a classifier to discriminate evoked responses of targets from 
standards at a number of poststimulus windows within the time span of the trial. At each 
predefined temporal window, the classifier estimated a set of spatial weights that 
achieves maximal discrimination between target versus standard conditions. These 
weights were then applied to single-trial EEG data to capture trial-by-trial amplitudes of 
EEG discriminating components (Fig. S3). Performance of the classifier was estimated 
with a receiver operating characteristic curve (ROC) using a leave-one-out cross 
validation procedure 35,36, and was significant from 125 to 950 ms poststimulus (Fig. 
S4). 

Using this method, single-trial variability (STV) of temporally specific EEG components 
captured distinct neural substrates following standard and target stimuli at different 
stages of the reorienting response 27,38,39 (see scalp distributions in Fig. S4). We then 
used these EEG components to inform fMRI analysis, by building a general linear model 
(GLM) where STVs of EEG components were used to create BOLD predictors (Fig. S5). 
Specifically, EEG STV regressors’ onset were aligned to different poststimulus windows, 
with the regressors’ amplitude parametrically modulated by standard and target trials’ 
EEG STVs at the corresponding windows. Importantly, in the GLM, traditional 
regressors (unmodulated stimulus-locked regressors and duration modulated RT 
regressor) were included to absorb stimulus and behavioral response relevant 
fluctuations in the BOLD. This design ensured that the clusters we identified are 
correlated with trial-by-trial variability in EEG components, with the average stimulus-
evoked and response-related effects controlled for. 

This EEG-informed fMRI analysis revealed a coordinated participation of various cortical 
regions during different stages of the reorienting response (Fig. 2). From 225 to 375 ms, 
target EEG STVs covaried with BOLD activity in regions such as the precentral gyrus, 
postcentral gyrus, and superior parietal lobule. Later into the trial from 375 to 600 ms, 
target EEG STVs correlated with BOLD signal in regions such as the lateral occipital 
cortex, medial prefrontal cortex, supplementary motor area, insular cortex, and the 
operculum cortex.  
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Figure 2. Evolution of activity in cortical regions whose BOLD covary with task-
relevant STVs of EEG components. Activation maps showing spatial correlates of 
target STVs of EEG components at different poststimulus windows. All results were 
multiple comparisons corrected with z > 2.3 and P < 0.05. X, Y, Z are MNI coordinates. 
Positive and negative effects are highlighted in warm and cool color, respectively. 
Significant clusters not shown in the maps are listed at the bottom. PreCG, precentral 
gyrus. PostCG, postcentral gyrus. SPL, superior parietal lobule. PCUN, precuneous 
cortex. CUN, cuneal cortex. ICC, intracalcarine cortex. SCC, supracalcarine cortex. 
OPO, occipital pole. LOC, lateral occipital pole. FPO, frontal pole. SFG, superior frontal 
gyrus. mPFC, medial prefrontal cortex. SMA, supplementary motor area. INS, insular 
cortex. TPO, temporal pole. FOL, frontal operculum cortex. COL, central operculum 
cortex. PU, putamen. WM, white matter. 
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Figure S3. Related to Figure 2. Illustration of single-trial EEG analysis. (a) Onsets for a 
series of standard (green) and oddball (pink) stimuli. (b) Specific temporal windows 
(vertical shaded regions) were used for EEG signal extraction. All time windows had a 
width of 50 ms and the window center was shifted from 0 ms to 1000 ms relative to 
stimulus onset, in 25 ms increments. (c) Logistic regression was used to create the 
EEG discriminating component. Specifically, the goal of this algorithm was to find a set 
of weights w that achieves maximal discrimination between multidimensional EEG 
signal xi of target versus standard trials within each time window. Applying w to xi results 
in a projection yi, which captures the distance to the decision boundary for each trial.  

Page  of 10 43

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2022. ; https://doi.org/10.1101/2022.08.22.504728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.22.504728
http://creativecommons.org/licenses/by/4.0/


 
Figure S4. Related to Figure 2. Scalp distributions (i.e., forward models) of temporally 
specific EEG components were shown from 150 to 650 ms poststimulus (top panel).  
Group level classifier performance indicated by area under the ROC curve (i.e., AUC) 
was also shown (bold black line). All panels: group average (N = 19); colored dotted 
lines, individual subjects; dashed line, AUC value with P = 0.01; statistics, permutation 
test.  
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Figure S5. Related to Figure 2. Five regressors were constructed in the EEG- 
informed fMRI analysis. See section “Whole-brain voxel-wise analysis: EEG-informed 
fMRI analysis” in Methods for details. 

Page  of 12 43

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2022. ; https://doi.org/10.1101/2022.08.22.504728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.22.504728
http://creativecommons.org/licenses/by/4.0/


Fluctuations in evoked and baseline pupil diameter correlated with variability in 
early and late task-relevant processes 

After identifying the temporal cascade of cortical activity related to reorienting using 
EEG-informed fMRI analysis, we turned to the main goal of this work: investigation of 
interactions between arousal and reorienting. Specifically, we treated spatial correlates 
of target EEG components at different time windows as cortical ROIs, and extracted 
BOLD signal from each ROI. We then used BOLD from each ROI to predict BPD and 
TPR of target trials with a GLM. This second GLM was constructed to examine the 
extent to which pupil-linked arousal can be explained by BOLD signal characterizing 
different task-relevant processes. 

We found that when modeling BPD, BOLD signal corresponding to EEG components at 
275 and 425 ms contributed significantly. Specifically, BOLD signal corresponding to 
EEG component at 275 ms negatively contributed to the prediction, whereas BOLD 
corresponding to EEG component at 425 ms positively contributed to the prediction 
(GLM group level coefficient estimate at 275 ms window: b = -0.106, P = 0.002; at 425 
ms window: b = 0.039, P = 0.008, Fig. 3a). Meanwhile, when modeling TPR, BOLD 
corresponding to EEG components at 225 and 275 ms contributed significantly. 
Specifically, BOLD corresponding to EEG component at 225 ms negatively predicted 
TPR, whereas BOLD corresponding to EEG component at 275 ms positively predicted 
TPR (GLM group level coefficient estimate at 225 ms window: b = -0.068, P = 0.002; at 
275 ms window: b = 0.063, P = 0.038, Fig. 3b).  
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Figure 3. Predict baseline and evoked pupil diameter using ROI-extracted BOLD. 
(a) Regression weights for the linear relationship between ROI-extracted BOLD and 
BPD. (b) is similar to panel (a), but for predicting TPR. Time series extracted from ten 
ROIs were used as regressors in a single GLM. The ROIs were identified from EEG-
informed fMRI analysis (e.g., ROI-225ms corresponds to the significant clusters 
identified by target STVs of EEG component at 225 ms). See section “ROI-based fMRI 
analysis: modeling pupil with results from EEG-informed fMRI analysis” in Methods for 
details. All panels: group average (N = 19); data points, individual subjects; statistics, 
one-sample t-test. ** P < 0.01, * P < 0.05, uncorrected.  
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Activity at the core of LC covaried with baseline pupil diameter and cortical 
activity at P3 latency 

Since the level of arousal has been linked to both pupil diameter and LC activity, we 
additionally investigated if cortical activity associated with pupil-linked arousal are also 
associated with functional BOLD signal extracted from the core of the LC (for brevity, 
“the core of the LC” is referred to as “the LC” in subsequent text. See Fig. 4 and section 
ROI-based analysis: LC delineation in Methods for descriptions and illustrations of 
LC delineation). Specifically, analogous with EEG-informed fMRI analysis where we 
used stimulus and EEG STV regressors to predict voxel-based BOLD in the cortex - 
here we used the same explanatory variables to predict BOLD in the LC. We found that 
at the three time windows (225, 275, and 425 ms) where cortical activity exhibited 
significant correlations with pupillary measures, target EEG STVs at neither of the three 
windows were significantly correlated with BOLD at LC (GLM group level coefficient 
estimate for EEG STV of target trials at 225 ms window: b = 0.015, P = 0.108; at 275 
ms window: b = 0.016, P = 0.121; at 425 ms window: b = 0.011, P = 0.196, Fig. 5a-c). 
On the contrary, at windows which were in close temporal proximity (i.e., 250 and 300 
ms) to the previously examined windows, target EEG STVs were significantly correlated 
with BOLD at LC (GLM group level coefficient estimate at 250 ms window: b = 0.019, P 
= 0.029; at 300 ms window: b = 0.026, P = 0.022, Fig. 5d-e). 

Lastly, in order to investigate the extent to which pupil diameter relates to LC activity, we 
used both pupillary measures (BPD and TPR) to model functional activity at the LC. We 
found that independent of the stimulus type, there was a robust relationship between 
trial-by-trial variability of BPD and fluctuations of BOLD at LC (GLM group level 
coefficient estimate for BPD: b = -0.034, P = 0.005, Fig. 6a). This relationship was 
mainly driven by the standard trials, with the target trials exhibiting a similar trend (GLM 
group level coefficient estimate for BPD of standard trials: b = -0.026, P = 0.008; for 
BPD of target trials: b = -0.013, P = 0.453, Fig. 6b). 
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Figure 4. LC delineation. Using predefined LC atlas and acquired TSE images to 
delineate LC. See section “ROI-based analysis: LC delineation” in Methods for details. 
ITSE, intensity of TSE image. M1SD, one standard deviation LC mask. M2SD, two standard 
deviations LC mask. 
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Figure 5. Predict BOLD at LC with STVs of EEG components. (a) Regression 
weights for the linear relationship between BOLD at LC, and traditional and EEG STV 
regressors at 225 ms. (b-e) are similar to panel (a), but used EEG STV regressors at 
250 ms (d), 275 ms (b), 300 ms (e) and 425 ms (c). A total of five regressors were used 
in each regression: two regressors modeling the effect of  standard and oddball (target) 
stimulus (Trad-std and Trad-odd, respectively); one regressor modeling the effect of 
behavioral response (RT); and two regressors modeling the effect of temporally specific 
standard and oddball EEG components (EEG-std- and EEG-odd- at certain temporal 
window, respectively). All panels: group average (N = 19); data points, individual 
subjects; statistics, one-sample t-test. ** P < 0.01, * P < 0.05, uncorrected. 
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Figure 6. Predict BOLD at LC with baseline and evoked pupillary measures. (a) 
Regression weights for the linear relationship between BOLD at LC and stimulus type-
independent pupillary measures. (b) is similar to panel (a), but using stimulus type-
dependent pupillary measures. A total of four regressors were used in (a): one regressor 
modeling the effect of stimulus (Trad); two regressors modeling the effect of pupil (BPD 
and TPR); and one regressor modeling the effect of behavioral response (RT). In (b), 
the stimulus and pupil regressors were split per stimulus type (-std and -odd), yielding a 
total of seven regressors. All panels: group average (N = 19); data points, individual 
subjects; statistics, one-sample t-test. ** P < 0.01, * P < 0.05, uncorrected. 
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Discussion 

The goal of this study was to investigate the spatiotemporal dynamics between pupil/
LC-linked arousal and attention reorienting. Specifically, we integrated pupillometry, 
EEG, and fMRI to investigate how different levels of tonic and phasic arousal relate to 
cortical activity at various stages of the reorienting response. This was achieved by first 
separating cortical activity associated with reorienting across time and space with the 
EEG-informed fMRI analysis, and then correlating these spatiotemporally specific 
activity to pupillary measures and LC responses to relate cortical dynamics to pupil/LC-
linked arousal. We found that while tonic and phasic pupil-linked arousal (indexed by 
BPD and TPR, respectively) were distinctly associated with certain cortical activity at 
different poststimulus times, both modes of arousal were linked to the same process at 
275 ms poststimulus. Additionally, LC-linked arousal (indexed by functional BOLD 
responses at LC) was also related to cortical activity at multiple poststimulus temporal 
windows (at 250 and 300 ms) which were in the temporal vicinity of the windows where 
significant correlations were observed between pupillary measures and task-relevant 
cortical activity. 

Inverse relationship between phasic pupil-linked arousal and 225 ms cortical 
activity is suggestive of reduction of response inhibition for target reorienting 
trials 

For the EEG discriminating component at 225 ms, we found its BOLD STVs to be 
negatively correlated with TPR (Fig. 3b). Given the timing, scalp distribution 
(frontocentral negativity as illustrated in Fig. S4), and BOLD spatial correlates (PostCG 
and SPL as illustrated in Fig. 2), this component likely captures neural processes 
related to the N2 ERP component. The N2 is a negative-going wave which typically 
peaks between 200 and 350 ms poststimulus, and is most prominent over the 
frontocentral sites when elicited by auditory stimuli 40,41. This second major negative 
peak after the stimulus onset includes a family of different responses such as the N2a 
(or mismatch negativity (MMN)) and N2b (or anterior N2), and is therefore linked to a 
number of neural processes such as the detection of mismatch and cognitive control 
40-42. Specifically, the relatively automatic MMN is elicited when an auditory stimulus 
differs from its preceding stimuli, even if the stimulus is task-irrelevant or not attended. 
The anterior N2, on the other hand, can be evoked by the same auditory mismatch, but 
only when the stimulus is task-relevant or attended; this effect is also sensitive to 
response inhibition, and is especially pronounced when motor response is withheld 40-42. 
In the context of an auditory oddball paradigm, subjects are instructed to ignore the 
standard sound while attending and responding to the target sound. The EEG 
discriminating component at 225 ms therefore captures both the relatively preattentive 
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MMN and the voluntary attention driven anterior N2 evoked by an infrequent task-
relevant target stimulus. Spatial correlates of this EEG component at PostCG and SPL 
further suggests the involvement of the frontoparietal attention network and primary 
sensory and motor areas.  

While MMN cannot be easily isolated from anterior N2 due to the significant amount of 
overlap between these two subcomponents 40,41, both responses are associated with 
mismatch detection. These activity are likely to increase in light of heightened phasic 
pupil-linked arousal, resulting in a positive correlation between TPR and BOLD STVs of 
this 225 ms EEG component. What inferences can we make then, on the negative link 
between TPR and BOLD spatial correlates of this component?  

One explanation may be that under task-relevant target conditions, increased phasic 
pupil-linked arousal has an overpowering effect in lifting response inhibition versus 
detecting mismatch (as the 225 ms EEG component is involved with both). Since BOLD 
STVs only come from target trials where subjects were instructed to make instead of 
withhold motor responses, the fact that increased TPR is associated with decreased 
BOLD in target trials can be interpreted as heightened phasic pupil-linked arousal is 
related to weaker response inhibition (or stronger promotion of task-relevant behavior). 
While the positive relationship between TPR and mismatch detection (associated with 
MMN and portions of anterior N2) and the negative relationship between TPR and 
response inhibition (associated with other portions of anterior N2) cannot be separately 
estimated, the overall negative correlation between TPR and BOLD STVs of the 225 ms 
component indicates a stronger contribution from the response inhibition relevant neural 
processes.  

This observation allows us to make further speculations on how heightened phasic 
pupil-linked arousal may facilitate the brain’s transition from a long-standing state to a 
transient state in light of task-relevant information (see another effective connectivity 
work from our group which provides an in-depth investigation on the role of phasic pupil-
linked arousal in network reset 43). With infrequent target stimuli sporadically 
interspersed among frequent standard stimuli, the brain is tuned to withhold motor 
responses under most conditions. However, under the combined influence of increased 
phasic pupil-linked arousal, automatic as well as voluntary attention directed to the 
incoming salient target stimulus, response inhibition is likely lifted to facilitate the 
execution of motor response which is relevant to the task. Three sets of previous 
findings support this claim: (i) the established understanding that the LC-NE system 
affects neuronal activity in the somatosensory cortex by suppressing spontaneous 
activity more than transient sensory-evoked responses (see review 44); (ii) the 
demonstrated causal relationship between microstimulation of LC and pupil dilation 13; 
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and (iii) the reported connections between phasic arousal and the execution not 
withhold of motor responses in animal work 45,46. While pupil dilations have been linked 
to the behavioral response in previous studies, investigations have mostly been 
confined to the relationship between amplitudes of pupil dilation and RT (which serves 
as a generic index of task performance) 18,24,25,47. In this study, by capitalizing on the 
modality specific spatiotemporal information extracted from simultaneous pupillometry 
and EEG-fMRI recordings, we were able to uncover the relationship between TPR and 
another measure which is related with the response: a spatiotemporally specific 
component representative of the inhibition of response. Our findings support previous 
studies which have linked TPR to both bottom-up and top-down processes (see review 
21). To the best of our knowledge, the present study also provides the first demonstration 
in humans of the inverse relationship between phasic pupil-linked arousal and reduction 
of response inhibition.  

Phasic and tonic pupil-linked arousal engage cortical networks at the beginning 
of the classic P3 response  

The task-relevant component whose BOLD STVs were associated with both tonic and 
phasic pupillary measures was temporally situated at 275 ms poststimulus (Fig. 3). This 
time sits at what is usually considered the beginning of the P3 (250 to 500ms) elicited in 
an oddball paradigm 18,24,25,48. Additionally, spatial correlates of this 275 ms EEG 
component were identified at PreCG, PostCG, SPL and various regions in the occipital 
lobe (ICC, SCC, and OPO). Taken together, activation of the frontal, parietal and 
occipital lobes at a P3 time suggest involvement of the frontoparietal attention network 
and primary sensory areas in stimulus-driven attention reorienting and goal-driven task 
performing 1,48.  

Additional inferences can thus be drawn from the observed relationship between 
pupillary measures and BOLD STVs of this component. Specifically, our analysis 
revealed the presence of a positive correlation between TPR and BOLD, and a negative 
correlation between BPD and BOLD. This finding suggests that increased TPR and 
decreased BPD were associated with increased BOLD of this component. The positive 
correlation between TPR and BOLD provides additional evidence supporting the 
proposed link between phasic pupil-linked arousal and task-relevant cognitive 
processes in the temporal vicinity of P3 1,8,48. The negative correlation between BPD 
and BOLD, on the other hand, supports the proposed negative effect of tonic pupil-
linked arousal on task-relevant responses (that is, reduced performance in light of 
increased tonic LC activity) 8,49. Specifically, BPD has been robustly linked to P3, with 
elevated levels of BPD associated with diminished amplitudes of P3, and vice versa 

18,24,25. Along with previous findings, our results suggest that a high level of tonic pupil-
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linked arousal decreases the amplitude of task-relevant responses such as the P3. This 
supports the hypothesis that task-relevant performance would be optimal under 
intermediate level of tonic arousal 8,49. 

Tonic pupil-linked arousal correlates with cortical networks engaged at 425 ms 
which is suggestive of a switching from exploitation to exploration 

For the task-relevant component at 425 ms, its BOLD STVs were positively associated 
with BPD, the tonic pupillary measure (Fig. 3a). This finding suggests that increased 
BPD is associated with increased BOLD of this component which is spatially localized at 
SFG and mPFC. Together with our observations of a significant negative correlation 
between stimulus type-independent BPD and the activity at LC (Fig. 6a), these findings 
suggest that BPD could be tied to the behavior of LC. Specifically, when returns of task 
performance no longer surpasses the investments to the performance based on frontal 
structures’ evaluation, LC switches to a tonic mode where baseline activity is elevated 
and phasic activity becomes absent. The tonic activity of the LC-NE system thus favors 
exploration of other potentially rewarding behaviors over exploitation of performance of 
the current task 8. It is therefore likely that at least to some extent, our results reflect the 
positive impact of tonic pupil-linked arousal on exploration over exploitation. 

Pupil diameter and task-evoked LC responses capture both common and unique 
cortical activity 

Modeling pupil with results from EEG-informed fMRI analysis allowed us to evaluate 
and infer the relationship between pupil-linked arousal and temporally specific cortical 
activity related to reorienting. Meanwhile, quantifying task-evoked LC responses with 
EEG components enabled further investigation on how LC-linked arousal relates to 
neural processes at different temporal stages of the reorienting response. These two 
types of analyses complement one another in terms of the specific aspect of global 
arousal that was being captured (i.e., pupil-linked arousal versus changes in cortical 
arousal modulated by task-evoked LC responses). 

For instance, while BPD and TPR were related to BOLD STVs of EEG components at 
certain poststimulus windows (225, 275, or 425 ms), LC activity did not covary with EEG 
components at those specific windows (Fig. 5a-c). On the contrary, the activity at LC 
correlated with EEG components in close temporal proximity (i.e., 250 and 300 ms, Fig. 
5d-e) to the aforementioned windows which exhibited significant correlations with 
pupillary measures. These observations suggest that while there is common neural 
activity measurable by pupil diameter and functional BOLD responses at LC, each 
modality-specific measure also captures unique information. In support of this claim, 
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increasing evidence suggests that the relationship between LC activity and pupil 
diameter is more heterogeneous than homogenous (see reviews 21,44, and a recent 
study capturing the dissociation between pupil diameter and LC spiking activity 50). In 
our study, such distinction is best characterized by the relationship between pupil- or 
LC-linked arousal and EEG components at 225 and 275 ms. Specifically, BPD and TPR 
exhibited an opposite relationship with BOLD spatial correlates of the EEG components 
at 225 and 275 ms (Fig. 3), which in turn showed no significant correlation with the LC 
activity (Fig. 5a-b). On the contrary, at 250 and 300 ms where the relationship between 
pupillary measures and BOLD STVs of the EEG components were comparable and of 
the same sign, the EEG components showed significant correlation with the LC activity 
(Fig. 5d-e). These observations illustrate the unique contribution of including both pupil 
and LC measures in investigating how arousal relates to neural processes involved in 
attention reorienting. If not investigated separately, the opposite yet distinct relationship 
between the two pupillary measures and neural processes at 225 and 275 ms may be 
canceled out. Such inferences would not be possible in cases where modalities such as 
pupillometry, EEG, or fMRI were acquired separately, and further demonstrates the 
advantage one could gain from simultaneous multi-modal acquisitions. 

Limitations and future directions 

In our study, we combined pupil, EEG, and fMRI data in the time domain with a 
hierarchical, and asymmetric approach. Specifically, we (i) extracted modality-specific 
measures from the time domain; (ii) examined the covariability underlying EEG and 
fMRI with an asymmetric fusion method (i.e., EEG-informed fMRI analysis); and (iii) 
used results from the EEG-fMRI analysis to model pupillary measures and LC 
responses. Our results therefore captured the correlational, but not causal relationship 
between cortical dynamics and pupil/LC-linked arousal. Future work using effective 
connectivity can aid in the identification of directionality in these observed interplays. 

In addition, while our analysis focused on the time domain and used an asymmetric 
approach, symmetric or frequency-domain based fusion methods could also contribute 
to a more comprehensive understanding of the relationship between latent neural states 
and arousal. A notable example of symmetrical pupil-EEG-fMRI fusion was presented in 
Groot et al., 2021 51. The authors extracted features from all three modalities and used 
a support vector machine to combine features, and to investigate the neural signature of 
task unrelated thoughts. Future investigations are likely needed to reveal the strengths 
of each fusion method in revealing neural dynamics in various tasks when pupil, EEG, 
and fMRI are acquired simultaneously.  
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Another possibility of analyzing this dataset resides in the frequency domain. In the only 
two reported simultaneous pupillometry and EEG-fMRI studies, Groot et al., 2021 51 and 
Mayeli et al., 2020 52 tested if frequency-domain features can be reliably tied to vigilance 
or task unrelated thoughts, respectively. Mayeli et al., 2020 52 argued that frontal and 
occipital beta power can serve as a reliable index for vigilance level of healthy humans 
during a resting state MR scan. Considering the much investigated relationship between 
spectral oscillations and an abundance of cognitive processes (e.g., cortical idling 53, 
mind wandering 54, inhibition of task-irrelevant regions 55, and information processing 
56), future simultaneous pupillometry and EEG-fMRI studies are needed to decipher the 
rich inferences embedded in relationships between spectral oscillations and arousal 
relevant processes.  

Unique contributions of a simultaneous pupillometry and EEG-fMRI study 

Compared with acquiring EEG or fMRI separately, simultaneous acquisition of EEG and 
fMRI has less popularity. This is in part due to the technical challenges involved in 
concurrent data acquisition, and partly due to the scarcity of effective data fusion 
methods 39. Understandably, relative to simultaneous EEG-fMRI, due to the increased 
technical and methodological hurdles involved with the addition of a third modality, 
concurrent acquisitions combining three modalities (pupillometry, EEG, and fMRI) have 
so far been applied in very few instances. In fact, to the best of our knowledge, 
simultaneous acquisition of pupillometry and EEG-fMRI has not been reported until the 
recent two years, and so far has only been discussed in two studies 51,52. In this paper, 
we contribute to this burgeoning conversation and aim to demonstrate that despite the 
challenges, concurrently recorded pupillometry and EEG-fMRI data offer unparalleled 
potential in revealing spatiotemporal dynamics of cortical networks.  

Previous works investigating the relationship between the arousal and reorienting 
systems typically take well-studied neural activity in the reorienting response (such as 
P3) and examine how different levels of arousal affect such processes. In our study, we 
did not confine ourselves to established or widely examined responses prior to the 
analysis. Rather, we first used a data-driven approach to extract temporally specific 
task-relevant EEG components which had millisecond resolutions. We then used an 
EEG-informed fMRI analysis to examine spatial correlates of these components which 
represent specific cortical activity. By correlating pupillary measures with results from 
the EEG-fMRI analysis, we investigated how certain cortical activity (in a specific time 
frame and related to specific regions) interacted with different levels of tonic and phasic 
pupil-linked arousal. With these novel approaches, we found that different modes of 
pupil-linked arousal interact with cortical activity at different temporal stages of the 
reorienting response. Specifically, phasic pupil-linked arousal relates to the reduction of 
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response inhibition, while tonic pupil-linked arousal relates to the brain’s preference of 
exploration over exploitation when task utility wanes.  

Notably, our work is of value to studies in both nonclinical and clinical settings. For 
studies involving nonclinical populations, future works can use the technique described 
in this study to systematically investigate how arousal interacts with reorienting in a 
more complex setting (e.g., in a virtual reality environment while harvesting high 
spatiotemporal resolutions). Meanwhile, this study can facilitate treatment development 
for clinical conditions related with ineffective attention reorienting (e.g., attention deficit 
hyperactivity disorder, autism, depression and post-traumatic stress disorder (PTSD)). 
For instance, if populations of a certain clinical condition tend to favor exploitation over 
exploration (e.g., prolonged sustained attention to threat in PTSD), their baseline pupil 
diameter can be monitored to index deterioration or improvement of their conditions.  

In summary, this study provides new evidence which reveals unique relationships 
between tonic and phasic pupil-linked arousal and attention reorienting in the human 
brain in a target detection task. These findings are enabled by a suite of multi-modal 
acquisition and analysis approaches which are capable of revealing comprehensive 
spatiotemporal dynamics in cortical and subcortical networks.  

Acknowledgements 

The authors wish to thank Josef Faller, Ray Lee, and members of the Columbia 
Magnetic Resonance Research Center for their expert assistance in data acquisition. 
This work was supported by an Army Research Laboratory Cooperative Agreement 
(grant W911NF-10-2-0022 to P.S.), a Vannevar Bush Faculty Fellowship from the US 
Department of Defense (grant N00014-20-1-2027 to P.S.), and a seed grant for MR 
Studies Program of the Zuckerman Mind Brain Behavior Institute at Columbia University 
(grant CU-ZI-MRS-0006 to L.H. and P.S.). 

Author Contributions 

L.H. and P.S. conceived the study. L.H. developed experimental protocol and collected 
data. L.H. and H.H. analyzed the data. L.H., H.H. and P.S. discussed the analyses. L.H. 
wrote the initial draft of the manuscript. H.H. and P.S. reviewed and edited the 
manuscript. L.H. and P.S. acquired funding. 

Page  of 25 43

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2022. ; https://doi.org/10.1101/2022.08.22.504728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.22.504728
http://creativecommons.org/licenses/by/4.0/


Declaration of Interests 

P.S. is a scientific advisor to Optios Inc. and OpenBCI LLC. 

  
  

Page  of 26 43

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2022. ; https://doi.org/10.1101/2022.08.22.504728doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.22.504728
http://creativecommons.org/licenses/by/4.0/


Methods 

Experimental Model and Subject Details 
Twenty-five human subjects participated in this study. Six were excluded from further 
analysis due to incomplete data (N = 2), abnormality in collected data (N = 2), excessive 
movement (N = 1) and inability to complete the task per instruction (N = 1), respectively. 
The remaining 19 subjects (6 males) aged between 18 to 32 years (mean age 25.9 
years) were included in all subsequent analyses. All participants had normal or 
corrected-to-normal vision and no reported history of psychiatric or neurological 
disorders. The Columbia University Institutional Review Board approved this study, and 
written informed consent was obtained from every participant prior to the experiment. 

Method Details 

Behavioral paradigm 
We used an auditory oddball paradigm with 80% of standard and 20% of target 
(oddball) stimuli in this study (Fig. 1a). The standard stimuli were pure tones with a 
frequency of 350 Hz, while the target stimuli were broadband (“laser gun”) sounds. All 
stimuli had a duration of 200 ms with an inter-trial interval sampled from a uniform 
distribution between 2 s and 3 s.  

We created and presented the paradigm using PsychToolbox in MATLAB. Auditory 
stimuli were delivered to subjects via earphones. Throughout the experiment, a fixation 
target was presented on a gray background for the subjects to fixate. This specific type 
of fixation target has been shown to outperform other alternatives in lowering dispersion 
and microsaccade rate 62, thus facilitating stable recording of subjects’ pupil diameter. 
The fixation target was presented to a screen placed outside the scanner bore, and 
viewed by the subjects through a mirror mounted on the head coil.  

Before the main experiment in the scanner, subjects were first familiarized with the 
paradigm through a short practice run of the task outside of the scanner. Once inside 
the scanner, they were instructed to maintain fixation to the fixation target, and to 
respond to the target stimuli as quickly and accurately as possible, by pressing a button 
on a MR-compatible response box with their right index finger. Every subject was 
scheduled to complete 5 runs of 105 trials each. On average, subjects completed 3 to 5 
runs (4.7 ± 0.7 runs, mean ± SD; SD: standard deviation). A randomized trial order was 
maintained with two constraints: (i) the first five trials of each run were constrained to be 
standards, so that the subjects were well settled into the experiment before the 
appearance of the first target stimulus; and (ii) no consecutive target trials were allowed, 
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so that enough time elapsed for subjects’ pupil diameter to go back to baseline before 
the onset of another target trial (i.e., inter-target interval was always larger than 4 s).  

EEG acquisition 
We acquired simultaneous pupillometry, EEG, and fMRI inside an MR scanner. 
Specifically, EEG was collected at a sampling rate of 5 kHz with an MR-compatible EEG 
amplifier system (BrainAmp MR Plus system, Brain Products). The EEG cap included 
64 passive Ag/AgCl electrodes, with 63 electrodes positioned on the scalp according to 
the international 10-20 system, and 1 electrode positioned on the subject’s back for 
electrocardiogram (ECG) monitoring. To ensure subject safety during simultaneous EEG 
and fMRI acquisition, the scalp and ECG electrodes were embedded with series 
resistors of 10 kOhm and 20 kOhm, respectively. During the experiment, electrodes’ 
impedances were kept under 25 kOhm (including the built-in resistors on each 
electrode) to minimize noise in EEG acquisition.  

Pupillometry acquisition 
Concurrently with the EEG and fMRI acquisitions, pupillometry was collected at a 
sampling rate of 1 kHz with an MR-compatible eye tracker (Eyelink 1000 Plus in Long 
Range Mount, SR Research). The eye tracker was placed outside the scanner bore, 
close to the rear end of the scanner table where the subject’s head and the EEG 
amplifiers were situated. At the start of each scanning session, calibration of the eye 
tracker was performed to ensure accurate tracking of the subject’s pupil.  

MRI acquisition 
MR images were collected on a 3T Siemens Prisma scanner with a 64-channel head/
neck coil. For each subject, functional images were acquired interleaved in 42 axial 
slices with a T2*-weighted echo-planar imaging (EPI) sequence: echo time (TE) = 25 
ms, repetition time (TR) = 2100 ms, flip angle (FA) = 77 degrees, voxel size = 3 mm x 3 
mm x 3 mm, field of view (FOV) = 192 mm x 192 mm. A structural image was acquired 
with a T1-weighted sequence for anatomical co-registration (TE = 3.95 ms, TR = 2300 
ms, FA = 9 degrees, voxel size = 1 mm x 1 mm x 1 mm, FOV = 176 mm x 248 mm). To 
facilitate co-registration between structural and functional images, an additional single-
volume EPI image was acquired with a T2*-weighted sequence using a resolution 
higher than that in the functional EPI images (TE = 30 ms, TR = 6000 ms, FA = 90 
degrees, voxel size = 2 mm x 2 mm x 3 mm, FOV = 192 mm x 192 mm). Lastly, to 
localize LC, neuromelanin-sensitive images were acquired in 10 axial slices with a T1-
turbo spin echo (T1-TSE) sequence (TE = 14 ms, TR = 600 ms, FA = 90 degrees, voxel 
size = 0.4 mm x 0.4 mm x 3 mm, FOV = 166 mm x 205 mm). Specifically, TSE images 
were acquired in an orientation perpendicular to the plane of the brainstem to facilitate 
accurate delineation of LC 12,63,64.  
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Quantification and Statistical Analysis 

EEG pre-processing 
EEG acquired inside the scanner are susceptible to MR environment related artifacts 
such as the gradient artifacts and ballistocardiogram (BCG) artifacts, due to 
electromagnetic interactions between the two recording modalities. The pre-processing 
of EEG data therefore was composed of gradient, BCG, and standard artifacts removal 
from the EEG signal. To begin with, high amplitude gradient artifacts were removed 
using an average artifact template subtraction method 65. This was performed in a data 
processing software (BrainVision Analyzer 2, Brain Products) provided by the EEG 
system manufacturer. Specifically, for EEG acquired simultaneously with each functional 
MR volume, gradient artifacts from 20 volumes centered on the volume of interest were 
used to construct an average artifact template, which was subsequently subtracted from 
the EEG signal. The data was then down-sampled to 500 Hz and filtered by a 10th-
order median filter to remove residual spike artifacts. In preparation for BCG artifacts 
removal, slow drift and high frequency noise irrelevant to neural processes were filtered 
out by applying a 4th-order bandpass Butterworth filter from 0.5 Hz to 50 Hz on the EEG 
signal. Filtered EEG data were then concatenated over runs for each subject, and 
removed of BCG artifacts through the simple mean approach offered in the FMRIB plug-
in for EEGLAB 66,67. Lastly, the BCG-removed data were re-referenced to common 
average, and removed of blink artifacts using the independent component analysis 
methods introduced in EEGLAB 68.  

Trials were excluded from subsequent analyses based on the following criteria: (i) when 
probability of data value from a single channel was more than 6 standard deviations 
from the channel’s mean; (ii) when probability of data value from all channels was more 
than 2 standard deviations from all channels’ mean; and (iii) when subjects failed to 
respond to the target stimulus, or incorrectly responded to the standard stimulus. On 
average, 5% of trials were excluded from each subject.  

Single-trial EEG analysis 
We used a linear discriminant analysis to discriminate single-trial EEG measures 
between target and standard trials (see Parra et al., 2005 35 and Sajda et al., 2009 69 for 
an overview of this approach; see Hong et al., 2014 19, Fouragnan et al., 2015 37, 
Gherman et al., 2018 70, and Franzen et al., 2020 38 for applications of this approach). At 
various temporal windows within the time span of the trial, we used logistic regression to 
find a set of spatial weightings that when applied to the multidimensional EEG data, 
yielded a one-dimensional projection that achieves maximal discrimination between the 
target and standard conditions. Compared to event-related potential analysis which 
averages individual-channel measures over trials, this single-trial method not only 
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ensured signal-to-noise ratio (SNR) through spatial integration of multi-channel EEG 
data, but also preserved trial-by-trial variability which captures task-relevant fluctuation 
of latent brain states. The resulting one-dimensional projection - also called the EEG 
discriminating components - were therefore used to identify neural correlates of 
reorienting.  

Specifically, we identified task-evoked discriminating components , by estimating a 
spatial weighting vector  which maximally discriminates EEG data  of two conditions 
at specific temporal windows: 

           (1) 

where  is the window center,  is the duration of the window, and  is the transpose 

of . In practice, this was repeated for 50-ms time windows from 0 ms to 1000 ms 
relative to stimulus onset, in 25 ms increments. Scalp distributions capturing the 
mapping from discriminating components to original EEG data were also computed 
with: 

           (2) 

These scalp distributions represent the forward model which can best explain the 
observed EEG data given the discriminating components which exhibit certain temporal 
properties (in this case, could maximally discriminate between target versus standard 
conditions in a specific temporal window).  

We quantified the performance of the discriminator at each temporal window by using a 
leave-one-out approach 36 and computing the area under the receiver operating 
characteristic curve (referred to as Az in subsequent text). To compute a significance 
level for Az, we used a bootstrapping technique where we randomized the trial labels 
before performing the leave-one-out test. We repeated this randomization procedure for 
100 times to produce a probability distribution for Az, and identified the Az value 
corresponding to a significance level of P = 0.01. Discriminating components at 
windows whose Az values were significant were used in subsequent analyses.  

Pupil pre-processing  
We adapted the pre-processing pipeline introduced in Urai et al., 2017 20 to prepare 
pupillometry data for further analysis. Specifically, blinks detected by the manufacturer’s 
standard algorithms were padded by 150 ms and linearly interpolated. Additional 
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outliers in the remaining time series were detected and removed through a peak 
detection algorithm. Resulting pupil area data were then converted to pupil diameter 
and band-pass filtered using a 2nd-order Butterworth filter from 0.01 Hz to 10 Hz to 
remove slow drift and high frequency noise. Lastly, filtered pupil diameter data for each 
run was z-scored and down-sampled to 500 Hz to facilitate subsequent multi-modal 
analyses (i.e., to the same sampling rate of pre-processed EEG data).  

Pupil analysis 
For each trial, prestimulus baseline pupil diameter was extracted as the mean pupil 
diameter from -500 ms to 0 ms relative to the stimulus onset. Task-evoked pupil 
response was measured as the maximum deviation from baseline pupil diameter during 
the two seconds poststimulus.  

fMRI pre-processing  
Pre-processing of the MRI data relied on a number of tools in FSL 71. To begin with, we 
applied bias field correction to functional images to improve the SNR of the BOLD 
signal. This step was necessary for fMRI data acquired simultaneously with EEG, as the 
presence of the EEG acquisition system introduced inhomogeneity to the magnetic field 
and thus could affect the SNR of collected fMRI signal. The specific pre-processing 
steps therefore included (i) bias field correction by adjusting for variations in spatial 
intensity using FAST 72; (ii) non-brain tissue removal using BET 73; (iii) slice-timing 
correction using Fourier-space time-series phase-shifting; (iv) small head movement 
correction using MCFLIRT 74; and (iv) low-frequency noise removal using a high-pass 
temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma = 50 
s). 

With the pre-processed fMRI data, we performed the subsequent analyses following two 
separate pipelines: (i) based on individual voxels, by predicting voxel-wise BOLD signal 
using a set of regressors; or (ii) based on specific regions of interest, by relating BOLD 
responses from ROIs to physiological or neural measures. The procedures for the 
delineation of ROIs are described in the sections ROI-based fMRI analysis below. For 
voxel-based analyses, functional images were spatially normalized to the standard 
(MNI) space. This spatial normalization procedure involved using boundary based 
registration 75 to register functional images first to the one-volume high resolution 
structural image, which was then aligned to the standard space with a combination of 
linear (FLIRT) and nonlinear (FNIRT) registration approaches 76-79. We additionally 
applied spatial smoothing to functional images in the standard space using a Gaussian 
kernel of 5 mm full width at half maximum. All other analyses were performed without 
spatial smoothing. 
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Whole-brain voxel-wise fMRI analysis: overview 
We used two approaches to identify brain regions which were either sensitive to the 
stimulus, or to temporally specific neural processes. These whole-brain voxel-wise 
statistical analyses were conducted using a general linear modeling (GLM) approach, 
as implemented in the FEAT tool of FSL. In the GLM, the response variable was the 
measured BOLD response time series at a given voxel, and the explanatory variable 
was the design matrix which captured the hypothetical task-evoked neuronal responses. 
The design matrix was constructed by convolving a set of task-evoked regressors with a 
canonical hemodynamic response function. Specifically, (i) double-gamma function was 
used to convolve regressors; (ii) motion parameters generated in the motion correction 
pre-processing step were included as nuisance regressors; (iii) temporal derivatives of 
all regressors were included as regressors of no interest; and iv) local autocorrelation 
correction was performed using the FILM tool 80. 

The GLM analysis was performed at the subject-level with a fixed effects model, and 
then at the group-level with a mixed effects model (using FLAME stage 1 81-83). 
Parameter for each regressor was estimated by minimizing the residual error (i.e., the 
difference between observed and predicted BOLD responses). The analysis was 
performed for voxels across the whole brain, and Gaussian random field theory was 
used to correct for multiple comparisons and to adjust the significance level of identified 
clusters. 

Whole-brain voxel-wise analysis: conventional fMRI analysis 
With the first approach, we identified brain regions which exhibited distinct average 
responses after the task-relevant stimulus (i.e., regions with a stronger fMRI response 
following the target versus the standard stimulus). Specifically, we quantified task-
evoked fMRI responses using a set of regressors locked at the time of stimulus. We 
constructed three boxcar regressors of interest: (i) two unmodulated regressors to 
model the effect of standard and target stimulus (duration = 0.1 s, height = 1), and (ii) a 
duration-modulated regressor to control for the effect of behavioral response (onset = 
target stimulus onset, duration = RT, height = 1, orthogonalized with respect to the 
target regressor). Significance level of the parameter estimates were determined by 
thresholding z statistic images using clusters determined by z > 3.1, with a corrected 
cluster significance threshold of P = 0.05 84.  

Whole-brain voxel-wise analysis: EEG-informed fMRI analysis 
While the first approach allowed us to identify brain regions that exhibited stimulus-
specific responses, the second approach enabled us to assign temporal order to the 
network of regions that were recruited during reorienting. In particular, we capitalized on 
the output of our single-trial EEG analysis to build two additional BOLD predictors. At 
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each temporal window where the linear discriminator’s performance was significant, 
trial-by-trial amplitude of the discriminating component  (resulting from equation 1 as 
illustrated in the Single-trial EEG analysis section) was used to parametrically 
modulate the height of boxcar regressors. This GLM therefore included five regressors 
of interest: (i) three regressors from the conventional fMRI analysis above; (ii) an 
amplitude-modulated standard EEG STV regressor (onset = window center , duration 
= 0.1 s, height =  of standard trials, orthogonalized with respect to the unmodulated 
standard regressor); and (iii) an amplitude-modulated target EEG STV regressor (onset 
= window center , duration = 0.1 s, height =  of target trials, orthogonalized with 
respect to the unmodulated target and duration-modulated RT regressor). Significance 
level of the parameter estimates were determined by thresholding z statistic images 
using clusters determined by z > 2.3, with a corrected cluster significance threshold of P 
= 0.05 84. As the target EEG STV regressor was the primary regressor of interest, this 
analysis identified a set of cortical regions whose BOLD covary with task-relevant STVs 
of EEG components. 

ROI-based fMRI analysis: overview 
While whole-brain analysis enabled us to localize activations bearing specific temporal 
profiles in attention reorienting, the ROI-based analyses were designed to investigate 
how pupil-linked arousal or LC activity interacted with these temporally specific cortical 
activity. In section modeling pupil with results from EEG-informed fMRI analysis, 
we define significant clusters identified with EEG-informed fMRI analysis as ROIs. By 
using BOLD from these ROIs to model BPD and TPR, we examined the relationship 
between pupil-linked arousal and BOLD responses which covary with trial-by-trial 
variability in temporally specific EEG components. In section LC delineation, we define 
another ROI which is LC, and describe the techniques we used to delineate this 
nucleus. In section quantifying task-evoked LC responses with EEG, we use EEG 
STV modulated regressors to model BOLD responses at LC. This second ROI-based 
analysis is analogous to the whole brain EEG-informed fMRI analysis, with the former 
focusing on activity confined to the LC and the latter examining activity across the brain. 
In addition, in section quantifying task-evoked LC responses with pupil, we describe 
another ROI-based analysis which evaluated the hypothesis that pupil reflects LC 
activity. In this analysis, we used both pupillary measures (BPD and TPR) to model 
functional BOLD signal extracted from LC. All three analyses were conducted using a 
general linear modeling approach, with parameter estimates computed separately for 
each subject and tested against 0 across the group.  

y

τ
y
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ROI-based fMRI analysis: modeling pupil with results from EEG-informed fMRI 
analysis 
In the first analysis, we modeled task-relevant target pupillary measures with BOLD 
responses from ROIs identified with EEG-informed fMRI analysis. Specifically, single-
trial target pupillary measures (BPD and TPR) were first convolved with a canonical 
double-gamma hemodynamic response function to prepare the pupil time series for 
subsequent correlation with the BOLD time series. Next, at each temporal window 
where significant clusters were identified, we (i) transformed standard (MNI) space 
clusters to subject-specific functional (EPI) space; (ii) converted BOLD responses to 
percentage of BOLD signal change by scaling with respect to the mean of the BOLD 
time series; (iii) extracted ROI-level time series by averaging across voxels within the 
ROI. This yielded ten ROI-level time series for each subject (i.e., six time series at ROIs 
exhibiting positive activations from 225 to 375 ms, and four time series at ROIs 
exhibiting negative activations from 375 to 600 ms).  

We computed the correlation between pupillary measures and ROI-based BOLD 
responses after removing the effects of stimulus presentation and behavioral response 
from both time series. Specifically, (i) the ten ROI-based BOLD responses were all 
included as regressors in each GLM; (ii) effects of stimulus and RT were removed via 
linear regression from target BPD/TPR time series; (iii) effects of stimulus, RT, and 
standard BPD/TPR were removed via linear regression from ROI-based BOLD 
responses. Significance level of the parameter estimates were determined by a group 
level one-sample t-test (P < 0.01 or 0.05).   

ROI-based analysis: LC delineation 
In preparation for the second and third ROI-based analyses, we delineated LC by taking 
advantage of a specific imaging protocol (T1-weighted Turbo Spin Echo (TSE)), as well 
as a set of predefined LC atlases 64.  

Recent studies have demonstrated that LC has increased neuromelanin concentration, 
and can be identified in neuromelanin-sensitive TSE scans at bilateral locations 
adjacent to the fourth ventricle with the most pronounced signal intensities 12,64. Using 
TSE imaging, Keren et al., 2009 64 characterized the spatial distribution of LC and 
provided two sets of standard space LC templates. Estimated across 44 subjects, these 
two templates captured the mean, one and two standard deviations (SD) of voxel 
locations with peak intensity in each axial slice (i.e., 1SD and 2SD LC templates, 
respectively), therefore providing anatomical references for the location of LC in healthy 
populations.  
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In light of these findings, we developed an automated algorithm of LC localization. 
Specifically, we used the predefined LC atlases to constrain search of voxels with 
highest signal intensities (i.e., voxels containing LC) in the TSE scans. After registering 
partial field-of-view TSE scans and standard (MNI) space LC templates to the subject’s 
structural scans, we compared the average signal intensity in different LC templates to 
determine voxels which were most likely to contain the LC. We subsequently extracted 
the time series of LC by computing a weighted average across the two voxels with the 
highest probability of containing the LC (see Fig. 4 and He et al., 2021 85 for more 
details). This approach allowed us to extract signal from the “core” instead of the 
entirety of the LC, with the core of the LC potentially more confined in anatomical and 
functional heterogeneity 21,64.  

ROI-based analysis: quantifying task-evoked LC responses with EEG 
In this analysis, we examined the relationship between temporally specific EEG 
components and LC activity. At the three temporal windows (225, 275, and 425 ms) 
where target pupillary measures were significantly correlated with BOLD at ROIs 
identified with EEG-informed fMRI analysis, BOLD time series at LC were modeled with 
the same set of five regressors as described in the Whole-brain voxel-wise analysis: 
EEG-informed fMRI analysis. This analysis was also performed on two additional 
windows in the temporal vicinity of 225 and 275 ms (i.e., at 250 and 300 ms). 
Significance level of the parameter estimates were determined by a group level one-
sample t-test (P < 0.01 or 0.05).  

ROI-based analysis: quantifying task-evoked LC responses with pupil 
In the third analysis, we evaluated the hypothesis that pupil reflects LC activity. We 
tested this hypothesis on both stimulus type-dependent and stimulus type-independent 
regressors. In both cases, the GLM included four types of regressors which were 
convolved with the hemodynamic response function and correlated against the BOLD 
response at LC: (i) unmodulated stimulus-locked regressors (duration = 0.1 s, height = 
1); (ii) duration-modulated RT regressor (onset = target stimulus onset, duration = RT, 
height = 1); (iii) amplitude-modulated BPD regressor (onset = stimulus onset, duration = 
0.1 s, height = BPD of trials); and (iv) amplitude-modulated TPR regressor (onset = 
stimulus onset, duration = 0.1 s, height = TPR of trials). Significance level of the 
parameter estimates were determined by a group level one-sample t-test (P < 0.01 or 
0.05).  

It is worth noting that inferences of all analyses in this study were based on results of 
the target trials (i.e., task-relevant target condition), except when modeling functional 
responses of LC with pupil. While the relationship between stimulus type-independent 
BPD (i.e., BPD of both standard and target trials) and BOLD activity at LC was mainly 
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contributed by BPD of standard trials, BPD of target trials exhibited a similar trend with 
LC activity (although this contribution was not statistically significant when evaluated 
independently from that of the standard trials, as shown in Fig. 5b). This observation 
likely reflects the underpowered nature of target trials: with their probability of 
occurrence one fourth of the standard trials. 

Data and code availability 
Code and data reported in this paper will be made publicly available upon publication. 
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