
Inferring single-cell transcriptomic dynamics with structured latent gene expression

dynamics

Spencer Farrell,1, ∗ Madhav Mani,2, 3, 4 and Sidhartha Goyal1, 5, †

1Department of Physics, University of Toronto
2Department of Engineering Sciences and Applied Mathematics, Northwestern University

3NSF-Simons Center for Quantitative Biology, Northwestern University
4Department of Molecular Biosciences, Northwestern University

5Institute of Biomedical Engineering, University of Toronto

Gene expression dynamics provide directional information for trajectory inference from single-cell RNA-sequencing
data. Traditional approaches compute local RNA velocity using strict assumptions about the equations describing
transcription and splicing of RNA. Not surprisingly, these approaches fail where these assumptions are violated, such
as in multiple lineages with distinct gene dynamics or time-dependent kinetic rates of transcription and splicing. In
this work we present “LatentVelo”, a novel approach to compute a low-dimensional representation of gene dynamics
with deep learning. Our approach embeds cells into a latent space with a variational auto-encoder, and describes
differentiation dynamics on this latent space with neural ordinary differential equations. These more general dynamics
enable accurate trajectory inference, and the latent space approach enables the generation of a latent “dynamics-
based” embedding of cell states. To model multiple distinct lineages, LatentVelo infers a latent regulatory state
that controls the dynamics of an individual cell. With these lineage-specific dynamics LatentVelo can predict latent
trajectories, describing global inferred developmental path for individual cells, rather than just outputting local
RNA velocity vectors. The dynamics-based embedding also enables concurrent batch correction of cell states and
RNA velocity, outperforming comparable auto-encoder based batch correction methods that do not consider gene
expression dynamics. Finally, the flexible structure of LatentVelo enables additional of new regulatory constraints
required to integrate multiomic data. LatentVelo is available at https://github.com/Spencerfar/LatentVelo.

I. INTRODUCTION

Single-cell RNA sequencing enables the inference of developmental trajectories with methods that computationally
reconstruct the developmental process. Traditional approaches are based on the similarity of static snapshots of RNA
for individual cells [1–3]. RNA velocity extends these approaches by modelling the dynamical relationship between
newer unspliced RNA and mature spliced RNA to infer the direction of the dynamics from these static snapshots.
Recent techniques have also been developed to analyze RNA velocity, aiming to improve and expand upon traditional
trajectory reconstruction methods [4–9].
However, RNA velocity methods have been limited by a reliance on strict modelling assumptions. In the original

formulation, Velocyto [10] modelled cells at an assumed steady-state, with a linear relationship between unspliced and
spliced RNA. scVelo [11] relaxed the steady-state assumption by assuming a strict form for transcription rates, and
modelled time-dependent transient cell-states by fitting a set of linear differential equations, treating the unobserved
developmental time as a latent variable inferred per cell and per gene. These methods encounter problems with
complex dynamical features such as a transcriptional boost, lineage-dependent kinetics, and weak unspliced signal
[12–14].
We have developed “LatentVelo”, an approach to address these problems in RNA velocity estimation. Our key

insight and distinguishing feature is that LatentVelo embeds cell states in a learned latent space, and infers structured
dynamics on this latent space that incorporate the causal structure of RNA velocity dynamics, rather than learn RNA
velocity on gene-space with strict linear dynamics. Since the latent dynamics and embedding are learned together,
the latent embedding of cell states is informed by the dynamics. Lineage or time-dependent dynamics are enabled
by modelling state-dependent regulation of transcription with a latent regulatory state. By learning dynamics in
a latent space, LatentVelo can extract the low-dimensional dynamics describing cell differentiation. Additionally,
modelling the latent space dynamics enables batch correction and the incorporation of additional information such
as annotated cell-type labels as in scANVI [15] or temporal information from sequencing batches. LatentVelo also
enables constructing general dynamical models, and enabling various structured models of regulation and multi-omic
data.

∗ spencer.farrell@utoronto.ca
† goyal@physics.utoronto.ca

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://github.com/Spencerfar/LatentVelo
mailto:spencer.farrell@utoronto.ca
mailto:goyal@physics.utoronto.ca
https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

2

Recently, several other methods have been proposed to address some of these issues to improve the accuracy and
reliability of RNA velocity methods. VeloAE [16] develops an extension of the steady-state model by projecting
high-dimensional noisy unspliced and spliced vectors onto a lower dimension latent space with an autoencoder, and
then uses the steady-state linear model to estimate velocities on this latent space. UniTVelo [17] allows for a more
general form of spliced RNA dynamics which relaxes assumptions on the transcription rate, includes a unified cell-
dependent latent time (rather than per gene as in scVelo), and introduces a method of dealing with low signal-to noise
in unspliced reads. DeepVelo [18] uses a deep neural network to estimate cell-specific kinetic rate parameters to model
variable and lineage-dependent kinetics. VeloVAE [19] uses a variational Bayesian approach to model a unified cell-
dependent latent time, cell-specific transcription rates, and celltype specific splicing and degradation rates. MultiVelo
[20] integrates chromatin accessibility into the linear dynamical model to improve velocity estimates. Alternatively,
work has been done on gene selection for velocity analysis [12, 21].
LatentVelo has similarities with these methods. LatentVelo embeds cell states in a latent space with an auto-encoder

like VeloAE, but includes dynamics rather than just modelling steady-state cells. LatentVelo models dynamics with a
unified cell developmental time like UniTVelo and VeloVAE. Like DeepVelo and VeloVAE, LatentVelo models lineage-
dependent dynamics. LatentVelo also includes the scTour model [22] as a special case, where only the dynamics of a
single data-type are considered (e.g. just spliced RNA).
We benchmark LatentVelo with synthetic data and real developmental, regeneration, and reprogramming data. We

show that our approach significantly outperforms the traditional linear RNA velocity methods for inferring transitions
between cell-types. We also show that our approach is able to do batch correction of RNA velocity by projecting
batches onto a common latent space independent of technical variation between the samples. Batch correction is
unaddressed by other models of RNA velocity, presenting a novel application of LatentVelo. Additionally, rather
than just output RNA velocity vectors, LatentVelo infers developmental trajectories for individual cells, describing
the inferred path a specific cell took to reach its current state. This is distinct from the traditional velocity methods.

II. OVERVIEW OF LATENTVELO

A. RNA velocity

RNA velocity methods estimate the direction of differentiation using static snapshots of unspliced and spliced RNA.
The quantity of unspliced and spliced RNA are determined by the processes of processes of transcription, splicing,
and degradation of RNA:

Ø →
transcription

Unspliced →
splicing

Spliced →
degradation

Ø. (1)

The objective is to overcome the limitations of snapshot scRNAseq observations by using a model that imposes the
causal relationship of splicing, linking observed quantities of unspliced and spliced RNA. The goal is to estimate
the time-derivative of the spliced RNA for single-cells ds

dt
in terms of the amount unspliced and spliced RNA, which

characterizes the future direction of differentiation for a cell.
The traditional model for RNA velocity uses linear rate equations for the transcription, splicing, and degradation

dynamics per gene g,

dug(t)

dt
= αg(t)− βgug(t) (2)

dsg(t)

dt
= βug(t)− γgsg(t), (3)

where t is an unknown developmental time that is either eliminated in the steady-state model (Velocyto) [10], or
inferred per gene and per cell in the linear dynamical model (scVelo) [11]. Instead of assuming the accuracy of these
linear models in accounting for the data, we construct a general deep-learning model that incorporates only the causal
relationships outlined in (1), while remaining agnostic to the underlying kinetics of the process. The goal is to encode
the causal relationship, but generalize the linearity assumption. As such the approach is more data-driven.

B. LatentVelo

LatentVelo is formulated as a variational auto-encoder (VAE) that embeds RNA count data into latent states ẑ along
with a latent developmental time t̂ per cell, which provides a time-ordering of the cells. Variational auto-encoders are
approximate Bayesian models that use a neural network based encoder to approximate the posterior distribution of a

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

3

FIG. 1. LatentVelo. a) LatentVelo is a variational autoencoder with structured dynamics on the latent space. An encoder
(left trapezoids) encodes the transcriptomic cell state (i.e. unspliced (u) and spliced (s) RNA counts) into corresponding latent
states ẑs and ẑu, and a latent developmental time t and regulation state h. The regulation state h conditions dynamics for each
cell to follow a particular branch. We match these latent states to the dynamics obtained by structured dynamics on this latent
space, z(t), described by ODEs starting from an initial state z(0). These structured dynamics can take a variety of forms, here
we show regulated splicing dynamics incorporating state-dependent regulation of transcription. In the shown notation, we use
ẑ to denote latent cell states estimated directly from the encoder with the input data, and z(t) to represent latent cell states
estimated from the latent dynamics. When fitting the model, the distance between the encoder latent states and the dynamics
latent states is minimized. b)-f) We demonstrate LatentVelo on an example synthetic dataset. In b), we show the gene-space
UMAP for this dataset, highlighting the developmental trajectory with the simulation time and celltype transitions with the
milestone clusters. We show LatentVelo’s ability to infer velocity and latent time c) and a latent embedding d). We show that
zr infers branching in e), and show that we can infer cell-specific trajectories in f), with trajectories for two cells on different
branches of the bifurcation.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

4

model [23, 24]. In our case, we estimate the posterior distribution p(ẑ, t̂|s,u) of latent states and latent developmental
times.
Dynamics on this latent space are described by a neural ordinary differential equation [25], using the inferred latent

time as the time variable in the differential equation. The basic form of the latent dynamics are,

dz(t)

dt
= f(z(t)), (4)

z(0) = z0, (5)

where the dynamics are determined by a neural network f and an initial state z0. Note that the initial state z0 is
learned together with the dynamics and autoencoder, in contrast to pseudotime methods which specify a root cell.
These dynamics are incorporated into the VAE by constraining the encoded state state ẑ with the solution to these
dynamics at the corresponding latent time for the cell z(t̂), e.g. minimizing |ẑ− z(t̂)|. This encourages the encoder to
output latent states ẑ that follow the latent dynamics, and encourages the latent dynamics z(t) to match the output
of the encoder. The result is that LatentVelo learns a latent embedding that is informed by the dynamics.

These dynamics are considered “unstructured” in the sense that f is a general dense feed-forward neural network,
and interactions between all components of z are allowed. A very similar model with these unstructured dynamics
was also recently developed in scTour [22]. However, these unstructured models do not utilize biological knowledge of
the dynamics of splicing. We add this structure by separately representing the different data modalities in the latent
space by decomposing z = (zu, zs) and f = (fu, fs),

dzu(t)

dt
= fu(zu(t)) (6)

dzs(t)

dt
= fs(zu(t), zs(t)). (7)

The structure comes in by separately modelling spliced zs and unspliced zu latent representations, and restricting the
interactions between them to model splicing dynamics. This results in an estimate of a latent representation of RNA
velocity, dzs/dt. This model is a generalized form of traditional RNA velocity methods – modelling the dynamics
of transcription, splicing, and degradation with non-linear functions of spliced and unspliced RNA, and including
interactions between different genes through this low-dimensional latent space.

However, this form of dynamics does not address the issue of multiple lineages. Since the dynamics start from a
single initial state z0 and all cells follow the same ODEs, there is only one unique solution – which means no branching
for different lineages. Lineage-dependent dynamics can be incorporated by including regulation of transcription with
state-dependent dynamics of a new latent variable controlling regulation zr,

dzu(t)

dt
= fu(zu(t), zr(t)) (8)

dzs(t)

dt
= fs(zu(t), zs(t)), (9)

dzr(t)

dt
= fr(zs(t), zr(t),h), (10)

h = fh(ẑs, ẑu). (11)

The variable h is a constant state-dependent parameter controlling the regulatory dynamics for a particular cell. Note
that h depends on the observed cell state because it depends on the encoded ẑ, not the trajectory z(t). Since h is
estimated from the observed cell-state, it enables dynamics to depend on cell-states or lineages. Since the dynamics
are deterministic and start from a constant z(0), without h we would expect no branching of the dynamics. We
can think of h as conditioning the dynamics to follow a particular branch of the system. This enables us to model
complex multi-lineage dynamics. Note that while the VAE includes stochasticity in the latent embedding, there is no
stochasticity in the dynamics. We address this in the discussion as a future direction.

We further enforce the direction of splicing (unspliced → spliced) by regularizing a positive correlation between ṡ
and u and a negative correlation between ṡ and s, e.g., corr(ṡ, u) > 0 and corr(ṡ, s) < 0 per gene. By only weakly
including this regulation, we allow time-dependent rates rather than the strict linear assumption of some previous
models. A similar form of regularization is also done in DeepVelo [18]. Further details are in the Methods section
VB.
Figure 1 visualizes the structure of LatentVelo described in Equations 8 to 11 in a), and demonstrates some of the

features of LatentVelo on a synthetic dataset. The UMAP representation of this dataset is shown in b), highlighting
the direction of differentiation with increasing simulation time, and specific milestone cell clusters. In c) we show the
latent time and velocities inferred by LatentVelo. LatentVelo’s latent time is similar to a pseudotime, and velocities

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

5

are a low-dimensional representation of RNA velocity. In d) we show UMAP representation of the spliced latent
state, which is a latent embedding of cell states informed by the transcriptomic dynamics. In e) we plot the latent
regulatory state zr vs latent time, showing that LatentVelo infers distinct dynamics on the two branches.

Current RNA velocity methods estimate the spliced velocity of each observed cell. In Figure 1f), we show that
LatentVelo infers cell-specific trajectories on the latent space, instead of simply inferring local cell velocities. Typically,
RNA velocity has been interpreted by visualizing global velocity fields of smoothed local cell velocities projected onto
a 2-dimensional representation representation of the data (e.g. UMAP or tSNE). LatentVelo’s inferred trajectories
offer a new way of interpreting RNA velocity, without resorting to the 2-dimensional representation of velocities.
These trajectories directly indicate the path of differentiation, which more clearly indicates transitional celltypes.

LatentVelo is not limited to the specific structure of transcription and splicing used here. Any desired structure to
the latent dynamics can be implemented, for example regulation of splicing can be included with an interaction from zr
to zs. This generic nature of the model enables modeling multi-omic dynamics, by specifying a particular structure to
the dynamics linking the different data modalities. For example in the Supplemental Information, we demonstrate an
example where we model both transcription and splicing from RNA sequencing together with chromatin accessibility
from ATAC-seq. We have not explored other variations to the splicing and regulation structure.

The standard VAE version of the model uses a standard Gaussian prior on the latent state ẑ ∼ Normal(0, 1) and
a logit-normal prior on the latent times t̂ ∼ LogitNormal(0, 1). We can add more structure to the latent embedding
by including cell-type information, similar to scANVI [15]. This approach modifies the prior of the latent space to be
cell-type specific, rather than a standard Gaussian for all cells. This modification prevents the prior from ignoring
biologically relevant clusters, and in particular, we show below that this improves batch correction. The full details
of this modification are in the Methods section VC.

Since LatentVelo has many free parameters, it can be useful to include the experimental time of observation of
cells to further constrain the dynamics. We do this by adding the correlation between the inferred latent time and
experimental time to the loss function. The details of this are in Methods section VD.

C. Evaluation of LatentVelo

We take a quantitative approach to evaluate RNA velocity by comparing with ground truth velocity on synthetic
data, and the direction of known cell-type transitions in real data.

To evaluate LatentVelo on synthetic data, we use the cosine similarity between ground truth and estimated velocities.
Since many genes are not directly involved in the differentiation process, we compute this metric on lower dimensional
embeddings; the model latent space and 50-dimensional principle component (PC) space.

For real data, we use datasets where the direction of differentiation is known. To quantitatively evaluate models,
we use a modified version of the Cross-Boundary Directedness score used for UniTVelo and VeloAE [16, 17]. This
score measures the velocity direction of cells on the boundary between two cell-types.

We make two modifications of this score. In previous work this score was computed on a 2D UMAP embedding,
but we found this sometimes resulted in inconsistent values not seen in higher-dimensional embeddings. Therefore, we
use multiple higher-dimensional embeddings (model latent space, higher dimensional PCA). Additionally, we modify
the score to be more robust to noisy boundaries between cell-types by only checking that the direction of the velocity
of a cell is directed towards any cell of the expected cell-type, rather than any specific cell (see Methods section VF).

Our updated version quantifies the probability that a cell is likely to transition in the specified direction. Therefore,
we can interpret scores above 0.5 to indicate a likely transition in that direction. Note that since this score depends
on well-defined boundaries, noisy boundaries can lower the score.

We also use the Inner-Cluster Coherence score used for UniTVelo and VeloAE [16, 17]. This score evaluates the
coherence of velocity direction for neighboring cells within a cluster or cell-type. At a maximum value of 1, neighboring
cells have the same velocity direction. A similar consistency score was also used with scVelo [11] and DeepVelo [18].

We use the kBET and iLISI batch correction metrics and the cLISI biological cluster conservation metrics to evaluate
our models performance for batch correction [26]. kBET and iLISI measure how well batches are integrated together,
and cLISI measures how well biological clusters are retained when batch correcting. These metrics only evaluate
batch correction of gene expression. To evaluate the batch correction of RNA velocity, we compute the average cosine
similarity between neighboring cells.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

6

III. RESULTS

A. LatentVelo infers cell fate trajectories

In Figure 2, we demonstrate LatentVelo on a pancreatic endocrinogenesis dataset showing differentiation of en-
docrine progenitors into 4 terminal states: Alpha, Beta, Delta, and Epsilon cells [27]. In 2a), a UMAP plot of
annotated celltypes in this dataset are shown. In b) we show the latent time and velocities estimated by LatentVelo
on this UMAP plot, which show the differentiation of progenitors into the terminal cell states. In c), we visualize the
2-dimensional latent regulatory state zr, which controls the dynamics of each cell. The 4 terminal celltypes cluster into
separate regions, showing that LatentVelo learns distinct dynamics for these 4 terminal states. In contrast, traditional
RNA velocity methods learn the same parameters for all celltypes.
In 2d) we choose 4 cells, each belonging to one of the 4 terminal states, and plot the inferred dynamics for these

cells. The black square denotes the initial cell state z0 at time 0, which is learned together with the dynamics and
autoencoder, and the magenta circle is the final state of the trajectory at t̂. In each of these trajectories, the encoder
of the model infers the conditioning variable h, which determines the dynamics of zr which regulates the dynamics
of a given cell to fall along a particular lineage. These trajectories more clearly delineate the differentiation of the 4
terminal celltypes in comparison to 2b). In particular, the development of epsilon cells is separated from Alpha cells
and is more cleanly seen as a separate terminal state.
In 2e), we show the dynamics of the latent regulatory state zr, where both dimensions are shown against latent

time in a 3-dimensional plot. In f) we show trajectories of zr on a 2-dimensional plot only showing the terminal
states. zr evolves from the initial black square to the respective regions representing the 4 terminal cell types. This
plot visualizes the branching dynamics for these celltypes.
A second example showing the differentiation of human hematopoietic stem cells into 6 different celltypes is shown

in Supplemental Figure S1. These trajectories suggest transitions that are unclear from simply plotting a velocity
field on 2-dimensional tSNE representation of the data.
LatentVelo is similar yet distinct in this aspect of inferring trajectories to recent approaches that utilize RNA

velocity dynamics in further analyses. CellRank [4] uses a cell to cell transition matrix, which can be constructed
with RNA velocity, to extract initial states, terminal states, and absorption probabilities of cells transitioning to
a particular terminal state. The difference with LatentVelo is that we infer the past trajectory, rather than the
probability of a future particular fate. Dynamo [5] uses RNA velocity estimates to interpolate a smooth velocity
field, from which various differential geometric quantities can be extracted, and can the velocity field can be used to
simulate trajectories for a specific initial starting state.
Inferring these trajectories is more difficult than simply estimating velocity direction. In Supplemental Figure S4, we

show on an intestinal organoid dataset [28] that estimated velocities can show expected celltype transitions (visually
on UMAP and quantitatively with CBDir) while inferred trajectories are poor – the final state of the trajectory z(t̂)
does not match the directly encoded state from the data ẑ. We also show that this can be improved by increasing
the dimensions of the latent space to include more information. This procedure can generally be used to determine
the required dimension of the latent space – we can increase the dimension until trajectories terminate close to the
directly encoded state from the encoder.

B. LatentVelo infers early separation of trajectories for reprogrammed and dead-end cells

To demonstrate LatentVelo’s ability to learn biologically meaningful features in its latent representation, we use a
dataset of mouse embryonic fibroblasts (MEF) reprogramming toward induced endoderm progenitors (iEP) [29]. In
this experiment, over-expression of key transcription factors drives fibroblasts to potentially undergo reprogramming,
or develop into a dead-end state. Celltagging is used to identify longitudinal trajectories of reprogramming. On
this dataset, scVelo incorrectly shows differentiation from reprogrammed to dead-end cells, and shows no route to
reprogramming [4].
In Figure 3 a)-e), we show a tSNE plot of the data. We show the velocity estimated by scVelo and LatentVelo

overlayed with their respective inferred latent times. We also show colors showing experimental time course, LatentVelo
regulatory parameter zr, and reprogramming outcome (purple dead-end, green reprogrammed). LatentVelo estimates
latent time that correlates with the experimental time-course, and velocity that indicates transitions to both dead-end
and reprogrammed cells. In contrast, scVelo shows differentiation of reprogrammed cells towards dead-end cells.

Observing the regulator parameter zr, we see the LatentVelo infers two distinct regimes of dynamics: negative zr
where cells undergo reprogramming, and positive zr of dead-end cells that do not. This highlights that the regulation
parameter zr can describe different “modes” of the dynamics, and here identifies the differences in reprogrammed vs
dead-end cells.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

7

FIG. 2. LatentVelo infers latent cell dynamics. a) UMAP plot showing the differentiation of endocrine progenitors into
4 terminal states, Alpha, Beta, Delta, and Epsilon cells. b) We show the velocity and latent time inferred by LatentVelo,
indicating the direction of differentiation. c) We also show the inferred latent regulatory states in LatentVelo, highlighting
the distinct dynamics for the terminal states. d) We show the latent trajectories inferred by LatentVelo for 4 different cells,
corresponding to a Delta, Epsilon, Beta, or Alpha cell. Plot is shown for a UMAP representation of the spliced latent state.
e) Latent regulatory state dynamics, showing a 3-dimensional plot of zr1 vs zr2 vs latent time. f) We show a scatter plot of
the terminal states for zr1 vs zr2. Dynamics start from the initial state z0 at the black square (the learned initial state) and
evolve with the estimated h and follow the magenta path until terminating at the magenta circles at the estimated t̂.

Reprogramming takes a complex path through the data. However in contrast, it becomes clearly apparent in the
UMAP plot of the spliced latent space inferred by LatentVelo shown in Figure 3 f)-i). Here, we see the latent space
cleanly separates the reprogrammed/dead end cells, generating a latent representation informative of the reprogram-
ming dynamics. This shows that the latent representation of the dynamics inferred by LatentVelo is biologically
meaningful. In Supplemental Figure S5, we show in the pancreas, retina, bone marrow, hematopoiesis, intestinal
organoid, and hindbrain datasets that in general, the regulatory parameter zr clearly identifies lineages in this same
way, highlighting lineage-dependent dynamics that are not modelled in some other RNA velocity approaches like
scVelo.

In Figure 3 j)-m), we show the distribution of zr for reprogrammed/dead-end cells, and zr vs latent time, showing a
clear separation. We also train a logistic regression classifier on zr (effectively just scaling zr to represent a probability),
and show a ROC curve, demonstrating that it is predictive of reprogrammed cells. This shows that the parameter zr
inferred by the model corresponds to a meaningful biological feature: the reprogramming outcome.

From just visualizing the embedding overlayed with velocities in 2 dimensions, it cannot be determined if methods
infer terminal states corresponding to reprogrammed and dead-end cells. We use CellRank [4] to analyze the estimated
velocities of scVelo. We use the velocity kernel, which computes a transition matrix based on the estimated velocities.
Using the scVelo velocities, only a single terminal state is obtained in Figure 3 n), corresponding to dead-end cells.
This is due to scVelo incorrectly inferring transitions from reprogrammed cells to dead-end cells [4]. CellRank offers a
method of improving this estimate by combining the velocity kernel with other kernels, but here we are only interested
in the velocity estimates of scVelo. With LatentVelo, we sample 25 trajectories for dead-end and reprogrammed cells
in Figure 3 o). We show that these trajectories diverge towards reprogrammed and dead-end states, with no significant
transitions from reprogrammed to dead-end cells as there are in scVelo.

This analysis with LatentVelo suggests that the reprogramming fate decision occurs early on in the process, as
early as 6 or 9 days (seen at 6 days, but there are very few cells tagged as reprogrammed at 6 days). This was also

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

8

FIG. 3. Reprogramming dynamics of mouse fibroblasts. a)-e) t-SNE representation of mouse embryonic reprogramming
data [29]. We color this plot by experiment time course in a). We plot scVelo velocity and latent time and LatentVelo velocity
and latent time in b) and c). In d) and e) we show LatentVelo velocity with regulatory parameter zr and reprogramming out-
come (turquoise reprogrammed, purple dead-end) from the experiment. We see that scVelo incorrectly predicts differentiation
from reprogrammed cells to dead-end cells, whereas LatentVelo shows no such transitions and shows a route to reprogramming
from early times. The regulation parameter zr in LatentVelo is highly correlated with reprogramming, and describes distinct
dynamics for different values of zr corresponding to reprogramming and dead-end cells. f)-i) We compute a UMAP representa-
tion of the latent spliced latent state zs, and color by the variables in the first row. On this learned latent space, dynamics are
clearly separated by zr, corresponding to the reprogramming outcome. j)-o) We show that reprogramming outcome is strongly
correlated with zr, by showing experimental time course and inferred latent time vs zr, colored by reprogramming outcome.
In m) we include a ROC curve from a one-dimensional logistic regression showing zr is predictive of reprogramming outcome.
In n) we also show the original tSNE embedding colored by the predicted fate probabilities by CellRank [4] using the scVelo
velocities with CellRank’s velocity kernel. scVelo only infers a terminate state at the dead-end cells. Note: CellRank offers a
method of improving this estimate but incorporating other kernels, but here we just use the velocity kernel to analyze scVelo
velocities. o) Example latent trajectories of the dynamics inferred by LatentVelo are shown on the UMAP representation of
the spliced latent state, showing the divergence of dead-end and reprogrammed cell trajectories, indicating that LatentVelo is
correctly inferring the dynamics of reprogramming. 25 dead-end and 25 reprogramming trajectories with t̂ > 0.6 are randomly
sampled.

suggested in the original analysis by Biddy et al. [29]. Since LatentVelo is able to infer these early reprogrammed
fates without the celltagging information, this suggests that the relevant information for reprogramming is available
within the scRNAseq data at early times, and can be extracted with an analysis of the RNA velocity dynamics with
LatentVelo.

C. Latent space dynamics correct for batch effects in RNA velocity and cell states

Batch correction for RNA velocity is currently an unaddressed problem [13]. Since RNA velocity methods operate
on gene-space, high-performing batch correction methods [26] that typically output a latent embedding or corrected
nearest neighbor graph will not work with typical RNA velocity methods. Another challenge of correcting batch effects
in RNA velocity the need to simultaneously correct unspliced and spliced RNA counts, whereas batch correction
methods typically operate on a single data matrix.
Since LatentVelo learns dynamics on a latent space, it naturally enables batch correction by learning a shared

latent space for the multiple batches. This works in a similarly to existing variational auto-encoder batch correction
methods, such as scVI and scANVI [15, 30]. By including batch IDs in the input of the encoder and decoder, and using
batch-independent latent dynamics, all batch variation can be handled by the encoder and decoder. This enables

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

9

FIG. 4. Batch effect correction of dynamics with LatentVelo. a) Unintegrated data of a two batch bifurcation, simulated
with dyngen. Simulation time shows the direction of differentiation. b) Highlighting the “milestone” cells in the data, which
define similar clusters of cells between batches and define the direction tested with CBDir scores. c) Batch correction (kBET
and iLISI) and biological cluster conservation (cLISI) scores for batch correction of cell states (not velocity). Higher scores are
better. d) Velocity scores for the models. Nearest neighbor (NN) velocity cosine similarity scores measure batch correction of
velocity, and the velocity cosine similarity and CBDir scores measure velocity accuracy. Higher scores are better. e) UMAP of
LatentVelo with celltype annotations (LatentVelo+annot) showing simulation time, batch ID, milestone annotations, and latent
regulatory state zr of spliced latent states at t̂. Visually, the data are well integrated. f) zr vs latent time for the two batches,
showing batch correction of the regulatory variable on the distinct branches. g) Unintegrated data simulated with dyngen.
This data contains with two batches with a bifurcation, but for one of the batches a gene-module knockout has been performed,
knocking out one of the lineages. (Labelled WT wildtype and KO knockout) h) Highlighting the milestone cells, which shows
that the C (green) and E (purple) lineage is removed by the knockout. i) Batch correction metrics for cell states. Higher scores
are better. j) Velocity metrics, showing scores for batch correction and accuracy of velocity. k) UMAP representation of our
LatentVelo+annot spliced latent states. Batches are visually well integrated and follow the correct differentiation trajectory,
despite the knockout on one of the batches. l) zr vs latent time for the two batches, showing batch correction of the regulatory
variable for the branches. In Supplemental Figure S3, we show UMAP plots for scVI and scANVI on these datasets, highlighting
the improvement in batch correction by LatentVelo.

LatentVelo to perform batch correction of cell dynamics and cell states.
In Figure 4, we demonstrate LatentVelo’s ability to learn dynamics in the latent space that are independent of batch

effects. We use two different simulated datasets from dyngen with strong batch effects. To generate the simulated
data with batch effects with dyngen, cell kinetic parameters are sampled from the same distributions in different
realizations with the same gene regulatory networks, as suggested in the original dyngen paper [31].

We compare our model with existing batch correction tools for gene-expression (without velocity). Recently a
method using traditional batch correction tools that produce a corrected gene count matrix has been suggested for
RNA velocity [32, 33]. We compare this method to LatentVelo by using UniTVelo (unified time mode) combined with
batch correction tools on gene-space. We have chosen UniTVelo for this comparison because we found it generally

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

10

performed quite well with default settings on the synthetic datasets, while scVelo (stochastic and dynamical modes)
performed poorly even without the included batch effects (Figure 7). We evaluate these methods with metrics of
biological cluster conservation (cLISI) and batch correction (kBET and iLISI) [26] for the latent representation of
cell-states, as well as with velocity metrics of CBDir and ICCoh and a novel metric of batch corrected velocity (NN
velocity cosine similarity), comparing the cosine similarity of velocities for neighboring cells in different batches.

First, we use a simulated dataset with two batches of a bifurcation. In 4a) and b), we show a UMAP representation
of the unintegrated data, with the simulation time highlighting the differentiation direction and trajectory milestones
indicating similar clusters of cells accross batches for the CBDir metric. In c), we compare our model with traditional
batch correction methods (no velocity) for biological cluster conservation (cLISI) and batch correction (kBET, iLISI)
of the latent cell states. Our model is the only method scoring highly on all metrics, even when compared to these
methods specifically designed for batch correction of gene expression.

In d), we evaluate batch correction of velocity. We compare LatentVelo with UniTVelo used on the unintegrated
data, or UniTVelo used with a previously suggested method for batch correction of RNA velocity [32, 33] (see Methods
section VH for details). This approach requires the use of any generic batch correction method that output corrected
gene-expression matrices, and so we use this method with ComBat [34] (as was originally suggested), and scGen [35]
(an auto encoder method). We found that each of these methods fail to properly integrate the batches and have worse
performance on velocity metrics than LatentVelo.
In Figure 4e), we show the UMAP plot of the spliced latent state for LatentVelo with celltype annotations (La-

tentVelo+annot). The model latent space accurately integrates the two batches and RNA velocity accurately follows
the direction of differentiation. Both batches are clearly visually integrated in addition to the quantitative metrics.
Observing the zr regulatory parameter at t̂, we see that the model accurately describes the lineage dynamics with
distinct values of zr on each lineage, despite the two batches. Additionally, we note that adding celltype annotations
to the latent space improves batch correction, compared to other autoencoder batch correction methods that only
consider cell states.
In Figure 4g) and h), we demonstrate our approach on two simulated batches of a bifurcation, but now perform a

gene-module knockout on one of the batches, eliminating the C (green) and E (purple) milestone cells in this batch.
The quantitative metrics in Figure 4i) and j) show that LatentVelo is the only model able to integrate the two batches.
In Figure 4k), we show the UMAP representation of the spliced latent states, showing the integration of the batches
in the joint latent space. LatentVelo cleanly disentangles the batch effects from the perturbation.

In each of these simulated datasets, LatentVelo is the only model consistently performing strongly for both velocity
estimation and batch correction of cell states and velocities. We also see that adding annotated cell-type information
to the model is useful to improve batch correction. Additionally, our model performs even better at batch correction
of gene expression than the batch correction methods scVI, scANVI, ComBat, and scGen(gene). This is visualized in
Supplemental Figure S3. LatentVelo is able to achieve this better performance for batch correction by utilizing the
splicing dynamics to not just position similar cells together, but to also align them in time according to the dynamics.
All model hyperparameters remain at their defaults for these batch correction tests. We also use default parameters
for scVI, scANVI, scGen, ComBat, and UniTVelo.

D. LatentVelo can infer complex lineage specific gene dynamics

While the main focus of Latentvelo is to infer latent dynamics, we can also estimate the dynamics of single genes.
We compute the velocity of single genes in LatentVelo by transforming the latent space velocities into gene-space
velocities by utilizing the decoder: ṡ = J [Ds](zs)fs(zs, zu), where J [Ds](zs) is the Jacobian of the spliced decoder
evaluated at zs and fs is the latent space velocity. However since the high-dimensional gene space is compressed into
a low-dimension latent space, we expect the dynamics of only the best reconstructed genes in the autoencoder to be
modelled well.
Previous work has identified Multiple Regime Kinetic genes (MuRK) that show a transcription boost during ery-

throid development, resulting in a large increase in unspliced RNA [12, 13]. This results in scVelo dynamical and
stochastic modes failing to identify the correct velocity direction. This is due to the dynamics of these MuRK genes
being poorly modelled by the linear differential equations. We use two datasets containing the development of ery-
throid cells to demonstrate LatentVelo’s ability to model dynamics with a transcriptional boost. While scVelo fails
on these datasets, recent models such as VeloAE, UniTVelo, and VeloVAE have been previously demonstrated to
correctly model a transcriptional boost [16, 17, 19].
First, we use a mouse erythroid development dataset [36]. In Figure 5 a)-e), we show that our approach captures

the correct differentiation direction from blood progenitors to Erythroid cells, and contrast this with the reversed
direction inferred by scVelo.
Second, we would like to show that even though LatentVelo is modelling a low-dimensional representation of RNA

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

11

FIG. 5. LatentVelo can infer complex gene dynamics. a) UMAP plot a mouse erythoid development dataset. LatentVelo
velocity arrows on shown on the plot, and the inferred scVelo direction is shown. b)-d) We show unspliced vs spliced plots of
three genes showing a boost in transcription between Erythroid 2 and Erythroid 3 cells, demonstrating that our model correctly
models the velocity of these genes. e) We show that many of the best predicted genes in our model are MuRK genes. f) t-SNE
plot of a human bonemarrow dataset. LatentVelo velocity arrows are shown on the plot, and the inferred scVelo direction for the
erythroid lineage is shown. g)-i) We show three genes showing a boost in transcription on the erythroid lineage, demonstrating
that our model correctly models the velocity of these genes. j) UMAP plot of a pancreas endocrinogenesis dataset. k)-m)
We show three genes showing diverse dynamics for this dataset. n)-p) Spliced vs latent time of these three genes with color
showing the value of the velocity, showing the sign matches the direction of the dynamics.

velocity, and not the high-dimensional gene space, we can still infer the dynamics of key critical genes. Unspliced-
spliced RNA plots are shown for some of the MuRK genes best reconstructed by the VAE (in terms of R2 score), b)
Smim1, c) Hba-x, and d) Hbb-bh2. These MuRK genes show a transcriptional boost during the transition between
Erythroid 2 and Erythroid 3. In comparison to scVelo where a reversed velocity direction is seen [12], our approach
correctly models the velocity direction for these genes.

MuRK genes previously identified in this dataset contain archetypal red blood cell genes essential for red blood cell
function [12]. We demonstrate that LatentVelo utilizes these critically relevant genes by showing the percent of top
reconstructed genes in terms of R2 score that are MuRK genes in Figure 5 e). This shows that even though our model
latent space is compressing the 2000 highly variable genes to 20 dimensions, it is still capturing these critical genes.

Note that since this dataset includes 3 batches, we include the batch ID in the encoder and decoder for batch
correction with LatentVelo. This is most clearly seen in the Hbb-bh1 gene unspliced vs spliced plot (Figure 5 d),
where two separate blobs of Erythroid 3 cells (dark orange) are seen due to belonging to separate batches. Due to our
model including batch correction, when plotting these raw unintegrated counts we see the model accurately predicts
different velocities on each of the batches.

We also test our method on a human bonemarrow dataset [37]. Similar to the mouse erythroid dataset, scVelo has
many problems on this dataset, in particular showing incorrect differentiation direction on the erythroid lineage and

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

12

FIG. 6. Inferring multiple-lineages in mouse gastrulation. a) UMAP plot showing celltypes during mouse gastrulation.
b) LatentVelo latent time and c) experimental time points with inferred Latentvelo velocity. d) Some CBDir celltype transition
scores estimated on the inferred latent space, highlighting the inferred transitions. e) Inferred latent trajectories for examples
of endothelial, erythroid, gut, allantois, mesenchyme, and forebrain/midbrain/hindbrain cells.

showing differentiation towards hematopoetic stem cells (HSC). In Figure 5 f) we show that our method accurately
models the direction of differentiation, from HSC to the erythroid lineage, and to the monocyte (Mono 1,2) and
dendridic (DCs) lineages. We also highlight some example genes, where our model captures the transcriptional boost
behaviour of the g) SMIM1, h) KLF1, and l) HBB genes on the erythroid lineage. Additionally, in the SMIM1 gene
plot, we show that LatentVelo infers distinct behavior for this gene on the different lineages: a transcriptional boost
of the gene on the erythroid lineage and a repression of the gene on the other lineages.

The more general case of time-dependent rates is explored in Supplemental Figure S6. We show that our model is
robust to increasing/decreasing transcription, splicing, and degradation rates vs time with simulations.

In Figure 5 j)-m) we show a 3 different genes with a diverse spectrum of dynamics. In k), the Nnat gene is only
expressed in the Beta lineage, in l) the Cpe gene is expressed in all lineages at different amounts, and in m) the full
cycle of induction and repression of the gene Ppp3ca is seen. In Figure 5 n)-p) we show that the value of the velocity
for these genes correctly corresponds to the direction of the dynamics.

E. LatentVelo infers cell fate trajectories in large multi-lineage systems

In the pancreas dataset in Figure 2, fibroblast reprogramming dataset in Figure 3, and Supplemental Figure S5, we
demonstrated that LatentVelo can learn dynamics in datasets with multiple lineages. However, these datasets had at
most 3-4 lineages. We now test LatentVelo on a large-scale many-lineage system.

In Figure 6 we show a dataset of mouse gastrulation, showing development from pluripotent epiblast cells into the
ectodermal, mesodermal, and endodermal progenitors of major organs [36]. Note, this is the full dataset from where
the erythroid cells from Figure 5 come from (seen in the upper right of the UMAP plot in Figure 6a with the same
colors). On this large scale dataset, we have increased the dimension of the latent zs and zu states to 70 and used a
6-dimensional zr.

In Figure 6 c) putative developmental directions can be seen by observing the later time point cells (E8.5), and our
model’s velocity and latent time estimates generally agree with these time points in Figure 6 b). We also highlight
some CBDir transition scores between celltypes in d), showing the model infers transitions from epiblast to mesoderm,

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

13

the development of epithelial and erythroid cells, and the development of the gut from endoderm cells. One particular
transition that we don’t see is the convergence of visceral endoderm cells and definitive endoderm cells to gut cells
that was originally identified [36], we only see the transition from definitive endoderm cells to gut cells. We suspect
this is due to LatentVelo assuming a single initial state z0.

In Figure 6 e), we show inferred trajectories for example endothelial, erythroid, gut, allantois, mesenchyme, and
forebrain/midbrain/hindbrain cells. These trajectories give a more clear visualization of the dynamics as compared
to the velocity field on the gene-space UMAP plot, where disentangling the many occurring transitions is difficult.
Inferred trajectories start as epiblast cells and transition to the primitive streak, then branch to the variety of celltypes.

This dataset demonstrates LatentVelo’s ability to learn dynamics on large multi-lineage systems with many different
cell types.

F. Quantitative benchmarking on synthetic and real datasets

We primarily compare our model with scVelo dynamical and stochastic modes [11]. Note: scVelo stochastic mode
is an updated version of the Velocyto steady-state model, where regression is done for the first 2 moments of the
dynamics instead of just the mean [11]. Other recent RNA velocity methods have been developed, such as UniTVelo
[19], DeepVelo [18], VeloVAE [19], and VeloVI [38]. We do not compare with these methods due to their recency and
the variety of hyperparameters needed to be adjusted to fairly compare the methods.

We use dyngen [31] to generate synthetic datasets of 5000 cells each with a variety of developmental structures:
linear (51 genes), bifurcation (65 genes), trifurcation (81 genes), and a binary tree (89 genes). In Figure 7 a)-c)
we show results on these synthetic datasets. We show the gene space velocity cosine similarity and 50 principle
component (PC) cross-boundary directedness score (CBDir) and inner cluster coherence score (ICCoh). The boxes
show the interquartile range over the aggregated cells of all celltypes, the notch shows the median, the white point
shows the mean, and the whiskers show 1.5× the interquartile range. Since the exact velocities in the simulation
are noisy, we average over 100 nearest neighbors when computing the gene space cosine similarity between estimated
and exact velocities. Otherwise, the whiskers for velocity cosine similarity extend the entire plot due to noise in the
simulation. Separately plotting these “incorrectly” predicted cells shows their simulated velocity going opposite the
direction of differentiation. For this reason, we compare with local averages of velocity.

With synthetic data, we show LatentVelo performs much better than scVelo dynamical and stochastic modes in
Figure 7. For LatentVelo and all of the comparison models, hyperparameters and settings are kept at their defaults
on these synthetic datasets. We also test our model on increasing/decreasing transcription, splicing, and degradation
rates vs time with simulations from the scVelo linear differential equations in Supplemental Figure S6.

In Figure 7 d)-e), we evaluate on 10 real datasets with known trajectory directions, and compare with scVelo
stochastic and dynamical modes. Our model consistently scores well for the CBDir and ICCoh scores, above scVelo.
One limitation to the CBDir metric is that noisy boundaries between annotated celltypes can obscure the evaluation
of velocity directions, and artificially lower scores. In particular this is seen in the scNT, mouse hematopoiesis, and
hindbrain (GABA, Glial) datasets, where velocity follows the expected directions but noisy celltype boundaries lower
the CBDir scores.
We also evaluate LatentVelo’s ability to model the dynamics of separate lineages with the regulatory parameter

zr. We train a simple logistic regression classifier on zr to predict separate lineages, obtaining classification accuracy
between 0.9 and 1 for all datasets (shown in Supplemental Figure S5). This shows that the lineages are clearly
separated and modelled with distinct dynamics.
Note that while we have used 50 principle components to evaluate cell-type transitions because we can do a common

benchmark between all methods, a natural embedding to use when evaluating cell-type transitions with LatentVelo
is just the latent embedding inferred by the model.
For these synthetic and real datasets we keep all model hyperparameters at their default values, except the dimension

of zr and the dimension of h. The dimension of zr is by default set based on the number of expected lineages, and we
set zr to be the number of expected lineages minus one, except if we only expect 1 lineage where we use 1 dimension.
We have found this to be a good heuristic. The dimension of h is set to be the same as zr, unless there is poor
agreement between z(t̂) and ẑ, then it is increased (alternatively the dimension of the latent state can be increased,
see Supplemental Figure S4). Regularization strength is set to the default value 0.1 for all synthetic datasets and real
datasets. For the scNT-seq dataset, the data is very noisy, so we restrict the model to only a small subset of velocity
genes (see Methods section VB). However, more work needs to be done exploring these settings of LatentVelo, as well
as the settings of other models.
Since all of the parameters of the neural networks in LatentVelo need to be initialized and training is done in

random mini-batches, there is some stochasticity in training. For most datasets the model is robust to this, however
is some cases LatentVelo infers incorrect reversed velocities on a fraction of the random seeds. A similar problem was

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

14

Linear
Bifurcation

Trifurcation
Binary tree

1.0
0.5
0.0
0.5
1.0

ge
ne

 sp
ac

e
ve

lo
cit

y
co

sin
e a)

Linear
Bifurcation

Trifurcation
Binary tree

0.0
0.2
0.4
0.6
0.8
1.0

50
 P

C
CB

Di
r

b)

Linear
Bifurcation

Trifurcation
Binary tree

0.0
0.2
0.4
0.6
0.8
1.0

50
 P

C
IC

Co
h

c)

LatentVelo
scVelo(dyn)
scVelo(stoc)

0.0

0.5

1.0

CB
Di

r 5
0

PC

d)

LatentVelo
scVelo(dyn)
scVelo(stoc)

Pancreas
Retina

Human

 bonemarrow Mouse

 erythroid Dentate
 gyrus Intestinal

 organoid Hindbrain

 (Oligo) scNT

 neurogenesis Mouse

 hematopoiesis Hindbrain

 (GABA, Glial)

Dataset

0.0

0.5

1.0

IC
Co

h
50

 P
C

e)

FIG. 7. Quantitative benchmarking on synthetic and real data. a)-c) Quantitative metrics for the synthetic datasets.
We show the a) cosine similarity between estimated and exact simulated velocity on the full gene space, b) Cross-Boundary
Directedness score (CBDir) on the space of 50 principle components (PC), and c) Inner-Cluster Coherence score (ICCoh) on
the space of 50 PC. d)-e) Quantitative metrics for real datasets. We show d) CBDir and e) ICCoh scores on the space of 50
PC. Higher scores for all metrics are better.

encountered with UniTVelo, and was addressed by initializing the latent time with a diffusion pseudotime based on a
specified known root celltype, or fitting the model multiple times and selecting the one that is consistent with any prior
knowledge [17]. In LatentVelo we mitigate this problem on the mouse gastrulation, fibroblast reprogramming, and
hindbrain GABA datasets by including a correlation in the loss function between inferred latent time and experimental
timepoints for the first few epochs of training (see Methods section VD). We have found that reversed velocities result
from the initialization of the model, and this can be corrected early by simply influencing the correct direction with
experimental time-points. This also is a problem on the scNT, intestinal organoid, and bonemarrow datasets, where
experimental timepoints are not available. In these cases, the correct direction must be chosen out of multiple random
seeds, or the “root” cells need to be specified (see Methods section VD).

We believe this issue with randomly fully reversed velocity fields occurs due to a lack of genes showing cycling
induction to repression behaviour. The result is monotonic gene dynamics, where the direction is ambiguous. These
problems occur on datasets where scVelo also has problems. In LatentVelo offer the ability to specify root cells to
correct for this issue, or use experimental time points.

IV. DISCUSSION

We have introduced LatentVelo, a new model of latent cell developmental dynamics. We have demonstrated that
our model is accurate and robust on a wide variety of synthetic and real datasets, outperforming the currently most
widely used approach, scVelo [11]. LatentVelo is the first method to batch correct RNA velocity by inferring velocity
on a latent embedding, and additionally performs better at batch correction of gene expression than other methods
that only attempt to batch correct gene expression and ignore dynamics. In addition to just cell velocities, LatentVelo
infers the trajectory a cell took to its current state, which is useful for improving the interpretation of dynamics.
LatentVelo can infer distinct RNA velocity dynamics on separate lineages by learning a latent regulatory parameter.
We also show that the latent embedding and the latent regulatory parameter can represent biologically meaningful

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

15

features.
Previous RNA velocity methods have inferred velocity on gene-space, with the only exception being VeloAE, which

only modelled steady-state dynamics [16]. LatentVelo embeds gene expression into a latent space, with the time-
progression of gene expression described by latent dynamics. Since the latent embedding and latent dynamics are
trained together, this allows us to infer dynamics-informed embeddings of gene expression, which is a dimensional
reduction of cell states, informed by the dynamics of the system. Shown with the fibroblast reprogramming dataset
[29], the UMAP representation of this latent space allows clear visualization of the separate trajectories taken by
reprogrammed or dead-end cells. This opens up a new method of studying and characterizing the dynamics of cell
differentiation, through the features represented in this latent space.

LatentVelo’s main application is describing complex developmental dynamics and inferring trajectories in a low-
dimensional latent space. Despite modelling dynamics in this low-dimensional latent space, LatentVelo can still model
the dynamics of single genes by transforming velocities back to gene-space with the decoder. In Figure 5 we showed
that LatentVelo can model the dynamics of MuRK genes in erythroid development and a diverse set of gene dynamics
in pancreatic endocrinogenesis. However since the high-dimension gene space information is highly compressed, this
can only be reliably done for the genes that are well reconstructed by the autoencoder. This is one limiting feature
of LatentVelo in comparison to other approaches that directly model dynamics on gene space.

Interestingly, we have found scVelo stochastic mode, which computes RNA velocity based on a linear regression
between unspliced and spliced RNA at an assumed stead-state, performed much better than scVelo dynamical mode.
We believe this highlights the issues with the simple linear differential equation with constant rates approach of scVelo
dynamical mode. The recent methods DeepVelo [18], UniTVelo [17], VeloVAE [19], and our approach LatentVelo all
have different approaches to addressing this issue by generalizing the simple linear dynamics.

Since LatentVelo is a variational auto-encoder, we can sample the latent space to generate uncertainty estimates
of latent times and velocities. This is shown in Supplemental Figure S7, where we show uncertainty is largest near
branching between multiple cell-types. This method of uncertainty estimation is distinct from the method of scVelo
[11], which used the consistency of the velocity estimates of neighboring cells. Recent work has extensively explored
these types of uncertainty estimates from variational Bayesian models of RNA velocity [38, 39].

LatentVelo can be easily extended to multi-omics. In the Supplemental Information, we show an example of this
with combined scRNA-seq and ATAC-seq. This extension is done by adding a new variable to the structured latent
dynamics zc, corresponding to the latent representation of chromatin accessibility, and modelling the regulation of
chromatin by zr and the regulation of transcription by zc and zr. This demonstrates a key feature of LatentVelo:
the ability to build general structured latent dynamics. This is presented as an example, we leave the more detailed
analysis of multi-omic systems and exploration of other forms of structure in the dynamics to future work.
LatentVelo addresses many of the challenges raised in a recent review paper of RNA velocity [13]: multi-modal

omics (see Supplemental Information), multi-variate dynamics, batch correction, lineage/time dependent rates, and
implicit gene selection by embedding in the latent space. Two challenges not addressed are (1) stochastic dynamics,
and (2) normalization. We see potential ways to address these challenges with simple modifications to our model:
(1) for stochastic dynamics we can replace the latent ODEs in our model with SDEs [40], and (2) we can approach
normalization in a similar way as scVI [30]; including normalization factors as latent variables to infer. Modelling
SDEs instead of ODEs is a clear next direction for LatentVelo, in particular by using a Bayesian approach to inferring
the latent SDE [40], we can simultaneously learn the prior SDE describing the full population of cells as well as
the conditional SDE describing the dynamics of each cell conditioned on a particular branch (as we have done with
the parameter h). This would allow the use of the model for perturbed inputs – estimating future developmental
trajectories for individual cells, rather than just the past trajectories of cells as we have done here. Existing SDE
models do not learn the latent embedding as LatentVelo does, nor do they incorporate splicing dynamics [41].

There are limitations to the evaluation of RNA velocity on real datasets. We have used a modified form of the
CBDir metric [16, 17], which quantifies the probability of each cell transitioning to the expected celltype. A substantial
limitation of this approach is that it relies on accurate discrete annotations of cell-types, which can cause issues on
the boundaries between celltypes. Additionally, the CBDir metric is poor at identifying the absence of a transition
between two cell types because it does not look at the strength of transitions, only the direction of velocity. Further
work needs to be done on the development of quantitative metrics for RNA velocity.

A limitation of LatentVelo is that by default we assume a single initial latent state from which the trajectory of
all cells start from, and that each observed cell can be reached by a continuous trajectory from this initial state. For
example in the full mouse gastrulation dataset (Figure 6), we do not see the expected convergence of visceral endoderm
cells and definitive endoderm cells to gut cells [36]. Since each cell needs to be reached by a continuous trajectory, we
may encounter issues in situations with sparse cell clusters with few observed transient cells connecting trajectories.
We believe that this occurs in the variety of different sparse cell clusters in the dentate gyrus dataset [11]. In these
cases the model still infers generally accurate velocity directions for a given cell (as seen in the benchmarking in
Figure 7), but latent trajectories do not start from expected initial states. For example, on the dentate gyrus dataset

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

16

[11], we see the expected transitions on the granule lineage, radial glia to astrocyte transitions, and oligodendrocyte
progenitors to oligodendrocyte transitions, but LatentVelo estimates the disconnected microglia cluster as having the
lowest latent times, so inferred trajectories all incorrectly start from this cluster.

While we have shown LatentVelo is accurate on many datasets, for some it requires additional hyperparameter
adjustment by increasing the dimension of the latent states, using the celltype annotated model, or restricting to only
a subset of genes. Indeed, all recent improvements to RNA velocity also have multiple settings and hyperparameters,
in addition to preprocessing steps [14]. While we have discussed some heuristics to choosing the hyperparameters of
LatentVelo, more work needs to be done in this area.

V. METHODS

A. LatentVelo

We take spliced and unspliced counts per cell as input and embed into a latent space ẑ with an encoder neural
network. A separate encoder is used for spliced and unspliced counts, partitioning the latent space as ẑ = (ẑs, ẑu).
Our model is trained as a Variational Autoencoder (VAE), where we use a standard normal prior on the latent
space ẑ ∼ Normal(0, 1). We also use an encoder to estimate a latent developmental time with a logit-normal prior
t ∼ LogitNormal(0, 1).
Dynamics on the latent space are described by neural ordinary differential equations,

dz(t)

dt
= f(z(t)), (12)

where f is a neural network describing the velocity field of the dynamics. The spliced component of this velocity
field represents latent RNA velocity. The structure of f is decomposed into the 3 components described in Figure 1,
f = (fu, fs, fr).
These dynamics are coupled to the auto-encoder by matching the ODE solution z(t̂) at time t̂ with the encoded

latent state ẑ.
We use an approximate posterior factorized as q(ẑ, t̂|x) = q(t̂|ẑ)q(ẑ|x), where x = (s,u) are the observed spliced and

unspliced counts. Separate encoders for spliced and unspliced latent states are used, such that q(ẑ|x) = q(ẑs|s)q(ẑu|u).
Additionally, we also use separate decoders, p(s,u|z) = p(s|z)p(u|z). Since the data are very noisy, we find that we
cannot use a count-based distribution such as a negative-binomial, so instead use a Gaussian with mean functions
µ(z) = (µ(zs), µ(zu)) with smoothed and normalized counts following the scVelo preprocessing procedure [11].
Our model is trained with the loss:

L = −E
ẑ,t̂∼q

[

log Normal(x|µ(ẑ), σ)
]

+KL(q||p)− E
ẑ,t̂∼q

[

log Normal(x|µ(z(t)), σ)− log Normal(ẑ|z(t), σz)
]

. (13)

Expectations are computed by sampling ẑ and t̂ from the encoder. In Methods sections VB and VD we discuss
further terms in this loss function regularizing the trajectory direction.

The first two terms of this loss are the standard negative evidence lower bound of a VAE [23, 24], representing the
expectation of the negative log-likelihood with a Gaussian, and the KL divergence between the posterior q(ẑ, t̂|x) and
the prior, Normal(0, 1) × LogitNormal(0, 1). The two remaining terms include a loss for the decoded solution of the
dynamics z(t̂), and a term penalizing the distance between the encoded latent state ẑ and the latent state estimated
by the dynamics z(t̂).
By default, we use a 20-dimensional latent state for each observed component (spliced, unspliced) and use ELU

activations throughout. We follow VeloAE [16] and use a encoder structured as an initial fully connected dense neural
network with 1 hidden layer (of size 25 by default) as the first part, and then use two graph convolution layers
using a 30 nearest-neighbor graph computed on the 50 principle components (same as was used for smoothing) as
the similarity graph for the second part. This enables the encoder to use information about nearest neighbors when
computing the latent embedding. In the case of batch correction, we do not use the graph convolution layers and
instead just use a fully connected dense neural network with 2 hidden layers.

The encoders for h and t̂ are also graph convolutional networks with 2 layers of graph convolutions. The differential
equation derivative functions fu and fr have a single hidden layer of size 25. fs is linear in zs and zu. By default we
also use a linear decoder, and use separate linear decoders per batch for batch correction (with the option for a fully
connected neural network). The dimension of zr is chosen based on the expected number of branches. For one or
two expected branches, we use 1 dimensions, for 3 expected branches we use 2 dimensions. In general, we take the
dimension of zr to be 1 less than the number of expected branches.

We use 90% of the data for training, and use the other 10% as a validation set to monitor training progress. We
train for 50 epochs, and use the model at the epoch with lowest mean-squared error on the validation set. By default

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

17

we train with the Adam optimizer with a learning rate of 0.01 and a batch size of 100. In large datasets (e.g. mouse
gastrulation or Fibroblast reprogramming), we increase the batch size to 1000. In scenarios with exploding gradients
resulting in failed training, we use gradient clipping to stabilize training. We increase the KL divergence weight in
the VAE from 0 to 1 linearly over the first 25 epochs.
The model is implemented in pytorch utilizing the torchdiffeq package for neural ODEs [25, 42], which critically

allows computing gradients of the inferred latent time-points t̂ in the solver, rather than marginalizing over t̂ by
integrating. We found the marginalization approach to be challenging.

B. Enforcing splicing direction

The linear ODEs describing transcription, splicing, and degradation are,

u̇g(t) = αg(t)− βgug(t) (14)

ṡg(t) = βgug(t)− γgsg(t) (15)

per gene g. These equations enforce the casual relationship of splicing between unspliced and spliced RNA. General-

izing, this same effect can be achieved with
∂ṡg
∂ug

> 0 and
∂ṡg
∂sg

< 0.

To constrain the direction of splicing to accurately represent the biology (unspliced to spliced), we need to enforce
∂ṡg
∂ug

> 0 and
∂ṡg
∂sg

< 0 for each gene g. However, enforcing this constraint for general forms of the velocity ṡ is difficult,

since we need to compute the Jacobian, which is a matrix of size 2N2, where N is the number of genes. Computing
this would require back-propagation through the entire model back to the input, which is computationally infeasible.
Instead, we can use a much faster approach to enforce this direction by using the correlation between velocity and
spliced and unspliced counts.
We weakly regularize by the correlation between gene-space velocity and input data (similar to DeepVelo [18]),

λsucorr(ṡ,u) + λsscorr(ṡ,−s). (16)

By default we take λsu = λsu = 0.1. The goal with this term is to just weakly regularize the direction, rather than
match the strict linear dependence seen in other models. To compute gene-space velocity we compute the time-
derivative of the transformation with the decoder, ṡ = J [µs](zs)żs, where J [µs] is the Jacobian of the spliced decoder.
Similarly we can compute the unspliced gene-space velocity, u̇ = J [µu](zu)żu. Note, the Jacobian here is taken with
respect to the latent space which has a smaller dimension, and this is a Jacobian vector product, which are easily
computable by backpropagation in comparison to the Jacobian discussed above. This regularization can be done per
celltype, only including the same type cells in the correlation.

We only apply this regularization to genes that show significant splicing dynamics. These “velocity genes” are
identified in a similar way to UniTVelo and scVelo [17]. We fit a linear regression between spliced and unspliced data
per gene, then only select genes with R2 score above 0.05 and below 0.95. In cases of genes with very high R2, all
cells lie on a straight line in the u vs s plane, showing no splicing dynamics. In cases of genes with very low R2, cells
are scattered uniformly in the u vs s plane, showing no splicing dynamics. Genes with an extreme ratio of standard
deviations between unspliced and spliced were also filtered so that 0.3 ≤ σu/σu ≤ 3, given that this may be the result
of error in reading unspliced counts.

C. Incorporating cell-type annotations

We follow scANVI [15], and incorporate cell-type annotations by modifying the prior. We introduce the new latent
state ŵ, and use the new approximate posterior,

q(ẑ, ŵ, t̂|x, c) = q(ẑ|x)q(ŵ|c, ẑ)q(t̂|ẑ). (17)

We place a standard normal prior on w, and model ẑ and t̂ as functions of w and the cell-type annotations c
instead of placing a standard normal/logitnormal priors; p(ẑ|ŵ, c) = Normal(fµ,z(ŵ, c), fσ,z(ŵ, c)) and p(t̂|ŵ, c) =
LogitNormal(fµ,t(ŵ, c), fσ,t(ŵ, c)) .

The effect of this modification is to allow the priors on ẑ and t̂ to vary with cell-type, preventing over-regularizing
and eliminating biologically relevant cell-type clusters for the sake of matching the restrictive prior.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

18

D. Incorporating experimental time points or root cells

We can include a regulation term to enforce a positive correlation between inferred latent time and experimental
time when available, λtcorr(t̂, te,i), where te,i is the experimental time point for the ith cell. The weight of this
correlation can be linearly decayed over the first few epochs to fix reversed velocities.

In scenarios where no experimental time-points are known, a “root” celltype can be used in reversed velocity
scenarios. In these cases we can regularize the estimated latent time t̂ to be minimal for the specified root celltype.

E. RNA velocity and latent time uncertainty

To estimate uncertainty in latent time, we sample from the inferred posterior distribution q(t̂|ẑu, ẑs) and compute
the standard error of the mean.

To estimate uncertainty in latent RNA velocity, we sample from the inferred posterior distribution of states
q(ẑs, ẑu|s,u) and compute latent RNA velocity for each sample v = fs(ẑs, ẑu). We then compute the average cosine
similarity of all pairs from these samples as the consistency of velocity,

cv = Ei>j samples

[

cos (vi,vj)
]

. (18)

F. RNA velocity metrics

When ground truth velocities are known (synthetic data), we compare estimated velocities by computing the cosine
similarity on gene space.

When ground truth velocities are not known, we use known cell-type transitions with the Cross-Boundary Direct-
edness metric [16, 17].

CBDir(A → B, cell i) =
1

B ∩N (i)

∑

j∈B∩N (i)

δ
[

cos (vi, si,j)
]

, (19)

where si,j = (si − sj)/sign(si − sj) and N (i) is the neighborhood of cell i. Since the boundaries between cells can be
noisy in high-dimensional gene space, we use 50 principle components when computing this score.

We also use the In-Cluster Coherence (ICCoh) metric [16, 17] to evaluate the coherence of velocities within a
cluster or cell-type. This score is computed per cell by the average cosine similarity of neighboring cells in the same
cluster/celltype,

ICCoh(A, cell i) =
1

A ∩N (i)

∑

j∈A∩N (i)

cos (vi,vj). (20)

Similarly, we also use 50 principle components for this score.

G. Batch correction metrics

To evaluate batch correction we use the kBET and iLISI metrics [26]. We also use the cLISI metric to evaluate
biological cluster conservation [26], ensuring that cell-type clusters are not erased by the batch correction. These
metrics are computed with the scib package [26].

kBET evaluates the batch composition of the nearest neighbors of a cell, which should match the overall batch
composition for a particular cell-type for good batch correction. iLISI and cLISI measure the nearest-neighbor graph
structure, evaluating batch mixing (iLISI) or cell-type separation (cLISI).

To evaluate batch correction of RNA velocity, we measure the cosine similarity of nearest neighbor cells in different
batches.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

19

H. ComBat and scGen RNA velocity batch effect correction

We follow the approach taken by Hansen and Ranek et al. [32, 33] to compare our approach for batch effect
correction of RNA velocity. Since traditional RNA velocity methods require cells in gene-space, only batch correction
methods that return a corrected gene matrix can be used. Here we use ComBat [34] and scGen (using the corrected
gene output) [35]. ComBat is run from the scanpy package [43].

Since we need to simultaneously correct spliced and unspliced counts, batch correction is performed on the sum of
these counts. We define the sum matrix M and the ratio matrix R,

M = S + U, (21)

R =
S

S + U
. (22)

Batch correction is performed on M. For ComBat, we first log(1+ x) transform this matrix. For scGen, we normalize
then log(1 + x) transform.

After batch correcting M to get the corrected matrix M̃ , we invert these transforms and then multiply R or 1−R
to recover corrected spliced and unspliced matrices.

Scorrected = M̃R, (23)

Ucorrected = M̃(1−R). (24)

Then RNA velocity is estimated as before with the same pre-processing steps.
scGen is run with default settings, except we set the dimension of the latent state to be the same as our model, 20.

I. scVI and scANVI batch correction

scVI and scANVI are run from the scvi-tools package [44]. We run scVI with a negative binomial gene-likelihood,
and the same latent dimension as our model, 20. scANVI is trained by starting with the pre-trained scVI model and
training for an additional 100 epochs.

J. Comparison velocity models

scVelo stochastic and dynamical modes are run with default settings. UniTVelo is run with the defaults IROOT =
None and R2 ADJUST = True.
When we compute the transition matrix to embed RNA velocity in 50 dimensional PC space or 2 dimensional

UMAP or tSNE for plotting, we use scVelo’s function scvelo.tl.velocity graph with default settings.

K. Datasets

For each dataset we select genes with at least 20 cells with non-zero unspliced and spliced counts, and from these
genes select the top 2000 highly variable genes using scVelo preprocessing. We apply the transformation log(1 + x)
before computing principle components and smooth data by averaging over the 30 nearest neighbors in 30 dimensional
principle component space with the scVelo function scvelo.pp.moments. Input variables to the model are then scaled
to standard deviation 1. For each dataset, we use the provided celltype annotations used in the original publication.

Dyngen synthetic datasets. We generate synthetic datasets with dyngen [31]. For each dataset in Figure 7,
we simulate 5000 cells. We set 15 target genes and 15 housekeeping genes, and use the number of transcription
factors required for the trajectory backbone. We use the backbones “linear”, “bifurcating”, “binary tree” with 2
modifications, and “trifurcating”. We set τ = 0.01, census interval=1, and use 100 simulations. For the CBDir
metric, we use the milestones defined by dyngen as transitions. We set the dimension of zr to be 1 on the linear and
bifurcation datasets, and 2 on the trifurcation and binary tree datasets. We set the dimension of h to be 1 on the
linear and bifurcation datasets, and 3 on the trifurcation and binary tree datasets.

scVelo linear model synthetic datasets. We use the scVelo linear differential equations to simulate datasets
with time-varying alpha (transcription rate), beta (splicing rate), gamma (degradation rate). We simulate 500 cells

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

20

with 30 genes. By default, we set α = 5, β = 0.5, γ = 0.5. For time-varying rates, we select 5 genes to be time-
dependent. We set the dimension of zr to be 1 on these datasets.

Pancreatic endocrinogenesis. Mouse pancreatic cells sampled at E15.5 [27]. In Figure 7 Initially cycling
population is removed to focus on differentiation into terminal cell types. This dataset is downloaded from the
CellRank package [4]. The transitions tested with CBDir are (Ngn3 low EP → Ngn3 high EP), (Ngn3 high EP →
Fev+), (Fev+ → Delta), (Fev+ → Beta), (Fev+ → Epsilon), (Fev+ → Alpha). We set the dimensions of zr and h
to be 3 and on this dataset, and use a latent dimension of size 30. We use the celltype annotated model for this dataset.

Mouse hematopoiesis. Data is from [45], and processed data is downloaded from https://zenodo.org/record/
6110279 [32]. The transitions tested with CBDir are (LTHSC → MPP), (MPP → LMPP), (MPP → CMP), (CMP
→ GMP), (CMP → MEP). We set the dimension of zr and h to be 1 and 2 on this dataset.

Mouse retina development. Data from the Kharchenko lab http://pklab.med.harvard.edu/peterk/review2020/
examples/retina/. The transitions tested with CBDir are (Neuroblast → PR), (Neuroblast → AC/HC), (Neuroblast
→ RGC). We set the dimension of zr and h to be 2 and 2 on this dataset.

Dentate Gyrus development. Mouse Dentate Gyrus development at two time points P12 and P35 downloaded
from the scVelo package [11]. The transitions tested with CBDir are (OPC → OL), (Radial Glia-like → Astrocytes),
(Neuroblast → Granule immature). We set the dimensions of zr h to be 3 and 4 on this dataset.

Intestinal organoid. Data from [28], downloaded from dynamo [5]. The transitions tested with CBDir are (Stem
cells → TA cells), (Stem cells → Goblet cells), (Stem cells → Tuft cells), (TA cells → Enterocytes). We set the
dimensions of zr and h to be 2 and 3 on this dataset. We use the celltype annotated model for this dataset.

Mouse hindbrain (Oligo). Data of mouse hindbrain oligodendrocyte lineage from [10], downloaded from
http://pklab.med.harvard.edu/ruslan/velocity/oligos/. The transitions tested with CBDir are (COPs →
NFOLs), (NFOLs → MFOLs). We set the dimension of zr and h to be 1 and 2 on this dataset. We use the celltype
annotated model for this dataset.

Mouse hindbrain (GABA, Glial). Processed data of mouse hindbrain with the differentiation of GABAergic
interneuron and glial cells is downloaded from DeepVelo [18]. The transitions tested with CBDir are (Neural stem cells
→ progenitors), (Proliferating VZ progenitors → VZ progenitors), (VZ progenitors → Gliogenic progenitors), (VZ
progenitors → Differentiating GABA interneurons), (Differentiating GABA interneurons → GABA interneurons).
We set the dimensions of zr and h to be 1 and 2 on this dataset. We use the celltype annotated model for this dataset.

Mouse erythroid. Erythroid lineage of mouse gastrulation [36]. Downloaded from the scVelo package [11]. The
transitions tested with CBDir are (Blood progenitors 1 → Blood progenitors 2), (Blood progenitors 2 → Erythroid1),
(Erythroid1 → Erythroid2), (Erythroid2 → Erythroid3). We set the dimension of zr and h to be 1 and 1 on this
dataset.

Human bone marrow. Data from [37], downloaded with scVelo [11]. The transitions tested with CBDir are (HSC
1 → CLP), (HSC 1 → Mega), (HSC 1 → Ery 1), (Ery 1 → Ery 2), (HSC 1 → HSC 2), (HSC 2 → Precursors), (HSC 2
→Mono 2), (Mono 2→Mono 1), (Precursors→ DCs). We set the dimension of zr and h to be 2 and 2 on this dataset.

scNT-seq neuron KCl stimulation. Cortical neurons are stimulated with potassium chloride (KCl) for 0, 15,
30, and 60 minutes. Data from [46], downloaded from https://github.com/wulabupenn/scNT-seq. The transitions
tested with CBDir are the times (0 → 15), (15 → 30), (30 → 60), (60 → 120). We set the dimension of zr and h to
be 1 and 1 on this dataset. We also restrict to only including the velocity genes in the likelihood.

Mouse embryonic fibroblast reprogramming. Reprogramming of mouse embryonic fibroblasts into induced
endoderm progenitor cells [29]. Data was downloaded with the CellRank package [4]. We set the dimension of zr to
be 1 on this dataset. We use the celltype annotated model on this dataset.

Mouse gastrulation. Mouse gastrulation including all progenitors of major organs [36]. Downloaded from the
scVelo package [11]. We subset to 20000 cells selected randomly for faster training. We set the dimensions of zr and
h to be 6 and 7 on this dataset. We use the celltype annotated model for this dataset.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://zenodo.org/record/6110279
https://zenodo.org/record/6110279
http://pklab.med.harvard.edu/peterk/review2020/examples/retina/
http://pklab.med.harvard.edu/peterk/review2020/examples/retina/
http://pklab.med.harvard.edu/ruslan/velocity/oligos/
https://github.com/wulabupenn/scNT-seq
https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

21

Embryonic mouse brain. Data downloaded from 10X https://www.10xgenomics.com/resources/datasets/
fresh-embryonic-e-18-mouse-brain-5-k-1-standard-1-0-0. We followed the pre-processing from MultiVelo
[20]. We set the dimension of zr to be 2 on this dataset.

L. Code availability

LatentVelo is available at https://github.com/Spencerfar/LatentVelo. Code reproducing the results of the
paper is also given.

VI. ACKNOWLEDGEMENTS

We thank Eric Johnson and Dominic Skinner for reading and providing feedback on the manuscript. SF received
funding from a University of Toronto Data Sciences Institute Posterdoctoral fellowship. The authors received funding
from a University of Toronto Medicine by Design grant.

[1] Louise Deconinck, Robrecht Cannoodt, Wouter Saelens, Bart Deplancke, and Yvan Saeys. Recent advances in trajectory
inference from single-cell omics data. Current Opinion in Systems Biology, 27:100344, September 2021.

[2] Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. A comparison of single-cell trajectory inference
methods. Nat. Biotechnol., 37(5):547–554, May 2019.

[3] Jun Ding, Nadav Sharon, and Ziv Bar-Joseph. Temporal modelling using single-cell transcriptomics. Nat. Rev. Genet.,
23(6):355–368, June 2022.

[4] Marius Lange, Volker Bergen, Michal Klein, Manu Setty, Bernhard Reuter, Mostafa Bakhti, Heiko Lickert, Meshal Ansari,
Janine Schniering, Herbert B Schiller, Dana Pe’er, and Fabian J Theis. CellRank for directed single-cell fate mapping.
Nat. Methods, 19(2):159–170, January 2022.

[5] Xiaojie Qiu, Yan Zhang, Jorge D Martin-Rufino, Chen Weng, Shayan Hosseinzadeh, Dian Yang, Angela N Pogson, Marco Y
Hein, Kyung Hoi Joseph Min, Li Wang, Emanuelle I Grody, Matthew J Shurtleff, Ruoshi Yuan, Song Xu, Yian Ma,
Joseph M Replogle, Eric S Lander, Spyros Darmanis, Ivet Bahar, Vijay G Sankaran, Jianhua Xing, and Jonathan S
Weissman. Mapping transcriptomic vector fields of single cells. Cell, 185(4):690–711.e45, February 2022.

[6] Ziqi Zhang and Xiuwei Zhang. Inference of high-resolution trajectories in single-cell RNA-seq data by using RNA velocity.
Cell Reports Methods, 1(6):100095, October 2021.

[7] R Gupta, D Cerletti, G Gut, A Oxenius, and M Claassen. Cytopath: Simulation based inference of differentiation
trajectories from RNA velocity fields. August 2021.

[8] Zhanlin Chen, William C King, Aheyon Hwang, Mark Gerstein, and Jing Zhang. DeepVelo: Single-cell transcriptomic
deep velocity field learning with neural ordinary differential equations. April 2022.

[9] Ruishan Liu, Angela Oliveira Pisco, Emelie Braun, Sten Linnarsson, and James Zou. Dynamical systems model of RNA
velocity improves inference of single-cell trajectory, pseudo-time and gene regulation. J. Mol. Biol., page 167606, April
2022.

[10] Gioele La Manno, Ruslan Soldatov, Amit Zeisel, Emelie Braun, Hannah Hochgerner, Viktor Petukhov, Katja Lidschreiber,
Maria E Kastriti, Peter Lönnerberg, Alessandro Furlan, Jean Fan, Lars E Borm, Zehua Liu, David van Bruggen, Jimin Guo,
Xiaoling He, Roger Barker, Erik Sundström, Gonçalo Castelo-Branco, Patrick Cramer, Igor Adameyko, Sten Linnarsson,
and Peter V Kharchenko. RNA velocity of single cells. Nature, 560(7719):494–498, August 2018.

[11] Volker Bergen, Marius Lange, Stefan Peidli, F Alexander Wolf, and Fabian J Theis. Generalizing RNA velocity to transient
cell states through dynamical modeling. Nat. Biotechnol., 38(12):1408–1414, August 2020.

[12] Melania Barile, Ivan Imaz-Rosshandler, Isabella Inzani, Shila Ghazanfar, Jennifer Nichols, John C Marioni, Carolina
Guibentif, and Berthold Göttgens. Coordinated changes in gene expression kinetics underlie both mouse and human
erythroid maturation. Genome Biol., 22(1):197, July 2021.

[13] Volker Bergen, Ruslan A Soldatov, Peter V Kharchenko, and Fabian J Theis. RNA velocity—current challenges and future
perspectives. Mol. Syst. Biol., 17(8):e10282, August 2021.

[14] Gennady Gorin, Meichen Fang, Tara Chari, and Lior Pachter. RNA velocity unraveled. February 2022.
[15] Chenling Xu, Romain Lopez, Edouard Mehlman, Jeffrey Regier, Michael I Jordan, and Nir Yosef. Probabilistic harmo-

nization and annotation of single-cell transcriptomics data with deep generative models. Mol. Syst. Biol., 17(1):e9620,
January 2021.

[16] Chen Qiao and Yuanhua Huang. Representation learning of RNA velocity reveals robust cell transitions. Proceedings of

the National Academy of Sciences, 118(49):e2105859118, 2021.
[17] Mingze Gao, Chen Qiao, and Yuanhua Huang. UniTVelo: temporally unified RNA velocity reinforces single-cell trajectory

inference. April 2022.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://www.10xgenomics.com/resources/datasets/fresh-embryonic-e-18-mouse-brain-5-k-1-standard-1-0-0
https://www.10xgenomics.com/resources/datasets/fresh-embryonic-e-18-mouse-brain-5-k-1-standard-1-0-0
https://github.com/Spencerfar/LatentVelo
https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

22

[18] Haotian Cui, Hassaan Maan, and Bo Wang. DeepVelo: Deep learning extends RNA velocity to multi-lineage systems with
cell-specific kinetics. April 2022.

[19] Yichen Gu, David Blaauw, and Joshua D. Welch. Bayesian inference of rna velocity from multi-lineage single-cell data.
bioRxiv, 2022.

[20] Chen Li, Maria Virgilio, Kathleen L Collins, and Joshua D Welch. Single-cell multi-omic velocity infers dynamic and
decoupled gene regulation. December 2021.

[21] Yuanhua Huang and Guido Sanguinetti. BRIE2: computational identification of splicing phenotypes from single-cell
transcriptomic experiments. Genome Biol., 22(1):251, August 2021.

[22] Qian Li. sctour: a deep learning architecture for robust inference and accurate prediction of cellular dynamics. April 2022.
[23] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann LeCun, editors, 2nd

International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference

Track Proceedings, 2014.
[24] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference

in deep generative models. In Proceedings of the 31st International Conference on International Conference on Machine

Learning - Volume 32, ICML’14, pages II–1278–II–1286. JMLR.org, June 2014.
[25] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations.

In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural

Information Processing Systems, volume 31. Curran Associates, Inc., 2018.
[26] Malte D Luecken, M Büttner, K Chaichoompu, A Danese, M Interlandi, M F Mueller, D C Strobl, L Zappia, M Dugas,

M Colomé-Tatché, and Fabian J Theis. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods,
19(1):41–50, December 2021.

[27] Aimée Bastidas-Ponce, Sophie Tritschler, Leander Dony, Katharina Scheibner, Marta Tarquis-Medina, Ciro Salinno, Silvia
Schirge, Ingo Burtscher, Anika Böttcher, Fabian J Theis, Heiko Lickert, and Mostafa Bakhti. Comprehensive single cell
mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis. Development, 146(12), June 2019.

[28] Nico Battich, Joep Beumer, Buys de Barbanson, Lenno Krenning, Chloé S Baron, Marvin E Tanenbaum, Hans Clevers,
and Alexander van Oudenaarden. Sequencing metabolically labeled transcripts in single cells reveals mRNA turnover
strategies. Science, 367(6482):1151–1156, 2020.

[29] Brent A Biddy, Wenjun Kong, Kenji Kamimoto, Chuner Guo, Sarah E Waye, Tao Sun, and Samantha A Morris. Single-cell
mapping of lineage and identity in direct reprogramming. Nature, 564(7735):219–224, December 2018.

[30] Romain Lopez, Jeffrey Regier, Michael B Cole, Michael I Jordan, and Nir Yosef. Deep generative modeling for single-cell
transcriptomics. Nat. Methods, 15(12):1053–1058, December 2018.

[31] Robrecht Cannoodt, Wouter Saelens, Louise Deconinck, and Yvan Saeys. Spearheading future omics analyses using dyngen,
a multi-modal simulator of single cells. Nat. Commun., 12(1):1–9, June 2021.

[32] Jolene S Ranek, Natalie Stanley, and Jeremy E Purvis. Integrating temporal single-cell gene expression modalities for
trajectory inference and disease prediction. March 2022.

[33] Kasper Daniel Hansen. Batch effects in scrna velocity analysis, 2021.
[34] W Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting batch effects in microarray expression data using empirical

bayes methods. Biostatistics, 8(1):118–127, April 2006.
[35] Mohammad Lotfollahi, F Alexander Wolf, and Fabian J Theis. scgen predicts single-cell perturbation responses. Nat.

Methods, 16(8):715–721, July 2019.
[36] Blanca Pijuan-Sala, Jonathan A Griffiths, Carolina Guibentif, Tom W Hiscock, Wajid Jawaid, Fernando J Calero-Nieto,

Carla Mulas, Ximena Ibarra-Soria, Richard C V Tyser, Debbie Lee Lian Ho, Wolf Reik, Shankar Srinivas, Benjamin D
Simons, Jennifer Nichols, John C Marioni, and Berthold Göttgens. A single-cell molecular map of mouse gastrulation and
early organogenesis. Nature, 566(7745):490–495, February 2019.

[37] Manu Setty, Vaidotas Kiseliovas, Jacob Levine, Adam Gayoso, Linas Mazutis, and Dana Pe’er. Characterization of cell
fate probabilities in single-cell data with palantir. Nat. Biotechnol., 37(4):451–460, March 2019.

[38] Adam Gayoso, Philipp Weiler, Mohammad Lotfollahi, Dominik Klein, Justin Hong, Aaron Streets, Fabian J. Theis, and
Nir Yosef. Deep generative modeling of transcriptional dynamics for rna velocity analysis in single cells. bioRxiv, 2022.

[39] Qian Qin, Eli Bingham, Gioele La Manno, David M. Langenau, and Luca Pinello. Pyro-velocity: Probabilistic rna velocity
inference from single-cell data. bioRxiv, 2022.

[40] Xuechen Li, Ting-Kam LeonardWong, Ricky T. Q. Chen, and David Duvenaud. Scalable gradients for stochastic differential
equations. International Conference on Artificial Intelligence and Statistics, 2020.

[41] Grace Hui Ting Yeo, Sachit D Saksena, and David K Gifford. Generative modeling of single-cell time series with PRE-
SCIENT enables prediction of cell trajectories with interventions. Nat. Commun., 12(1):1–12, May 2021.

[42] Ricky T. Q. Chen. torchdiffeq, 2018.
[43] F Alexander Wolf, Philipp Angerer, and Fabian J Theis. SCANPY: large-scale single-cell gene expression data analysis.

Genome Biol., 19(1):15, February 2018.
[44] Adam Gayoso, Romain Lopez, Galen Xing, Pierre Boyeau, Valeh Valiollah Pour Amiri, Justin Hong, Katherine Wu, Michael

Jayasuriya, Edouard Mehlman, Maxime Langevin, Yining Liu, Jules Samaran, Gabriel Misrachi, Achille Nazaret, Oscar
Clivio, Chenling Xu, Tal Ashuach, Mariano Gabitto, Mohammad Lotfollahi, Valentine Svensson, Eduardo da Veiga Bel-
trame, Vitalii Kleshchevnikov, Carlos Talavera-López, Lior Pachter, Fabian J. Theis, Aaron Streets, Michael I. Jordan,
Jeffrey Regier, and Nir Yosef. A python library for probabilistic analysis of single-cell omics data. Nature Biotechnology,
Feb 2022.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

23

[45] Sonia Nestorowa, Fiona K Hamey, Blanca Pijuan Sala, Evangelia Diamanti, Mairi Shepherd, Elisa Laurenti, Nicola K
Wilson, David G Kent, and Berthold Göttgens. A single-cell resolution map of mouse hematopoietic stem and progenitor
cell differentiation. Blood, 128(8):e20–e31, August 2016.

[46] Qi Qiu, Peng Hu, Xiaojie Qiu, Kiya W Govek, Pablo G Cámara, and Hao Wu. Massively parallel and time-resolved rna
sequencing in single cells with scnt-seq. Nature methods, 17(10):991–1001, 2020.

[47] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for statisticians. Journal of the

American Statistical Association, 112(518):859–877, 2017.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

24

SUPPLEMENTAL FIGURES

FIG. S1. LatentVelo infers latent cell dynamics in human bonemarrow. a) tSNE plot showing the differentiation of
hematopoietic stem cells into erythroid, common lymphocyte progenitor, monocyte, dendridic, and megakaryocyte cells. b)
We show the velocity and latent time inferred by LatentVelo, indicating the directions of differentiation. c) We also show the
inferred latent regulatory states in LatentVelo, highlighting the distinct dynamics for the terminal states. d) We show the latent
trajectories inferred by LatentVelo for 6 different cells, corresponding to a CLP, DC, Mega, Ery, or Mono cell. Plot is shown
for a UMAP representation of the spliced latent state. Dynamics start from the initial state z0 at the black square (the learned
initial state) and follow the magenta path until terminating at the magenta circles at the estimated t̂. These trajectories indicate
transitions that are initially unclear from the original gene-space tSNE plot in a). In a), the CLP cells are disconnected from
the rest, but the shown trajectory indicates a transition from HSC cells. In a), it is unclear whether the “precursor” cells are
an intermediate celltype before DC cells, whereas the trajectory rather suggests that they are an intermediate celltype before
Mono cells. In a), it is unclear whether the Mono 1 and 2 cells are distinct Monocytes, or whether Mono 2 is an intermediate
celltype before Mono 1, whereas the trajectories suggest that these are two distinct types of monocytes.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

25

FIG. S2. Synthetic datasets. UMAP plots showing the synthetic datasets used to benchmark models. Colored by simulation
time and milestone, which is used for CBDir metric and the celltype annotated model. We also show velocity estimated by
LatentVelo, colored by LatentVelo latent time.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

26

FIG. S3. Comparison of batch correction for LatentVelo and scVI and scANVI. UMAP plots showing batch correction
of synthetic datasets using LatentVelo, scVI [30], and scANVI [15]. a) and b) UMAP plots of the raw unintegrated batches
for 2 batches of a bifurcation, colored by simulation time and milestone cells, highlighting the direction of differentiation and
branches. c) UMAP plot of the LatentVelo latent space for this dataset. Velocity is in the correction direction, and clusters
are well integrated. d) scVI and e) scANVI latent space UMAP plots. We see that these methods do not perform as well
as LatentVelo. f) and g) UMAP plots of the raw unintegrated batches for 2 batches of a bifurcation with a gene module
knockout, causing one branch to be eliminated. h) UMAP plot of the LatentVelo latent space for this dataset. Velocity is in
the correction direction, and clusters are well integrated. i) scVI and j) scANVI latent space UMAP plots. We see that these
methods fail to integrate these batches well.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

27

FIG. S4. Exploring the role of latent space dimensionality. We use an intestional organoid dataset [27] to explore the
dimensionality of the latent space in LatentVelo. (Left) we show a latent space dimension of 20, with the dimension of zr as
2, and (right) with a latent space dimension of 75 and the dimension of zr is also 2. Even though the velocities projected on
the gene-space UMAP plot largely agree with the expected directions in both models, the underlying dynamics and inferred
trajectories are distinct. We sample 5 trajectories for each of the branches in the bifurcation: trajectories for cells belonging
to the enterocyte branch and cells belonging to the goblet/paneth cell branch. On the enterocyte branch, both models infer
along the branch. However, the 20-dimensional model poorly infers trajectories for the goblet/paneth cell branch, with most
trajectories staying near the z0.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

28

FIG. S5. LatentVelo regulatory parameter zr infers lineages. a) Pancreas, b) Human bone marrow, c) Retina, d)
Intestinal organoid, e) Mouse hematopoiesis, f) hindbrain (GABA, glial), and g) dentate gyrus UMAP or tSNE plots shown
with velocity arrows and colored by cell-types and regulatory parameters zr. In the case of 2 regulatory parameters, we show
a scatter plot. For 1 regulatory parameter, we show a histogram. These plots show clear separation between the lineages,
identified by zr. We also use a logistic regression classifier to predict terminal states from these low-dimension zr, achieving
mean 25-fold cross-validation of accuracy of above 90% for all datasets, demonstrating that these clearly separated cell-type
clusters accurately represent the different lineages. Since the latent dynamics depend on zr, these plots demonstrate the distinct
dynamics on different lineages.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

29

FIG. S6. Time-dependent rate simulations. We simulate from the scVelo linear ODE model [11] while varying alpha
(transcription rate), beta (splicing rate), and gamma (degradation rate). The simulation is run with 30 genes, and 5 are
selected to be time-varying. We show increasing/decreasing for each of α (a) and b)), β (c) and d)), and γ (e) and f)).
We assess our LatentVelo’s ability to infer the proper direction of differentiation by rank correlation between latent time and
simulation time. We use LatentVelo with 10 latent dimensions for these small datasets.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

30

SUPPLEMENTAL INFORMATION

1. Model estimates error in latent time and velocity estimates

FIG. S7. Error estimates in latent time and RNA velocity. (Top) Synthetic bifurcation. (Bottom) Pancreas dataset.
Samples from the approximate Bayesian posterior distribution of latent time and RNA velocity are used to estimate the error
(standard error of the mean) of latent time and the consistency of RNA velocity. as a comparison, we show the average nearest
neighbor velocity consistency, introduced in the scVelo package [11].

Previous models of RNA velocity do not include uncertainty estimates in parameters. Our model infers the ap-
proximate Bayesian posterior distribution of the latent time and velocities, enabling the estimation of approximate
uncertainties. However, we note that variational Bayesian approximations underestimate uncertainty [47], and so here
we only interpret these uncertainty estimates to be relative estimates of uncertainty.

In Figure S7, we show the velocity inferred by the model on a UMAP plot, as well as the standard error of the
mean of the latent time, the velocity consistency by re-sampling from the VAE latent space, and the consistency
of velocity from nearest neighbors (as computed by scVelo [11]). The VAE velocity consistency is computed by the
average cosine similarity of all pairs of samples from the VAE.

For the synthetic bifurcation dataset, we show that error increases near and after the bifurcation. Similarly with
the pancreas dataset, where error increases in the area near the transitions to Alpha, Beta, Delta, and Epsilon cells,
and then decreases in the Alpha and Beta cells after the transition is made. These estimates make sense, showing a
decreased uncertainty where cell lineage decisions are being made.

2. Integrating multi-omic data with ATAC-seq

To show our approach can be generalized to other data modalities with multiomics, we use a mouse embryonic brain
dataset incorporating both RNA-seq and ATAC-seq, previously used with MultiVelo [20]. The diagram in Figure S8
shows the new structure of the latent variables, where we now include the latent space representation of chromatin
accessibility zc. In this model, chromatin accessibility effects transcription of unspliced RNA zu, and chromatin
dynamics are regulated by zr. We still also allow the direct regulation of transcription by other methods than just
chromatin accessibility, shown by retaining the connection between zu and zr as in Figure 1 above. The form of the

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

31

dynamics for this model are:

dzc(t)

dt
= fc(zc(t), zr(t)) (25)

dzu(t)

dt
= fu(zu(t), zc(t), zr(t)) (26)

dzs(t)

dt
= fs(zu(t), zs(t)), (27)

dzr(t)

dt
= fr(zs(t), zr(t),h), (28)

h = fh(ẑs, ẑu). (29)

In addition to these equations, we adapt the correlation regularization on gene-space for the unspliced dynamics, and
now use the regularization,

λsucorr(ṡ,u) + λsscorr(ṡ,−s) + λuccorr(u̇, c) + λuucorr(u̇,−u), (30)

to enforce the direction of transition based on chromatin accessibility in addition to splicing. We use the same default
λsu = λss = λuc = λuu = 0.1
In Figure S8 the RNA velocity on the UMAP plot shows the differentiation direction from radial glia cells to

neurons in the main branch, and the differentiation of radial glia cells to interneurons on the other branches. The
spliced RNA, unspliced RNA, and chromatin accessibility plots vs latent time for 4 different genes show the spliced,
unspliced, and chromatin velocities. Velocities are positive when these variables increase, and negative when they
decrease, as expected.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

32

FIG. S8. Integration of chromatin accessibility. a) Integration of chromatin accessibility into the structured latent
dynamics. We incorporate this into latentVelo by allowing the latent representation of chromatin accessibility zc to influence
the transcription of unspliced RNA zu. We also include the regulation of chromatin dynamics by the latent regularization
variable zr. b) UMAP representation of a mouse embryonic brain dataset showing cell types and the inferred latent time and
velocity with LatentVelo. c) Spliced RNA, unspliced RNA, and chromatin accessibility for 4 selected genes, colored by the
corresponding chromatin, unspliced, and spliced velocity.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.08.22.504858doi: bioRxiv preprint

https://doi.org/10.1101/2022.08.22.504858
http://creativecommons.org/licenses/by-nc/4.0/

	Inferring single-cell transcriptomic dynamics with structured latent gene expression dynamics
	Introduction
	Overview of LatentVelo
	RNA velocity
	LatentVelo
	Evaluation of LatentVelo

	Results
	LatentVelo infers cell fate trajectories
	LatentVelo infers early separation of trajectories for reprogrammed and dead-end cells
	Latent space dynamics correct for batch effects in RNA velocity and cell states
	LatentVelo can infer complex lineage specific gene dynamics
	LatentVelo infers cell fate trajectories in large multi-lineage systems
	Quantitative benchmarking on synthetic and real datasets

	Discussion
	Methods
	LatentVelo
	Enforcing splicing direction
	Incorporating cell-type annotations
	Incorporating experimental time points or root cells
	RNA velocity and latent time uncertainty
	RNA velocity metrics
	Batch correction metrics
	ComBat and scGen RNA velocity batch effect correction
	scVI and scANVI batch correction
	Comparison velocity models
	Datasets
	Code availability

	Acknowledgements
	References
	Supplemental Figures
	Supplemental Information
	Model estimates error in latent time and velocity estimates
	Integrating multi-omic data with ATAC-seq

