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Abstract 

Natural images contain information at multiple spatial scales. Although we understand how 
early visual mechanisms split multi-scale images into distinct spatial frequency channels, we do 
not know how the outputs of these channels are processed further by mid-level visual 
mechanisms. We have recently developed a naturalness discrimination task that uses 
synthesized, multi-scale textures to isolate these mid-level mechanisms (Freeman et. al. 2013). 
Here, we use three experimental manipulations (image blur, image rescaling, and eccentric 
viewing) to show that naturalness sensitivity is strongly dependent on image features at high 
object spatial frequencies (measured in cycles/image). As a result, sensitivity depends on a 
texture acuity limit, a property of the visual system that sets the highest retinal spatial 
frequency (measured in cycles/degree) that can be used to solve the task. A model observer 
analysis shows that high object spatial frequencies carry more task-relevant information than 
low object spatial frequencies. Comparing the outcome of this analysis with human 
performance reveals that human observers’ efficiency is similar for all object spatial 
frequencies. We conclude that the mid-level mechanisms that underlie naturalness sensitivity 
effectively extract information from all image features below the texture acuity limit, regardless 
of their retinal and object spatial frequency. 

Introduction 

Decades of research have produced strong, quantitative models of the early visual mechanisms 
that extract information from visual scenes. Studies in which observers report the presence of 
near-threshold stimuli indicate that the initial stages of visual processing split incoming signals 
into distinct channels selective for different spatial frequencies (Graham, 1989). These spatial 
frequency channels bear a resemblance to neural responses in primary visual cortex (V1), 
where individual neurons also respond selectively to specific spatial frequencies (De Valois et 
al., 1982).  

Though successful for near-threshold experiments, early channel models have proven 
insufficient to explain the mid-level mechanisms that govern the perception of more complex, 
suprathreshold visual scenes. Because early mechanisms are primarily sensitive to spatial 
frequency amplitude, one way to neutralize their contribution is to generate sets of images that 
are matched in frequency amplitude (“spectrally-matched”), yet are nonetheless perceptually 
distinct (Chubb & Sperling, 1988). Using this technique, many groups have used spectrally-
matched textures to study the detection of local modulations in features like contrast, 
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orientation, or spatial frequency (reviewed in Graham, 2011). Controlling for early channel 
mechanisms means that these tasks provide insight into the “mid-level” visual mechanisms that 
lie beyond early visual processing. 

A limit of these studies is that they typically used stimuli that 1) only modulated one specific 
feature (contrast, orientation, etc.) at a time and 2) were limited to a narrow band of spatial 
frequencies . As such, we still have an incomplete knowledge of how observers combine 
information from overlapping modulations in the same image (but see Landy & Kojima (2001), 
Saarela & Landy (2012)) and from information distributed across a broad range of spatial 
frequencies. These are both characteristic features of natural scenes. 

An alternative approach to studying visual form has focused on the ability of observers to 
identify everyday objects and scenes (Morrison & Schyns, 2001; Sowden & Schyns, 2006). 
However, this approach comes with challenges. First, task-relevant information may be 
unevenly distributed across different spatial frequencies in the image. For example, 
discriminating two very different objects (i.e. dogs vs. cats) relies on lower spatial frequencies 
than discriminating two very similar objects (i.e. two breeds of dogs) (Archambault et al., n.d.). 
Experimenters have quantified this distribution of information by studying how task 
performance changes for images that have been low-pass or bandpass filtered to remove 
certain frequencies (Braje et al., 1995; Gold et al., 1999; Parish & Sperling, 1991). 

A second challenge is distinguishing whether task performance is set by factors intrinsic to the 
images (measured in image-centric coordinates) or factors intrinsic to the visual system 
(measured in retina-centric coordinates). Factors intrinsic to the images are best described by 
object spatial frequencies that are measured as the number of cycles per object. This is 
categorically different than factors of the visual system, which are best described by retinal 
spatial frequencies that are measured in cycles per degree. For example, one particularly well 
studied limit of the visual system is the contrast sensitivity function, which describes how the 
visibility of image features changes with retinal spatial frequency and location in visual field 
(Anderson et al., 1991; Robson & Graham, 1981). How an image’s object spatial frequencies 
correspond to an observer’s retinal spatial frequencies is determined by the distance at which 
the observer views the image. At close distances, images take up more of the visual field and 
object spatial frequencies correspond to low retinal spatial frequencies. At far distances, images 
become increasingly small and object spatial frequencies correspond to high retinal spatial 
frequencies. Manipulating viewing distance can dissociate whether task performance is set by 
factors intrinsic to the image (object spatial frequencies) or intrinsic to the visual system (retinal 
spatial frequencies) (Parish & Sperling, 1991). 

One final challenge of using broadband images is evaluating the complexity of the image 
features that drive task performance. We can broadly group these features into three “levels” 
of complexity. First, a task could be solved solely with simple spectral cues, corresponding to 
the outputs of the early channel mechanisms. Second, a task might depend on features that are 
a simple, direct transformation of the outputs of the early channel stage, corresponding to 
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“mid-level” mechanisms. Finally, a task might require complex features that can only be 
extracted after multiple levels of hierarchical transformation, corresponding to “late” 
mechanisms. The ability of human observers to readily distinguish natural images from 
spectrally-matched counterparts (Oppenheim & Lim, 1981; Piotrowski & Campbell, 1982; 
Thomson et al., 2000) demonstrates that natural scenes engage more than just early 
mechanisms. However, distinguishing whether mid-level or late mechanisms are used to solve a 
task requires a model of the specific features that mid-level mechanisms might extract.  

We have recently developed a psychophysical framework that isolates the contribution of mid-
level visual mechanisms by using synthesized texture images that capture many properties of 
natural texture (Freeman et al., 2013). In this context, we define a “texture” as a self-similar 
image defined by elements that repeat, possibly with variation (Graham & Landy, 2002; Landy, 
2013). Many aspects of a texture’s self-similarity can be captured with statistical measures 
based on the proposed structure of mid-level vision (Heeger & Bergen, 1995; Portilla & 
Simoncelli, 2000). We used the Portilla & Simoncelli texture synthesis procedure to generate 
“naturalistic” texture images based on the statistics of photographs of natural texture. 
Naturalistic textures and spectrally-matched noise images drive similar levels of activity in V1, 
but downstream visual areas (like extrastriate areas V2 and V4) exhibit stronger responses to 
naturalistic texture images than to spectrally-matched noise (Freeman et al., 2013; Movshon & 
Simoncelli, 2014; Okazawa et al., 2015, 2016). The strength of this naturalness modulation 
varies between images with different texture statistics, and this variation predicts differences in 
perceptual sensitivity to naturalistic structure in those same images (Freeman et al., 2013).  

Experiments using synthesized naturalistic textures combine the strengths of using 
parametrically defined texture stimuli with the strengths of discriminating natural scenes. Like 
other parametrically defined texture stimuli, naturalistic textures are defined by a discrete, 
predefined set of mid-level image features. Like natural objects, naturalistic textures contain a 
many overlapping mid-level image features distributed over a range of spatial frequencies. 
Naturalistic textures allow for the controlled investigation of mid-level visual processing in 
complex, multi-scale images.  

In this study, we report measurements on how naturalness sensitivity changes in response to 
three experimental manipulations: image blur, image rescaling (equivalent to changes in 
viewing distance), and presentation of images in the peripheral visual field. Measurements 
from all three manipulations demonstrate that naturalness sensitivity is set primarily by two 
factors. First, observers are bound by a texture acuity limit (measured in cycles/degree) such 
that image features present in retinal spatial frequencies above this limit cannot be used to 
solve the naturalness task. Second, each family of texture images is associated with its own 
cumulative sensitivity function that describes how observers extract naturalness information as 
increasingly high object spatial frequencies (measured in cycles per image) are added to the 
image. For all texture families, cumulative sensitivity functions rise with object spatial 
frequency, demonstrating that high object frequencies are necessary to achieve high 
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naturalness sensitivity. Finally, we find that a model observer analysis, based purely on the 
intrinsic informativeness of the image sets, closely tracks the cumulative sensitivity functions 
derived from measurement made on human observers.  

Experimental methods 

Image generation 

We used the Portilla & Simoncelli analysis/synthesis procedure (Portilla & Simoncelli, 2000) to 
generate images of naturalistic texture. The procedure first measures the statistical properties 
of texture images, then synthesizes new images that match those statistical properties. For 
source images, we chose a set of 5 representative texture families from a larger set of 479 
texture families used in a previous study (Freeman et al., 2013). Each texture family consisted 
of multiple synthesized images based on the statistics of a single black and white photograph of 
a visual texture. We chose families to maximally vary along the perceptual dimensions of coarse 
versus fine (the presence of low vs. high spatial frequencies), directional versus non-directional 
(whether orientations are highly concentrated or more evenly distributed), and regular versus 
irregular (whether patterns in the texture repeat at consistent or inconsistent intervals) (Rao & 
Lohse, 1996), quantified using methods described in Kim et al. (2019, 2022).  

We then used the Portilla/Simoncelli analysis/synthesis procedure to measure the statistical 
properties of these textures images by first computing the output of a set of V1-like filters that 
can differ in orientation, spatial frequency, and location (Figure 1A-B). Two sets of filters 
capture linear (simple-cell like) and rectified (energy, complex-cell like) outputs. These 
ensembles of filters are then multiplied and averaged to yield cross-orientation, cross-scale, 
and cross-location covariance statistics (Figure 1C). The procedure also measures and matches 
the average energy, skew, and kurtosis of each filter ensemble. 
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Figure 1. Synthesis of naturalistic textures. A) Texture images are filtered into subbands centered at different 
orientations and spatial frequencies. B) Measuring the average activation within each subband (left) creates a set 
of statistics that summarize the amplitude spectrum of the original image. Synthesizing new images that match 
these statistics creates “noise” textures that are spectrally-matched to the original sample. Three different random 
initializations of the synthesis creates three distinct spectrally-matched images. C) Naturalistic texture images 
match both the spectral statistics of the original image as well as products of filter responses across different 
spatial frequency and orientation bands (left). The resulting texture images (right) contain many of the naturalistic 
features found in natural texture images. D) Example texture images of intermediate naturalness. The textures 
shown have naturalness levels of 0, 0.053, 0.11, 0.23, 0.48, and 1, from left to right. E) Examples from the five 
texture families used in this study, labeled T1 to T5. The textures shown have naturalness levels of 1, 0.23, and 0, 
from top to bottom. 
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To synthesize new images, we first created “noisy” seed images by phase-randomizing the 
Fourier spectrum of the original texture images. This creates images that match the spectral 
content of the original texture images but lack higher-order correlations and naturalistic 
structure. We then adjusted the statistics of these noise images (using gradient descent) to 
match the model parameters of the original texture images. For each family, running this 
process on 15 distinct phase-randomized images yielded 15 distinct naturalistic texture images.  

To generate images of intermediate naturalness (Figure 1D) that smoothly transition between 
fully naturalistic texture images and spectrally-matched noise we linearly interpolated model 
parameters between naturalistic statistics and noise statistics. For model parameters 𝑝"#$% for 
the original images and 𝑝&"$'(  for noise images, we computed:  

𝑝(𝑛) = 𝑛 ∗ 𝑝"#$% + (1 − 𝑛) ∗ 𝑝&"$'(   (Equation 1) 

where 𝑛 is the “naturalness” level of the statistics. Images were then synthesized to match 
these statistics, as above, initialized using the same base set of 15 phase-randomized noise 
images. We chose naturalness levels to be 17 logarithmically distributed values between 0.02 
and 1 (0.353 octaves between points), plus one additional level at 0. The resulting images for 
the 5 texture families (Figure 1E) were used in all naturalness experiments. 

Of particular importance to this set of experiments are the limits of the spatial frequency bands 
used in the synthesis model.  All bands span a range of object spatial frequencies 1 octave wide. 
The images used in this study were 320 pixels wide, resulting in a Nyquist frequency 𝑓&23  = 160 
cycles/image. The highest frequency band in the synthesis model spans a range of object spatial 
frequencies from 𝑓&23 42√27⁄  to 𝑓&23 √2⁄  (Figure 2). Thus, the upper bound of the highest 
object spatial frequency band in our study, which we refer to as the synthesis limit (𝑓'2&9:), is 
113 cycles/image. 
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Figure 2. Distribution of contrast over object spatial frequency bands for different texture families. A) Example 
images of the five texture families. B) The four curves plot the spatial frequency filters used to create the bands of 
the texture synthesis model. C) Curves plot the average contrast of bandpass filtered images from each texture 
family. All naturalistic texture and spectrally-matched noise images in each family were filtered by bandpass filters 
with a width of one octave (same shape as those used in the texture synthesis model) centered at different spatial 
frequencies. RMS contrast was averaged over the resulting images. Note that because the filters were of even 
width in log frequency space (and of increasing width in linear frequency space), an image set with a 1/f amplitude 
spectra would plot as a flat, horizontal line. Grey lines denote the edges of the four frequency bands. Dark grey 
lines represent the lowest and highest spatial frequencies used to measure texture statistics for the synthesis 
model (3.5 and 113 cycles/image), and thus the range of object spatial frequencies that can be used to solve the 
naturalness sensitivity task.  

Psychophysical methods 

3 male observers (age 23-36) with normal or corrected-to-normal vision participated in the 
experiments. 2 observers were authors. The third observer was naïve to the purpose of the 
study. Psychophysical results from the naïve observer (data/fits in purple throughout the paper) 
were indistinguishable from those of the two authors. Protocols for the experimental 
procedures were approved by the Institutional Review Board of New York University.  

Image pixel luminance was rescaled to achieve an RMS contrast of 0.2, then vignetted in 
circular patches of 320 pixel diameter (flat top, raised cosine edges with width = 20 pixels). 
Images were presented on a 40 by 30 cm flat screen CRT monitor at a distance of 142 cm, 
unless otherwise noted. The resolution of the screen was 1280 x 960 pixels, which at 142 cm 
corresponds to a resolution of 80 pixels/deg. Thus, at this distance, images spanned 4 degrees 
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of visual angle. Unless otherwise noted, observers were always instructed to look directly at the 
images. 

Observers performed a three-interval, two-alternative forced choice, match-to-sample task that 
measured their ability to discriminate images of naturalistic texture from images of spectrally-
matched noise (Figure 3). On every trial, three images were flashed in quick succession (200 ms 
presentation time, 300 ms inter-presentation intervals). The first and last images presented 
were constrained to be, in either order, one sample of spectrally-matched noise and one 
sample of naturalistic texture. The middle image was a distinct image that matched the 
naturalness level of either the first or last image. Observers had to report which pair of images 
belonged to a matching category: either the first two images or last two images. The primary 
benefit of this task structure is that it imposes no assumptions on observers as to what image 
features should be used to solve the task (Hillis et al., 2002). Observers received feedback after 
every trial. 

 
Figure 3. Task structure. Three images were flashed in quick succession. Observers were tasked with judging 
whether the first two images or the last two images came from the same category. 

Trials were organized in blocks in which the naturalness level of the texture images could vary 
between 0.02 and 1. Each trial’s one or two naturalistic textures were presented at an equal 
level of naturalness. Trials were organized in two randomly interleaved staircases (1 one-
up/two-down, 1 one-up/three-down) initialized to naturalness=0.23 (Equation 1) after 3 
practice trials at full naturalness. Staircases ran for 160 trials (80/staircase) within each block. 
Blocks were run for a single texture family at a time, and for a single condition in each 
experiment (e.g., each blur level or each scaled size). Staircase methods were only used to 
distribute trials at naturalness levels close to threshold; the final convergence levels of the 
staircases were not used in further analyses. 
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For each block of trials, we maximized the likelihood of a logistic function fit to the 
psychometric data. The function was parameterized with a threshold, slope and lapse rate 
(Wichmann & Hill, 2001a). Naturalness sensitivity was defined as the reciprocal of the 
measured threshold. To compute error estimates of the sensitivity we used a parametric 
bootstrap method (Wichmann & Hill, 2001b) in which we repeatedly resampled and refit data 
from the best fit sigmoid function to get a bootstrap distribution of sensitivities. Error bars on 
sensitivities are reported as the 2.5% and 97.5% percentiles of the bootstrap distribution. 

Experimental results 

Here, we report the results of a series of experiments to measure the ability of human 
observers to discriminate images of naturalistic texture from spectrally-matched noise. We 
used the Portilla & Simoncelli texture synthesis method to generate a continuum of images that 
smoothly vary in the strength of their naturalistic structure. Experiments using these images 
allowed us to quantify the “naturalness sensitivity” of observers in response to four different 
experimental manipulations.  In experiment #1 we evaluated the role of high retinal spatial 
frequencies in naturalness sensitivity by blurring the texture images. In experiment #2 we 
tested the scale-invariance of naturalness sensitivity by rescaling images to different sizes, 
which approximates the effect of moving images towards or away from observers. In 
experiment #3 we used the results of the first two experiments to predict observer sensitivity 
to images that have been both rescaled and blurred. Finally, in experiment #4 we measured 
naturalness sensitivity for images presented in the peripheral visual field. 

Experiment #1: Image blur 

We first measured how naturalness sensitivity changes with image blur. To blur images, we 
used a range of low-pass filters differing in corner frequency. Specifically, the original texture 
images were converted to their two-dimensional Fourier spectra, then multiplied by a low-pass 
filter. Each low-pass filter was defined by a raised-cosine edge that went from full to zero gain 
over the span of half an octave, with its corner frequency defined as the point of 50% gain. 
Applying the inverse Fourier transform created the final, filtered image. All filtering was done 
prior to image vignetting. Qualitatively, as images became more strongly blurred it became 
harder to distinguish texture images from noise images (Figure 4).  
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Figure 4. Example images for blur experiment. Examples of naturalistic (top, naturalness=0.376) and noise 
(bottom) images that have been low-pass filtered. From left to right, object spatial frequencies have been removed 
that are higher than 8, 11.3, 16, 22.7, and 32 c/image (images are 320 pixels wide, so this corresponds to spatial 
period cutoffs of 40, 28.3, 20, 14.1, and 10 pixels respectively). These images were presented at a distance of 1.42 
m, such that their diameter measured 4 degrees of visual angle. At that size, these corner frequencies correspond 
to retinal spatial frequencies of 2, 2.8, 4, 5.7, and 8 c/deg.  

For all 3 observers and 5 texture families, sensitivity rapidly improved with increasing corner 
spatial frequency up to approximately 11 c/deg, beyond which sensitivity saturated (Figure 5). 
There are two possible reasons for this saturation. One possibility is that the visual system only 
uses retinal spatial frequencies up to a corner frequency of 11 cycles per degree when 
performing this task, effectively representing a texture acuity limit (𝑓;<=$92) for naturalness 
perception. The other possibility is that the texture images themselves contain no task-relevant 
information above this frequency. The texture synthesis algorithm generates images with no 
task-relevant information above object spatial frequencies of 113 cycles per image (see 
Methods, Image generation), a frequency that we refer to as the synthesis limit (𝑓'2&9:). 
Accordingly, when images are presented at a size of 4 degrees (as in this experiment) this 
synthesis limit corresponds to a retinal spatial frequency of 113/4 = ~28 c/deg. Our empirical 
measurement of the texture acuity limit, 11 c/deg, is well below this synthesis limit. This 
suggests that the measured texture acuity limit represents a feature of the visual system, rather 
than a feature of the texture images.  

8 c/image 22.7 c/image11.3 c/image 32 c/image16 c/image
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Figure 5. Naturalness sensitivity is reduced by image blur. Naturalness sensitivity vs. corner retinal spatial 
frequency for 5 different texture families. Data points labeled X denote conditions that were too difficult to 
produce a stable level of sensitivity. Colors distinguish the 3 observers. Error bars represent bootstrapped 95% 
confidence intervals. Arrows denote conditions in which the confidence intervals fell below the bottom edge of the 
plot. Solid lines denote descriptive fits based on data from all four experiments. 

Experiment #2: Image rescaling  

By itself, the results of the blur experiment cannot disambiguate whether naturalness 
sensitivity is set by properties of the image set (the informativeness of different object spatial 
frequencies) or properties of the visual system (the filtering of different retinal spatial 
frequencies). An experimental manipulation that can decouple these two factors is changing 
viewing distance. As the distance between the image and the observer decreases, fine details in 
the image, which exist in high object spatial frequencies, shift into lower retinal spatial 
frequencies and become easier to see. If naturalness sensitivity is primarily set by a texture 
acuity limit then decreasing viewing distance should lead to higher sensitivity.  

For this experiment we rescaled texture and noise images to larger and smaller sizes, a process 
that approximates physically placing it closer or further away from the observer. To achieve this 
effect, we resized images (imresize() in Matlab, bicubic interpolation), to produce a range of 
image diameters from 40 pixels (0.5 degrees) to 640 pixels (8 degrees). To achieve rescaled 
sizes of 16 and 32 degrees, we presented the 640 pixel images at viewing distances of 71 and 
35.5 cm, respectively. Qualitatively, naturalistic structure was easier to perceive at larger sizes 
(Figure 6).   
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Figure 6. Example images for scaled size experiment. Naturalistic (top, naturalness=0.087) and noise (bottom) 
images are rescaled to diameters of 160, 320, and 640 pixels. When presented in the experiment, these images 
took up 2, 4, and 8 degrees of visual space, respectively.  

The texture images contain no task-relevant information above the synthesis limit 𝑓'2&9:=113 
c/image. When images are presented at larger scaled sizes, the corresponding retinal spatial 
frequency of the synthesis limit decreases. For image sizes of 4, 8, and 16 degrees, the synthesis 
retinal frequency falls from 28 c/deg, to 14 c/deg, to 7 c/deg. Accordingly, there exists a scaled 
image size sufficiently large that the synthesis limit (a property of the image) will fall below the 
texture acuity limit (a property of the visual system). At this size, the only image features that 
would still lie above the texture acuity limit are those that contain no task-relevant information 
and increasing the size of the image would no longer improve naturalness sensitivity.  The 
texture acuity limit thus predicts that saturation should begin at a size equal to the ratio of the 
synthesis limit to the texture acuity limit:  

𝑆𝑧 = @ABCDE
@FGHIDB

	 (Equation 2) 

The texture acuity limit of 11 c/deg measured in Experiment #1 predicts a saturation size of 
about 10 degrees.  

For all 3 observers and 5 textures, we found that sensitivity increased with scaled size up to 
approximately 8 degrees, after which sensitivity saturated (Figure 7). The observed point of 
saturation corresponds closely to the texture acuity limit prediction of 10 degrees. These results 
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are consistent with naturalness sensitivity being limited by a single texture acuity limit, a 
property of the visual system, that applies to both experiments #1 and #2. Furthermore, note 
that in both experiments textures 2 and 4 qualitatively show a noticeably shallower slope than 
textures 1, 3, and 5. These two observations suggest that texture acuity limits (features of 
individual observers) and sensitivity curve shapes (features of individual texture families) may 
be applied across distinct experimental conditions. 

 
Figure 7. Naturalness sensitivity increases as textures are scaled to larger sizes. Naturalness sensitivity vs. scaled 
image size for 5 different texture families. Data points labeled X denote conditions that were too difficult to 
produce a stable level of sensitivity. Colors distinguish the 3 observers. Error bars represent bootstrapped 95% 
confidence intervals. Arrows denote conditions in which the confidence intervals fell below the bottom edge of the 
plot. Solid lines denote descriptive fits based on data from all four experiments. 

Experiment #3: Resized, blurred textures  

The observed relationship between scaled size and sensitivity relies on the distribution of task-
relevant information in different object spatial frequencies. Blurring the images has the effect 
of removing information in high object spatial frequencies. That is, blurring effectively lowers 
the synthesis limit of the image set. The results of the blurring and scaling experiments predict 
that lowering the synthesis limit should lead to saturation at a smaller scaled size. To test this 
interaction, we generated blurred, rescaled images by first low-pass filtering the images at a 
corner frequency of 22.6 cycles/image, then rescaling them as in Experiment #1. This amount of 
blur corresponds to the 4th pair of images from the left in Figure 4. Substituting 22.6 c/image 
into Equation 2 predicts that sensitivity should saturate for sizes greater than 2 degrees. For 2 
observers and all 5 textures, we found that the measured saturation size closely matched this 
prediction (Figure 8).  
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Figure 8. Naturalness sensitivity saturates at smaller scaled sizes for blurred images than for unfiltered images. 
Naturalness sensitivity vs. scaled image size for 5 different texture families. Light points and lines represent 
unfiltered images (data replotted from Figure 7). Dark points and lines represent images low-pass filtered at a 
corner frequency of 22.6 c/image. Data points labeled X denote conditions that were too difficult to produce a 
stable level of sensitivity. Colors distinguish two observers. Error bars represent bootstrapped 95% confidence 
intervals. Arrows denote conditions in which the confidence intervals fell below the bottom edge of the plot. Solid 
lines denote descriptive fits based on data from across all four experiments. 

This experiment demonstrates that, for low-pass filtered images, naturalness sensitivity is 
invariant to changes in scale over an 8:1 increase in image size (2 degrees to 32 degrees). This 
scaling of image size corresponds to a shift in the retinal spatial frequencies of the image over 
three octaves (e.g., from 11.3 to 1.4 c/deg). This scale-invariance demonstrates that observers 
appear to be equally effective at extracting task-relevant information located in either low or 
high retinal spatial frequencies. We conclude that the reliance of naturalness sensitivity on 
high-frequencies is not due to superior visual processing of image features in high retinal spatial 
frequencies. Rather, these measurements suggest that the texture images may be intrinsically 
more informative in high object spatial frequencies. We will address this question more 
quantitatively in the next section (“Descriptive fit”) where we describe a model observer 
analysis of the images. 

Experiment #4: Images in the visual periphery 

Visual acuity peaks in the center of gaze and steadily drops at locations further eccentric. To 
characterize if and how quickly texture acuity declines with visual eccentricity, we presented 
texture images in the peripheral visual field.  

Images were presented at rightwards horizontal displacements from the point of fixation, 
measured as the distance from the center of the fixation point to the center of the image. Thus, 
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when the 4 degree diameter image was presented at an eccentricity of 8 degrees, it spanned 
eccentric locations between 6 and 10 degrees. To achieve eccentric locations larger than 12 
degrees, the monitor was moved to a distance of 71 cm and images were rescaled to a 
diameter of 160 pixels. For this experiment, we recorded eye movements using an EyeLink eye 
tracker and verified eye position stability. Subjects received auditory feedback on whether they 
maintained stable fixation throughout the trial. Qualitatively, as images are presented further 
peripherally, texture becomes more difficult to distinguish from noise (Figure 9). 

 
Figure 9. Demonstration of visual periphery experiment. Hold the above figure at about arm’s length, such that the 
black cross takes up ~2 degrees of visual angle (approximately the width of your thumb at arm’s length). Fixating at 
the center of each cross will present the naturalistic (naturalness = 0.231) and noise images at a diameter of 4 
degrees, at an approximate distance from fixation of 16, 12, 8, 4, and 0 degrees, from left to right. Note that this 
demonstration (in which two images are presented at the same time) is not a reproduction of the experimental 
setup (in which only one image was flashed at a time). As the images come closer to the center of gaze, it becomes 
easier to discriminate texture from noise.  

For all 3 observers and 5 texture families, sensitivity smoothly declined with increasing 
eccentricity (Figure 10). Similar to experiments 1 & 2, texture families 2 and 5 qualitatively 
demonstrate a shallower decline than texture families 1, 3, and 4. This suggests that these 
differences in slope may be related to texture family-specific distributions of information over 
different object spatial frequencies. Accordingly, texture acuity may be an observer-specific 
property of the visual system that is applied equally to all texture families. The slopes in Figure 
10 rely on both of these factors: the distribution of information in each texture set and how 
texture acuity falls with eccentricity. Extracting how texture acuity falls with eccentricity 
requires a model that can disentangle these two factors.  

16 deg 4 deg12 deg 8 deg
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Figure 10. Naturalness sensitivity is lower in the peripheral visual field. Naturalness sensitivity vs. presentation 
location in the visual field for 5 different texture families. Data points labeled X denote conditions that were too 
difficult to produce a stable level of sensitivity. Colors distinguish the 3 observers. Error bars represent 
bootstrapped 95% confidence intervals. Arrows denote conditions in which the confidence intervals fell below the 
bottom edge of the plot. Solid lines denote descriptive fits based on data from all four experiments. 

Experiment #5: Grating acuity 

In our last experiment, we sought to compare texture acuity in the visual periphery to 
measurements from a more established task that is known to be limited by contrast (and thus 
depend on early visual mechanisms). Observers performed a coarse orientation discrimination 
task on images of sinusoidal gratings presented at different locations in the visual periphery. 
We used staircase procedures to change the retinal spatial frequency of the grating in order to 
find their grating acuity: the highest retinal spatial frequency at which observers could still 
consistently complete the task.  

Observers used the same match-to-sample task structure as the naturalness task. Three 
apertured sinusoidal gratings (4 degree diameter circle) were flashed, and the first and last 
grating differed in orientation by 90 degrees. The middle grating could match either the first or 
the last grating in orientation. Observers reported whether the first two or second two gratings 
matched in orientation. The retinal spatial frequency of all three gratings was the same, and 
changed trial-to-trial using the same staircase procedure as in the naturalness experiments (1 
to 38.1 c/deg, 0.25 octave spacing). In different blocks of the experiment, gratings were 
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presented at different locations in the peripheral visual field, using the same methods as 
experiment #4.  

The results of Experiment #5 are plotted in Figure 12. Qualitatively, observers reported that 
threshold spatial frequency corresponded to the point at which gratings were barely visible 
(Watson & Robson, 1981). We will postpone further discussion of these results until we have 
extracted comparable measurements of texture acuity from the descriptive model detailed in 
the next section.  

Analysis 

We have described naturalness sensitivity measurements from four distinct experimental 
conditions. Four aspects of our psychophysical results suggest that a common mechanism 
underlies these results. First, in all cases, sensitivity declines as high spatial frequency image 
features are attenuated or made more difficult to see. Second, the shapes of these declines are 
idiosyncratic to each texture family. Third, when a texture family exhibited a particular shape in 
one experiment, it tended to exhibit that same shape in all other experiments. Finally, the limits 
of naturalness perception seem to be set by two distinct spatial frequencies. The first is a 
synthesis limit: an object frequency (measured in cycles per image) set by the texture synthesis 
procedure. The second is a texture acuity limit: a retinal frequency (measured in cycles per 
degree) set by the limits of the visual system. These observations set the form of a simple, 
descriptive model of naturalness sensitivity that we use to fit all experimental data 
simultaneously.  

The model contains two cascaded stages. The first stage fits, for each texture family, a 
cumulative sensitivity function: a simple relationship between naturalness sensitivity and the 
corner object spatial frequency of a low-pass filter (Figure 11A / Figure 13). This stage estimates 
how well human observers extract information from the accessible object spatial frequencies of 
an image set, and its fit can be directly compared to the naturalness sensitivity of a model 
observer (see Appendix). This stage uses a single exponentiated quadratic function per texture 
family (Equation 6, three parameters/family, 15 total) that is shared across all experimental 
conditions and observers.  

The second stage of the model then “presents” the texture family at a given scaled size and 
location in the visual field (Figure 11B-C), determines the relevant corner frequency (synthesis 
limit or texture acuity limit), and computes the resulting naturalness sensitivity of the observer. 
This stage uses a single function per observer (Equation 4, two parameters/observer, 6 total) 
that describes how texture acuity falls from the center of gaze to the peripheral visual field 
(Figure 11C / Figure 12) and is shared across all experimental conditions and texture families.  
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Figure 11. A descriptive model for naturalness sensitivity measurements. A) For each texture family, we fit a 
cumulative sensitivity function that maps how naturalness sensitivity improves as observers gain access to features 
in increasingly high object spatial frequencies. The function plots sensitivity vs. the corner frequency of a low-pass 
filter. As more high frequencies are filtered out of the image (moving right to left on the plot), sensitivity declines. 
B) In the experiment, texture images are presented at a scaled size measured in degrees of visual angle. This size 
determines the mapping of the cumulative sensitivity function from units of object spatial frequency 
(cycles/image) to units of retinal spatial frequency (cycles/degree). The black, dark gray, and light gray curves 
correspond to the sensitivity curve in A) shifted for presentation sizes of 8, 4, and 2 degrees, respectively. The 
intersections of these curves with a vertical line denotes how sensitivity changes with size for a specific value of 
the texture acuity limit. Moving further into the visual periphery moves the vertical line left. The dotted line 
corresponds to a texture acuity limit of 10 c/deg. C) Texture acuity is highest at the center of gaze and lower in the 
peripheral visual field. The texture acuity function describes, for each observer, how texture acuity falls with 
eccentricity. The dotted lines illustrate that when images are presented at 4 degrees eccentricity, texture acuity is 
10 c/deg. 

Analysis methods 

We assume that, in all four experiments, naturalness sensitivity depends solely on the highest 
object spatial frequency available to the observer. This controlling corner spatial frequency in 
each experimental condition can be set by one of two factors. The first is an intrinsic object 
spatial frequency, the image limit: 

𝑓$K = min4𝑓'2&9:, 𝑓PQ7 (Equation 3) 

that is either a property of the texture synthesis process (𝑓'2&9:= 113 cycles/image, see 
Experimental methods: Image generation) for unfiltered conditions, or a result of low-pass 
filtering for blur conditions (𝑓PQ). This parameter represents the spatial frequency above which 
the image no longer contains task-relevant information. The units of this limit are in 
cycles/image.  

The second factor is a property of the visual system, the texture acuity limit, which describes 
the highest retinal spatial frequency that the observer can use to solve the task. We assume 
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that, like contrast detection acuity (Anderson et al., 1991; Robson & Graham, 1981), texture 
acuity has a finite value at the center of gaze and falls inversely with eccentricity: 

𝐴(𝑒) = TUFV
W

WEFXY
Z[

 (Equation 4). 

𝐴K;\ is a fit parameter for the foveal texture acuity limit, and should correspond to the 
measured point of saturation in Experiment #1. 𝑒 is the visual field eccentricity at which the 
image was presented. 𝑒:;P@ is a fit parameter that corresponds to the visual field eccentricity at 
which texture acuity falls to half of the foveal limit, and is equivalent to the x-intercept 
measurement discussed in previous measurements of peripheral acuities (Levi & Klein, 1990; 
Virsu & Rovamo, 1979). This texture acuity function has units of cycles/degree. 

Experimental conditions live in one of two regimes. In the first, observers can see all task-
relevant information present in the image and the controlling spatial frequency is equivalent to 
the image limit. In the second, observers cannot use all task-relevant information present in the 
image because some of it lies beyond the texture acuity limit. In this second regime, the 
controlling spatial frequency is set by the texture acuity limit. We define a normalized 
controlling frequency 𝑓&"#K as: 

𝑓&"#K = min(𝐴(𝑒) ∗ 𝑆𝑧, 𝑓$K) /𝑓'2&9:  (Equation 5) 

Where 𝑆𝑧 is the scaled size of the image in degrees. Because acuity is always positive and 𝑓$K  is 
always less than or equal to 𝑓'2&9: , 𝑓&"#K is bounded as 0 < 𝑓&"#K ≤ 1.  

We observed that for some texture families, sensitivity began to saturate when using object 
spatial frequencies near the synthesis limit. To account for this saturation, we fit the cumulative 
sensitivity function as an exponentiated quadratic function:  

𝑆 = 𝑆K;\ ∗ 2;∗abcd @CefUgh∗(abcd @CefU)
d  (Equation 6) 

where 𝑆K;\, 𝑎, and 𝑏 are fit parameters constrained to be positive. On a plot of log sensitivity 
versus log frequency (as in Figure 13) this function takes the shape of a quadratic curve. 
Because 𝑓&"#K ≤ 1, 𝑆K;\ is the maximum possible naturalness sensitivity for each texture 
family. The cumulative sensitivity function is used to set the threshold parameter (𝑇 = 1/𝑆) of 
a logistic function that describes how performance varies with naturalness.  

Using these functions, we found the parameter set that maximized the likelihood of the fit for 
all individual trials. In its final form, the model fits 23 parameters to more than 71,000 trials 
distributed over 20 distinct experimental conditions for the 3 observers (55 curves total). The 3 
sensitivity curve parameters from Equation 6 are fit individually for each of the 5 texture 
families (15 parameters total). The 2 acuity parameters from Equation 4 are fit for each 
observer (6 parameters total). The logistic function slope and lapse rate parameters are shared 
among all observers (2 parameters).  
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Grating discrimination acuity curves (Figure 12, black curves) were separately fit to the data 
from Experiment #5 in a manner similar to that used for texture acuity. For each of the three 
observers, we used the acuity formula (Equation 4) to determine thresholds of the sigmoid 
function at each eccentricity, then maximized the likelihood of the fit.  

Analysis results 

The results of the descriptive fit are summarized in Figures 12 and 13. Figure 12 plots fits of 
each observer’s texture acuity against visual eccentricity. Texture acuity is highest at the fovea 
(13.04 c/deg average, ± 1.43 std. dev.) and declines inversely proportional to eccentricity. 
Texture acuity fell to half of its maximum value at an eccentricity of 5.75 degrees (average ± 
0.44 std. dev.). We compared this rate of decline to that of grating acuity, plotted as the set of 
black curves in Figure 12. Note that for this task, the absolute acuity values depend on grating 
contrast; grating acuity shifts up or down with increased or decreased image contrast. 
Nonetheless, we expect that the relative rate of decline in grating acuity with eccentricity 
should be the same when using different contrasts (Anderson et al., 1991; Robson & Graham, 
1981). Grating acuity fell to half of its maximum at an eccentricity of 6.40 degrees (average ± 
0.57 std. dev.), a rate of decline very similar to that of texture acuity. 

 
Figure 12. Texture acuity and orientation discrimination acuity show similar rates of decline with eccentricity. The 
colored lines plot descriptive fits of texture acuity vs. eccentricity in the visual field. Individual scatter points 
denote texture acuity limits predicted from individual conditions in Experiment 4, mapped using each texture 
family’s cumulative sensitivity function (Figure 13). Each plot denotes a separate observer, with colors denoting 
specific observers as in previous figures. The black points denote grating acuity measurements from an orientation 
discrimination task (90 degree orientation difference, grating RMS contrast = 10%). The black curves are maximum 
likelihood fits of the grating acuity function. 

Figure 13A-E plots cumulative sensitivity functions (fits of naturalness sensitivity vs corner 
frequency) for each texture family (thick lines). Plotted on the same graphs are the sensitivities 
and estimated corner spatial frequencies for all individual experimental conditions that used 
that texture family (gray points). Their close correspondence suggests a parsimonious account 
of the data.  

Though there is some heterogeneity among different texture families, all five plots show a rapid 
rise in sensitivity with corner frequency. The slope on these log-log plots corresponds to the 
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exponent of a power function fit of sensitivity versus frequency. The average slope across the 
texture families is 1.06 (+- 0.297 std. dev., measured between 10 and 100 c/image), which 
corresponds to a linear relationship between sensitivity and frequency. In other words, each 
addition of an octave-wide frequency band to the texture images leads, on average, to a 
doubling in naturalness sensitivity. 

 
Figure 13. Cumulative sensitivity function fits and model observer sensitivities for each texture family. A-E) 
Cumulative sensitivity functions (best fit curves of naturalness sensitivity vs. low-pass corner frequency) are 
plotted as thick colored lines for each of the 5 texture families. Scatter points denote individual conditions from all 
4 experiments, where each condition’s corner spatial frequency has been calculated based on its low-pass filtering, 
size, and presentation eccentricity. Different symbols represent data points from different experiments (squares - 
rescaling, circles – blur, diamonds – visual periphery). The naturalness sensitivity of the model observer is plotted 
against low-pass corner frequency as colored circles connected by a thin line. F) Model observer sensitivities (data 
points from the colored circles in A-E, thin lines) are plotted against descriptive fit sensitivity measurements 
(measured at 4 points along the colored thick lines in A-E). Colors denote individual texture families, as in A-E. The 
black line denotes unity.  
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Efficiency 

The cumulative sensitivity functions do not disambiguate whether 1) image features in high 
object spatial frequencies are intrinsically more informative than those in low frequencies or 2) 
observer processing is more efficient in high object spatial frequencies. To quantify the extent 
to which image features set the limits of naturalness discrimination, we built a model observer 
that measures the task-relevance of the texture statistics within each set of apertured images. 
Image aperturing led to a small amount of drift in each image’s texture statistics, such that 
different images synthesized to have the same naturalness could differ slightly in their statistics 
(Ziemba et al., 2018; Ziemba & Simoncelli, 2021). The model observer’s sensitivity corresponds 
to the naturalness level at which texture statistics are no longer a reliable cue for 
discrimination. The full details of the model observer’s implementation can be found in the 
Appendix. 

We measured how the model observer’s naturalness sensitivity changed as we removed high 
object spatial frequency bands from the model (a process comparable to low-pass filtering the 
images). The end result is, for each texture family, a plot of the model’s naturalness sensitivity 
versus low-pass filter corner frequency. This is represented as the colored scatter points 
connected by a thin line in Figure 13A-E. For all texture families, the model observer’s 
sensitivity rapidly increases with corner frequency, approximately doubling with each addition 
of an octave-wide frequency band. This is the same average slope observed in the cumulative 
sensitivity functions.  

We also measured the model observer’s sensitivity when it was limited to single frequency 
bands (a process comparable to bandpass filtering). Sensitivity was identical for bandpass and 
low-pass model observers when the single band of the bandpass model matched the highest 
band of the low-pass model. That is, the model observer’s sensitivity was fully set by the 
highest available object spatial frequency band, and the contribution of lower frequency bands 
was negligible.  

We found that the sensitivity of the model observer covaries strongly with the sensitivity of 
human observers (Figure 13F, R2=0.91) and exhibits only slightly higher average sensitivity. The 
model observer partially captures the rank order of texture sensitivities, as well as the average 
slope of the sensitivity curve. The correspondence is not perfect, though. The model observer 
fails to capture particular idiosyncrasies of individual textures: the saturation at high object 
frequencies of textures 1, 3, and 4, and the shallower slope of textures 2 and 5. Nonetheless, 
we find that a model based purely on the image ensemble’s intrinsic uncertainty, with no added 
“neural” noise, closely tracks human performance on the texture task. 

Task efficiency can be defined as the squared ratio of human sensitivity to model observer 
sensitivity (Barlow, 1978; Geisler, 2003). Observers have an average efficiency of 21.3% 
compared to the model observer (Figure 14). Efficiency is weakly bandpass, peaking at 26.5% at 
a spatial frequency of 28.3 c/image, and falling to 14.2% at the highest spatial frequency, 113.1 
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c/image. Note that, unlike other models, our model does not seek to be “ideal” in any sense.  
Our measurements of task efficiency should therefore be thought of as a comparison to an 
objective benchmark, rather than an absolute statement about a theoretical maximum.  

 
Figure 14. Efficiency of human naturalness sensitivity compared to the model observer. Efficiency is plotted against 
low-pass corner frequency. The black line is the average efficiency across textures. Colored points and lines 
represent the efficiencies of individual texture families, as in Figure 13.  

To summarize: The texture image sets contain more task-relevant information in high object 
spatial frequencies than low frequencies. This rapid rise in information drives much higher 
human sensitivity when high frequencies are available, even after taking into account that 
observers are slightly less efficient at extracting information from high frequencies compared to 
low frequencies. 

Discussion 

We have found that perceptual sensitivity to naturalistic texture stimuli relies on image 
features in high object spatial frequencies. As a result, sensitivity is primarily limited by a retinal 
spatial frequency, texture acuity, that varies across the visual field. A model observer analysis 
illustrates that high object spatial frequency image features carry more task-relevant 
information than low frequency features, and that human observers efficiently extract task-
relevant information from all object spatial frequencies. 

Texture acuity limit 

Observers performing the naturalness discrimination task cannot use image features that lie 
above the texture acuity limit. Similarly, observers cannot discriminate the orientation of two 
periodic gratings whose spatial frequencies lie above a grating acuity limit. Both texture acuity 
and grating acuity peak at the center of gaze and fall off with increasing eccentric distance. We 
find that both acuities decay at similar rates, falling to half of their foveal values at an 
eccentricity of ~6 degrees. It is parsimonious to assume that, due to the similarity in slope, both 
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of these tasks are limited by contrast detection acuity. This decay is more gradual than some 
previously reported values for contrast acuity, which may be due to our relatively brief 
presentation time (Levi & Klein, 1990). Shorter presentation times and faster onsets degrade 
foveal acuity more strongly than peripheral acuity, and can accordingly lead to a shallower 
slope of acuity with eccentricity. Thus, we find that naturalness sensitivity, a task designed to 
isolate mid-level visual mechanisms, is nonetheless strongly limited by contrast acuity, an early 
visual mechanism.  

Scale-invariance 

A visual task is considered scale-invariant if task performance stays consistent across changes in 
viewing distance. Naturalness sensitivity exhibits scale-invariance for very large sizes with 
unfiltered textures (Figure 7), and over a wider range of sizes for low-pass filtered textures 
(Figure 8). That is, shifting task-relevant features through different retinal spatial frequencies 
does not degrade the ability of observers to use those features, as long as the features lie 
below the texture acuity limit. This scale-invariance is a common feature of suprathreshold 
form vision. Full or partial scale-invariance has been observed for many distinct form vision 
tasks, including texture discrimination (Dakin & Mareschal, 2000; Jamar & Koenderink, 1983; 
Joseph et al., 1997; Kingdom et al., 1995; Kingdom & Keeble, 1999; Sutter et al., 1995; van 
Meeteren & Barlow, 1981), texture segregation (Landy & Bergen, 1991; Nothdurft, 1985), 
contrast matching (Georgeson & Sullivan, 1975), symmetry detection (Dakin & Herbert, 1998; 
Rainville & Kingdom, 2002), spatial interval discrimination (Levi & Klein, 1990), reading (Legge 
et al., 1985), and object identification (Majaj et al., 2002; Oruç & Barton, 2010). Scale-
invariance is also a feature of neural representations of form: cortical areas downstream of 
primary visual cortex encode object identity in a manner that is robust to changes in scale 
(Hong et al., 2016; Rust & DiCarlo, 2010). The scale-invariance of naturalness sensitivity 
supports the idea that, once early acuity limits are taken into account, visual form perception is 
highly invariant to changes in viewing distance.  

Cumulative sensitivity functions 

Because of scale-invariance, naturalness sensitivity is more parsimoniously analyzed in terms of 
object spatial frequencies than retinal spatial frequencies. The cumulative sensitivity functions 
(Figure 13) show that, for all texture families studied, naturalness sensitivity rapidly improves 
with access to increasingly high object spatial frequencies. The curves also show differences 
between different texture families. Differences in the height of the curves illustrates that it is 
easier to distinguish naturalistic structure in some texture families than others (Freeman et al., 
2013). Textures 1, 3, and 4 exhibit a qualitatively different shape (a rapid, saturating increase 
with spatial frequency) than textures 2 and 5 (a shallower slope with no saturation). We do not 
have a quantitative explanation for this difference, although inspection of the images (Figure 
1E) suggests that the most salient naturalistic features in textures 1, 2, and 4 are “line-like,” 
while the most salient features in textures 2 and 5 are “blob-like.” Further study of these 
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family-specific differences may help narrow down how specific image features are processed by 
mid-level visual mechanisms. 

The cumulative sensitivity functions demonstrate that high object frequencies are necessary to 
achieve high levels of naturalness sensitivity. However, because these high frequency features 
were always presented in conjunction with lower frequency features, these experiments cannot 
demonstrate whether high frequency features are sufficient for high sensitivity. The model 
observer analysis shows that features in high spatial frequencies carry enough information to 
produce high sensitivity, but we do not know whether human sensitivity relies on the same 
underlying mechanisms as the model. Differences in sensitivity across texture families are most 
strongly predicted by “cross-scale” texture statistics that measure the co-occurrence of features 
in high and low object spatial frequency bands (see Appendix and Freeman et al., (2013)). This 
empirical result suggests that interactions between frequency bands may be a critical factor in 
driving high sensitivity. A definitive answer to this question will require measurements of 
sensitivity using bandpass filtered texture images that limit task-relevant information to a single 
spatial frequency band.  

Comparing human and model observers 

We find that the naturalness sensitivity of human observers, on average, doubles for each 
additional octave-wide object spatial frequency band added to the image. We also find that a 
model observer trained on the same texture image set shows a doubling in sensitivity with 
spatial frequency. This particular rate of improvement may be related to the information-
carrying capacity of each spatial frequency band. Parish & Sperling (1991) observed a similar 
rate of improvement with spatial frequency in the recognition of bandpass-filtered letters. They 
account for this rise by the increase in the number of effective samples in increasingly high 
spatial frequency bands: a factor of 4 for every additional octave-wide band. In an image of a 
given size, high-frequency features can independently covary at shorter distances, and thus at 
more locations, than low-frequency features. Each of these locations can vary independently in 
its local contrast and can (to a first approximation) be thought of as an independent sample. So 
long as these variations in local contrast range far above the contrast detection threshold, 
statistics measured in high-frequency bands will be averaged over more samples than statistics 
in low-frequency bands. This resulting reduction in sampling error predicts that sensitivity 
should be proportional to the square root of the increase in the number of independent 
samples. That is, each addition of an octave-wide frequency band should lead to a doubling in 
sensitivity. This matches the rate of improvement of both the cumulative sensitivity functions 
and of the model observer.  

The observer model makes a number of strong predictions that can be empirically tested. For 
example, the model observer’s relatively high efficiency implies that much of the variance in 
psychophysical performance is intrinsically a property of the image set, rather than a limitation 
of the observer’s visual system. Because the model computes the strength of the naturalness 
signal for individual images, this hypothesis can directly tested by a “double-pass” experiment 
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(Chin & Burge, 2020; van Meeteren & Barlow, 1981) that presents the same sets of images to 
the same observer multiple times. If observers respond with the same judgement to the same 
set of images across multiple repetitions, this would act as evidence that variance between the 
images was the true limiting factor on psychophysical performance.  

The model observer also makes predictions about how strongly different texture statistics are 
weighted by the observer. By generating new texture images that parametrically vary in the 
relative strength of these different statistics, we can use the model observer as a fair baseline 
to judge which statistics most closely covary with human perception. In a similar vein, the 
current version of the model observer assumes that all locations within the aperture are 
weighted equally in the eventual decision. Psychophysical experiments using images that vary 
naturalness with spatial location could help confirm or refine this assumption. Using the model 
observer as a guide, these experiments could help constrain a more fully realized model of 
naturalness perception, and give insight into the mid-level processes that give rise to the 
perception of visual form.  

Connections to neurophysiology 

The strong dependence of behavioral sensitivity on object spatial frequency raises the question 
of whether neural measurements of naturalness sensitivity exhibit a similar dependence on 
spatial frequency. Freeman et al. (2013) found no significant relationship between the 
preferred retinal spatial frequency of V2 neurons and the strength of their response to 
naturalistic structure. However, the model observer’s limitation by sampling error also predicts 
that having access to larger images (and thus more independent samples) should also drive 
higher sensitivity. This prediction is borne out by neural data: Larger images drive stronger 
naturalness modulation in V2 neurons than smaller images (Ziemba et al., 2018). The preferred 
spatial frequency of a visual neuron is typically inversely proportional to the size of its receptive 
field, such that neurons responsive to higher spatial frequencies tend to respond to smaller 
visual areas. In the model observer, these two factors effectively cancel, and thus predict no 
strong relationship between preferred spatial frequency and naturalness modulation. Rather, 
the model observer suggests that neural naturalness sensitivity might be best predicted by the 
ratio of a neuron’s preferred spatial frequency to its spatial extent: the number of spatial 
frequency cycles/receptive field diameter.  

Our model observer demonstrates that each additional high spatial frequency band adds four 
times as many channels of information as the previous band, and that human observers extract 
this information with similar efficiency in all frequency bands. Both the results of the model 
observer and the structure of the Portilla & Simoncelli texture synthesis method suggest that an 
efficient visual system would, in a given region of space, distribute four times as many detectors 
in a high-frequency band than in a frequency band one octave lower. However, this prediction 
is inconsistent with neurophysiological data. Neuronal recordings in primary visual cortex 
typically indicate that at a given eccentricity, cells preferring high spatial frequencies are about 
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as common as those preferring low spatial frequencies (De Valois et al., 1982). This suggests 
that visual cortex inefficiently samples the retinal image.  

Mid-level visual mechanisms 

We conclude that our measurements of naturalness sensitivity are best explained by two 
factors that are not related to mid-level visual mechanisms. The first factor, the texture acuity 
limit, likely has its origin in contrast detection, and is thus a property of early visual processing. 
The second factor, the cumulative sensitivity functions of both human and model observers, 
shows that the strong dependence of naturalness sensitivity on high object spatial frequencies 
is primarily a property of the information available in the naturalistic texture image set, rather 
than a property of mid-level processing. In fact, our primary conclusions about mid-level 
processing relate to its constancy, rather than variation, with spatial frequency. The scale-
invariance of naturalness sensitivity demonstrates that mid-level mechanisms are equally 
effective when the same image features are analyzed in different retinal spatial frequencies. 
The task efficiency measurements demonstrate that mid-level mechanisms show comparable 
effectiveness across different object spatial frequencies of the multi-scale texture images. This 
constancy suggests that naturalistic textures are a class of stimuli that is well-suited to engage 
multiple scales of mid-level processing at the same time.  

Acknowledgements 

Thanks to Norma Graham, Mike Landy, and Corey Ziemba for helpful comments on the 
manuscript. Thanks to Eero Simoncelli, Jonathan Victor, and Tim Oleskiew for thought-
provoking discussions on the results. Thanks to Sullivan Bacardo, Rui Diaz-Pacheco and Kiley 
Gan for help testing, maintaining, and running the experimental setup. 

References 

Anderson, S. J., Mullen, K. T., & Hess, R. F. (1991). Human peripheral spatial resolution for 
achromatic and chromatic stimuli: Limits imposed by optical and retinal factors. The 
Journal of Physiology, 442, 47–64. 

Archambault, A., Gosselin, F., & Schyns, P. G. (n.d.). A Natural Bias For the Basic Level? 6. 
Barlow, H. B. (1978). The efficiency of detecting changes of density of random dot patterns. 

Vision Research, 637–650. 
Bex, P. J., & Makous, W. (2002). Spatial frequency, phase, and the contrast of natural images. 

Journal of the Optical Society of America A, 19(6), 1096. 
https://doi.org/10.1364/JOSAA.19.001096 

Bex, P. J., Mareschal, I., & Dakin, S. C. (2007). Contrast gain control in natural scenes. Journal of 
Vision, 7(11), 12. https://doi.org/10.1167/7.11.12 

Bex, P. J., Solomon, S. G., & Dakin, S. C. (2009). Contrast sensitivity in natural scenes depends on 
edge as well as spatial frequency structure. Journal of Vision, 9(10), 1–1. 
https://doi.org/10.1167/9.10.1 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2022. ; https://doi.org/10.1101/2022.08.23.504875doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.23.504875
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

Braje, W. L., Tjan, B. S., & Legge, G. E. (1995). Human efficiency for recognizing and detecting 
low-pass filtered objects. Vision Research, 35(21), 2955–2966. 
https://doi.org/10.1016/0042-6989(95)00071-7 

Chin, B. M., & Burge, J. (2020). Predicting the Partition of Behavioral Variability in Speed 
Perception with Naturalistic Stimuli. The Journal of Neuroscience, 40(4), 864–879. 
https://doi.org/10.1523/JNEUROSCI.1904-19.2019 

Chubb, C., & Sperling, G. (1988). Drift-balanced random stimuli: A general basis for studying 
non-Fourier motion perception. Journal of the Optical Society of America A, 5(11), 1986. 
https://doi.org/10.1364/JOSAA.5.001986 

Dakin, S. C., & Herbert, A. M. (1998). The spatial region of integration for visual symmetry 
detection. Proceedings of the Royal Society of London. Series B: Biological Sciences, 
265(1397), 659–664. https://doi.org/10.1098/rspb.1998.0344 

Dakin, S. C., & Mareschal, I. (2000). Sensitivity to contrast modulation depends on carrier spatial 
frequency and orientation. Vision Research, 40(3), 311–329. 
https://doi.org/10.1016/S0042-6989(99)00179-0 

De Valois, R. L., Albrecht, D. G., & Thorell, L. G. (1982). Spatial frequency selectivity of cells in 
macaque visual cortex. Vision Research, 22(5), 545–559. https://doi.org/10.1016/0042-
6989(82)90113-4 

Freeman, J., Ziemba, C. M., Heeger, D. J., Simoncelli, E. P., & Movshon, J. A. (2013). A functional 
and perceptual signature of the second visual area in primates. Nature Neuroscience, 
16(7), 974–981. https://doi.org/10.1038/nn.3402 

Geisler, W. S. (2003). Ideal observer analysis. In The visual neurosciences (pp. 825–837). 
Georgeson, M. A., & Sullivan, G. D. (1975). Contrast constancy: Deblurring in human vision by 

spatial frequency channels. The Journal of Physiology, 252(3), 627–656. 
https://doi.org/10.1113/jphysiol.1975.sp011162 

Gold, J., Bennett, P. J., & Sekuler, A. B. (1999). Identification of band-pass filtered letters and 
faces by human and ideal observers. Vision Research, 39(21), 3537–3560. 
https://doi.org/10.1016/S0042-6989(99)00080-2 

Graham, N. (1989). Visual pattern analyzers. Oxford University Press. 
Graham, N. (2011). Beyond multiple pattern analyzers modeled as linear filters (as classical V1 

simple cells): Useful additions of the last 25 years. Vision Research, 51(13), 1397–1430. 
https://doi.org/10.1016/j.visres.2011.02.007 

Graham, N., & Landy, M. (2002). Visual Perception of Texture. The Visual Neurosciences. 
Heeger, D. J., & Bergen, J. R. (1995). Pyramid-Based Texture Analysis/Synthesis. Proceedings of 

the 22nd Annual Conference on Computer Graphics and Interactive Techniques, 229–
238. 

Hillis, J. M., Ernst, M. O., Banks, M. S., & Landy, M. S. (2002). Combining Sensory Information: 
Mandatory Fusion Within, but Not Between, Senses. Science, 298(5598), 1627–1630. 
https://doi.org/10.1126/science.1075396 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2022. ; https://doi.org/10.1101/2022.08.23.504875doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.23.504875
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

Hong, H., Yamins, D. L. K., Majaj, N. J., & DiCarlo, J. J. (2016). Explicit information for category-
orthogonal object properties increases along the ventral stream. Nature Neuroscience, 
19(4), 613–622. https://doi.org/10.1038/nn.4247 

Jamar, J. H. T., & Koenderink, J. J. (1983). Sine-wave gratings:Scale invariance and spatial 
integration at suprathreshold contrast. Vision Research, 23(8), 805–810. 
https://doi.org/10.1016/0042-6989(83)90203-1 

Joseph, J. S., Victor, J. D., & Optican, L. M. (1997). Scaling effects in the perception of higher-
order spatial correlations. Vision Research, 37(22), 3097–3107. 
https://doi.org/10.1016/S0042-6989(97)00068-0 

Kim, T., Bair, W., & Pasupathy, A. (2019). Neural Coding for Shape and Texture in Macaque Area 
V4. The Journal of Neuroscience, 39(24), 4760–4774. 
https://doi.org/10.1523/JNEUROSCI.3073-18.2019 

Kim, T., Bair, W., & Pasupathy, A. (2022). Perceptual Texture Dimensions Modulate Neuronal 
Response Dynamics in Visual Cortical Area V4. The Journal of Neuroscience, 42(4), 631–
642. https://doi.org/10.1523/JNEUROSCI.0971-21.2021 

Kingdom, F. A. A., Keeble, D., & Moulden, B. (1995). Sensitivity to orientation modulation in 
micropattern-based textures. Vision Research, 35(1), 79–91. 
https://doi.org/10.1016/0042-6989(94)E0079-Z 

Kingdom, F. A. A., & Keeble, D. R. T. (1999). On the mechanism for scale invariance in 
orientation-defined textures. Vision Research, 39(8), 1477–1489. 
https://doi.org/10.1016/S0042-6989(98)00217-X 

Landy, M. S. (2013). Texture analysis and perception. 26. 
Landy, M. S., & Bergen, J. R. (1991). Texture segregation and orientation gradient. Vision 

Research, 31(4), 679–691. https://doi.org/10.1016/0042-6989(91)90009-T 
Landy, M. S., & Kojima, H. (2001). Ideal cue combination for localizing texture-defined edges. 

Journal of the Optical Society of America A, 18(9), 2307. 
https://doi.org/10.1364/JOSAA.18.002307 

Legge, G. E., & Foley, J. M. (1980). Contrast masking in human vision. JOSA, 70(12), 1458–1471. 
https://doi.org/10.1364/JOSA.70.001458 

Legge, G. E., Pelli, D. G., Rubin, G. S., & Schleske, M. M. (1985). Psychophysics of reading: I. 
Normal vision. 

Levi, D. M., & Klein, S. A. (1990). Equivalent intrinsic blur in spatial vision. Vision Research, 
30(12), 1971–1993. https://doi.org/10.1016/0042-6989(90)90016-E 

Majaj, N. J., Pelli, D. G., Kurshan, P., & Palomares, M. (2002). The role of spatial frequency 
channels in letter identification. Vision Research, 42(9), 1165–1184. 
https://doi.org/10.1016/S0042-6989(02)00045-7 

Morrison, D. J., & Schyns, P. G. (2001). Usage of spatial scales for the categorization of faces, 
objects, and scenes. Psychonomic Bulletin & Review, 8(3), 454–469. 
https://doi.org/10.3758/BF03196180 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2022. ; https://doi.org/10.1101/2022.08.23.504875doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.23.504875
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

Movshon, J. A., & Simoncelli, E. P. (2014). Representation of Naturalistic Image Structure in the 
Primate Visual Cortex. Cold Spring Harbor Symposia on Quantitative Biology, 79, 115–
122. https://doi.org/10.1101/sqb.2014.79.024844 

Nothdurft, H. C. (1985). Sensitivity for structure gradient in texture discrimination tasks. Vision 
Research, 25(12), 1957–1968. https://doi.org/10.1016/0042-6989(85)90020-3 

Okazawa, G., Tajima, S., & Komatsu, H. (2015). Image statistics underlying natural texture 
selectivity of neurons in macaque V4. Proceedings of the National Academy of Sciences, 
112(4). https://doi.org/10.1073/pnas.1415146112 

Okazawa, G., Tajima, S., & Komatsu, H. (2016). Gradual Development of Visual Texture-Selective 
Properties Between Macaque Areas V2 and V4. Cerebral Cortex, cercor;bhw282v1. 
https://doi.org/10.1093/cercor/bhw282 

Oppenheim, A. V., & Lim, J. S. (1981). The importance of phase in signals. Proceedings of the 
IEEE, 69(5), 529–541. https://doi.org/10.1109/PROC.1981.12022 

Oruç, İ., & Barton, J. J. S. (2010). Critical frequencies in the perception of letters, faces, and 
novel shapes: Evidence for limited scale invariance for faces. Journal of Vision, 10(12), 
20. https://doi.org/10.1167/10.12.20 

Parish, D. H., & Sperling, G. (1991). Object spatial frequencies, retinal spatial frequencies, noise, 
and the efficiency of letter discrimination. Vision Research, 31(7–8), 1399–1415. 
https://doi.org/10.1016/0042-6989(91)90060-I 

Piotrowski, L. N., & Campbell, F. W. (1982). A Demonstration of the Visual Importance and 
Flexibility of Spatial-Frequency Amplitude and Phase. Perception, 11(3), 337–346. 
https://doi.org/10.1068/p110337 

Portilla, J., & Simoncelli, E. P. (2000). A Parametric Texture Model Based on Joint Statistics of 
Complex Wavelet Coefficients. 23. 

Rainville, S. J. M., & Kingdom, F. A. A. (2002). Scale invariance is driven by stimulus density. 
Vision Research, 42(3), 351–367. https://doi.org/10.1016/S0042-6989(01)00290-5 

Rao, A. R., & Lohse, G. L. (1996). Towards a Texture Naming System: Identifying Relevant 
Dimensions of Texture. 21. 

Robson, J. G., & Graham, N. (1981). Probability summation and regional variation in contrast 
sensitivity across the visual field. Vision Research, 21(3), 409–418. 
https://doi.org/10.1016/0042-6989(81)90169-3 

Rust, N. C., & DiCarlo, J. J. (2010). Selectivity and Tolerance (“Invariance”) Both Increase as 
Visual Information Propagates from Cortical Area V4 to IT. Journal of Neuroscience, 
30(39), 12978–12995. https://doi.org/10.1523/JNEUROSCI.0179-10.2010 

Saarela, T. P., & Landy, M. S. (2012). Combination of texture and color cues in visual 
segmentation. Vision Research, 58, 59–67. https://doi.org/10.1016/j.visres.2012.01.019 

Sowden, P. T., & Schyns, P. G. (2006). Channel surfing in the visual brain. Trends in Cognitive 
Sciences, 10(12), 538–545. https://doi.org/10.1016/j.tics.2006.10.007 

Sutter, A., Sperling, G., & Chubb, C. (1995). Measuring the spatial frequency selectivity of 
second-order texture mechanisms. Vision Research, 35(7), 915–924. 
https://doi.org/10.1016/0042-6989(94)00196-S 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2022. ; https://doi.org/10.1101/2022.08.23.504875doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.23.504875
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

Thomson, M. G. A., Foster, D. H., & Summers, R. J. (2000). Human Sensitivity to Phase 
Perturbations in Natural Images: A Statistical Framework. Perception, 29(9), 1057–1069. 
https://doi.org/10.1068/p2867 

van Meeteren, A., & Barlow, H. B. (1981). The statistical efficiency for detecting sinusoidal 
modulation of average dot density in random figures. Vision Research, 21(6), 765–777. 
https://doi.org/10.1016/0042-6989(81)90174-7 

Virsu, V., & Rovamo, J. (1979). Visual resolution, contrast sensitivity, and the cortical 
magnification factor. Experimental Brain Research, 37(3). 
https://doi.org/10.1007/BF00236818 

Watson, A. B., & Robson, J. G. (1981). Discrimination at threshold: Labelled detectors in human 
vision. Vision Research, 21(7), 1115–1122. https://doi.org/10.1016/0042-
6989(81)90014-6 

Wichmann, F. A., & Hill, N. J. (2001a). The psychometric function: I. Fitting, sampling, and 
goodness of fit. Perception & Psychophysics, 63(8), 1293–1313. 
https://doi.org/10.3758/BF03194544 

Wichmann, F. A., & Hill, N. J. (2001b). The psychometric function: II. Bootstrap-based 
confidence intervals and sampling. Perception & Psychophysics, 63(8), 1314–1329. 
https://doi.org/10.3758/BF03194545 

Ziemba, C. M., Freeman, J., Simoncelli, E. P., & Movshon, J. A. (2018). Contextual modulation of 
sensitivity to naturalistic image structure in macaque V2. Journal of Neurophysiology, 
120(2), 409–420. https://doi.org/10.1152/jn.00900.2017 

Ziemba, C. M., & Simoncelli, E. P. (2021). Opposing effects of selectivity and invariance in 
peripheral vision. Nature Communications, 12(1), 4597. 
https://doi.org/10.1038/s41467-021-24880-5 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2022. ; https://doi.org/10.1101/2022.08.23.504875doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.23.504875
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

Appendix: Model observer methods and comparison to Freeman et al., 2013 

Our experimental results suggested that naturalness sensitivity relies on task-relevant 
information in high object spatial frequencies. To quantify which image features set the limits 
of naturalness discrimination, we built a model observer that produce estimates of naturalness 
sensitivity based only on the statistical properties of the texture images. While this model is not 
provably an ideal observer, it is computationally tractable and we expect its performance to be 
similar to that of an ideal observer.  

The model observer computes the same statistics as the Portilla & Simoncelli texture synthesis 
method, then finds the combination of those statistics that optimally discriminates naturalistic 
texture from spectrally-matched noise. By computing discriminability for images of 
intermediate naturalness, we produced a relationship between discriminability and naturalness 
that allowed us to interpolate the model observer’s naturalness sensitivity. To measure how 
sensitivity changes with the removal of high-frequency image features, we grouped statistics by 
frequency band and systematically limited their availability to the discrimination algorithm. 
Finally, we used the model observer to investigate how different texture statistics contribute to 
naturalness discrimination. 

Model observer methods 

The model observer begins by computing measurements of the same texture statistics used in 
the Portilla & Simoncelli synthesis procedure, with one difference. The model observer 
computes statistics from circularly apertured texture images (like the images used in the 
perceptual experiments) and restricts its spatial averaging of statistics to locations within the 
aperture. In contrast, the Portilla & Simoncelli procedure computes statistics on rectangular 
fields of texture that are assumed to have periodic image boundaries. As a result of these 
differences, for any individual texture image, the statistics measured by the model observer are 
not identical to the statistics used to synthesize the image. Rather, the measured statistics vary 
between different texture image examples. These measurements from the apertured images 
are a more realistic approximation of the information available to human observers when the 
texture images are realized on a physical screen. 

We measured texture statistics for many different naturalistic texture images and spectrally-
matched noise images (960 total per condition), then applied linear discriminant analysis to find 
the weighted sum of statistics that optimally separates naturalistic texture from noise. Because 
we had many more statistics than sample images, we used regularization and cross-validation 
to avoid overfitting. The full set of statistics, measured over the full ensemble of images, 
constitutes a matrix 𝑆 of images by statistics. We define two matrices, 𝑆9  and 𝑆&, for the 
statistics of the naturalistic texture and noise image sets, respectively. For each image set, we 
then measure the full covariance matrix for all statistics across all images in their set. We define 
Σ as the sum of these two covariance matrices:  
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Σ = 𝐶𝑜𝑣(𝑆9) + 𝐶𝑜𝑣(𝑆&) (Equation 7). 

Linear discriminant analysis requires computing the inverse of this sum of covariance matrices. 
To regularize the inversion of the covariance matrix, we first define Σp$;%  as a matrix that is 
equal to Σ for all diagonal elements, and 0 otherwise. We then compute 

Σ#(%g[ = 4Σ ∗ (1 − 𝜆) + Σp$;% ∗ 𝜆7
g[

 (Equation 8) 

where 𝜆 is a regularization parameter bounded between 0 and 1. 𝜆=0 computes the inverse 
covariance matrix with no regularization and 𝜆=1 computes the inverse assuming that the 
statistics do not covary at all across images. The weights of the linear discriminant are then 
computed as  

𝑤 = 4𝐴𝑣𝑔(𝑆9) − 𝐴𝑣𝑔(𝑆&)7 ∗ Σ#(%g[ (Equation 9)  

where 𝐴𝑣𝑔(𝑆9) and 𝐴𝑣𝑔(𝑆&) are the values of the statistics averaged over all images for the 
naturalistic texture and noise image sets respectively. To cross-validate our calculation of the 
weights, we split each image group into 5 partitions (192 images each), refitting our model each 
time holding out 1/5 of the data as a test set. We then applied the weights to the held out test 
data to compute a single, weighted sum discriminant value for each image. This resulted in two 
distributions of test set discriminant values: one for naturalistic images and one for noise 
images. We summarized the discriminability of these two distributions as a d-prime value 

𝑑u = Tv%('D)gTv%('C)

wxd∗(y;#('D)Zy;#('C))
  (Equation 10) 

where 𝑠9 is the distribution of the naturalistic discriminants and 𝑠& is the distribution of the 
noise discriminants. This analysis consistently found larger cross-validated d-prime values for 
𝜆>0 than for 𝜆=0 (suggesting regularization helped avoid overfitting), and found stable d-prime 
values over a large range of 𝜆s. For all analyses in this paper we set 𝜆 to 0.01, a value which 
achieved high levels of discriminability for all texture families. Our results did not qualitatively 
change for different choices of 𝜆. 

To compute the naturalness sensitivity of the model observer, we applied each texture family’s 
linear discriminant weights to statistics from images of intermediate naturalness. Specifically, 
we applied the training weights (found using fully naturalistic images) to test sets of statistics 
from images of intermediate naturalness. The training and test sets of images were segregated 
such that no seeds (the spectrally-matched noise images used to initialize the texture synthesis 
process) were shared between the two sets. Applying the weights to statistics from different 
naturalness levels allowed us to interpolate a relationship between discriminability (d-prime) 
and naturalness. Simulations of the match-to-sample task with Gaussian distributions reached 
threshold (75% correct) for d-prime values of 1.94. Accordingly, we defined the model 
observer’s threshold naturalness as the value corresponding to d-prime=1.94, and sensitivity as 
the inverse of threshold.  
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We repeated this process for “low-pass” observer models trained using subsets of the texture 
statistics limited to certain spatial frequency bands: only the lowest spatial frequency band, the 
2 lowest, the 3 lowest, or the full set of all 4 frequency bands. For the purposes of all analyses 
we grouped cross-scale statistics into the higher of their two constituent frequency bands. 
These four frequency band subsets approximate the effect of low-pass filtering the texture 
images with corner object frequencies of 14, 28, 57, and 113 cycles/image, respectively. This 
process generated the model observer sensitivity measurements plotted in Figure 13. 

We also repeated the process for “bandpass” observer models, each of which was limited to 
statistics from one of the four spatial frequency bands. As reported in the main text, bandpass 
model sensitivities were identical to low-pass model sensitivities when the single band of the 
bandpass model matched the highest band of the low-pass model. That is, the sensitivity of the 
highest frequency bandpass model was equivalent to that of the full (four band) low-pass 
model, the second highest bandpass was equivalent to the 3 lowest band model, etc. This 
calculation is complicated somewhat by the inclusion of cross-scale statistics which, contrary to 
the intention of the bandpass models, integrate information across different bands. We 
repeated these calculations for low-pass and bandpass models that did not have access to 
cross-scale statistics. Sensitivity was only slightly lower (average 8.8% decline) and was still 
equivalent between low-pass and bandpass conditions for all cases. 

Comparison of model observer to sensitivity regression from Freeman et. al. 2013 

We used the model observer to determine how different subsets of statistics contributed to the 
discrimination of naturalistic texture from spectrally-matched noise. We trained multiple 
iterations of the model observer using either the full set of texture statistics (Figure 15A: “All”) 
or subsets of the statistics (e.g., cross-location statistics from simple cell-like linear filters, or 
cross-orientation statistics from complex cell-like energy filters, see Methods, image 
generation). We found energy covariance statistics resulted in stronger discrimination 
performance than linear covariance statistics (Figure 15A). We also found that cross-location 
statistics typically showed stronger discrimination performance than cross-orientation and 
cross-scale statistics.  

To examine the frequency-dependence of naturalness sensitivity, we plot discriminability from 
the bandpass model observers that only used subsets of statistics from one of the four different 
spatial frequency bands. Consistent with our psychophysical results, statistics in high frequency 
bands were much more effective at discriminating images than those in low frequency bands 
(Figure 15B).  

We next compared the model observer’s discriminability measurements to the results of a 
parallel analysis from Freeman et al. (2013) that used multiple regression to determine which 
texture statistics most effectively predict human naturalness sensitivity. This analysis uses 
cross-validated multiple regression to determine how well different subsets of texture statistics 
predict naturalness sensitivity for 444 distinct texture families. We emphasize that this 
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regression procedure is solving a qualitatively different task than that of the model observer. 
The model observer measures, for each individual texture family, the weighted sum of texture 
statistics that best discriminates naturalistic texture from noise. Each family uses a different set 
of weights and produces a different measurement of discriminability. In contrast, the regression 
analysis finds a single weighted sum of statistics that predicts differences in human naturalness 
sensitivity across many different texture families. Despite these different objectives, we 
suspected that both tasks would rely on the statistics that most strongly separate texture 
images from noise images.  

 
Figure 15. Naturalness sensitivity is best predicted by energy statistics and high object spatial frequency bands. A) 
Average model observer discriminability computed using different subsets of the texture statistics. Individual 
points denote the discriminability of individual texture families. B) Model observer discriminability computed using 
statistics from a single spatial frequency band, plotted versus object spatial frequency. The solid black line denotes 
the average over the five texture families. Each grey line denotes an individual texture family. C) R2 between 
naturalness sensitivity (444 texture families, data from Freeman et al. (2013)) and the predictions of a regression 
model. Each bar represents a regression model based on different subsets of the Portilla & Simoncelli texture 
statistics. D) R2 for predictions of human naturalness sensitivity computed using only Portilla & Simoncelli statistics 
that lie in a specific object spatial frequency band. 

Similarly to the model observer, the regression analysis predicted naturalness sensitivity more 
accurately using energy statistics than linear statistics (Figure 15C). However, unlike the model 
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observer results, cross-scale energy statistics more accurately predicted naturalness sensitivity 
than cross-location and cross-orientation statistics (Figure 15C). 

We believe this difference between the model observer and the regression analysis stems from 
differences between the two tasks. There are relatively few cross-scale statistics overall, and 
each of those statistics is typically a reliable marker of the overall strength of the naturalness 
signal in a texture family. Conversely, there are a much larger number of cross-location 
statistics, and their strength is more heterogeneous from texture family to family. A specific 
cross-location statistic that is stronger for naturalistic texture than noise in one family may have 
that relationship reversed in another family. As a result, the model observer may be learning 
family-specific patterns in the cross-location statistics that do not generalize to other texture 
families. To quantify this effect, we looked at how applying model observer weights trained on 
one texture family affected discriminability when those weights were applied to other families. 
We found that weights trained on cross-location or cross-orientation statistics were typically 
much less effective when those weights were applied to statistics from other texture families 
(average decline in d’: cross-location: 58%, cross-orientation: 64%). Conversely, weights trained 
on cross-scale statistics maintained high discriminability when applied to different families 
(average decline of 81%). Because the regression analysis relies on statistics that are strongly 
predictive across different families, it more heavily weights cross-scale statistics than cross-
location statistics. 

We next applied the regression analysis to statistics in different frequency bands. In contrast to 
the image observer results, we found that statistics in all four frequency bands were reasonably 
accurate at predicting perceptual sensitivity (Figure 15D). However, the predictive power of the 
second highest frequency band (40 c/image, R2=0.551) was essentially identical to that of the 
full model (R2=0.554), suggesting high levels of redundancy. Aside from the slight advantage of 
40 c/image over other bands, we have trouble drawing strong conclusions from these data.  

The small advantage of the 40 c/image statistics over the 80 c/image statistics contrasts with 
the model observer, which shows a significant advantage for the highest object spatial 
frequency band over all other spatial frequency bands. This discrepancy is likely due to the 
structure of the psychophysical task in Freeman et al. (2013). In this task, three texture images 
were presented simultaneously on the screen in the peripheral visual field. This task was run 
remotely on a large, crowd-sourced population of observers using Mechanical Turk, and as such 
the presentation size and distance could not be precisely controlled. Nonetheless, the target 
arrangement makes it likely that in most trials, the 80 c/image frequency band lay in retinal 
spatial frequency bands that were beyond the texture acuity limit of the observers. As such, it is 
reasonable that they are slightly less predictive than statistics in the highest visible spatial 
frequency band: 40 c/image.  
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